
Database Proxies: A Data Management approach for Component-Based
Real-Time Systems∗

Andreas Hjertström, Dag Nyström, Mikael Sjödin
Mälardalen Real-Time Research Centre, Västerås, Sweden
{andreas.hjertstrom, dag.nystrom, mikael.sjodin}@mdh.se

Abstract

We present a novel concept, database proxies, which en-
able the fusion of two disjoint productivity-enhancement
techniques; Component Based Software Engineering
(CBSE) and Real-Time Database Management Systems
(RTDBMS). This fusion is neither obvious nor intuitive
since CBSE and RTDBMS promotes opposing design goals;
CBSE promotes encapsulation and decoupling of compo-
nent internals from the component environment, whilst RT-
DBMS provide mechanisms for efficient and safe global
data sharing. Database proxies decouple components from
an underlying database thus retaining encapsulation and
component reuse, while providing temporally predictable
access to data maintained in database. We specifically tar-
get embedded systems with a subset of functionality with
real-time requirements, and the results from our implemen-
tations shows that the run-time overhead from introducing
database proxies is negligible and that timing predictability
does not suffer from the introduction of an RTDBMS in a
component framework.

1 Introduction
To enable a successful integration of a Real-Time

DataBase Management System (RTDBMS) [1, 3, 13, 17]
into a Component-Based Software Engineering (CBSE) [8,
6] framework we present a new concept, database proxies.
A database proxy allows system developers to employ the
full potential of both CBSE and RTDBMS, which aim both
to reduce complexity and enhance productivity when devel-
oping embedded real-time systems.

Although both CBSE and RTDBMS aims to reduce com-
plexity, a fusion between them is not trivial since their
design goals are contradicting. RTDBMS promotes tech-
niques, such as a common blackboard storage architec-

∗This work is supported by the Swedish Foundation for Strategic Re-
search within the PROGRESS Centre for Predictable Embedded Software
Systems.

ture to share global data safely and efficiently by provid-
ing concurrency-control, temporal consistency, and over-
load and transaction management. Furthermore the typical
interface provided by the RTDBMS opens up for a whole
new range of possibilities, much needed by industry, such
as dynamic run-time queries which could be a welcome
contribution to aid in logging, diagnostics, monitoring [18],
compared to the pre defined static data access often used by
developers today.

CBSE promotes encapsulation of functionality into
reusable software entities that communicates through well
defined interfaces and that can be mounted together as
building blocks. This enable a more efficient and structured
development where available components can be reused or
COTS components effectively can be integrated in the sys-
tem to save cost and increase quality.

The techniques offered by an RTDBMS allow the in-
ternal structure of the RTDBMS to be decoupled from its
users. However, using these techniques in a component-
based system implies calling the database from within the
component code, thereby introducing unwanted side-effects
such as awareness that the database exist, severely influenc-
ing component reusability. A component with direct access
to the database from within, introduces side-effects thereby
violating the components aim to be encapsulated. Further-
more, if the RTDBMS is used inside the component, the
component cannot be used without a database.

To overcome these problems we propose the concept
of database proxies which decouple the database from the
component, and instead uses the database as a part of the
component framework.

As illustrated in figure 1, a database proxy is part of the
component framework, thus external to the component. The
task of the database proxy is to manage access to the RT-
DBMS to make it possible for components to interact with
a database through its interface as the coupling is embed-
ded in the underlying glue code. By decoupling compo-
nents from the database, and placing the database in the
component framework, the decision to use a database or not
is moved from the component design to the system design.

1

DB Unaware

Component B

DB Unaware

Component A

RTDBMS

DB

Proxy

DB

Proxy

Real-Time Database

Management System

Figure 1. Database Proxies Connecting Com-
ponents to an RTDBMS

The tools and techniques in this paper primarily targets
data intensive and complex embedded real-time systems
with a large degree of control functions, such as vehicu-
lar, industrial and robotic control-systems. These domains,
and also software intensive embedded systems in general,
has in recent years become increasingly complex; up to the
point that system development, evolution and maintenance
is becoming hard to handle, with corresponding decreases
in quality and increases of costs [10, 15].
The results and main contributions of this paper include:

1. A framework where components and data is reli-
ably managed and structured to enable flexibility and
reusability.

2. A system where soft and hard real-time tasks can exe-
cute and keep isolation properties.

3. A system that can handle critical transactions and at
the same time enable openness to run-time queries.

4. A system where new functionality can be added or re-
moved without side effects to the system.

The rest of this paper is structured as follows; in sec-
tion 2, we present background and motivation for the ap-
proach. We also present the specific problems that our
approach addresses. In section 3, we present the system
model. Section 4 gives a detailed description of the database
proxy. Further, in section 5, we illustrate our ideas with an
implementation example. Finally, we show a performance
and real-time predictability evaluation in section 6 and con-
cluded the paper in section 7.

2 Background and Motivation
The characteristics of today’s embedded systems are

changing. Embedded systems are in many cases not iso-
lated to a single system, or a small set of systems. Many

embedded systems are increasingly dependent on cross-
platform communication with other systems. An example
of this could be so called Car-to-Car (C2C) [4] communi-
cation. This increases the need for flexible, reliable and se-
cure data management since nodes in different systems will
interact with each other by accessing and updating various
data items. This implies that a database with a well proven
standardized interface such as Open Database Connectiv-
ity (ODBC) would provide an attractive solution [18]. In
addition, this will require a clear separation between safety-
critical and non-critical access to data to preserve safety re-
quirements.

A strong trend in embedded-system’s development is
CBSE. However, to achieve a successful integration of RT-
DBMS into the CBSE framework, a number of CBSE re-
quirement has to be fulfilled. In CBSE, a component en-
capsulates a function or a set of functions and only reveals
its interfaces to specify the services that it will provide or
require.

A component which communicates with a database out-
side its revealed interface, i.e directly from within the
component-code, introduce a number of unwanted proper-
ties such as hiden dependencies and limited reusability. We
define such a component to be database aware.

To fully utilize the benefits of CBSE, a component
should be able to interact with a database without any
knowledge of the database schema, i.e., the structure of the
data in the database. We define such a component to be
database unaware. A database unaware component has no
notion of the underlying database and its structure, neither if
a database is used or not. Furthermore, a database unaware
component introduces no side-effects such as database com-
munication outside the components specified interface, thus
retaining components reusability.

The usage of an RTDBMS in a CBSE framework may
not introduce any side-effects that violates key CBSE archi-
tectural principles [19, 8]. For the purpose of this paper, we
define a component to be side-effect free if it is:

• Reusable: A component has to be reusable without
any direct dependencies to the surrounding environ-
ment.

• Substitutable: A component should be substitutable
with another component if the new component meets
the original interface requirements.

• Without implicit dependencies: A component may
not have any data dependencies other then the depen-
dencies expressed in its interface.

• Using only interface communication: A component
may only communicate trough its interface.

2

2.1 RTDBMS Access Mechanisms
There are several existing RTDBMS mechanisms that

could be used in order to reach some of above stated prin-
ciples by decoupling the internal structure of the RTDBMS
from its users. However, these mechanisms are placed di-
rectly in the component code. This implies that there exists
a dependency between the component and the RTDBMS.
Available RTDBMS mechanisms [12];

• Pre-compiled statements, enables a developer to bind
a certain database query to a statement at design-time.
The statement is compiled once instead of a sending it
to the database and compiling it for each use. This has
a decoupling effect since the internal database schema
is hidden. Each statement is bound to a specific name
that is used to access the data.

• Views, holds a stored predefined query that can rep-
resent a subset of the data contained in one or sev-
eral tables which can be accessed as a virtual table.
Views has similar decoupling effect as pre-compiled
statements, but in this case the name represent a sim-
plified view of several tables.

• Stored Procedures, decouples logical functions that is
moved into the database, hidden from the user. Several
SQL statements can be executed within the database
using declared variables and loop trough trough tables
using, IF or WHILE statements etc. declared in the
SQL language. However only result sets can be re-
turned for additional processing.

• Functions, is a subprogram, similar to a stored pro-
cedure, the logical functions, the internal database
schema is decoupled from the user. Functions perform
a desired task and returns a single value.

These mechanisms seemingly provide means of decou-
pling a component from the RTDBMS, however none of the
above stated RTDBMS mechanisms are sufficient to use in
a component-based setting, since;

1. The database access is side-effect not visible in the
component’s interface.

2. The component are bound to always use a database.

3. The component is not fully decoupled from the
database. The database name, specific login details
and connection information etc. resides in the com-
ponent. The component is therefore no longer generic
nor reusable.

4. The requirements expressed by the components inter-
face does not reflect the database dependency, the com-
ponent are therefore no longer substitutable.

An additional implication of using the existing RT-
DBMS mechanisms is that since the component will be
dependent on a database, the component will determine
whether a database should be used or not. As a result of
this, the decision to use a database or not is made on the
component-design level, instead of the system-design level.
Usage of these mechanisms will also introduce hidden de-
pendencies since the communication is outside the compo-
nents interface. Individual components should not intro-
duce side-effects or dictate the overall system architecture.

2.2 System Requirements
In this section we list a number of requirements that has

to be fulfilled to enable the introduction of an RTDBMS into
a component-based application without violating the funda-
mental aim of CBSE. The usage of an RTDBMS should be
seen as an additional design feature for systems where data
management using internal data structures are not sufficient.

R1 The decision to use an RTDBMS or not should be
made on system/application/product level.

R2 The usage of an RTDBMS should not introduce any
side-effects to the components or system.

R3 A component should be possible to use both with or
without an RTDBMS.

R4 The real-time properties should not be compromised.

3 System Model
The tools and techniques in this paper primarily targets

data intensive and complex embedded real-time systems
with a large degree of control functions, such as vehicular,
industrial and robotic control-systems. These applications
involve both hard safety-critical control-functions, as well
as soft real-time functionality. Our techniques are equally
applicable to distributed and centralized systems (however
current implementations; as described in latter sections, are
for single node systems).

We consider a system where functionality are divided
into the following classes of tasks:
Hard real-time tasks, typically executed at high frequency
to read or write values from sensors or component output
ports to memory or database. When a database is used, hard
real-time tasks require a predictable access to data elements.
Soft real-time tasks, often running at a lower frequency
controlling less critical functions such as presenting statis-
tical information, logging or used as a gateway for service
access to the system by technicians to perform system up-
dates, fault management or if the system permits, perform
ad-hoc queries at run-time. These tasks puts high demands
on system flexibility and standard interfaces.

3.1 Real-Time Database Architecture
In order to support a predictable mix of both hard and

soft real-time transactions, we consider a database with two

3

RTDBMS

S
o

H
a
rdSQL DBP

Figure 2. RTDBMS Architectural Overview

separate interfaces. Figure 2 illustrates an RTDBMS which
has a soft interface that utilize a regular SQL [7] query inter-
face to enable flexible access from soft real-time tasks. For
hard real-time transactions, a database pointer (dbp) [16] in-
terface is used to enable the application to access individual
data elements in the database similar as a shared variable.
This approach enable us to share data between hard and soft
real-time tasks. To achieve database consistency without
jeopardizing the real-time requirements the 2V-DBP con-
currency control algorithm [16] is used. 2V-DBP allows
hard and soft transactions to share data independent of each
other.Figure 3 shows an example of a database aware I/O task
that periodically reads a sensor and propagates the sensor
value to the database using a database pointer, in this case
the oil temperature in the engine relation. The task consists
of two parts, an initialization part (lines 2 to 4) executed
when the system is starting up, and a periodic part (lines 5
to 8) scanning the sensor.

1 TASK oilTemp(void){
//Initialization part

2 int temp;
3 DBPointer *dbp;
4 bind(&dbp,"Select TEMP from ENGINE

where SUBSYSTEM=’oil’;");
//Control part

5 while(1){
6 temp=readOilTempSensor();
7 write(dbp,temp);
8 waitForNextPeriod();

}
}

Figure 3. A database aware I/O task that uses
a database pointer

The initialization of the database pointer is first done by
declaring the database pointer (line 3) and then binding it to
the data element containing the oil temperature in the engine
(line 4). When the initialization is completed, the task be-
gins to periodically read the value of the sensor (line 6), then
propagates the value to the RTDBMS using the database
pointer (line 7), and finally awaits the next invocation of the
task (line 8).

Component

1
Sensor

Component

2

Component

3

Component

4

Actuator

Hmi

Task alloca!on

Synthesis

Glue code

System design and modeling

A"ribute

assignment

Applica!on

Figure 4. System Design and Modeling

3.2 System Design and Modeling
In application design and modelling we assume a pipe-

and-filter [6] component model where data is passed be-
tween components (filters) using connections (pipes). The
entry point for the connection to the components is the inter-
face (port). Figure 4 shows an example of a system design
and modeling architecture for CBSE. A set of components
are connected trough ports and connections to form the sys-
tem. From the modeled system, the low level code is gener-
ated to tasks, attributes and glue code to the application.

3.3 Extended System Design and Modeling
We complement the classical architectural view, pre-

sented in section 3.2, with a new additional view, the CBSE
database-centric view. This new view visualizes the com-
ponent ports that are connected to data elements in an RT-
DBMS, illustrated in figure 5. The notation simplifies the
view of the system by removing the actual connection be-
tween the producing and consuming component, thus re-
placing it with a database symbol. To enable traceability,
this view can however be transformed at any time to reveal
the data flow through the connections such as shown in 4.

This is similar to an off-page connector that is used when
designing electrical schemas for embedded systems which
could involve a large number of components and connec-
tions. A connection ends in a symbol or a an identifica-
tion name that is displayed at each producer and consumer.
To display all connections in a complex schematic diagram
would make the electrical schema impossible to read.

During the design of the system the system architect or
developer can utilize both traditional data passing through
connections or via an RTDBMS providing a black-board
data management architecture. An RTDBMS can be used as
the single source of memory management or a mix of both
internal data structures and an RTDBMS when additional
flexibility is needed to meet the system requirements.

4

Task alloca�on

Synthesis

Glue code
A!ribute

assignment

Applica�on

Extended system design and

modeling environment

DB

DB

DB

DB

DB

DB DB

DB

DB

DB

DB

DB

Figure 5. Database View of Application Model

As an example, the usage of an RTDBMS could be con-
sidered useful when several components and tasks share
data and/or there is a need to perform logging, diagnostics
or display information on an HMI. However, if two com-
ponents share a single data item that are of no additional
interest, it is probably not necessary to map that item to the
RTDBMS.

4 Database Proxy

To succeed in combining CBSE and RTDBMS, we intro-
duce an architectural framework object, the database proxy
which acts as a communication link between the applica-
tion components and the RTDBMS as seen in figure 1. The
database proxy and communication interface to the database
is embedded in the glue code between component calls and
connects to a components input or output port. This cre-
ates an interface which matches the interface of the compo-
nent. As a result, the system can fully benefit from the ad-
vantages of component-based software development com-
bined with the advantages of a real-time database manage-
ment system since the components are decoupled from a
specific database engine or database schema. The database
proxy interface descriptions should be automatically gener-
ated, based on the system design description and the appro-
priate data model.

The architectural framework introduced in this paper dis-
tinguish between two types of database proxies, namely
hard real-time database proxies (hard proxies) and soft real-
time database proxies (soft proxies).

4.1 Hard Real-Time Database Proxy

Hard proxies are intended for hard real-time compo-
nents, which need efficient and deterministic access to in-
dividual data elements.

A hard real-time database proxy;
• is connected to a component’s in- or out-port, thereby

acting as a communication link to the database.
• is realized with a database pointer to enable predictable

data access to individual data elements.
• contains all information to set up a database pointer,

which will be constructed in the component framework
as glue code between component calls.

• uses a predictable concurrency control algorithm such
as 2V-DBP [16] that provides constant response-time
for database pointers.

• can provide a data element of any type.
• can be used with any existing components since the

database is fully transparent to the component.

4.2 Soft Real-Time Database Proxies
Soft proxies are intended for soft real-time components,

which might need more complex data-structures. Consider
a component monitoring the overall status of a subsystem,
e.g., all the temperatures in an engine, or logging of errors
etc.

In order for a component to be decoupled from the RT-
DBMS and use a soft proxy, it utilizes a relational interface,
which means that the components interface has the notion
of a relational table. Therefore a new type is introduced,
TABLE.

Query C-structResultset

Managed by database proxy Managed by component

select Mode, state

from Feedback order

by Mode;

struct{

char[10] Mode;

int State;

}Table_FeedBack;

Feedback

Mode State

Find 0

Follow 0

Turn 1

Figure 6. Description of Table Type

A TABLE is a realization of a relational table using stan-
dard C-types. Figure 6 illustrates the three steps from query
to resultset and C-struct. At run-time the database query
returns a resultset that is converted by the soft proxy into
the defined TABLE to match the interface of the consuming
component. The specified type TABLE, is generated into
the component code.

This approach enables a component to be database un-
aware as the database proxy does not introduce any side-
effects. Since a component can receive a type TABLE with-
out the usage of a database proxy, the component is still
reusable without a database. This is possible since the data
transformation between the database and the TABLE is en-
capsulated in the proxy.

5

DBProxy.h

DBProxy.c

int DBInit(){

setupDbSession();

….

initDB_task_1();

initDB_task_2();

}

int DBUninit(){

endDBSession();

unInit_task_1();

unInit_task_2();

}

main(){

…

DBInit();

start task_1();

start task_2();

DBUnInit();

}

applica!on.c

#include DBProxy.h

declare DBPointer dbp1;

int initDB_task_1(){

bind_DBP(…);

}

int unInit_task_1(){

unbind_DBP(…);

}

void hardProxy_r1(int *r1){

readDBPInt(..., r1);

}

void hardProxy_w1(int *w1){

writeDBPInt(..., w1);

}

void task_1(){

int r1, w1;

hardProxy_r1(&r1);

call_Component_C1(r1);

…

call_Component_C2(…);

hardProxy_w1(&w1);

}

task_1.c (code simplified for readability)

DB DBC1 C2

w1r1

#include DBProxy.h

Session sess;

Statement stmnt;

int initDB_task_2(){

BeginSession(sess, …);

BeginStatement(sess,…,&stmt);

}

int unInit_task_2(){

EndStatement(&stmnt);

EndSession(&sess);

}

void so Proxy_r2(Table_Mode log){

Fetch(stmnt);

GetInt(stmt, log->read_1);

Fetch(stmnt);

GetInt(stmt, log->read_2);

}

void task_2(){

Table_Mode log;

so Proxy_r2(&log);

call_Component_C3(log);

}

task_2c (code simplified for readability)

DB C3
r2

Figure 7. Hard and Soft Proxy Glue-Code Generation Example

A soft real-time database proxy;
• is connected to a component’s in- or out-port, thereby

acting as a communication link to the database.
• uses standard SQL query language.
• converts the resultset from the database query into the

format of the TABLE which is realized by a standard
c-type.

• hides the database query in the glue-code associated
with the proxy.

4.3 Proxy Implementation Description

Figure 7, shows a simple example of how the glue-code
generated from the proxy specification for hard and soft
database proxies are implemented. In the lower left of the
figure, two example applications are displayed. One ap-
plication includes component C1, that reads a value from
the database, filters it and outputs to component C2. C2,
writes a value to the database. The other application shows
an example of a soft database proxy implementation where
component C3 reads a type Table_Mode. Figure 7 has been
simplified for readability. The flow pointed out by the ar-
rows in figure 7, for the hard real-time task, task_1.c, is also
valid for the flow in the soft real-time task, task_2.c.

The flow of the implementation can be divided in three
phases, initialize, running task and un-initialize.

Initialize

1. application.c, is the main application file. Before
the task/tasks containing a database proxy/proxies
are called, the database is initialized by calling the
DBInit() function declared in the separate DBProxy.c
file. This is done for both hard and soft proxies.

2. Each tasks individual, initialization function,
initDB_task_1() and initDB_task_2() is called to
bind hard proxy real-time database database pointers
and to setup soft proxy real-time statements.

Task execution

1. The database proxies are included in the task files,
task_1.c and task_2.c.

2. The proxies are declared as a separate functions which
is called before the component call if it is connected to
an input port in order to read the required value/values.

3. If the proxy is connected to an output port the call
to the proxy is made after the component call to
write/update the database.

Un-initialize

1. When the task has completed its execution, DBUninit()
is called.

2. DBUninit() un-initializes the database connections in
all tasks.

6

System

Development

Tool

Data

Modeling Tool

Database Proxy

Descrip!on File

System

Descrip!on File

Database

Defini!on File

Code

Generator

DBTarget

Deployment

System Architect Data Administrator

Figure 8. The Approach

5 Implementation
In our approach, we have extended the CBSE system de-

velopment framework to include database proxies and data
modeling, see figure 8. In this framework the system ar-
chitect can utilize the usage of a database as an additional
design feature. If a database is included in the design,
the generated System Description File, is extracted from
the System Development Tool in order to perform the data
modeling and generate a Database Proxy Descriptions File.
These files are then weaved together with the Code Gener-
ator to form the run-time C-code. A Database Definition
File is also generated from the data modeling to enable the
database setup. Three existing tools and technologies have
been used in our proof of concept implementation of the ap-
proach in figure 8. Save-IDE [2], Mimer Real-Time edition
(MimerRT) [14] and the Data Entity Navigator (DEN) [11].

5.1 Mimer Real-Time Edition
The Mimer SQL Real-Time Edition (Mimer RT) [14] is

a real-time database management system intended for appli-
cations with a mix of hard and soft real-time requirements.
Mimer RT uses the concept of database pointers [16] to ac-
cess individual data elements in an efficient and determinis-
tic manner. For soft real-time database management, stan-
dard SQL [7] queries are used. To achieve database consis-
tency without jeopardizing the real-time requirements the
2V-DBP concurrency control algorithm presented in sec-
tion 3.1

5.2 SaveCCT Real-Time Component Tech-
nology

The SaveComp Component Technology (SaveCCT) [2]
is described by distinguishing manual design, automated
activities, and execution. The entry point for a developer

is the Save Integrated Development Environment (Save-
IDE), a tool supporting graphical composition of compo-
nents, where the application is created. Developers can uti-
lize a number of available analysis tools with automated
connectivity to the design tool. SaveCCT is based on a
textual XML syntax which allows components and appli-
cations to be specified. Automated synthesis activities gen-
erate code used to glue components together and allocate
them to tasks. SaveCCT is, as Mimer RT, intended for ap-
plications with both hard and soft real-time requirements.

SaveCCT applications are built by connecting compo-
nents input and output ports using well defined interfaces.
Components are then executed using trigger based strict
"read-execute-write" semantics. A component is always in-
active until triggered. Once triggered it starts to execute
by reading data on input ports to perform its computations.
Data is then written to its output ports and outgoing trigger-
ing ports are activated. Except from regular connections,
SaveCCT also provide a flexible connection concept de-
noted complex connections. This is the entrance point in the
component model for the database proxies. The database
proxy configuration is defined in the model of the complex
connection.

5.3 Embedded Data Commander Tool-Suite

The Embedded Data Commander (EDC) is a tool-suite
that implements the data entity approach [11] for the ProSys
component-model [5]. A data entity is a compilation of
knowledge for each data item in the system and can be de-
fined completely separate from the development of com-
ponents and functions. This enable developers to crate a
system with data entities based on application requirements
and perform early analysis even before the producers or
consumers of the data are developed.

This tool suite has in our continued research on database
proxies been extended with new functionality that supports
SaveCCT, real-time component technology [2].
The tool-suite has been extended with:

• The System Signal Manager (SSM), manages the
SaveCCT signals, proxy and component information.

• The DataBase Administrator Tool (DBAT), used to
model, setup and generate database schemas, load files
and database proxies.

Save-IDE generated description files can be imported
and interpreted by the SSM to give the developer a more
data centric view and information rather than focusing in
components as in Save IDE. From this information the
DBAT is used to design the database and generate the ap-
propriate load files for the RTDBMS. This information is
then used to generate the database proxy information files
that is exported to Save-IDE in order to generate the com-
ponent glue code.

7

1.<SIGNAL id="P_FindFB_W" component="Find">
2.<SNIPPETDEF type="int Fi_FindFB;"
pointerdefinition="MimerRTDbp dbp_P_FindFB_W;"/>

3.<SNIPPETINIT bindquery="MimerRTBindDbp(
&hrtsess,&dbp_P_FindFB_W,DBP_DEFAULT,
L"SELECT state FROM Mode WHERE
Subsystem="find");"/>

4.<UPDATECALL call="MimerRTPutInt(&
dbp_P_FindFB_W,Fi_FindFB);"/>

5.</SIGNAL>

Figure 9. Hard Proxy Representation

A database proxy definition is represented in XML. Fig-
ure 9 shows an example of a generated hard proxy descrip-
tion using MimerRT. The XML code is disposed as follows.
1 the id of the signal and which component it resides in. 2
the definition of type and pointer declaration. 3 the function
to bind the database pointer, including the sql query. 4 the
type of call to use, in this case an update call since it is a
write proxy. 5 end of proxy definition.

6 Performance Evaluation

In this section we describe the results from a perfor-
mance evaluation where we have implemented an embed-
ded control system and measured execution times and mem-
ory overheads.

6.1 The Application

To evaluate or approach, we have implemented an appli-
cation in Save-IDE. The application consists of seven com-
ponents that simulates a truck. The application has three
modes, follow, turn and find which are connected to an actu-
ator component. Components follow, turn and find are also
connected to mode change component via feedback loops.
The truck first follow a line. At the end of the line, the truck
turns for a certain amount of time until it finds the line and
starts following it again, see figure 10.

The application consists of two tasks, a hard real-time
task and a soft real-time task. The hard real-time task is
triggered every 10ms and consist of six components. A
sensor component that outputs sensor values to the Mod-
eChange component that decides which of the three modes
follow, turn and find to activate and the actuator compo-
nent. The architectural design decision of the application is
to replace the three interconnected loop-back signals from
the three mode components to the ModeChange compo-
nent with hard real-time database proxies. Components fol-
low, turn and find each updates a value in the database that
is read by three database proxies connected to component
ModeChange.

Figure 10. Truck Application

Since the task performed by the included components
is quite trivial, we have added a more realistic work load
in the system. We have added a complex embedded bench-
mark code used within the area of worst-case execution time
(WCET) analysis [20] to components follow, turn and find.
The benchmark code performs a lot of bit manipulation,
shifts, array and matrix calculations.

The soft real-time task is triggered every 20ms and con-
sist of one HMI component. The component uses a database
proxy to periodically read the three values updated by the
hard real-time task.

6.2 Benchmarking Setup
To evaluate our approach, we have performed a perfor-

mance evaluation of four possible implementations of the
evaluation application. The aim of the evaluation is to mea-
sure if the usage of our approach using database proxies will
have an impact on the real-time performance and memory
consumption of the system.

The tests have been performed on a Hitachi SH-4 series
processor [9] with VxWorks [21] as real-time operating
system. The hard real-time tasks are executed 1800 times.

The four evaluated implementations shown in figure 11:

Test 1 Baseline implementation using regular memory
without any database connection. The feedback
loops implemented as shared variables protected using
semaphores.

Test 2 Implementation using database unaware compo-
nents with access to the database using the concept of
database proxies.

Test 3 Implementation using database aware components
with access to the database from within the compo-
nents using database pointers.

Test 4 Implementation using database aware components
with access to the database from within the component
using only regular SQL queries without hard real-time
database pointers.

8

0

2000

4000

6000

8000

10000

12000

14000

1 501 1001 1501

Test 1: No Database

Execu on me (µsec)

JobNo 0

2000

4000

6000

8000

10000

12000

14000

1 501 1001 1501

Test 2: Database Proxies

Execu on me (µsec)

JobNo

0

2000

4000

6000

8000

10000

12000

14000

1 501 1001 1501

Test 3: Database Pointers in Components

Execu on me (µsec)

JobNo 0

2000

4000

6000

8000

10000

12000

14000

1 501 1001 1501

Test 4: SQL calls in Components

Execu on me (µsec)

JobNo

Figure 11. Evaluation Results

Test ACET WCET ACET (%) WCET (%)
1 878 1098 - -
2 894 1122 1.82 2.19
3 872 1084 -0.68 -1.28
4 6771 825434 771.18 75176.14

Table 1. Application Execution Time

6.3 Real-Time Performance Results

Figure 11 shows the result of the response-times of the
hard real-time control application for the four test-cases.
The graphs clearly show that the introduction of a real-
time database using database pointers, either directly in the
component-code or through proxies does not affect the real-
time predictability and adds little extra execution time over-
head, while using SQL queries directly in the component-
code severely affects both predictability and performance
negatively. Table 1, shows a table with the evaluation re-
sults. The change of the Average Case Execution Time
(ACET) and Worst Case Execution Time (WCET) in the
two rightmost columns shows the change in percent, with
test 1 as a benchmark. The ACET and WCET between
the first three tests does not differ more than a few percent.
The fourth test does, as could be expected, not perform any-
where near the other tests.

In these tests we are most interested in test 2, which
shows that the ACET is increased by only 1.82% and the
WCET by 2.19%. Furthermore, the evenness of the re-

Test Code Size Change (%)
No Database 653 512 bytes -
Database Pointers 666 564 bytes 1.99
Database Proxies 666 988 bytes 2.06

Table 2. Application Code Size

sults clearly shows that the usage of database proxies is
predictable, and with the amount of overhead in average
and worst-case execution time is limited. We interpret the
slight decrease in ACET and WCET for test 3 to be a result
of optimized synchronization primitives used by MimerRT
compared to the regular POSIX routines.

6.4 Memory Consumption Results

Table 2 shows how the client code size changes when
using different data management methods. As can be seen
in the table, integrating a real-time database client with the
calls handcoded in the component code introduces 1.99%
extra code. By using database proxies that have been au-
tomatically generated the code size grows with as little as
2.06%. Introducing a real-time database server in the sys-
tem of course also introduces extra memory consumption,
but embedded database servers are becoming smaller and
smaller. The Mimer SQL database family that is used in this
evaluation has a footprint ranging from 273kb for the Mimer
SQL Nano database server, up to 3.2Mb for the Mimer SQL
Engine for enterprise systems. The RAM usage for Mimer

9

SQL Nano is as low as 24k. The increase of client code
size, as well as the small size of modern embedded database
servers makes the memory overhead for database proxies
and real-time database affordable for many of today’s real-
time embedded systems.

7 Conclusions
This paper presents the database proxy approach which

enable fusion between real-time database management sys-
tems (RTDBMSes) and component-based software engi-
neering (CBSE). Our approach allows the introduction of
RTDBMSes, and the associated range of new possibili-
ties, to CBSE; this includes the possibility to access data
via standard SQL interfaces, concurrency-control, temporal
consistency, and overload and transaction management. I
addition, a new possibility to use dynamic run-time queries
to aid in logging, diagnostics and monitoring is introduced.

The motivation for our approach stems from observa-
tions of industrial practices and documented needs [10, 18].

To evaluate our approach, an implementation that cov-
ers the whole development chain has been performed, us-
ing both research oriented and commercial tools and tech-
niques. The system architecture is implemented in Save-
IDE. The architectural information is then generated and
exported to EDC tool, where the database proxies and in-
terface to the database is created. The EDC tool then gen-
erates the database proxy information back to Save-IDE for
further generation of glue-code and tasks for the entire sys-
tem.

To validate our approach further, we has performed a se-
ries of execution time tests on the generated C-code for a
research application. These tests shows that our approach
only increase (both the average and the worst-case) execu-
tion time with approximately 2%. Furthermore, the mem-
ory overhead, also about 2%, introduced by database prox-
ies can be affordable for many classes of embedded sys-
tems. We conclude that the database proxy approach offers
a range of valuable features that to real-time embedded sys-
tems development, maintenance and evolution at a minimal
cost with respect resource consumption.

References
[1] B. Adelberg, B. Kao, and H. Garcia-Molina. Overview

of the STanford Real-time Information Processor (STRIP).
SIGMOD Record, 25(1):34–37, 1996.

[2] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson,
J. Håkansson, A. Möller, P. Pettersson, and M. Tivoli. The
Save Approach to Component-Based Development of Ve-
hicular Systems. Journal of Systems and Software, 2006.

[3] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndts-
son, and B. Eftring. Deeds towards a distributed and ac-
tive real-time database system. ACM SIGMOD Record, 25,
1996.

[4] AUTOSAR Open Systems Architecture. http://www.car-to-
car.org.

[5] T. Bures, J. Carlson, I. Crnkovic, S. Sentilles, and A. Vulgar-
akis. ProCom - the Progress Component Model Reference
Manual. Technical Report, Mälardalen University, 2008.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
M. Stal, P. Sommerlad, and M. Stal. Pattern-Oriented Soft-
ware Architecture, Volume 1: A System of Patterns. John
Wiley & Sons, 1996.

[7] S. Cannan and G. Otten. SQL - The Standard Handbook.
MacGraw-Hill International, 1993.

[8] I. Crnkovic and M. Larsson. Building reliable component-
based software systems, 2002.

[9] Hitachi SH-4 32-bit RISC CPU Core Family.
http://www.hitachi.com/.

[10] A. Hjertström, D. Nyström, M. Nolin, and R. Land. Design-
Time Management of Run-Time Data in Industrial Embed-
ded Real-Time Systems Development. In Proceedings of
13th IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA’08), IEEE Industrial
Electronics Society, Hamburg, Germany, September 2008.

[11] A. Hjertström, D. Nyström, and M. Sjödin. A data-entity
approach for component-based real-time embedded systems
development. In 14th IEEE International Conference on
Emerging Technology and Factory Automation, September
2009.

[12] ISO SQL 2008 standard. Defines the SQL language, 2009.
[13] J. Lindstrom, T. Niklander, P. Porkka, and K. Raatikainen.

A Distributed Real-Time Main-Memory Database for
Telecommunication. In Proceedings of the Workshop on
Databases in Telecommunications. Springer, 1999.

[14] Mimer SQL Real-Time Edition, Mimer Information Tech-
nology. Uppsala, Sweden. http://www.mimer.se.

[15] N. Navet. Trends in Automotive Communication Systems.
In Proceedings of the IEEE, volume 93, pages 1204–1223,
June 2005.

[16] D. Nyström, M. Nolin, A. Tešanović, C. Norström, and
J. Hansson. Pessimistic Concurrency Control and Version-
ing to Support Database Pointers in Real-Time Databases.
In Proceedings of the 16th Euromicro Conference on Real-
Time Systems, pages 261–270. IEEE Computer Society, June
2004.

[17] K. Ramamritham, S. H. Son, and L. C. Dipippo. Real-Time
Databases and Data Services. Journal of Real-Time Systems,
28(2/3):179–215, November/December 2004.

[18] S. Schulze, M. Pukall, G. Saake, T. Hoppe, and J. Dittmann.
On the need of data management in automotive systems. In
J. C. Freytag, T. Ruf, W. Lehner, and G. Vossen, editors,
BTW, volume 144 of LNI, pages 217–226. GI, 2009.

[19] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley Professional, De-
cember 1997.

[20] The Worst-Case Execution Time (WCET) analysis project.
http://www.mrtc.mdh.se/projects/wcet/.

[21] VxWorks Real-Time Operating System, by Wind River.
http://www.windriver.com/.

10

