Malardalen University Press Licentiate Theses
No.111

Towards Efficient Component-Based
Software Development of Distributed
Embedded Systems

Severine Sentilles

2009

y A)
| ¥V 4
MALARDALEN UNIVERSITY

School of Innovation, Design and Engineering

Copyright(© Séverine Sentilles, 2009

ISSN 1651-9256

ISBN 978-91-96135-43-0

Printed by Malardalen University, Vasteras,Sweden

Abstract

The traditional ways of developing embedded systems artegoli® their lim-
its, largely due to the rapid increase of software in thestesys. Develop-
ers now have difficulties to handle simultaneously all thetdes involved in
the development such as increasing complexity, limitedsiraded resources,
distribution, timing or dependability issues. These latiiins make the devel-
opment of embedded systems a rather complex and time conmguask, and
call for new solutions that can efficiently and predictabbpe with the new
specifics and requirements of embedded systems to ensurfirthkequality.

Component-based software engineering is an attractiveoapp that aims
at building software systems out of independent and welhdd pieces of
software. This approach has already shown advantages iagimnsoftware
complexity, and reducing production time while increassugtware quality.
However, directly applying component-based software regjing principles
to embedded system development is not straightforwardedtires a con-
siderable adaptation to fit the specifics of the domain, sgusganteeing the
extra-functional aspects, such as real-time concernstysafiticality and re-
source limitations, is essential for the majority of embedidystems.

Arguing that component-based software engineering ialsigittor embed-
ded system development, we introduce a component-baseokabpadjusted
for embedded system development. This approach is cerdenedd a dedi-
cated component model, called ProCom, which through itslawyer structure
addresses the different concerns that exist at differgald®f abstraction. Pro-
Com supports the development of loosely coupled subsystegether with
small non-distributed functionalities similar to conttobps. To handle the
management of important concerns related to functionalextré-functional
properties of embedded systems, we have extended ProConanvéttribute
framework enabling a smooth integration of existing analyschniques. We
have also demonstrated the feasibility of the approachutitra prototype re-
alisation of an integrated development environment.

Resune
— Abstract in French

Affrontant une rapide et massive introduction de logigildssmonde des sys-
temes embarqués est en proie au changement. De ce faibékb®des tra-

ditionnelles de développement de ces systemes attditgen limites. Elles

ont désormais des difficultés a gérer simultanémeuns tes parametres im-
pliqués dans le développement, tel que I'accroissemenaadomplexité, la

limitation et le partage des ressources, la distributiorsi@ue les contraintes
temporelles et de fiabilite. Ces limitations rendent leadé@ppement parti-

culierement complexe et colteux, et requierent de nas/eolutions pou-

vant efficacement et de maniere prévisible répondre auxeaux besoins des
systemes embarqués afin d’assurer leur qualité finale.

L'ingénierie logicielle basée composants est une agmesant a la cons-
truction de systemes logiciels par I'usage de “briquegieties” indépendan-
tes et parfaitement caractérisées. Cette approch@alégjontré des aptitudes
pour appréhender la complexité logicielle tout en réent les temps de pro-
duction et maintenant la qualité. Pourtant appliquerai@ment les principes
de I'ingénierie logicielle basée composants au déy@opent de systemes em-
barqués n’est pas simple et nécessite une adaptatioitécaisie pour se con-
former aux exigences du domaine, telles que la limitatiorésources et les
contraintes temps réel et de criticité.

Convaincus que I'ingénierie logicielle basée composaathvient au déve-
loppement des systemes embarqués, nous introduisonappmeche basée
composants dediée au développement de systemes eraba@gite approche
s’appuie sur ProCom, un modele de composants spécifiguauduavers de
sa structuration en deux niveaux concerne les propnitesentes a differents
niveaux d’abstractions. ProCom supporte le développéd@®nous-systemes

faiblement couplés conjointement avec de petites fonoadités non distri-
buées analogues aux boucles rétroactives. Dans le bssuter la gestion
des aspects ayant trait aux propriétés fonctionnellesxgt-fonctionnelles,
nous avons étendu ProCom au travers d’'un “attribute fraonéfacilitant
I'intégration de techniques d’analyses préexistantesfaisabilité de I'appro-
che est également démontrée via la réalisation d’utopype d’environnement
de développement intégré.

Acknowledgements

Looking back at my past, nothing predestined me to do a tlesleven less
in Sweden, a country that | would have never envisaged toitivgit is too
cold up there !I"). But the course of my life completely changed thanks to
Nicolas Belloir, who put his trust in me and always tried t@ped me forward,
smoothly enough to manage to make me accept a PhD positioalatdalen
University. | cannot say how much | am thankful to you for thy®u are a
great friend!

But this adventure would not have been possible nor been jagade
either without the intervention of many people. To begirhwitwould like to
express my gratitude towards two of my supervisors, lviaak@vic and Hans
Hansson. Thank you for believing in me and accepting me adoasident
despite my hesitating Frenglish way of speaking. | am alveagazed by your
enthusiasm, commitment and above all your inexplicableciapto work so
much. Many thanks also go to my other supervisor, Jan Carfsorall the
fruitful discussions, inputs, reviews, help and guidanagtime | needed it. |
also want to thank my French supervisors, Frank Barbier aiedFariou, who
have given me the opportunity to do a so-called “co-tuteliéh the university
of Pau.

Many thanks also go to the “Mental Department” that many hiaiesl
to enter but few have managed, ProPhs and associated me(vstia,
Stefan/Bob, Hus, Tibi, Adnan, Aida, Aneta, Luis, Batu, l&arg, Hongyu,
Pasqualina, Juraj, Mikael, Antonio, Ana, Luka, Leo, Maogdagadish) for all
the laughters and great moments during the fika, lunchesranels. You are
really great people to work with, and above all great friendisd of course, |
don't forget all the RoGREssand/or IDT members, Andreas, Damir, Daniel,
Lars, Jorgen, MikaeRkerholm, Radu, Nolte, Markus, Ebbe, Anton, Rikard,
Stig, Frank, Paul, Jukka, Sasi, Malin, Gunrsa, for making life at work and
abroad so pleasant!

Vi

I would also like to put a special mention to Harriet Ekwalldavonica
Wasell not only for continuously helping out on an every-8agis and bring-
ing so much fun in the department but also for all the help thyided me
when | arrived in this foreign country and | was totally loataconfused with
the administrative procedures. The atmosphere at the trhegatr will defini-
tively not be the same without you.

There are also a lot of friends from childhood and univergisgt | really
want to thank for having been present for me when i really adetipport and
good friends: Anouk, Flo, Natacha, Aurel, Cristine, Fafiatic, Gael, Sophie,
Marie, Pauline, Laure, Aude, Anne-Sophie and Bea. | mustrsatyl am really
lucky to have you around.

And last but not least, | would like to thank my parents, grpadents,
cousins (Yan, Aurélie, Cédric, Alex, Lou-Anne), MarieaRc¢oise, Marie-Paule,
Fredo, Nono, and of course Dag and Liv for bringing so muchydifa that |
cannot express this with words.

Seéverine Sentilles
Vasteras, November 2009

This work has been supported by the Swedish Foundationrate§ic Re-
search (SSF), via the research cerPROGRESS

List of Publications

Publications Included in the Licentiate Thesi¢

Paper A: A Classification Framework for Component Modéisca Crnkovic,
Séverine Sentilles, Aneta Vulgarakis, Michel Chaudrorccépted to
IEEE Transactions on Software Engineering (in the procéssssion).

Paper B: A Component Model Family for Vehicular Embedded Systems
Tomas Bures, Jan Carlson, Séverine Sentilles, Anelgavakis. In Pro-
ceedings of the 3rd International Conference on Softwaigirteering
Advances (ICSEA), Sliema, Malta, October 2008.

Paper C: A Component Model for Control-Intensive Distributed Enbesti
Systems Séverine Sentilles, Aneta Vulgarakis, Tomas Burag, Garl-
son, lvica Crnkovi€. In Proceedings of the 11th InternadilcSympo-
sium on Component Based Software Engineering (CBSE 200#); K
sruhe, Germany, October, 2008.

Paper D: Integration of Extra-Functional Properties in Componenodi&ls
Severine Sentilles, Pestépan, Jan Carlson and Ivica Crnkovic. In
Proceedings of the 12th International Symposium on CompidBased
Software Engineering (CBSE 2009), LNCS 5582, SpringeriBeHast
Stroudsburg University, Pennsylvania, USA, June, 2009.

Paper E: Save-IDE — A Tool for Design, Analysis and Implementatidbarh-
ponent-Based Embedded SysterSgverine Sentilles, Anders Petters-
son, Dag Nystrom, Thomas Nolte, Paul Pettersson, lvick@¥i. In
Proceedings of the 31st International Conference on Soft&agineer-
ing (ICSE), Vancouver, Canada, May 2009.

1The included articles have been reformatted to comply vhighlicentiate page setting

vii

viii

Additional Publications, not included in the Thesis

Conferences and workshops:

e Save-IDE — Integrated Development Environment for Buj@redicta-
ble Component-Based Embedded Syste®&verine Sentilles, John
Hakansson, Paul Pettersson, Ivica Crnkovi¢. In Procesdf the 23rd
IEEE/ACM International Conference on Automated SoftwangiBeer-
ing (ASE), L'Aquila, Italy, September 2008.

e Collaboration between Industry and Research for the Iniitbn of
Model-Driven Software Engineering in a Master PrograrBéverine
Sentilles, Florian Noyrit, Ivica Crnkovi€. In Proceedsgf the Educator
Symposium of the ACM/IEEE 11th International Conferenceviodel
Driven Engineering Languages and Systems (MODELS), Tadpu
France, September 2008.

e Valentine: a Dynamic and Adaptive Operating System for M8seSen-
sor Networks Natacha Hoang, Nicolas Belloir, Cong-Duc Pham,
Séverine Sentilles. In Proceedings of the 1st IEEE Inteynal Work-
shop on Component-based design Of Resource-Constrairsdnsy
(CORCS), Turku, Finland, July 28 - August 1, 2008.

e A Model-Based Framework for Designing Embedded Real-Tigse S
tems Séverine Sentilles, Aneta Vulgarakis, Ivica Crnkovuitthe Pro-
ceedings of the Work-In-Progress (WIP) track of the 19thdmicro
Conference on Real-Time Systems (ECRTS), Pisa, Italy, 200y .

MRTC reports:

e ProCom — the Progress Component Model Reference Manuadiover
1.0. Tomas Bures, Jan Carlson, Ivica Crnkovit, Séveremties, Aneta
Vulgarakis. MRTC report ISSN 1404-3041 ISRN MDH-MRTC-230/
2008-1-SE, Malardalen Real-Time Research Centre, alan Univer-
sity, June 2008.

e Towards Component Modelling of Embedded Systems in theWwehi
Domain Toma$ Bure§, Jan Carlson, Séverine Sentilles, Aneta V
garakis. MRTC report ISSN 1404-3041 ISRN MDH-MRTC-226/200
1-SE, Malardalen Real-Time Research Centre, Malarddia@mersity,
April 2008.

e Progress Component Model Reference Manual - version G@mas
Bure§, Jan Carlson, lvica Crnkovit, Séverine Sentilkseta Vulgar-
akis. MRTC report ISSN 1404-3041 ISRN MDH-MRTC-225/2008-1
SE, Malardalen Real-Time Research Centre, Malardaleivelsity,
April 2008.

To my grandfather

Contents

1

Thesis 1
Introduction 3
1.1 Motivation 3
1.2 Objectives 5
1.3 ThesisOverview 6
Background 11
2.1 EmbeddedSystems 11
2.1.1 Characteristics in Vehicular Domain 13
2.1.2 Characteristics in Automation Domain. 14
2.2 Component-Based Software Engineering. 15
2.2.1 Extra-Functional Properties 16
2.2.2 The Component-Based Development Process 18
2.2.3 Component-Based Software Engineering for Embed-
ded System Development. 19
Research Summary 21
3.1 Problem Positioning. oL 21
3.2 ResearchQuestions 23
3.3 Research Contribution 24
3.3.1 A Classification Framework for Component Models . 25
3.3.2 Requirements for a Component-Based Approach . . . 27
3.3.3 The ProCom ComponentModel 29
3.3.4 Integration of Extra-Functional Properties in Compo
nentModels. 30
3.3.5 Prototype Implementation 32
3.4 Methodology, 33

Xiv Contents
4 Related Work 37
4.1 ComponentModels 37
4.2 Alternative Approaches 40
4.3 Integrated Development Environment 42
5 Conclusions and Future Work 45
5.1 DISCUSSIONS i 45
52 FutureWork 50
Bibliography 53
I Included Papers 61
6 PaperA:
A Classification Framework for Component Models 63
6.1 Introduction 65
6.2 The Classification Framework 67
6.2.1 Lifecycle 68
6.2.2 TheConstructs 71
6.2.3 Extra-Functional Properties 75
6.2.4 Domains e 79
6.2.5 The Classification Overview 80
6.3 Survey of ComponentModels 82
6.3.1 “Almost” ComponentModels 82
6.3.2 ComponentModels 83
6.4 The Comparison Framework 84
6.4.1 Lifecycle Classification. 84
6.4.2 Constructs Classification 86
6.4.3 Extra-Functional Properties Classification 89
6.4.4 Domains Classification 91
6.5 RelatedWork 92
6.6 Conclusion 93
6.7 Appendix — Survey of ComponentModels 94
Bibliography 103
7 Paper B:
A Component Model Family for Vehicular Embedded Systems 109
7.1 Introduction 111
7.2 MotivatingExample 113

Contents XV

7.3 The ROGRESSApproach 115
7.4 Towards CBD in Vehicular Systems 117
7.4.1 From Abstractto Concrete 117
7.4.2 ComponentGranularity 120
7.5 Conceptual Component Model Family 120
7.6 Realization of the Proposed Component Model Family . . 122
7.7 RelatedWork 124
7.8 Conclusion 125
Bibliography 127
Paper C:
A Component Model for Control-Intensive Distributed Embedded
Systems 129
8.1 Introduction 131
8.2 The ProCom Two Layer ComponentModel 132
8.2.1 ProSys—theUpperLayer. 132
8.2.2 ProSave —the LowerlLayer 133
8.2.3 Integration of Layers — Combining ProSave and
ProSys 136
83 Example 137
8.4 Conclusions 138
Bibliography 141
Paper D:
Integration of Extra-Functional Properties in Component Models 143
9.1 Introduction 145
9.2 Annotation of Attributes in ComponentModels 461
9.2.1 Attributesin a ComponentModel 147
9.2.2 Attribute Definition L. 147
9.2.3 Attribute Type, 149
9.24 AttributeData. 150
9.2.5 Multiple Attribute Values 151
9.2.6 Attribute Value Metadata 152
9.2.7 Validity Conditions of Attribute Values 152
9.3 Attribute Composition L. 154
9.4 Attribute Configuration and Selection 515
9.5 A Prototype for ProCom and th&RBGRESSIDE 158
9.6 RelatedWork 160

9.7 DISCUSSION e 162

XVi Contents
9.8 Conclusion 164
Bibliography 167
10 PaperE:
Save-IDE — A Tool for Design, Analysis and Implementation of
Component-Based Embedded Systems 171
10.1 Introduction 173
10.2 Software DevelopmentProcess 174
10.3 Component-BasedDesign 176
10.4 Analysis 178
10.5 Synthesis 179
10.6 Conclusion 180

Bibliography 180

Thesis

Chapter 1

Introduction

Development of embedded software is a complex procesdfisamiy influ-
enced by human factors — from the way the software is desigméee errors
introduced during the implementation phase, and some aftwigimain in the
product after release. Yet, providing the appropriate fionality is not suffi-
cient anymore, the product has also to be produced in anegftisiay and be
trustworthy! This is the main concern of this thesis, whiaoheistigates meth-
ods and techniques to improve software development byrptpiaranteeing
that the delivered products will meet stringent qualityuiegments like the
ones that are inherent to a lot of embedded systems.

1.1 Motivation

Having a suitable and efficient development is an esserdgiat@rn when de-
veloping safety-critical systems for a variety of domainstsas vehicular, au-
tomation, telecommunication, healthcare, etc. since aaljumction of these
systems may have severe consequences ranging from finlasesies (e.g. costs
for recall of non-conformity products) to more harmful effe (e.g. injuries to
users or in the most extreme cases users’ death). Along kéih traditional
mechanical functionalities, e.g. a combustion engine arfrarical brakes in a
car, these products also contain more and more softwaréduatities, such as
for instance an anti-lock braking system or an electrotabifity control unit
in a car. This means that similarly to what is done for the raeatal elements,
software parts require to be meticulously developed anidiegito ensure the

4 Chapter 1. Introduction

essential quality of the delivered products: their depéilitha That is to say

that their reactions to events are the ones expected in #uate amount of
time. Their development must hence support thorough aisadysl tests, and
push these activities even further compared to what canelfm traditional

software engineering.

Software functionalities in those types of product are fes through
special-purpose built-in computers, called embeddedsyst which are tai-
lored to perform a specific task by combination of software laardware. An-
other fundamental characteristic of those systems is tiet often have to
function under severe resource limitations in terms of mgmmandwidth and
energy, and even sometimes under difficult environmentalitions (e.g. heat,
dust, constant vibrations). Even though the introductibsoftware function-
alities, sometimes as replacement for hardware onessdffEanendous oppor-
tunities, it also considerably increases the software dexity. For example,
in the vehicular domain, the demand for additional softwareonstantly in-
creasing [1]. Consequently in this particular domain, thditional solution of
decomposing the required functionalities into subsystérasare realised by
dedicated computing units using their own microcontrallees not scale any-
more. Instead, there is a need to put several subsystemseguhgsical unit,
which implies that resources must be shared between sebsysAnother as-
pect of this increasing complexity is distribution, as syss also often tend to
be designed as distributed systems communicating over iaaded network
such as a CAN-bus [2] or a LIN-bus [3] in a car. The interde e of these
concerns together with the need for thorough verificatiothefsystem make
the development of embedded systems rather difficult ang-tiemanding.

A promising solution for the development of distributed esdtled systems
lies in the adoption of a Component-Based Development (Cipyoach fa-
cilitating the different types of analysis needed. The CHipraach has the
goal to increase efficiency in software development by:

— reusing already existing solution encapsulated in weflrgd entities
(components);

— building systems by composition of those entities (bathfa functional
and extra-functional point of view); and

— clearly separating component development from systeraldement.

1.2 Objectives 5

Several features proposed in the CBD approach are of higheisitin the
development of distributed embedded systems, such as:

complexity management;

increased productivity;
— higher quality;

shorter time-to-market;

lower maintenance costs; and

reusability.

However, despite those appealing aspects and its estaleliglas an acknowl-
edged approach for software development, notably for desit business ap-
plications [4], CBD still struggles to really break throufgin embedded system
development. For a better acceptance in this domain, the ahaillenge is to
deal with both complexity and functional requirements oe tiland, and on
the other hand to deal with the specifics related to embeddstems and their
particular development needs — including support for efirectional require-
ments, strong dependence on hardware, distribution, ginssues and lim-
ited resources. Still, several approaches to use CBD in éddakesystems can
be found, such as AUTOSAR [5], BlueArX [6, 7], SaveCCM [8], Bus [9],
Koala [10] and Pecos [11]. More detailed information abbetdifferent com-
ponent models for embedded systems can be found in Chaptdowever,
even if all these approaches were successful in solvingcpéat aspects of
the development process, an approach that supports thef esenponents
throughout the whole development process — from early despgcification
to system deployment and synthesis — and provides groumdbdovarious
type of required analysis is still needed. This is the maimceon of this thesis.

1.2 Objectives

The main purpose of this licentiate thesis is to proposetisois towards es-
tablishing an efficient software development of distrilouéenbedded systems
that can ensure the quality of the delivered products. Agsgithat the prin-
ciples advocated in CBD are also applicable for developisgiduted embed-
ded systems, this thesis discusses how to suitably accoatmtite specifics

6 Chapter 1. Introduction

of “traditional” embedded system development with compuarEsed devel-
opment and, then how to integrate and manage extra-fuatfmyoperties in
the development to ensure the quality of the final products Tftesis also fo-
cuses on determining the required engineering practiatsoats to efficiently
support the composition theories which have been proposed.

Concretely, in this thesis we propose a component-basedagpfor dis-
tributed embedded systems supported by the specificatianieflicated com-
ponent model. This component model is endowed with suitideacteristics,
properties, and features to efficiently support the manageiwf the specific
concerns of embedded system domain, in particular theriatieg and man-
agement of extra-functional properties as means to bridgéysis in the de-
velopment process. The approach is illustrated throughehksation of an
integrated development environment.

1.3 Thesis Overview

This thesis is organized in two distinct parts. The first gares a summary of
the research; Chapter 2 introduces technical conceptsthismayhout the the-
sis, Chapter 3 describes the research which has been ceddngiresenting
the motivation for the research, the research questiorgettearch contribu-
tions and the research methodology. Chapter 4 introdueesetated work,
and Chapter 5 concludes and presents the future work.

The second part consists of a collection of peer-reviewachal, confer-
ence and workshop papers, presented below, contributitigetoesearch re-
sults.

Paper A: A Classification Framework for Component Models.
Ivica Crnkovic, Séverine Sentilles, Aneta Vulgarakischkel Chaudron
(Technical University Eindhoven). Accepted to IEEE Trari&ms on
Software Engineering (in the process of revision).

Summary
Based on the study of a number of component models which hese b

developed in the last decades, this paper provides a Compbtoalel Clas-
sification Framework which identifies and discusses thecbasiciples of
component models. Through the utilization of this clasatfan framework,
this paper also pinpoints differences between componedefa@nd identifies
common characteristics shared by some component modedfoged for a
similar domain, such as embedded systems.

1.3 Thesis Overview 7

My contributions

This paper has been written with an equal contribution offitst three
authors concerning the analysis of the selected subsetngp@oent models,
the specification of the classification framework and theattee process to
refine the framework. All the co-authors contributed withadissions, reviews
and suggestions. Personally, | contributed to the papértvé initial idea of
classifying component models and during the work, | was nspeifically in
charge of the work around the constructs dimension of thedrmeork and the
related work. The classification framework was developestireral iterations,
including discussions with CBSE experts from both academadindustry.

Paper B: A Component Model Family for Vehicular Embedded Sysems.
Tomas Bure§, Jan Carlson, Séverine Sentilles, Anelgavakis. In Pro-
ceedings of the 3rd International Conference on Softwagrteering
Advances (ICSEA), Sliema, Malta, October 2008.

Summary

This paper describes the high-level views which have guigdgdwards the
elaboration of ProCom (a component model for the design amdldpment of
distributed embedded systems; see Paper C), namely the fard@d having
several component concepts corresponding to the differeeis of abstraction
considered (big components/small components); (i) thiabo deal simul-
taneously with components in different state such as esebign components
or fully implemented reused component (abstract compa/earicrete com-
ponents); (iii) managing the strong coupling with the tametforms; and (iv)
having a component model ready to be enhanced with varicalgss.

My contributions

This paper is the outcome of an equal contribution of all axgh More
specifically | contributed to this paper by participatingfe discussions con-
cerning the development process, the discussions withdh®ih experts to
collect information on their needs and by influencing soméhef decisions
through my parallel work on the realization of an integratedelopment envi-
ronment, called Save-IDE, for the SaveCCM component modéle work
summarized in this paper is the result of an iterative procarting with
the knowledge gained from the SaveCCT approach and invgplviany other
members of the ROGRES Sproject, who contributed with valuable discussions
and inputs for the proposed ideas.

8 Chapter 1. Introduction

Paper C: A Component Model for
Control-Intensive Distributed Embedded Systems.
Séverine Sentilles, Aneta Vulgarakis, Tomas BureB, Qarlson, Ivica
Crnkovit. In Proceedings of the 11th International Syniygimson Com-
ponent Based Software Engineering (CBSE2008), Karlsit@Geemnany,
October, 2008.

Summary

In this paper, we present the Progress component model ¢Rrpfor the
design and development of control-intensive distributetbedded systems.
The particularity of this component model lays in the existe of two lay-
ers designed to efficiently cope with the different desigragmms which ex-
ists on different abstraction levels in the vehicular damailoreover through
the utilization of a component-based development, the aito decrease the
complexity in design and provide a ground for analyzing tbmponents and
predict their properties, such as resource consumptiotiming behaviour.

My contributions

This paper is strongly related to Paper B and is also the mecof an
equal contribution of all authors. More specifically | cabtited to this pa-
per in participating in the discussions concerning the gment process,
the discussion with the domain expert to collect informratom their needs
and influencing some of the decisions through my parallekvaor the real-
ization of an integrated development environment, calladeSDE, for the
SaveCCM component model. Similarly to the work presentettiénprevious
paper, the work around the ProCom component model startbdawiattempt
to refine SaveCCM and has been carried out in several itesatiovolving
many FROGRESSmembers.

Paper D: Integration of
Extra-Functional Properties in Component Models.
Severine Sentilles, Pe®tépan, Jan Carlson and Ivica Crnkovic. In
Proceedings of the 12th International Symposium on CompidBased
Software Engineering (CBSE 2009), LNCS 5582, SpringeriBeHast
Stroudsburg University, Pennsylvania, USA, June, 2009.

Summary
This paper looks at the diversity that exists in specifyirggafunctional
property (e.g. timing, behaviour or resource properties), proposes a way

1.3 Thesis Overview 9

to integrate and systematically manage extra-functioregdgrties within com-
ponent models. This is done with the main objective to pre\ad efficient
support, possibly automated, for analysing selected ptiege In this paper, a
format for attribute specification is proposed, discussatianalyzed and the
approach is exemplified through its integration both in th@@m component
model and its integrated development environment.

My contributions

| was the main author and driver of this paper and contribwgd the
attribute definition for extra-functional properties, tlierature survey and the
supervision of a master student leading to a prototype imeteation based
on preliminary ideas. All the co-authors contributed wigthuable discussions,
advices and suggestions all along the work.

Paper E: Save-IDE — A Tool for Design, Analysis and Implemerdtion of
Component-Based Embedded Systems.
Séverine Sentilles, Anders Pettersson, Dag NystrompigsiNolte, Paul
Pettersson, Ivica Crnkovi€. In Proceedings of the 31strhtional
Conference on Software Engineering (ICSE), VancouveraGanMay
20009.

Summary
This demo paper presents an integrated development emnmtrfor the

development of predictable component-based embeddeensystSave-IDE
supports efficient development of dependable embeddeeisgdiy providing
tools for design of embedded software systems using exelyshe SaveCCM
component model, formal specification and analysis of camepband system
behaviours already in early development phases, and adutlymated trans-
formation of the system of components into an executablgéna

My contributions

| was the main driver of this paper and | have contributed to ibeing
involved in the realization of the environment (specifioatiimplementation)
and in the writing of most parts of the paper. More concretelycerning the
realization, | was a member of the developing team with aaesibility for
the design part, including the design of the underlying met@el, and the
development of the design tools.

Chapter 2

Background

This section briefly introduces important technical corisased throughout
the remainder of this thesis. It provides an introductioenthedded systems
and their characteristics (Section 2.1) and to componasédh software engi-
neering (Section 2.2). However, for more information on edded systems,
we refer to [12] or [13], and for details on component prifegand technolo-
gies to [4], [14] or [15].

2.1 Embedded Systems

Embedded systems have managed to spread rapidly over thfewakecades
to be virtually in any kind of modern appliances such as dlgitatches, set-
top boxes, mp3-players, washing-machines, mobile telephccars, aircrafts,
forest machines and many more. Because of this, a uniformitiefi covering
this diversity is difficult to pinpoint and therefore thesedurrently no unique
definition of what they are. For example, IEEE states thatembedded com-
puter system is a computer system that is part of a largeerysind performs
some of the requirements of that syster this thesis, we denote lgmbed-
ded systena special-purpose computer built into a larger device aihokéal
to perform a specific task by combination of software and ward. In con-
trast to general purpose computers, embedded system$ aradiive systems
closely integrated into the environment with which theyemaict through sen-
sors and actuators, (ii) often strongly resource-constgiin terms of memory,
bandwidth and energy and, for some of them (iii) possiblyfanted to harsh
environmental conditions enduring dust, vibrations, hetat

11

12 Chapter 2. Background

The close interconnection of embedded systems with theiognding en-
vironment and their ability to directly impact on this eroment leads to an-
other characteristic shared by many embedded systems: stifety-critical
nature. Accordingly to prevent any malfunction which colelad to a problem-
atic situation ranging from financial losses (e.g. costator-conform products
recall) to more dramatic ones (e.g. device loss, userstiggwor in the most
extreme cases users’ death), they have to react in wellfigzbeays and be
highly dependable. As mentioned in Laprie’s definition [16¢pendability
of a system is the quality of the delivered service such thetea can justifi-
ably placed reliance on this service. In particular, depdildy is expressed
in terms of safety (i.e. the failure of the system must be hesg), maintain-
ability (probability that a failure can be fixed within a pefthed amount of
time), reliability (probability that the system will notifad) and availability
(probability that the system is working and accessible) rgrathers.

Also, many embedded systems have to observe real-timeraorisf which
means that they must react correctly to events in a givenviatan time. When
all the timing requirements must strictly be ensured, erdbddsystems are
calledhard real-time systemshereassoft real-time systermeare more flexible
towards the timing bounds and can tolerate to occasiongatlged them. One
popular example to illustrate this strong interdependédreteeen real-time
and dependability issue is the one of a car airbag. In casemdent, the
airbag has to inflate suitably at a particular point in timtbgowise it is useless
for saving the driver’s life. One major issue in dealing wstfety-critical real-
time embedded system is therefore to ensure that the sysiaysabehaves
correctly.

It is worth noting that the great diversity of devices coniag embedded
systems makes the boundaries between what it is consideieiéembedded
systems and what is not particularly unclear. Many devitesescharacter-
istics with embedded systems without necessarily beenidenmesl as such.
Notebooks, laptop or personal digital assistants are feamgkes of devices
in the grey zone of the definition of embedded systems: theyresources-
constrained and possibly integrated into the real worldugh various equip-
ment such as GPS but they are still regarded as “bigger” thametypical
embedded systems. Conversely although containing de$ikeogoftware and
means to interact with users, others devices such as ceystdm for robots
are still considered as embedded systems.

Since present in many different devices and forming a hg@reous class
of applications, complexity and requirements of embedgstess vary from
one application domain to another. The following subsesti?.1.1 and 2.1.2

2.1 Embedded Systems 13

detail the characteristics of embedded systems and thentwtate of practice
of their development for the domains this thesis is morei@aerly concerned
with.

2.1.1 Characteristics in Vehicular Domain

Nowadays the added-value in high-end models of cars is g@temainly by
the integration of new electronic features that are intdrideoptimize the uti-
lization costs of the vehicle (e.g. lower fuel consumptj@r)to improve the
user’s comfort or safety. According to [17] in 2006, 20% of thalue of each
car was due to embedded electronics and this was expectectéase to 36%
in 2009. This involves features such as airbag control systmnti-braking
system, engine control system, electronic stability carstystem, global posi-
tioning system, door locking system, air-conditioningteyps and many more.
More generally speaking, these features concern contifokginment (i.e. in-
formation and entertainment) and diagnosis systems.

To realize these systems, the physical system architeatarsodern vehi-
cle consists of large number of computational nodes calledti®nic Control
Units (ECUs) that are distributed all over the car and cotetkby several dif-
ferent communication networks, principally CAN [2], LIN]J[3MOST [18] or
Flex Ray [19] buses. Traditionally in the vehicular domaing functionality
corresponds to one ECU and its development is charactdniztte extensive
use of sub-contractors. After having received a specifiodtiom the car man-
ufacturer, the sub-contractors design both the softwaddtemhardware of the
subsystem to deliver. Consequently, sub-contractorswamdvied in the addi-
tion of mechanical parts to the system enforcing a stronglaogibetween the
software and the hardware parts. In this way of developinigesided systems,
the test of the overall system is realized really late in tbeetbpment process
after the integration of all the subsystems, which is exéigraostly.

The rapid introduction of software functionalities in veleis challenges
significantly the current development practice in the velsicdomain since it
induces to find solutions to elaborate a design as close aghp®t an optimal
system design (both with respect to cost and resources ubagean provide
the desired functionality with a sufficient level of depebitisy. Whereas car
manufacturers strive for low production costs since eachraadel is manu-
factured in large quantities, the biggest costs — up to 40%h@fproduction
costs [20] — resides in software and electronics costs. kigedhese costs
requires dealing with the tight coupling which exists beswé¢he software and
hardware parts, distribute functionality across seve€lUE which implies an

14 Chapter 2. Background

increase of the interdependencies and connections bet¥@en (for example
a “simple” interior lightning system can involve up to ten BEdistributed all
over the car), allocate several functionalities to a sam& ECoptimize the
resource utilization, and manage the growing complexity.

2.1.2 Characteristics in Automation Domain

Industrial automation has pushed the mechanization opestther in inten-
sively using embedded systems — in particular programniagie controllers
(PLCs), a type of control systems. The motivation behind thito have bet-
ter control over the production processes and optimize tteeprovide high-
quality and reliable products by minimizing material, ®®tnergy waste and
human intervention.

In this particular domain, embedded systems consist ofosstasd actua-
tors connected with an open and standardized field bus teilppslistributed,
control systems. In difference to other embedded systemtactures, they
are used conjointly with end-user technologies that seswetarfaces between
human and machine to control and operate the system as fonpéxshe tem-
perature in a pipe, the pressure of a valve or the arm of a ptmafurobot.

Other similarities exist with embedded systems presenhénviehicular
domain. In particular, many applications share the sadetical, real-time and
resource requirements of the vehicular domain. In both dlosn@mbedded
systems are manufactured in large volume and their devedopisoften based
on control-theory.

Aside from these similarities, principal differences aésast. The pres-
ence of a human-machine interface constitutes a majorelifte. It implies
a need for a seamless integration and higher interopesabilembedded sys-
tems with “more advanced” technologies which are not necéggeal-time
constrained. Also these embedded systems are developegtedent in long-
life products which need to be reconfigured or adapted tockvaasily from
manufacturing one product to another without having to cletepy rebuild the
production lines. This means that embedded systems fometion domain
must be easily portable to a new hardware and cope with legetgms.

Contrary to the automotive domain, which is relatively nevgoftware en-
gineering methods, the automation domain has a strongitmadn software
engineering. Many embedded systems are developed in faljpsome stan-
dards, such as IEC-61131-3 [21].

2.2 Component-Based Software Engineering 15

2.2 Component-Based Software Engineering

Building products out of well-defined and standardisedsiaran old engineer-
ing practice that can be traced back to Henry Ford and the amégdition era.
Many advantages emerge from this way of developing prodshtst time-to-
market, lower maintenance time and costs, and reusabilityeqpieces across
different products. Inspired by the successes engendetiedustries and en-
visioning similar benefits, Component-Based Software &eeiing (CBSE)
aims at applying this development practice to software ldgveent. Follow-
ing this standpoint, the construction (resp. decompagitid software systems
must be based on independent and well-defined pieces ofaseftealled com-
ponents.

However, whereas in other engineering disciplines, theephof compo-
nents is intuitively graspable since it is generally a pbgkbbject that can
be manipulated, directly transferring this notion to sefiter engineering is
not straightforward. The fuzziness around the notion of gonent is put
in evidence by the number of definitions that exists today[1B], no less
than fifteen definitions are compared to each other. Out afethzfinitions,
probably the most commonly acknowledged one is from Szypgt8] which
highlights some fundamental characteristics of a compbremmunication
through well-specified interfaces only, composability aedsability by third
party. This definition states that:

“A software component is a unit of composition with conttact
ally specified interfaces and explicit context dependesnmidy. A
software component can be deployed independently andjiscsub
to composition by third party”

As pointed out by this definition, an important charactéerief a compo-
nent specification is its interfaces. An interface is thec#jpation of an access
point to the component’s functionality described as a ctibe of available
operations. A distinction between two types of interfaceste. Arequired
interfaceexpresses the functionality requested by the componenirtctibn
correctly whereas converselypeovided interfacelescribes the functionality
offered by the component. In that sense, interfaces are foseshabling in-
teraction with other components and external environnasmit,to compose or
“link” components together.

In addition to the concepts of component and interface, ddorental no-
tion is the one of component model. A component model defiti¢lseachar-
acteristics and constraints that the components and thgosiqmy component

16 Chapter 2. Background

framework — i.e. the tools for manipulating the componentawst satisfy. A
component model is concerned with providing (i) rules far $ipecification of
component properties and (ii) rules and mechanisms for compt composi-
tion, including the composition rules for properties. IatBense, a component
model provides the cornerstone of standardization fomsott development.
For instance, Heineman and Councill [14] propose a compahedinition in
regards to a component model:

“A software component is a software element that conforms to
a component model and can be independently deployed and com-
posed without modification according to a composition stadd.

In applying those concepts, component-based softwar@eagng has al-
ready been proven to be successfully used in domains whesgarg timing-
requirements are needed such as information, servicated®r desktop sys-
tems [4]. This success is highlighted by the proliferatiboamponent models
which exist today (see Paper A in which twenty-four compdmeadels are
compared).

2.2.1 Extra-Functional Properties

For many years, component-based software engineering dsastelly fo-
cused on providing methods and techniques to support thelaawnent of
software functionalities in an efficient way. Yet, for céntédypes of applica-
tions such as dependable, real-time or embedded systemes fattors are as
important for a smooth running of the system as the functiyrigself. These
factors describe the non behavioural aspects of a systeruroay the proper-
ties and constraints under which that system must operaie [ar example,
they relate to the capability of the system in terms of rélighsafety, security,
maintainability, accuracy, compliance to a standard,ussconsumption, and
timing properties, among many others. These factors canlredfunder sev-
eral denominations, the most common ones being non-furatigroperties,
extra-functional properties, quality attributes or signpttributes. In this the-
sis, we refer to these factors through the use any of theses tedifferently.

As a consequence of the little attention to these factows,c@mponent
models actually provide support for specification and mansant of extra-
functional properties. This is especially true for widesgu general-purpose
component models such as COM [24], CCM [25], .NET [26] or E2B]]
Besides, when this support is available, it takes diffefemhs — unlike be-
havioural factors for which the well-established solut@hembodying the

2.2 Component-Based Software Engineering 17

functionalities into the interfaces exists. First, thiggart can be provided
at component-level through additional interfaces, cailtgspective or ana-
lytical interfaces. Used at design-time, these interfadlesv for early analysis
of the component or the system, whereas their utilisationtime enables
mechanism such as monitoring. Another way of supportingaefinctional

properties is to provide annotations through name-valurs gaecifications.
The last way is to use a dedicated language or mechanisnteults& compo-
nent model itself.

Besides providing means for their specification, dealinthweixtra-func-
tional properties with respect to the CBSE principles ralsalenges related to
composability or reusability issues. Similarly to the camsability challenges
for components, we would also like to be able to reason al@iit tomposi-
tion, in that sense that the values of a propdrtpf a compound elemem
is the result of the composition of the values of the inner gonentsC? and
C2:

A= CloC2= P(A)=P(C1)o P(C2)

However, as described in [28], few properties are direatijnposable in
following that principle. The value of many extra-functamproperties is in-
fluenced by other factors such as the software architedaitirer properties, the
usage profiles and/or the current state of the environment.

Dealing with extra-functional properties in the contextomponent-based
software engineering also raises the issue of reusabitigest is one of the
cornerstone concept around which component-based appioluwilt. Indeed,
when a component is reused in different applications oreodst the extra-
functional properties associated to this component msst la¢ reusable, in
that sense that their values are still accurate in the cusedting. However,
many property values depend upon information outside thepcment model
itself. Therefore in order to reuse the extra-functionalparties, means to
evaluate the conditions under which the value is correctegeired. A typical
example is a worst-case execution time, which requireshindtion about the
compiler used to generate the executable code but also tiedarget platform
specification such as the type of memory, processor or treepoe of caches,
among many other factors.

18 Chapter 2. Background

2.2.2 The Component-Based Development Process

The specific aspect of developing software consistent WaliBSE principles
is based on a strict separation betweemponent developmeamtdsystem de-
velopment (with component$3oth processes can follow the traditional “Re-
quirement, Specification, Implementation, and Verificaitiphases whether,
for instance, in a waterfall or V-model form. However, dudtie presence of
components characteristic features emerge. Both prazessktheir interac-
tion are illustrated in Figure 2.1.

| System Verification l—)| Release

System
Development

Component

Verification

______________ Py N T T e o
Component 4-*
Assessment Implementation

Component Component : "
\dentification l—)| Evaluation Selection Adaptation Storage

or

Requirements
rovelopmen I
Development Requirements
2z Release
Generic
Requirements

Specification

Implementation

Verification

Legend:
==+ Inquiry for pre-existing components

—> Nextstepinthe process

Figure 2.1: Component-based development process overview

Starting normally with an elicitation of system requirertgrthe system
development takes immediately advantage of the presermprevbusly devel-
oped components which are stored in a component reposiBased on the
knowledge and identification of a set of component candgdiiat potentially
fit the requirements, system requirements are broken dotencomponent

2.2 Component-Based Software Engineering 19

requirements and accordingly, a system specification i With its corre-
sponding component specifications. Whereas the compaotietso not com-
pletely fit the specifics of the current design are adaptedrgfuirements and
specification of the non-already implemented componertfoawarded to the
component development process to be developed. Once afiamnts have
been implemented and individually tested against theinireqents, they are
integrated together to form the final system. This integrais then verified
and validated against the system requirements, both wg#rds to functional
and extra-functional aspects.

As for the component development process, the steps areajigrouite
comparable to the ones found in traditional software deraknt. Based on
requirements and specification coming from system devedoprcomponents
are implemented and tested against these requirements iaeomponents
meet their individual requirements, they are then delideebe integrated
during the system development and/or stored in repositergamdidate for
future reuse. However the component development processahs at build-
ing components satisfying requirements not issued frorteayslevelopment
but extracted to realize more generic components that carsée in many
different contexts. This way of developing component is endifficult since
it requires to envisage all possible contexts in which theagonent will be
used. This generates components that are bigger than custal® compo-
nents since they need to fit more usage contexts. This intexdchallenges
for embedded system development since it requires effic@nponents.

2.2.3 Component-Based Software Engineering for Embed-
ded System Development

Contrary to other domains in which component-based soéveagineering
have proven to be successfully used for common softwarda@vent (desk-
top, business, internet or entertainment applicatiorBREhas still difficulties
to really breakthrough for the development of embeddectayst Indeed, most
of the existing general-purpose component technologies heen developed
with little consideration to factors that are of high import for embedded sys-
tems such as their resource limitations, timing propediesafety-criticality.
The mismatch between the requirements for developingtioadi PC ap-
plications and the ones for embedded systems hinder alsfi@igard transfer
of these component-based technologies from one domainadithe@mn In par-
ticular, the widespread component technologies such aJZE]B.NET [26],
COM [24] or CCM [25] do not sufficiently address these fundataérequire-

20 Chapter 2. Background

ments and as a result are not that suitable for embeddedrsydivelopment.
They present some major drawbacks in being heavyweightplenand gen-
erating some significant overhead on the target platforna émsequence and
as pointed in [29], there is still no widely used componecht®logy standard
really suitable for embedded systems.

However, the principles and promising advantages broughbp CBSE
have drawn a general attention towards fostering the usernponent models
for embedded system development. Several recent ingmtiv provide stan-
dards based on component-based principles as well as theralen in the
recent years of a number of component models dedicated tedshed sys-
tems reflect such a change. Some of these dedicated compundats are
KOALA [10], RUBUS [9], BlueArX [6, 7], SaveCCM [8], IEC-611B[21]
and AUTOSAR [5]. More details about these component modeise found
in Paper A.

Chapter 3

Research Summary

In this chapter, we describe the research performed. Westats the problem
that this thesis addresses, then formulate the researctiansge summarize
the research results which contribute to answering thoseareh questions,
and present the used research methodology.

3.1 Problem Positioning

Facing a growing demand to integrate more and more softwaretibnali-
ties, the traditional development methods for embeddesysare showing
their limits. They have difficulty to efficiently cope with éhresulting prob-
lems, namely increasing complexity, distribution, stengresource limita-
tions, a strong coupling between software and hardwarendimroperties,
safety-critical issues, etc. An important challenge issttaupropose develop-
ment methods supporting those new requirements to faeikmbedded soft-
ware development and ensure the quality and the depergiaibilhe delivered
products.

Motivated by the need for solutions, the main challengettiiathesis aims
at addressing can be formulated by the following question:

How can distributed embedded systems be developed in a pre-
dictable and efficient way while following the CBSE prineg#

Otherwise stated, this means that this thesis aims atydlagifvhat are the im-
portant characteristics that the development of embedgsdras requires and

21

22 Chapter 3. Research Summary

determining how to adapt the prerequisite of CBSE to sujtalaindle these
characteristics. In particular, this can be seen as dewgjap suitable com-
ponent technology which aims at providing support to adsdtks embedded
system requirements.

Therefore the main research objective of this thesis is tjp@se con-
cepts, approaches, and techniques concerned with theratmmoof an effi-
cient component-based software development for disgtbembedded sys-
tems, covering the development process stages (from eesigmi to system
deployment and synthesis) as well as enabling reusabitith\arious types
of analysis. It also looks at determining the needed engimg@ractices and
tools to support the theories which have been proposed. Wawthis the-
sis is not interested in distribution primarily, and does$ aimn at providing
new distribution architecture or communication protoc@lstribution is only
considered for the sole purpose that subsystems can bibulistt across the
architecture and communicate through dedicated netwaskis,the case in the
vehicular domain for instance.

Besides, other factors, outside the scope of this thessl also to be inves-
tigated to foster the usage of CBD and improve its efficiencyembedded sys-
tem development. This is the case of development processsisiesses pro-
cesses, or devising suitable analysis theories complyitigtve component-
based theories.

The problem envisaged in this thesis is quite broad. In aimeeduce its
scope, we have worked under assumptions issued from a psawvirk done at
MDH on the SaveCCT developmentapproach ([8], [30]). Thiskdmas shown
the value of having a restricted component model to helperatialysability of
the system already in the design phase. Accordingly, we bamsidered the
following research assumptions:

— A specific component model for distributed embedded systeith a
precise semantic is needed;

— Composition theories alone are not enough and requirexicerce of
technologies which include appropriate tool support;

— Introducing verification of extra-functional propertiaghe early phases
of the development process is necessary.

3.2 Research Questions 23

3.2 Research Questions

In order to reduce the scope of the research and define aidire¢otprovide
answers to it, three research questions, hereafter ded¢ritve stated. The
answers to these research questions will unveil importgpees contributing
to answering the main question.

Research question 1

What are the suitable characteristics of a component madefft-
ciently support software design of distributed embeddstegys?

Through this research question, the purpose is (i) to eg@od identify
important needs in the development of distributed embedgstgms, focusing
more specifically on the design phase while keeping in miatldlcomponent-
based approach is intended, and (ii) to adapt an existingr@@ose a new)
component model with suitable characteristics, propegied features to pro-
vide a solution to these needs.

In order to provide an answer to this question, we first stingydevelop-
ment process of distributed embedded-systems with the @iicentify con-
cerns that need to be addressed by the component model. ddwedsstep is
to investigate which kinds of component models exist nowadahat their
characteristics and their domain of applicability are, #rttiey can be used
in the context of this research. Finally, based on the previesults and the
work assumptions, the decision of adapting an existing @wapt model or
proposing a new one has to be taken.

Research question 2

How to provide efficient integration support for managemet
functional and extra-functional properties within a conmgot model?

This research question aims mainly at the predictabilipeasneeded in
the development of distributed embedded systems in ordaotade the nec-
essary quality of the system to be developed. In that resgi@stresearch
question focuses on determining a way to enhance the compamael to
provide the necessary grounds to efficiently support théysiseof important
properties. Since various types of information need to lsated and used
as a basis for taking decision and/or analysing the systataruevelopment,
it is important to have means to identify, specify, and lecditese pieces of
information.

24 Chapter 3. Research Summary

To answer this research question, we have (i) identified @stribed a
set of properties which are suitable in the context of thestigsment of dis-
tributed embedded systems; (i) identified to what componewdel entities
(components, interfaces, bindings, etc.) those propgertiate; (iii) enhanced
the proposed component model to support the managemermisef fiioperties.

Research question 3

How to build an integrated development environment endapsu
ing suitable models and technologies to efficiently supporn-
ponent-based development of software for embedded systems

This research question addresses the practical needsa@tpuefficiently sup-
port the development of embedded systems. With this relseprestion, the
main goal is to develop a prototype and evaluate the fedgibilthe approach.

3.3 Research Contribution

The contribution presented in this thesis is the outcomeseft@f results con-
tributing in the elaboration of efficient component-basatigare development
enabling the development of predictable distributed erdbdadystems. In this
respect, the contributions of this thesis are the following

— a classification framework for component models;

— requirements for a domain specific component-based agipfoaem-
bedded systems;

— a component model for distributed embedded systems;

— amethod to integrate and manage extra-functional priegavithin com-
ponent models; and

— a prototype implementation of an integrated developmewitenment
that implements the overall approach.

Figure 3.1 illustrates how these research results fit t@yeth form the
overall contribution of this thesis. Through literature\sys and interviews,
challenges and needs in the current development methodsioedded sys-
tems (Paper B) as well as requirements for merging of CBSkciplies with
embedded systems development (Paper A and B) have beemezkpRased

3.3 Research Contribution 25

Problem Formulation and Surveys

Component Model Classification ES Development Needs
(PaperA) (Paper B)

\L

Proposed Methods

Component-Based Approach Component Model EFP Management
(PaperB) (PaperC) (Paper D)

A

Implementation

Demonstrator Application
(PaperE)

Legend:
= influences

Figure 3.1: Relations between the contributions.

on the findings, several methods to improve the componesgéebsoftware de-
velopment for distributed embedded systems have been gedd®aper B, C
and D). Meanwhile, a prototype implementation (Paper E@tas a SaveCCT
has been developed to demonstrate the feasibility, adyasit@and drawbacks
of combining CBSE design with various analysis and deplaytnechniques
to produce embedded systems. The work on this prototypeimghtation has
also influenced the proposed methods.

Next, a brief overview of these research results is givenréietails can
be found in the included papers in the second part of thisghes

3.3.1 A Classification Framework for Component Models

The idea behind the elaboration of the component modelifitzgon frame-
work is to study component-based software engineering-siathe-art to ex-
tract the key principles of the area and analyse their iat&gr within existing
component models. Through the utilisation of this framduyprincipal simil-
itudes and differences between component models can befigéias well as
their conformance to the CBSE basic principles.

After a thorough study of CBSE state-of-the-art includingnycomponent
model descriptions and existing classifications of componm®dels, architec-

26 Chapter 3. Research Summary

ture description languages and quality attributes, tHevwahg four dimensions
have been chosen as main criteria to describe differentsfadecomponent
models:

1. Lifecycle, which identifies the support provided (explicitly or imgtly)
by the component models, in certain points of the lifecydleampo-
nents.

2. Constructs, which identifies (i) the component interface used for the
interaction with other components and external envirortmgn the
means of component binding and, (iii) the interaction céjies.

3. Extra-functional properties, which identifies specifications of different
property values, and means for their management and cotiguosi

4. Domains, which shows in which application and business domains the
component models are used or supposed to be used.

Each dimension has then been refined into several aspecth@affdmework
has been populated with more than twenty component modwis various
domains. The overall classification scheme as well as mdaéisieoncerning
the classification framework can be found in Paper A.

In addition to allow performing a raw comparison between ponent
models by identifying their common characteristics andedénces, such a
classification framework can also be used for other purpdsegarticular, it
can serve as a basis to select a component model accordimgetdacsuch
as the presence of a support for a specific extra-functiooglgsty, its imple-
mentation language or the support for all the developmeas@h Ultimately,
it could also help in the convergence towards a standardizaf main charac-
teristics of component models.

The use of the classification framework in the context of thésis consti-
tutes the first step towards the identification of suitablgrabteristics of com-
ponent models dedicated to embedded system developmeiat sungport to
eventually determine if an already existing component rhodeld be reused.
From the analysis of the classification framework with relgao component
models dedicated to embedded systems development, thwiiod character-
istics can be extracted as suitable for component modeésibedded systems
(assuming that the majority is always right).

— communication style: synchronous pipe & filter

— implementation language: C (or C++)

3.3 Research Contribution 27

In comparison to general purpose component models, dedicatmponent
models are more concerned with dealing with extra-funetignoperties and
provide support to manage certain type of properties (diiteimg and resource
usage).

3.3.2 Requirements for a Component-Based Approach

Based on an evaluation of embedded system requirementseinal¢velop-
ment needs, the main objective with this work is to (i) essiibtoncepts and
requirements suitable for a component-based approachshibdted embed-
ded systems, and (ii) characterise the component modellyimdgit.

As pointed out in Section 2, a key characteristic of embedgisttm devel-
opment is the importance of producing reliable embeddetésysin an effi-
cientway. In our view, this requires the provision of a futtyegrated approach
managing traceability and dependencies between the eigefanerated during
the development process such as source code files, modeistiEss analysis
results, design variants, etc. as well as providing meansaodous analysis
techniques throughout the whole development processowioly this stand-
point, a suitable component-based approach for distribenebedded systems
(see Paper B) should cover the whole development procesmgtéom a
vague specification of the system based on early requiremgnto its final
and precise specification and implementation ready to bthegized and de-
ployed. It should also be centered around a unified notiomofgonents as a
first-class entity gathering requirements, documentatioarce code, various
models, predicted and experimentally measured valuesaett; (iii) improve
the predictability of the developed systems by easily engblarious types of
analysis, storing and managing the artefacts needed gma/duced by these
analysis throughout the development process.

Merging embedded system requirements with a holistic carapbbased
approach throughout the whole development raises the weeabe simulta-
neously with:

— the coexistence of different abstraction levels,
— the different concerns at different granularity levels,
— platform dependence,

— the need to integrate various analysis techniques thautghe whole
development, and

— the need to foster reuse.

28 Chapter 3. Research Summary

Our solution to address these different concerns lays imaegtual com-
ponent model composed of two dimensions. The first dimenisighe ab-
straction level (the abstract-to-concrete scale in Figu2®, which describes
the successive refinement from a rough sketch of a componétstfinal re-
alisation consisting of source code, detailed timing armbuece models for
instance. The second dimension expresses the granukarél I.e. the com-
plexity and size of the components to realise, and is reptedeby the big-
to-small scale in Figure 3.2. For example, an anti-lock mglsystem (ABS)
that constantly adapts the brake pressure in accordant¢hgitvheel speed to
prevent wheel skidding while braking belongs to the big pathe scale. On
the other hand, a brake force controller which task is onmamitor and adjust
the pressure in a brake belongs to the small part of the s8alélustrated in
Figure 3.2, a component can be in different abstractiorideve

.20
o
i]
1 < [ey e | <
; | — ﬁ —_— Eﬁo,
O
ABS
subsystem
i L 0
=
= Brake
1]
£ force
@ Controller
abstract concrete

Figure 3.2: Proposed conceptual component model.

This work has set the conceptual foundations which guidedwards the
elaboration of ProCom, the component model for contra+istve distributed
embedded systems described briefly in the next section.

3.3 Research Contribution 29

3.3.3 The ProCom Component Model

With this work, the aim is to specify a component model det@iddo the de-
velopment of control-intensive distributed embeddedesysstfor the vehicular
and automation domains primarily. This component modeitisrided to pro-
vide the cornerstone of the integrated component-basedagpdescribed in
Section 3.3.2 and therefore must address the concern#iel@above. Taking
these concerns into account, the ProCom component modéddeasdevel-
oped.

To address the first concern, namely the different abstnadgéivels, Pro-
Com proposes to specify components as black boxes in thedssign stage.
In this particular case, a black box component is a companightts internal
contentis hidden because it has not been decided yet. Diherdgvelopment,
it can be decided that the component will be a composite compdouilt out
of subcomponents or a primitive component realized thra@agince code. This
means that information is gradually associated with themmment, including
adding detailed models for specifying its internal struetits behaviour, its re-
source usage and finally, with the provision of its sourcesgtite component
is transformed from a abstract black box component to a ed@component.
In that sense, components are viewed as units of designemapitation and
reuse. They can be developed independently, stored initepes and reused
in multiple applications. To that purpose, ProCom is cerderound a unified
notion for components which are considered as a collectatheaging all the
information needed and/or specified at different pointsroétof the develop-
ment process.

The different concerns that exist at different levels ofngilarity is ad-
dressed through a partitioning of ProCom in two distincelayof hierarchical
component models. In addition to propose different suppdrandle these dif-
ferent concerns, the layers differ in terms of architedtsiydes and associated
semantics for the components.

The upper layer, called ProSys, is intended to design arsyatea col-
lection of communicating subsystems executing concugrantd possibly dis-
tributed. In that layer, the subsystems are the componétits model and they
communicate together through asynchronous message gastineen typed
message ports. This communication style is suitable atatés of granularity,
since it allows transparent communication between suésystndependently
of their location on the same physical node or not.

30 Chapter 3. Research Summary

In comparison, the lower layer, called ProSave, is used étailbd mod-
elling of small parts of control functionality of subsystewidlocated to a single
node and interacting with the system environment througk@®s and actua-
tors. Building on the approved features for analysabilftgave CCM [30, 31],
the “pipe and filter” paradigm as well as a restrictive sericanbhave been
adopted for this layer. The only architectural entities@mponents as main
abstraction for real-time tasks or control functions andrertors for special
operations on the connection between the components.

The two layers are not independent but relate to each otinee ®roSys
component may be modelled out of ProSave components. Far desailed
information about ProCom, the reader is referred to Paper[G2).

3.3.4 Integration of Extra-Functional Properties in Compo
nent Models

As identified in Section 3.3.2, an important requirementhia tdevelopment
of embedded systems is the possibility to perform variopesyof analysis
throughout the whole development starting from early asialyo more de-
tailed analysis and verification later. To efficiently cdmite to the develop-
ment, these analysis techniques must be an intrinsic panecdipproach and
be tightly connected to the component model whenever thpessible. This
implies that all the artefacts needed and produced by thigsiseaechniques
should be easily accessible, refer to the appropriataentf the component
model and be managed in a systematic way to eventually atedheaanalysis.
Additionally, the analysis results should be reused in tabie way.

In this respect, this work proposes a way to specify, intiegaad manage
information within component models, and more specificaltyra-functional
properties. This work constitutes the second step towardsiléating analysis
with the envisaged component-based approach, after hapiecjfied a com-
ponent model with a restrictive semantics and limited nunab@rchitectural
elements. The main purpose with this works is to provide an@piate sup-
port allowing a closer integration of analysis with the cament model, with
the long-term vision of eventually enabling as many fullycamated analysis
and verification steps as possible.

To this end, this work started by looking at the huge divgreit extra-
functional properties that can be defined and accordinghp@ses a format
for their specification in order to manage them in a systenvediy. The main
intention with this definition is to have an unambiguous aretjse semantics
both with respect to the meaning of the extra-functionapprty and to the

3.3 Research Contribution 31

correct format for specifying value. Thus, through the aptofAttribute, we
define an extra-functional property as follows:

Attribute
Value

(Typeldentifier Value")
(Data, Metadata ValidityConditiori)

where:

— Typeldentifiedefines the extra-functional property in a unique and un-
ambiguous way;

— Datacontains the concrete value for the property;

— Metadataprovides complementary information on data and allows to
distinguish between them; and

— ValidityConditionglescribe the conditions under which the value is valid.

This definition implies that an attribute, i.e. an extradtional property, can
have multiple values identified by metadata or the condstiomder which the
values have been obtained, such as for instance some agsuspt the target
platform specification. This particularity of our definitidias emerged from
the need to cover both the entire development process froly @éasign up
to synthesis and deployment phases and the relation wittatget platform
specification. More explanations concerning the terms usélis definition
as well as discussion about multiple values and reusalbiligktra-functional
properties can be found in Paper D.

In addition, techniques outside this definition are proditteensure a sys-
tematic comprehension and utilisation of the attributeceqt within a devel-
opment context:

— Connection, through an extension of the metamodel, torttitéess of the
component model that can have attributes.

— Definition of an attribute registry to ensure the uniqusréshe attribute
specification.

— Specification of composition and selection techniques.

32 Chapter 3. Research Summary

3.3.5 Prototype Implementation

The main intention with this work is to evaluate from a preatiangle the en-
visaged approach of merging component-based principiéearedded sys-
tem development needs i.e. to establish the advantagesbalcks and lim-

itations of the approach. This requires an implementatibthe complete

development toolchain from design up to synthesis and gepat, includ-

ing some analysis techniques. As the work on establishiagahuirements
for the elaboration of ProCom was still in its early phaseanalysis or syn-
thesis techniques were available at the start of this reBesork. Instead,

it has been decided to use the concepts, methods and teehrigueloped
for SaveCCT [33] to develop a first prototype, since SaveCkares many
similarities with the work presented in this thesis. In ardar, it presents a
simple use-case scenario of the envisaged approach inethse $hat the use
of component is restricted to the design only and the armiggerformed on
system-scale.

Component-Based Design i
p [Validation Early Formal Analysis
Architectural & Analysis

Verification
Model (timing/safety/ Models
reachability)

(

Synthesis
(automated
transformations) Deployment
Executable
System

Figure 3.3: Overview of the SaveCCT approach.

Based on [8] and with respect to the SaveCCM reference mdBaal
which defines the exchange format to be used between the &woistegrated
development environment, called Save-IDE, has been speeifid developed.
Compared to the majority of existing IDEs which focus maiaty program-
ming aspects, the Save-IDE integrates the design, analysissformation,
verification and synthesis activities as illustrated inUfeg3.3. These activ-
ities are supported by a set of dedicated tools. The comgéteription of the
approach and the environment can be found in Paper E.

3.4 Methodology 33

3.4 Methodology

Equally important as the proposed solutions to answer theareh questions,
is to adopt an appropriate research methodology helpingpgtee the sound-
ness and the reproducibility of the work. In this thesis, wlofved a method-
ology adapted from the guidelines proposed by Shaw in [3gktdorm good
software engineering research.

This approach starts with the identification of a problemftbe real world
(Problem Identificatiohy in our case the limitations of the current development
methods for distributed embedded systems due to the iricgeasmplexity
of new embedded system functionalities. The problem is trarsferred into
a research setting to be investigated with the prospectsidinfjs solutions
to it. However, since real world problems are generally gjgidbmplex, the
scope of the problem needs first to be restricted to be mahkgedéhin a re-
search contexfHroblem Setting This limitation made us focus on a particular
aspect of the real problem by formulating the research proltthat will be ad-
dressed within the workRroblem Formulatiol, and then by statingVorking
AssumptionandResearch Questionwhich together set a frame for the work.
Similarly to passing from a real world problem to a reseancibfem, breaking
down the research problem into a set of research questioresvysadown even
further the problem to investigate and helps on focusingamiqular aspects
of the research problem. In that sense, the working assangpirovide a start-
ing point to the work whereas the research questions carnegsmore to the
specification of the angle of attack chosen to investigaaakearch problem.

Once the problem to address is clearly defined, the reseasch starts
with the study of related theories, methods, approachebnigues or solu-
tions that have already been performed on the topackground Theorigs
With the knowledge of the existing state-of-the-art and gestions to an-
swer, some solutions can be devis&alition3. Formulating solutions is not
a straightforward process but an iterative one, in whichipieary ideas are
formulated, worked out, refined or even sometimes left adidieen the ideas
are mature enough, they must be evaluated and validate@o ehether they
really answer the research question in a suitable Walidation). If this step
fails, the proposed solutions need again to be revisitdihee, improved or
thrown away. In that sense, this is an iterative trial andrgorocess, in which
analysing the causes of the erroneous solutions mightgeaweful inputs to
find new, better or simply working solutions.

After the validation step is satisfied, the applicabilitytbé proposed so-
lutions to solve the real-world problem can be evaluateda(uatior). An

34 Chapter 3. Research Summary

Real-World Context Research Context
Problem Setting
Problem -
Identification [Problem Work Research
Formulation Assumptions Questions
¥
Research Work
Backgrt?und Solutions
Theories
v 4
Appllcab'lllty < Validation
Evaluation

Figure 3.4: Overview of the applied research process.

overview of this approach is given in Figure 3.4.

The work presented in this thesis is concerned with the prolitientifica-
tion, problem setting and research work steps. The vatidatnd evaluation
steps remains as future work. Each research questions @rshered in dif-
ferent ways and in applying different approaches, thus veeritee below the
methodology that has been used in the research work deddnilttee previous
sections.

The process to answer the first research question startetidbyirsy both
the needs in the development process of distributed embdesydéems and the
current state-of-the-art of component-based softwar@éeergng focusing on
existing component models, in particular SaveCCM [8]. Btigly was based
on literature surveys and discussions with domain expéxtstacular and au-
tomation domains. Based on these findings, requirementhiéocomponent
model were extracted and served as foundations in the elaoiof ProCom,
which addresses some of the limitations of SaveCCM.

As for the work concerned which research question 2, it aksdes] with a
literature surveys on extra-functional properties andt tin@nagement and the
identification of a few properties of interest in the develgmt process. Then

3.4 Methodology 35

we have tried to relate their management to their utilisatigthin the devel-
opment process. The methodology followed here was iteratinv started with
the development of a prototype implementing some prelinyirdeas to get a
better understanding of their integrations and contrdngiin the development
process. This preliminary solutions has then been refinedthe attribute
framework presented in Paper D.

The last research question was concerned with the feagibflicombin-
ing a component-based approach with formal early analysis. proceeded
by construction and realisation of an integrated develagiraevironment that
provided us useful lessons learned.

Chapter 4

Related Work

In this chapter, we relate the contributions presentedimttiesis, namely a
new component model for distributed embedded systemsireefvark to man-
age extra-functional properties and an integrated dewsdop environment, to
similar relevant approaches.

4.1 Component Models

A broad range of component models exists nowadays, eitim&rgkpurpose or
dedicated component models, as compiled in various cleasifns (as in [4]
or [35] for instance). However few component models acyualiget the de-
velopment of embedded systems and most of them focus on Hisjpeenain
only. Using the component models detailed in Paper A as & btss sec-
tion goes back over the component models targeting embesidgteims and
compares them with the component model proposed in thissthes

In the automotive domain, the AUTOSAR (AUTomotive Open SysAR-
chitecture) consortium [1] is the first large-scaled initia to gather manu-
facturers, suppliers and tool developers from the autoradi@ld to establish
an open and standardised software architecture for thenatitee domain en-
abling component-based software design modelling. ThHrdhg common
standard, the vision of AUTOSAR is to facilitate the excharmg solutions
(including software components) between different vehptatforms and sub-
system manufacturers as well as between vehicle prodest lim that sense,
AUTOSAR targets the upper part of the granularity scale @f pihoposed

37

38 Chapter 4. Related Work

conceptual component model. Similar to our approach, AUAR Selies
upon the use of a component-based software design modele\dothe two
approaches have principal differences. In particular, ®FRR component
model proposes both pipe and filter and client-server pgnaslicommunicat-
ing transparently across the architecture through the tistéandardised in-
terfaces. Although targeting development of applicatifinshe automotive
domain, AUTOSAR in its current version lacks support to egsrand analyse
extra-functional properties in particular timing propestas for instance worst-
case execution time or end-to-end deadline. An upcomimggsel AUTOSAR
4.0, done in cooperation with the TIMMO project [36] and EASDL [37],
intends to tackle this lack by an extension of the currentametdel. In par-
ticular, the TIMMO project intends to propose a standawlisgrastructure
to manage timing properties and enable their analysis atbalraction levels
from early design to deployment.

A second initiative that shows the growing interest from #hutomotive
domain in component-based software development comes Basch with
BlueArX [6, 38]. Also based on a design-time component moB&leArX
differentiates itself from AUTOSAR in supporting timing éwother non func-
tional requirements as well as in focusing on complete agraknt process
for single ECUs. To this respect, BlueArX is relatively aae the objectives
and contributions presented in this thesis in particuléinwegards to the lower
layer of the component model (ProSave). However differsreeast. First,
through the ProSys layer of the component model, ProComdistéo support
also the development of embedded software systems digtdlacross several
ECUs. Another difference lays in the proposed support tegirite analy-
sis. Whereas extra-functional properties can be assdcveith any entities
of the ProCom component model (components, ports, sengoasections or
component instances) through the attribute frameworknsioa, BlueArX on
the other hand endows components with an additional analyititerface to
perform analysis either at system- or component-scale. retant work [7],
BlueArX has been extended to support the analysis of timingerties in rela-
tion to operational mode, a feature which is not supporteawtein ProCom.

Developed in a close cooperation between Arcticus SystelBrend Malar-
dalen University, the Rubus Component Technology [9] istla@oexample
of an industrial use of component-based approach in thecukti domain.
Similarly to ProCom, the RUBUS component model focuses gressivity
and analysability through a restrictive component modehweler, the Rubus
component model allows the specification of timing prosrtinly and is not
primarily concerned with reuse.

4.1 Component Models 39

The contributions found in this thesis are largely insplggrevious work
done at Malardalen University on the elaboration of a congmd model for
vehicular domain. SaveCCM [33] is a design-time componesdehconsist-
ing of a few design entities with a restrictive “Read-ExecWTrite” execution
semantics and communicating through a “pipe & filter” pagadin which the
control- and data-flows are distinctly separated. Havinthsurestrictive se-
mantics, it enables formal validation and verification af gystem already in
early phase of the development process, prior any implestientas well as
automated part of the transformations into an executalggesyas explained
in [39]. ProCom is built on the knowledge and experiment gdifrom the de-
velopment of SaveCCM and tries to alleviate some of theiotisins and draw-
backs of SaveCCM in particular in strengthening the conoépbmponents,
considering distribution and handling functional and atinctional proper-
ties in a more systematic way. Whereas the ProSave layemisaige extent
directly inspired from SaveCCM, the upper layer (ProSys)saat addressing
the distribution of subsystems, which was not addressddm@ave CCM.

In the field of consumer electronics, Philips has develomeldsaiccessfully
used the Koala component model [10] for the production oiover consumer
electronic product families (TV, DVD, etc.). In comparistmthe aforemen-
tioned initiatives, Koala is less oriented towards safaitical applications
than what exists in the automotive domain for example. Harexs Koala
still targets severely constrained embedded systemsy# paspecial atten-
tion to static resource usage, such as static memory faarinst but it lacks
support for managing other extra-functional propertidse @iependencies be-
tween properties are handled through diversity spreadsiveeh is a mech-
anism outside the component. Koala has served as input iRdbecop [40]
project done in collaboration between Philips and Eindnolechnical Uni-
versity. Similarly to ProCom, Robocop considers composesta collection
of models covering the different aspects of the developmestess. Models
are also used to manage extra-functional properties asdtarice the resource
model, which describes the resource consumption of commsimie terms of
mathematical cost functions, or the behavioural modelctvkpecifies the se-
quence in which the operations of the component must be e@d.okdditional
models can be created.

Pecos [41] is a joined project between ABB Corporate Rebeand Bern
University. Its goal is to provide an environment that supgpgpecification,
composition, configuration checking and deployment for ac#fic type of
reactive embedded systems (field devices) built from saéivemmponents.
Contrary to ProCom for which the components of each layee lihgir own

40 Chapter 4. Related Work

execution semantics, i.e. ProSys components are activeeaf®roSave com-
ponents are passive, the two types are put together in PAlsus.since com-
ponents in Pecos have only data ports, there is a need forditoad! type
of component, called event component, which activationiggéered by the ar-
rival of an event. With regards to extra-functional profeesitPecos enables the
specification in a name-value pair format in order to inwgdt the prediction
of the timing and memory usage of embedded systems. Howéiggpecifi-
cation is limited to name-value pairs in difference to thegbility offered to
specify extra-functional properties in ProCom.

Pin [42], a component model developed at Carnegie Mellotw&goé En-
gineering Institute (SEI), serves as basis for the preaatietinabled component
technologies (PECTSs) which aims at attaining predictihdf run-time prop-
erties such as performance, safety and security. Alike ppraach, PECT
stresses the importance of providing suitable quality istexh based on anal-
ysis theories. However the methods to integrate analy8er.divhereas Pro-
Com relies on an external attribute framework as means tdladanctional
and extra-functional properties resulting from differamalysis techniques,
PECT is centered around a reasoning framework consistingalftical inter-
faces used to specify specific properties, and correspgratialysis theories
to enable the prediction of these properties. Also in coisparto ProCom,
Pin is a flat component model which does not support disiobut

4.2 Alternative Approaches

This section correlates our work with other approachesahanot primarily
concerned with the principles and methods advocated in CB&Ere still
intended to support the development of distributed embedgstems.

In the automation domain, the standards IEC-61131 [21] tasliccessor
IEC-61499 [43] proposed by the International ElectrotéciinCommission
are well established technologies for the design of Prograbte Logic Con-
trollers. Whereas IEC-61131 allows to graphically compsgstems out of
function blocks, IEC-61499 has been developed to enforcamsulation and
provide a support for distribution. From a design perspecfroCom shares
some similarities with these graphical languages, in paldr the encapsulated
entities communicating with a “pipe & filter” paradigm witlx@icit separa-
tion between data- and control-flow, and the distributioppsrt. However the
semantics associated with the function blocks are weakepaced to the Pro-
Com components, and the standards lack support for spegiyid managing

4.2 Alternative Approaches 41

extra-functional properties and their analysis. This bddack the possibil-
ity for formal analysis of the systems under developmentctvis one of the
major objectives this thesis aims at.

In the automotive domain, alike ProCom, EAST-ADL (ElecimArchi-
tecture and Software Technology — Architecture Descniptianguage) [37]
aims at providing a support for the complete developmenisbfiduted embed-
ded systems by taking into consideration the hardwareywaoétand environ-
ment development assets. Although both approaches shatarsibjectives,
they differ in they way those objectives are approached.@4seProCom em-
phases components as assets for capturing developmemhatfon thus aim-
ing at reusability, EAST-ADL focuses on architecture dgg@n to structure
it. In EAST-ADL information is structured into five abstram levels, which
describe the functionalities from several standpointghteatity of a level real-
izes the entities of the higher abstraction levels. ProCowers three of these
levels (analysis level, design level and implementatioelle and leaves out
the electronic feature design (vehicle level) and the sttgpothe deployment
of the final binary (operational level). Similarly to ProCpBAST-ADL also
supports modelling of non-structural aspects such as limlval description
but covers in addition validation and verification acte#ias well as manage-
ment of requirements. EAST-ADL was originally develope@asAST-EEA
ITEA projectinvolving car manufacturers and suppliers aad it is refined as
a part of ATESST project to be aligned with the major standatn efforts
existing in the automotive and real-time domains (AUTOSMARTE, and
SysML).

The Architecture and Analysis Description Language (AAD4], for-
merly known as Avionics Architecture Description Language standardiza-
tion effort led by the Society of Automotive Engineers (SA&)provide sup-
port for the development of real-time and safety-criticabedded systems for
aerospace, avionics, robotic and automotive domains. éprently, AADL
stresses the importance of analysis to meet the particalst@ints and re-
quirements of the envisaged target domains. It providesradbhierarchical
description of the systems including properties to supgf@tuse of various
formal analysis techniques related to timing, resourcaf®tyg and reliability
with the aim of validating, verifying and performing tradeanalysis of the
system. Properties are defined as a triple (Name, Type, V#iae can be
attached to different entities and can have specific instaafues. To this re-
spect, AADL is comparable to ProCom and its attribute frawrwHowever,
in comparison to ProCom, AADL is “only” a description langgaand does
not provide links to design and implementation technolsgle that sense, it

42 Chapter 4. Related Work

decomposes the system in a top-down manner specifyingesrdaitd how they
interact and are integrated together without providingiamglementation de-
tails. Thus AADL is not primarily concerned with reusabhjlissues. On the
other hand, AADL includes some features that could be istarg to take into
consideration in the further development of ProCom suclhaspecification
of execution platforms and operational modes.

Other approaches applies Model-Driven Engineering (MBEhhiques
that allow to automate the development process in relyingodels as primary
development artefacts, hence abstracting away from imgaiéation concerns.
These models are intended to serve as input to automatidgatlye imple-
mentation, documentation, test cases, and much more. Wjthaot limited
to UML-based models, the attractiveness of these appredtas increased
since the introduction of UML 2.0 [45] and various UML-pre®l such as
SysML [46] and MARTE [47]. In particular MARTE, the successdf the
scheduling, performance and timing (SPT) profile, definestatbasic con-
cepts for model-driven development of real-time embedgstems. In that
sense, MARTE is closely related to the work presented in tthésis, espe-
cially with the specification of extra-functional propesdiincluding time and
resources and the intention to support various types of iHeoaked analysis
such as schedulability and performance. In addition, thindhe General Com-
ponent Model sub-profile, MARTE proposes support for CBS&wkler con-
trasting to our work, MARTE does not focus on implementatiod reuse.

4.3 Integrated Development Environment

Integrated Development Environments (IDEs) are not neveyThaditionally
provide dedicated support for developing applicationsarnous programming
languages such as Pascal, C/C++, Java, PhP among many. othdlsese
environments, the main focus is oriented towards the impleation phase of
the development process, which means that typically saurde editors (with
syntax highlighting, auto-completion, bracket matchietg,), compiler and/or
interpreters, and debuggers are supplied to the develdparsbject-oriented
software development, class browsers, object inspecoisclass hierarchy
diagrams, are also integrated. The most common repreisestat these IDEs
include Delphi [48], Eclipse [49], and Microsoft Visual $lio [50].

As for CBSE, the environments are generally tightly cemteasound a
component model, and focus on specific development phaspkefnentation)
and domain. Some examples of such environment are Pallaatigp@Gnent
Model tool [51], Koala Development Tools, Netbeans [52] EaiB and Jav-

4.3 Integrated Development Environment 43

aBeans.

However for the development of safety-critical real-timabedded sys-
tems, environments providing more verification and simafatapabilities are
often used instead — either a UML-based environment or acdésti envi-
ronment. In those environments, code generation is a ratimamon feature,
which allows to automatically derive accurate implemeaatafrom models.
In some cases, as for BridgePoint [53], the generated imgi¢ation can be
executed directly to simulate the behaviour of the system.

UML-based environments propose to develop a system inrgjdy its
design following UML or a UML-profile. Typically, those emanments cover
design, code generation, execution, tests, and simulafi@spite the recent
initiatives of SPT, SysML and MARTE to incorporate extraxftional proper-
ties into UML, few tools actually support those new standaadd when this
support exists, it still lacks formal grounds. As a resultaudomatic verifi-
cation is available in those environments. However, thhocmmbining UML
class diagrams and UML behaviour diagrams, the Fujaba Tat# §4] man-
ages to enable formal system design that can be used to teedava source
code. Rational Rose Technical Developer [55], Rhapsodydbé BridgePoint
are some examples of environments belonging to this categor

On the other hand, dedicated integrated development emaiats are cen-
tered around a dedicated modelling language. Simulink fsaih MathWorks,
is the leader environment to model, simulate, implementaaradyze dynamic
and embedded systems. It is mainly used in control theorydagithl signal
processing for designing the applications together witldefiong its environ-
ment. Once the system is designed out of block diagrams @iemiar to
components), the system can be synthesized into execuwatiéethrough a
connection to the Real-Time Workshop tool also developelathWorks. A
repository support is provided on the form of building bldikaries, from
which building blocks are picked and customized to fit thedseef the new
design. Simulink is integrated with Matlab, hence allowalgorithm devel-
opment, data visualization, data analysis, and numericpedation. Other
major dedicated environmentis SCADE [58], which proposesravironment
to produce mission and safety-critical systems mainly gmoapace, defence
and automotive domains. SCADE is endowed with the followfieatures:
graphical and textual editors, simulator, formal proof ¢l@@ Verifier), code
generators, model test coverage and can be connected tdiripnROORS,
Altia, UML/SysML, etc.

Save-IDE, described in Paper E, also belongs to this catetjocompari-
son to the other environments, Fujaba Tool Suite exceptak-8DE provides

44 Chapter 4. Related Work

an environment allowing formal modelling of a system fullgnapliant with
the SaveCCM semantics, hence enabling formal verificaticgheobehaviour
of the system with respect to time, safety and reachabitiperties. However,
in order to benefit from the large variety of existing tools ftML, Save-IDE
through its SaveUML extension [59] allows transforming a&aCM design
into a UML-profile and vice-versa.

Chapter 5

Conclusions and Future
Work

We have described in this thesis a possible approach to roenggonent-based
software engineering principles with the specifics of distted embedded sys-
tems with the aim of providing solutions towards an efficidetelopment en-
vironment. This approach is based on a dedicated compormheirtailored
to fit the embedded system development needs. In partidypaovides a re-
stricted semantics to facilitate the analysability of tlystem being designed
and a dedicated (extra-) functional properties framewosaise the integration
and management of analysis techniques and their outputs.

This chapter concludes the thesis by reviewing and discgsts contribu-
tions with regards to the research questions stated in €nhapand by provid-
ing directions for future work.

5.1 Discussions

Clearly, the objective of proposing integrated solutiomsi¢velop distributed
embedded systems in a predictable and efficient way whilefoig the CBSE

principles is ambitious. It can be addressed in many differays and requires
many fragmentary results which need to tightly fit togethiéris objective is

not attained entirely through the contributions presentighin this thesis since
the work is not completed yet. However, we have provideddfasindations

and directions, which hopefully contribute to move clogeits realisation.

45

46 Chapter 5. Conclusions and Future Work

The main piece of remaining work concerns the validation @raduation
of the proposed methods, in particular with respect to thiesaged component-
based approach and its underlying component model andfextctéional prop-
erty support. Indeed, no validation or evaluation in an stdal context has
been performed yet and this constitutes an important pdtitofe work that
remains to be done. As a consequence, the answers to thecregeastions
1 and 2 provided below correspond more to initial findingstendubject than
fully accepted results corroborated through the developmiesuitable appli-
cations or even industrial case-studies. The remaindéiig&ection provides
answers to the research questions introduced in Sectican8.discussions on
their relevance.

Research Question 1:

What are the suitable characteristics of a component madefft-
ciently support software design of distributed embeddstegys?

Based on an analysis of the component model classificationdwork and an
evaluation of the requirements for embedded system dewelop a number
of characteristics that seem suitable for component-basdzedded system
development and its associated component model have bewtified and de-

tailed in Paper B and integrated in ProCom (Paper C). As oswanto the

Research Question 1, yet to be confirmed by experiments erstadies, a
component model should support:

— Different abstraction levels (i.e. the coexistence of porrents in an
early design phase and fully realised components).

— The different concerns that exist at different granuaetels (i.e. an
high-level view of loosely coupled complex subsystems tiogiewith a
low-level view of small non-distributed functionalitiesrglar to control
loops).

— Platform awareness while still being platform indeperiden

— Various analysis techniques.

In addition, as identified in [30] for the development of emthed control soft-
ware, the component model semantics should also be limitédestrictive to
support important extra-functional properties such agiiysafety or reliabil-
ity. With regards to efficiency of software developmentsthiplies finding the
appropriate tradeoff between flexibility on one hand andyesadility and pre-
dictability on the other hand. We approached this problerallgyiating some

5.1 Discussions 47

of the restrictions present in SaveCCM — in particular fog #roSys level
which requires more flexibility than ProSave since it deaithwlistributed
active subsystems executing concurrently — while reinfar¢he concept of
components as a unified notion throughout the developmeneps. In spite
of this, ProCom provides a semantics precise enough to beaflyrexpressed
through timed finite state machines as demonstrated in [Sibhilar to what
has been done in SaveCCM, this should permit an automategration of
formal analysis tools, improving the development procesfopmance.

The strong coupling between target platform specificatiod software
implementation is an important challenge which requirebdcaddressed in
a suitable way since the correctness of analysis results/alngs of extra-
functional properties strongly depend upon the targeffguiatt specification
and the deployment configuration. Postponing the accegggdanformation
to a late development stage could result in incorrect desighimplementa-
tion of the system to be executed, leading to an eventualycestesign and
re-implementation of the erroneous parts of the system.breaking the hard-
ware abstraction and making the target specification path@fcomponent
model is not a suitable solution since this would makes athgonents plat-
form dependant and hinder their reusability breaking thea ftindament of
CBSE. An appropriate solution lays probably in between ¢htwg extreme
solutions.

Research Question 2:

How to provide efficient integration support for managemet
functional and extra-functional properties within a conmgot model?

Answering this question corresponds to finding an appropriay to specify,
integrate and handle functional and extra-functional proes in a component
model in a systematic way. Thus, we addressed this questiongh the ap-
proach briefly described in Section 3.3.4 and detailed irePBp

This approach combines a model for specifying extra-fumeti proper-
ties with techniques outside this specification, such apety registry and
property selection, to ensure the correctness of theisation in the current
development context. Remarkably, a distinctive featurewsfmodel lays in
its ability to handle the specification of multiple values &oproperty, where
each value is identified through the provision of suitableéadata and/or the
context under which the value has been obtained. This apprcen also be
used to integrate the specification of functional propsn@hout hampering
the utilisation of interfaces. In this context, functiopabperties do not refer

48 Chapter 5. Conclusions and Future Work

to interface specification of the operations handled by timappnents, but to
the modelling of the behaviour of the components in a form#able for anal-
ysis techniques such as timed automata model. By this meansjtention is
to increase the analysability and predictability of comgatrbased embedded
systems, and enabling a seamless and uniform integratiexisifng analysis
and predictions theories into component models.

However this solution introduces complexity in the desigocess in sev-
eral ways. In addition to the possibility to have multipldues assessed at
different point of time or by different techniques, it alsavesions delegating
the declarations of needed properties to, for example, @veldpers of the
analysis techniques who know best the types of informatiey heed as input
and that they produce as outputs. In the end this could riesaitt explosion of
property definitions in the registry. A possible solutionulebe to rely on a
standardized catalogue of properties similarly to whadtexXor units (SI), date
and time representation (ISO 8601) or the standard for atialuof software
quality (1ISO 9126).

Our approach to integrate extra-functional propertie®imgonent models
reveals a lot of information concerning the details of the@lementation of
the components. Although this is not a major issue for indecdevelopment,
it naturally becomes more problematic for its utilisationthe development
of systems or components for which the implementation etaiist remain
hidden such as COTS components since all the models thatseaved for
analysis are packaged together with the components. Aigolobuld be to
provide mechanisms to identify and automatically remowvafidential infor-
mation when components are distributed to third parties.

Research Question 3:

How to build an integrated development environment endapsu
ing suitable models and technologies to efficiently suppont-
ponent-based development of software for embedded systems

Based on [8] and with respect to the SaveCCM reference m@d8jgivhich
defines the exchange format to be used between the toolsegmated devel-
opment environment, called Save-IDE, has been specifiedeveloped. This
environment has been used internally by the members indaivés realisa-
tion but also externally by students outside the projeatietelop diverse small
applications. In [61], a comparison between Save-IDE an&epsional tool
enhanced with a profile for SaveCCM has been performed. Kpisranent is
performed on a small group of students concerns only the hinglaspect of

5.1 Discussions 49

the environment. Yet the students’ feedback show someatidits that a dedi-
cated design environment is more efficient than a genenglegze environment
customized to fit a particular need. So as a part of the ansntbetresearch
question, a first important feature is the presence of dezticaodelling ed-
itors. The environment has also been used in [62] and in [Blvhich an
industrial control system and a simple truck applicationenaeen realized re-
spectively. Those two examples show the feasibility of tiegrated approach.
In particular, they highlight the possibilities of tightigterconnecting design
and formal analysis tools, which enable formal analysi®iefdn-going design
already in an early design phase.

From the development and internal use of this environmengral con-
clusions have been drawn, leading to some areas of imprawdorehe envi-
ronment and some of them as served as basis in the on-goikgevdevelop
an integrated development environment supporting the coet-based ap-
proach presented in this thesis. These conclusions arepatts of our answer
to this research question.

The first conclusion is that components must be the main diiewelop-
ment, similar to the concept of packages in object-orieptedramming, and
must be manipulated as such. In that view, a component isdalection of
its data and files such as architectural model, behaviouwdkts, source code,
tests, documentation, etc., which must be kept consisiéns should enable
component versioning, foster bottom-up development watssfbly reuse, and
ease the distinction between component types and instambi$ was one of
the problem faced in Save-IDE. Indeed in Save-IDE, comptnare design
entities only, and are created during the design of the syteough the archi-
tectural editor. One problem with this approach is that dificult to deter-
mine when the design of the componentis completed and muberthanged
any longer. The possibility to copy components in the deaidpts to the prob-
lem even further since it implies that component types asthirces are mixed
together. This means that an instance of the component camb#ied in-
dependently of its component type and consequently, emseonsistencies
of a component type with its instances and implementatignires numerous
checking.

Another conclusion is that information concerning thefpliath design must
also be highly interconnected with the software design abpghrameters from
the target platform specification that influences the sa#veBesign are avail-
able as soon as they are specified and vice versa. This coaidectihe inte-
gration of analysis tools which requires knowledge on tlafpim to produce
accurate results.

50 Chapter 5. Conclusions and Future Work

Finally, in the current approach supported by Save-IDEtrnesformation
of the design model into an execution model allowing syrithasd optimi-
sation steps is performed at the end of the process only, thftedesign has
been verified and validated. Yet, the validation and vetificeare performed
at a high-level of abstraction without connection to the poment implemen-
tation used in the synthesis and without any specific infeionaegarding the
target platform. It is assumed that the implementation dmg¢dreak the be-
haviour formally modelled. This can have some negativecesfen the effi-
ciency of the approach when the fully implemented systens chamt meet its
timing requirements or the timing requirements are notibdasThe develop-
ment process might then start over at the design step withetfakesign and
re-implementations of the erroneous parts. As a conseeguéme validation
and verification steps must be carried out again. Furthesraome analysis
techniques, such as schedulability, cannot be performedhagh-level of ab-
straction. Some potential solutions that need to be fuithasstigated are to
connect implementation with analysis or generating imgetation from the
models used by the analysis techniques. Also, synthesis Ineugiewed as
more complex than a single-step operation performed atrtti@ftthe develop-
ment process. It requires many analysis, tests and optiotisahat are closely
related to the design, implementation and various extnatfanal properties
such as timing or resource usage, and must therefore bagtitly tonnected
with them.

5.2 Future Work

An important part of the work that currently remains coneeltre evaluation
and validation of the proposed methods. To complete thikwee are cur-
rently building the ROGRESSIDE, an integrated development environment
centered around the notion of component as main unit of dpweént and
supporting the requirements of the proposed componemrigbasproach. In
particular, this IDE is intended to support the co-exiseef fully imple-
mented components with components in early design phaseemphasize
reuse. We envisage to use this integrated developmenbanvént to conduct
experiments and case-studies addressing the developrentbedded sys-
tems, primarily with regards to the vehicular domain. Latee also plan to
evaluate the applicability of the proposed methods for otleenains such as
automation and telecommunication.

5.2 Future Work 51

In addition, since specifying and building an efficient amedictable soft-
ware development framework for embedded systems requiess mesults
tightly interconnected to each others, the work presemtéida thesis can con-
tinue in several directions. Some of them are:

— Investigating target platform specification togethetwitechanisms to
connect information to the software design when appropaat recip-
rocally, relate design information to the target platforesign, hence
establishing suitable relationships between softwaretardware de-

signs.

— Improving the attribute framework by refining the validitpnditions
and the automated selection of attributes, and suppottagnigration
of information between component instances and types.

— Further elaborating ProCom for handling sensors and twijaand at
the ProSys level, supporting additional communicatiomgams, such
as synchronous communication.

— Integrating analysis techniques and their underlying éf®dnd more
specifically REMES, a resource model for embedded systems that can be
used for early analysis of timing and resource usage.

— Considering synthesis as a multi-step activity and ingeshg its rela-
tionships between software design and target platforngdesi

Bibliography

[1]

(2]

[3]

[4]

H. Fennel et al. Achievements and Exploitation of the ADHAR Devel-
opment Partnership. Presented at Convergence 2006, D&ttplUSA,
October 2006.

http://ww. aut osar. org.

Robert Bosch GmbH. CAN Specification, Version 2.0. TdchhReport
ISO 11898, 1991.

LIN Consortium. LIN Protocol Specification, Revision 3gptember
2003.
http://ww. | in-subbus.org/.

Ivica Crnkovic and Magnus LarssonBuilding Reliable Component-
Based Software Systermfgtech House, Inc., Norwood, MA, USA, 2002.

[5] AUTOSAR Development Partnership. Technical Overviev.X/1,

February 2008.
http://ww. aut osar. or g.

[6] Ji Eun Kim, Rahul Kapoor, Martin Herrmann, Jochen Haleid{ Franz

Grzeschniok, and Peter Lutz. Software Behavior DescriptibReal-
Time Embedded Systems in Component Based Software Develtpm
In ISORC '08: Proceedings of the 2008 11th IEEE Symposium oedDbj
Oriented Real-Time Distributed Computirmmages 307-311, Washington,
DC, USA, 2008. IEEE Computer Society.

[7] Ji Eun Kim, Oliver Rogalla, Simon Kramer, and Arne Hamdgxtract-

ing, Specifying and Predicting Software System Propeiti€omponent
Based Real-Time Embedded Software Developmen®Prateedings of
the 31st International Conference on Software Enginedii@§E) 2009.

53

54 Bibliography

[8] Mikeal Akerholm, Jan Carlson, Johan Fredriksson, Hans Hanssbn, Jo
Hakansson, Anders Moller, Paul Pettersson, and Massinai.T The
SAVE Approach to Component-Based Development of VehicSlgs-
tems.Journal of Systems and Softwa89(5):655-667, May 2007.

[9] Arcticus Systems. Rubus Software Components.
http://ww. arcti cus-systens.com

[10] Rob van Ommering, Frank van der Linden, Jeff Kramer, &ffl Magee.
The Koala Component Model for Consumer Electronics Sogwaom-
puter, 33(3):78-85, 2000.

[11] Oscar Nierstrasz, Gabriela Arévalo, Stephane DssaRoel Wuyts, An-
drew P. Black, Peter O. Mlller, Christian Zeidler, Thomam&sler, and
Reinier van den Born. A Component Model for Field Devicestac. of
the 1st Int. IFIP/ACM Working Conference on Component Daplent
pages 200-209. Springer, 2002.

[12] Bruno Bouyssounouse and Joseph Sifalsnbedded Systems Design:
The ARTIST Roadmap for Research and Development (Lecttes Mo
Computer Scienceppringer-Verlag New York, Inc., Secaucus, NJ, USA,
2005.

[13] Richard ZurawskiEmbedded Systems Handbook Second Edition — Em-
bedded Systems Design and VerificatiGRC Press, 2009.

[14] George T. Heineman and William T. CouncilComponent-Based Soft-
ware Engineering: Putting the Pieces Togeth&ddison-Wesley Long-
man Publishing Co., 2001.

[15] Clemens SzyperskComponent Software: Beyond Object-Oriented Pro-
gramming - Second EditiorAddison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[16] Jean-Claude Laprie. Dependable Computing and Faldtrdioce : Con-
cepts and Terminology. Ifrault-Tolerant Computing, 1995, 'High-
lights from Twenty-Five Years’, Twenty-Fifth InternarSymposium
on, pages 2+, 1995.

[17] Panagiotis Tsarchopoulos. European Research in EteloeBlystems. In
Embedded Computer Systems: Architectures, Modeling, mmda&ion,
6th International Workshop, SAMOS 2006, Samos, Greecg,1J4R0,
2006, Proceedingpages 2—4, 2006.

Bibliography 55

[18] MOST Cooperation. MOST Specification, Revision 3.0020
http://ww. nost cooperation. coni .

[19] Flex Ray Consortium.
http://ww. fl exray. coni.

[20] Manfred Broy. Challenges in Automotive Software Erggning. INNCSE
'06: Proceedings of the 28th international conference oftv&are engi-
neering pages 33-42, New York, NY, USA, 2006. ACM.

[21] IEC. Application and Implementation of IEC 61131-3.0F1995.

[22] Clemens SzyperskComponent Software: Beyond Object-Oriented Pro-
gramming Addison-Wesley Professional, December 1997.

[23] Annie Anton.Goal Identification and Refinfement in the Specification of
Information Systemd$PhD thesis, Georgia Institute of Technology, 1997.

[24] Dale Rogersonlnside COM Microsoft Press, 1997.
[25] Fintan Bolton.Pure CORBA Sams, 2001.

[26] Microsoft Visual Studio Developer Center. .NET Franoeku
http://ww. m crosoft.com NET/.

[27] EJB 3.0 Expert Group. JSR 220: Enterprise JavaBeangdilgipn 3.0
EJB Core Contracts and Requirements Version 3.0, FinalaBeleMay
2006.

[28] Ivica Crnkovic, Magnus Larsson, and Otto Preiss. Caonicg Pre-
dictability in Dependable Component-Based Systems: @ileetson of
Quality Attributes. InArchitecting Dependable Systems llblume 3549
of Lecture Notes in Computer Sciengages 257-278. Springer Berlin,
2005.

[29] Ivica Crnkovic. Component-based Software Enginegfor Embedded
Systems. INCSE '05: Proceedings of the 27th international conference
on Software engineeringpages 712-713, New York, NY, USA, 2005.
ACM.

[30] Mikael Akerholm. Reusability of Software Components in the Vehicular
Domain PhD thesis, Malardalen University Press, May 2008.

56

Bibliography

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

Anders Moller, MikaelAkerholm, Johan Fredriksson, and Mikael Nolin.
Evaluation of Component Technologies with Respect to IrdiRe-
quirements. IfEuromicro Conference, Component-Based Software Engi-
neering Track August 2004.

Tomas BureS, Jan Carlson, Ivica Crnkovic, SéawveriSentilles, and
Aneta Vulgarakis. ProCom — the Progress Component Modet¢rRef
ence Manual, version 1.0. Technical Report MDH-MRTC-280&-1-
SE, Malardalen University, June 2008.

Mikael Akerholm, Jan Carlson, John Hakansson, Hans HanssongMika
Nolin, Thomas Nolte, and Paul Pettersson. The SaveCCM lan-
guage reference manual. Technical Report MDH-MRTC-200720-SE,
Malardalen University, January 2007.

Mary Shaw. Writing Good Software Engineering ResedPalpers. In
Proceedings of the 25th International Conference on Saé\Eagineer-
ing, pages 726-736, 2003.

Kung-Kiu Lau and Zheng Wang. Software Component ModéEEE
Transactions on Software Engineerjrgg(10):709-724, 2007.

M. Jersak et.al. Timing Model and Methodology for AUTAIS. Elek-
tronik automotive, Special issue AUTOSARBO7.

Philippe Cuenot, Deldiu Chen, Sebastien Gerard, Hemikn, Mark-
Oliver Reiser, David Servat, Carl-Johan Sjostedt, RamivaRali Ko-
lagari, Martin Torngren, and Matthias Weber. Managing Claxipy of
Automotive Electronics Using the EAST-ADL. ITECCS '07: Proceed-
ings of the 12th IEEE International Conference on EnginagComplex
Computer Systempages 353—-358, Washington, DC, USA, 2007. IEEE
Computer Society.

Bernhard F. Weichel and Martin Herrmann. A Backbone utad¥o-
tive Software Development Based on Xml and Asam/Msr. SAEIl&Vor
Congress, 2004.

Séverine Sentilles, Anders Pettersson, Dag Nystidmmas Nolte, Paul
Pettersson, and Ivica Crnkovic. Save-IDE — A Tool for Designal-
ysis and Implementation of Component-Based Embedded r8gstén
Proceedings of the 31st International Conference on SoéEagineer-
ing (ICSE) May 2009.

Bibliography 57

[40] H. Maaskant. A Robust Component Model for Consumer tEbedc

Products. IrDynamic and Robust Streaming in and between Connected

Consumer-Electronic Devicggolume 3 ofPhilips Researchpages 167—
192. Springer, 2005.

[41] Michael Winter, Thomas Genler, Alexander Christopkc@r Nierstrasz,
Stephane Ducasse, Roel Wuyts, Gabriela Arevalo, Peter,Mllbris
Stich, and Bastiaan Schdonhage. Components for Embeddadase -
The PECOS Approach. lim Proc. International Conference on Compil-
ers, Architecture, and Synthesis for Embedded System&EEASACM
Press, 2002.

[42] Scott Hissam, James lvers, Daniel Plakosh, and Kurt @liau. Pin
Component Technology (V1.0) and Its C Interface. Technidate:
CMU/SEI-2005-TN-001, April 2005.

[43] IEC. IEC 61499 Function Blocks for Embedded and Disttédal Control
Systems Design. IEC, 2005.

[44] Peter H. Feiler, Bruce Lewis, and Steve Vestal. The SAdhitecture
analysis & design language (AADL) standard: A Basis for MeBased
Architecture-Driven Embedded Systems EngineeriPigceeding of the
RTAS 2003 Workshp@003.

[45] The Object Management Group. UML Superstructure Sjpation v2.1,
April 2009.
http://ww. ong. or g/ docs/ pt ¢/ 06- 04- 02. pdf .

[46] Object Management Group. OMG Systems Modeling Langu&(d..0,
2007.

[47] Object Management Group. A UML Profile for MARTE, BetaAlygust
2007. Document number: ptc/07-08-04.

[48] Embarcadero Technologies, Inc. Delphi.
http://ww. enbar cader o. coni product s/ del phi .

[49] The Eclipse Foundation. Eclipse.
http://ww. eclipse.org/,.

[50] Microsoft. Visual studio.
http://nsdn. m crosoft.con en-us/vstudio/.

58 Bibliography

[51] Karlsruhe Institute of Technology and Research Cefaeinformation
Technology. Palladio Component Model Tool.
http://sdqgweb. i pd. uka. de/ wi ki / Pal | adi o_.Conponent _Mbdel .

[52] SUN MICROSYSTEMS, INC. Netbeans.
http://http://ww. net beans. org/ .

[53] Mentor Graphics. Bridgepoint.
http://ww. ment or. conl product s/ sni nodel _devel opnent/
bri dgepoi nt/.

[54] Fujaba Tool Suite Developer Team. Fujaba Tool Suite.
http://wwmcs. uni - pader born. de/ cs/ f uj aba/ .

[55] IBM Rational. Rational Rose Technical Developer.
http://ww-01.i bm com sof t war e/ awdt ool s/ devel oper/
techni cal / support/.

[56] IBM Rational. Rhapsody.
http://wwv. tel el ogi c. com product s/ rhapsody/i ndex. cfm

[57] Simulink, MathWorks.
www. mat hwor ks. com

[58] ESTEREL Technologies. SCADE Suite.
http://ww. esterel -technol ogi es. com
product s/ scade-suite/.

[59] Ana Petricic, Luka Lednicki, and lvica Crnkovic. UsindML for
Domain-Specific Component Models. Fourteenth International Work-
shop on Component-Oriented Programmjidgne 2009.

[60] Aneta Vulgarakis, Jagadish Suryadevara, Jan Car3astjna Seceleanu,
and Paul Pettersson. Formal Semantics of the ProCom Rea-Com-
ponent Model. IrProceedings of the 35th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAigust 2009.

[61] Ana Petricic, Luka Lednicki, and Ivica Crnkovic. An Eimipal Com-
parison of SaveUML and SaveCCM Technologies. TechnicaloRep
Malardalen University, March 2009.

[62] Davor Slutej, John Hakansson, Jagadish Suryade@riatina Sece-
leanu, and Paul Pettersson. Analyzing a Pattern-Based IMbdeReal-
Time Turntable System. I6th International Workshop on Formal Engi-
neering approaches to Software Components and ArchiestiESCA),
ETAPS 2009, York, UKElectronic Notes in Theoretical Computer Sci-
ence (ENTCS), Elsevier, March 2009.

Included Papers

61

Chapter 6

Paper A:
A Classification Framework
for Component Models

Ivica Crnkovic, Séverine Sentilles, Aneta Vulgarakis afidhel Chaudron
Accepted to IEEE Transactions on Software Engineeringh@grocess of
revision)

63

Abstract

The essence of component-based software engineering edésabn com-
ponent models. Component models specify the propertiesraponents and
the mechanism of component compositions. In last decadpi@ gaowth, a
plethora of different component models has been developsdg different
technologies, having different aims, and using differeimgples. This has
resulted in a number of models and technologies which havey sieilarities,
but also principal differences, and in a lot cases uncleacepts. Component-
based development has not succeeded in providing standaoipfes, as for
example object-oriented development. In order to incréaseinderstanding
of the concepts, and to easier differentiate component faotihes paper pro-
vides a Component Model Classification Framework whichftifies and dis-
cusses the basic principles of component models. Furtegyahper classifies a
certain number of component models using this framework.

6.1 Introduction 65

6.1 Introduction

Component-based software engineering (CBSE) is an esftabliarea of soft-
ware engineering. The inspiration for “building systemanircomponents” in
CBSE comes from other engineering disciplines, such as améchl or elec-
trical engineering, software architecture. The technécared technologies that
form the basis for component models originate mostly frorfectkoriented
design and Architecture Definition Languages (ADLS). Sisafware is in its
nature different from the physical world, the translatidmponciples from the
classical engineering disciplines into software is natati For example, the
understanding of the term component has never been a prabtémclassical
engineering disciplines, since a component can be inéljtiunderstood and
this understanding fits well with fundamental theories awhhologies. This
is not the case with software. The notation of a software comept is not
clear: its intuitive perception may be quite different friimmodel and its im-
plementation. From the beginning, CBSE struggled with @lem to obtain
a common and a sufficiently precise definition of a softwanaponent. An
early and probably most commonly used definition coming fRayperski [1]
(“A software component is a unit of composition with contreadly specified
interfaces and explicit context dependencies only. A saftwcomponent can
be deployed independently and is subject to compositiorhiogl party”) fo-
cuses on characterization of software component. In spifes @enerality
it was shown that this definition is not valid for a wide randeeomponent-
based technologies (for example those which do not suppofttactually spec-
ified interface or independent deployment). In the definitd Heineman and
Councill [2] (“A software component is a software elemerattbonforms to a
component model and can be independently deployed and smdpathout
modification according to a composition standard”), the ponent definition
is more general actually a component is specified throughkpbeification of
the component model. The component model itself is not §pdciThis defi-
nition can be even more generalized in respect to the conmpspecification,
but component model can be expressed more precisely [3]:

Definition: A Software Component is a software building block that con-
forms to a component model. A Component Model defines ssdar (i)
properties that individual components must satisfy andiethods, and pos-
sibly mechanisms, for composing components.

This generic definition allows the existence of a wide speutof compo-
nent models, which is also happening in reality; on the nmeake in differ-
ent research communities, there exists many componentlswib different

66 Paper A

characteristics. However, it makes it more difficult to pedp understand the
Component-Based (CB) principles. In particular, this igetsince CB princi-
ples are not clearly explained and formally defined. In th&iersities compo-
nent models are similar to ADLSs; there are similar mechasiand principles
but many variations and different implementations. Fos tieiason there is a
need for having a framework which can provide a classificagind compari-
son between different component models in a similar marsigmaas done for
ADLs [4, 5]. In addition, a framework can help in the selentaf a particular
component model or in the design of a new component model.

In this paper, we propose a classification and comparisaneneork for
component models. Since component models and their impitiens in
componenttechnologies cover a large range of differergcspf the develop-
ment process, we group these aspects in several dimensidisigd a multi-
dimensional framework that counts different, yet equailitportant, aspects of
component models. We have also analyzed a considerableaemnwhbompo-
nent models, and compared their characteristics. Thetsasiithe comparison
have led to some observations which are discussed in the. pape

Our research methodology was based on several iteratiofisaifserva-
tions and analysis, (i) classification, and (iii) validatj in the first iteration,
based on the literature related to general principles ofpzmant- based soft-
ware engineering and existing classification [1, 2, 3, 4, %, 8, 9, 10, 11], the
classification model was applied to a set of component mpdetsdiscussed
with several CBSE and empirical software engineering mebesis and experts
from different engineering domains. The resulting analysid discussions
have led to a refinement of the framework. In the next iteretithe refined
framework was applied to new component models and discwsitkechew re-
searchers. The process (which lasted more than one yedsgbasompleted
when in the last iteration all new component models complvet with the
framework. Another important issue that we learned wageadlto a decision
what to define as a component model and what not. This is diedtis section
three.

The remainder of this paper is organized as follows. Se@&igmotivates,
explains and defines the different dimensions of the clasasidin framework.
Section 6.3 discusses the criteria for inclusion of différaodels/technologies
into to component models survey and the classification freanle The com-
parison framework and observations from the comparisopr@sented in sec-
tion 6.4. Related work is covered in section 6.5 and sectiéreéncludes the
paper. A very brief overview of the selected component modalwhich the
classification framework has been mapped is given in appéhdi

6.2 The Classification Framework 67

6.2 The Classification Framework

The main concern of a component model is to (i) provide rubeghe spec-

ification of component properties and (ii) provide rules aneichanisms for
component composition, including the composition rulesahponent prop-
erties. These main principles hide many complex mechanamsmodels,

and have significant differences in approaches, concedhsrgsiementations.
For this reason we cannot simply list all possible charésttes to compare
the component models; rather we want to group particularacieristics that
have similar concerns i.e. that describe the same or retesgelcts of compo-
nent models. Starting from the definition of component medee distinguish

specification of components from specification of commuiioca Component
specifications express component functions (typicallyforen of signatures),

and extra-functional properties. Most of the component e®dhclude only

specification of functions, in form of interfaces. Extrazfional properties, if
specified at all, are defined either in a form of extendedfiateror as compo-
nent metadata. The functional part of an interface is diyeetated to interac-
tion between components and realized through constructerhanisms using
different interaction (architectural) styles. Communiga between compo-
nents is usually not explicitly specified, but there areatiéht types of com-
munications that are assumed in component models.

Finally different component models cover different phasescomponent
lifecycle; while some support only the modelling phase eoshalso provide
mechanisms supporting the implementation and run-timegha

In this paper we divide the fundamental principles and atterastics of
component models into the following dimensions.

1. Lifecycle. The lifecycle dimension identifies the support provided (ex
plicitly or implicitly) by the component model, in certainipts of a life-
cycle of components or component-based systebmnponent-Based
Development (CBD) is characterized by the separation ofithelop-
ment processes of individual components from the procesystem
development. There are some synchronization points intwhicom-
ponent is integrated into a system, i.e. in which the compbisebeing
bound. Beyond those points, the notion of components in ystem
may disappear, or components can still be recognized asqfdte sys-
tem.

2. Constructs. The constructs dimension identifies (i) the component-inter
face used for the interaction with other components andreatenvi-

68 Paper A

ronment, and (ii) the means of component binding and contation
In some component models, the interface comprises thefgaeicin of
all component properties, including both functional anttafunctional,
butin most cases, it only includes a specification of funwigroperties.
Directly correlated to the interface are the componentragerability
mechanisms. All these concepts are parts of the “constmictiimen-
sion of CBD.

3. Extra-Functional Properties. The extra-functional properties dimen-
sion identifies specifications and support that includesptiowision of
property values and means for their compositidn certain domains
(for example real-time embedded systems), the ability tdehand ver-
ify particular properties is equally important but more k#raging than
the implementation of functional properties.

4. Domains. This dimension shows in which application and business do-
mains component models are used or supposed to be lisedicates
the specialization, or the generality of component models.

In these four dimensions, we comprise the main charadt=rist component
models but, of course, there are also other characterieaitsan differentiate
them. For example, since in many cases component modelsudrei a
particular implementation technology, many charactegstome directly from
this supporting implementation technology and are noblésin component
models themselves. Still the intention with the classifazaaind comparison
model is to comprise the main characteristics of componeutais.

6.2.1 Lifecycle

While CBSE aims at covering the entire lifecycle of compdnessed sys-
tems, component models provide only partial lifecycle aurpand usually are
related to the design, implementation and integration @has

The overall component-based lifecycle is separated interaéprocesses;
building components, building systems from components,amsessing com-
ponents [6]. Some component technologies provide certgipat in these
processes (for example maintaining component reposstoerposing inter-
face, component deployment).

The component-based paradigm has extended the integedtiivities up
to the run-time phase; certain component technologiesige@mxtended sup-
port for dynamic and independent deployment of componatdsunning sys-

6.2 The Classification Framework 69

tems. This support is reflected in the design of many compamedels. In
contrast, in other component models components only egiseparate units
in the development stage and become assimilated into ansysten the sys-
tem is built. In this case the system at run-time is mondaitklowever not all
component models consider this integration phase. We eanlgldistinguish
different component models that focus on one particular orenphases and
such phases can be different for different component mod&tene compo-
nent technologies start in the design phase (e.g. Koalahwias an explicit
and dedicated design notation of components and other eteroéthe com-
ponent model), while other component technologies focuhemmplementa-
tion phase (e.g. COM, EJB). For this reason one importanedgion of our
component model classification lifecycle support. In oasslfication, we dis-
tinguish the lifecycle of components from the lifecycleloé tcomponent-based
system, which are different[3, 7] and are not necessarydeatly related they
are ongoing in parallel and have some synchronization poie identify the
following stages of the component lifecycle.

1. Modelling stage.The component models provide support for the mod-
elling and the design of component- based systems and canfmon
Models are used either for the architectural descriptiothefsystems
and components (e.g. ADLS), or for the specification and érdigation
of particular system and component properties (e.g. $tates; resource
usage models, performance models).

2. Implementation stageThe component model provides support for pro-
duction of code. The implementation may stop with the priovisf
the source code, or may continue up to the generation of ayb{pze-
cutable) code. The existence of executable code is a preimmibr the
dynamic deployment of components (during run-time).

3. Packaging stageBecause components are the central unit in CBSE,

there is a need for their storage and packaging either in@sitepy or
for distribution. A component package is a set of metadathcnue
(source or executable). Accordingly, the result of thigetean be a file,
an archive, or a repository in which the packaged componesigde
prior to decisions about how they will be run in the targetiestvment.
For example, in Koala, components are packed into a file sybiesed
repository, with a folder per component. The folder inclsidenumber
of files: Component Description Language (CDL) file and, acfe€

and header files, test file and different documents. Anotk@mele of

70 Paper A

packaging is achieved in the EJB component model. Therédagatg
is done through jar archives, called ejb-jar. Each archorgains XML
deployment descriptor, component description, compoingglementa-
tion and interfaces.

4. Deployment stagéAt a certain point of time, a component is integrated
into a system. This activity may happen at different phasekesys-
tems lifecycle. In general, the components can be deployed a

(a) compilation timeso it is no longer possible to change the way the
components interact with each other. For instance, Koatapoe
nents are deployed at compilation time and they use statatiri
by following naming conventions and generated renamingazac

(b) run timeas separate units by using means such as registers (COM)
or containers (CCM,EJB). For example, CORBA components are
deployed at run time in a container by using information ef die-
ployment descriptor packed with the component implemantat

,,,,,,, ‘ Component lifecycle

modelling

,,,,,,,,,

implementation >~.

packaging .
deployment .

11 execution

,,,,,,,,,,

Specification "| Code . Storage

- interface - source code . - repository
- models - | - executable code . - package

- metadata . | - executable models | : - metadata

Installed files Executable code|

Component forms in a component lifecycle
Figure 6.1: Component lifecycle and component forms

Figure 6.1 illustrates different stages in a componentyiéée and the as-
sociated forms of the components. Through the stages sothe édrms are
transformed into new ones, some remains, while some disaplpethe figure
the requirements and execution phase are denoted with shediines which
indicate that in these stages components do not necessstiragindependent
units. The forms of the components will be different acrdsages for different
component models.

6.2 The Classification Framework 71

6.2.2 The Constructs

As defined in [12], the verb “construct” means “to form sonieghby putting

different things together”, so in applying this definitiamthe CBSE domain,
we define by the Constructs dimension, the way componentsameected
together within a component model in order to provide comication means.
But although this communication aspect is of primordial artpnce, it is not
often expressed explicitly. Instead, it is reflected imiglidoy some underlying
mechanisms. This should be distinguished from specificataf functional

and sometimes extra-functional properties in a form of congmt interfaces.
Consequently, a component interface has a double role:sttdjpecifies the
component properties (functional and possibly extra-fional), and second, it
identifies the connection points through which componergsrdgerconnected.

Interface

Interface specification is the characteristic “sine qua’namfina component
model. Interfaces are defined either by using special lagegjeor elements
of programming languages. Several languages exist thatfgm®mponents
interfaces and their connections: modelling languaget as UML or differ-
ent Architecture Description Languages (ADLSs), particidgecification lan-
guages, such as Interface Definition Languages (IDLs) raroghing languages
such as Interface in Java, or abstraction class in C++, oesmditions built
directly in a programming language, such as pre-definedtsthu C. In case of
special languages, the interface specifications are &i@usto a programming
language. In a few cases (e.g. COM), the interface is alsoet&fn a binary
format in order to have a standard representation at de@oyand run-time.
Some mechanisms such as introspection in Java are alsoadetdover the
interfaces of a component at run-time.

The component models that use programming languages pegtiensions
for component specification, also inherit properties osthanguages. For ex-
ample the component models that use object-oriented lgggudilize the con-
cepts of classes and (interface) inheritance. Typicallymamonentis expressed
as a class in which the interface is defined as a set of opesé#timctions and
attributes. However there exist other types of interfacesadled port-based
where ports are entries for receiving/sending differena dgpes and events.
Note that this concept is different from the concept in UMQ PL3] in which
a port is defined as a set of specifications.

Some component models distinguish also the “providest{parthe spec-
ification of the functions that the component offers) frora thequires™-part

72 Paper A

(i.e. the specification of the functions the component negg)iof an interface.

In order to ensure that a component will behave as expectatding to
its specification and operational mode, and in order to enthat a compo-
nent is supplied with expected input and environment th@naif contract
has been adjoined to interfaces. According to [8], consraan be classified
hierarchically in four levels which, if taken together, mfaym a global con-
tract. We only adopt the three first levels in our classifaratince the last level
“contractualizes” only the extra-functional propertieslghis is not in direct
relation with interoperability

e Syntactic level describes the syntactic aspect, also called signature, of
an interface. This level ensures the correct utilisatioa abmponent.
That is to say that the “calling-component” must refer to tiveper
types, fields, methods, signals, ports and handles the tanspaised
by the “responding component”. This is the most common anst easy
agreement to certify as it relies mainly on an, either statidynamic,
type checking technique.

e Semantic levelreinforces the previous level of contracts in certifying
that the values of the parameters as well as the persisteatgriables
are within the proper range. This can be asserted by pretomms post-
conditions and invariants. A generalization of this levah ®de assumed
as semantics.

e Behaviour level dynamic behaviour of services. It expresses either the
composition constraints (e.g. constraints on their terlpmdering) or
the internal behaviour (e.g. dynamic of internal states).

Finally, the constructs dimension refers to the notionseofsability and
evolvability, which are important principles of CBSE. Irdbemany component
models are endowed with diverse features for supportinmttane typical
solution is the ability to add new interfaces to a componérttis makes it
possible to embody several versions or variants of funstiothe component.

Composition of Constructs

While compositions in general consider compositions of gonent proper-
ties, both functional and extra-functional, compositi@isonstructs are re-
lated to components interactions. Constructs compositése implemented
as connections of interaction channels and the processsotémnection is
called binding. The binding mechanism is related to the camept lifecycle;

6.2 The Classification Framework 73

it can occur at compilation time (when a compiler providearections be-
tween components using programming language mechaniemes) runtime,

in which connection mechanisms are utilised that are pexl/lay the underly-
ing run-time infrastructure. Such a run-time infrastruetomay consist of dedi-
cated component middleware, and/or a component framewarkaocommon

operating system or middleware.

A so-called “docking interface” method is commonly used whxénding
occurs at run-time. This docking interface does not offgrapplication func-
tionality, but serves instead for managing the binding arnsssquent interac-
tion between a component and the underlying run-time itrinature. In many
component models (e.g. CCM, EJB) the composition spedificés location-
transparent; the run-time location of components (placeallocal or a remote
node) is specified separately from the binding informatidhis information
about the location is used in the deployment phase.

Connectors, introduced as distinct elements in ADLs, artecooamon
among the first class citizens in most component models. €xars are me-
diators in the connections between components and have ldedpurpose:
(i) enabling indirect composition (so called exogenous positions), and (ii)
introducing additional functionality, especially for mation between compo-
nents. In the exogenous composition information concerttie binding re-
sides outside of the components; the components have noldagevof who
they are connected to. Exogenous composition enables reamlass evolu-
tion because it separates changes to components from chemgeeir bind-
ings. In several component technologies, connectors gokeimented as spe-
cial types of components, such as adaptors or proxies,reithgrovide ad-
ditional functional or extra-functional properties, oreégtend the means of
intercommunication. In direct (endogenous) type of contfmosthe compo-
nents are connected directly through their interfacesorinétion concerning
the binding resides inside components.

The interface specification implicitly defines the type offeiaction be-
tween components to comply with particular architectusdés. In most cases,
a particular component models provide a single basic intierastyle (for ex-
ample, “request-response” or “pipe & filter”, but othersglswas Fractal, Pin
and BIP allow the construction of different architectuttsdes.

An important question related to the composability of comgrds has con-
cerned the research community [9]: Can the assemblies opanents (by
assemblies we assume a set of components mutually conhbetéwated as
components themselves, i.e. is the composition hieraathi@here are two
kinds of assemblies supported by existing component tdogies. The firstis

74 Paper A

the first order assembly which is not treated as a componéheinomponent
model. This type of assembly is merely a set of components &rhitrary
form, creating an application or a part of an applicationteirms of binding
the component models refer to “horizontal composition” lborizontal bind-
ing”. The second type of assembly is hierarchical which rsd¢hat the assem-
bly, created from components, again satisfies the progetia an individual
component should satisfy according to the component mddé¢hat case we
refer to “hierarchical composition” or “hierarchical bind”. The criteria for
vertical composition are related to constructs (interfggecification and the
interaction), and possibility extra-functional propesti Most of the compo-
nent models support partial vertical composition. For eplgnmterfaces can
be composed recursively in modelling phase, but not in tidogenent phase
(in particular when deployment is performed during rune)m

Constructs Classifications

Following the observations and reasoning from above wetiiyehe following
classification characteristics for interfaces and conoestin the constructs
dimension.

1. Interface specificationin which different characteristics allowing the
specification of interfaces are identified:

(a) The distinction of interface type: operation-based.(eethods
invocations) and port-based interface (e.g. data passing)

(b) The distinction between the provides-part and the regepart of
an interface.

(c) The existence of some distinctive features appearityg iarthis
component model (such as special type of ports, optionaleepe
tions).

(d) The language used to specify the interface.
(e) Interface levels which describe the levels of contralt$ation of
the interfaces, namely syntactic, semantic and/or behaléwel.
2. Interactions which comprise the following characteristics:
(a) Interaction style which describes the main underlyimdpiectural
style used.

(b) Communication type which details mainly if the commuation
used are synchronous and/or asynchronous.

6.2 The Classification Framework 75

(c) Binding type describes the way components may be linkgelther
through the interfaces. It is realized in two subtypes:

i. The exogenous/endogenous sub-category describinghethet
the component model includes connectors as architectidral e
ements, and

ii. The hierarchical sub-category expressing the possiloif hav-
ing a hierarchical composition of components (horizorahe
position is an intrinsic part of all component models, thus i
is implicitly assumed, and not put in the classification feam
work).

6.2.3 Extra-Functional Properties

Properties are used in the most general sense as definedbgrstalictionar-
ies, e.g. “aconstruct whereby objects and individuals eadiftinguished” [9].
There is no unique taxonomy of properties, and consequerdlyy property
classification frameworks can exist. One commonly usedsifieation is to

distinguish functional from extra-functional properti&ghile functional prop-
erties describe functions or services of an object, extretional properties
(EFPs) specify the quality, or in general a characteridtiaterest, of objects.
In CBSE, there is also a distinction between component pti@seand system
properties. A property at the system level can result froendbmposition of
the same properties of constituent components, but also tlhe composition
of different properties. In latter case such property cast@nly on a system
level. Such properties are called emerging properties.

Composition of Extra-Functional Properties

EFPs can be complex and abstract or, they can be tangibleantete. Exam-
ples of abstract (and complex) properties are dependadiljperformance and
examples of tangible properties are memory footprint oltadxility. Complex

properties are typically the result of the composition ofesal more tangi-
ble properties. An important concern of CBSE is compositibproperties

expressed in the following way. For an assembly A that is cosed of com-
ponent C1 and C2

A=C100C2

expresses a property of the assembly as a composition oégiiegpof the
components
P(A)=P(C1)o P (C2)

76 Paper A

Different EFPs have different characteristics and henespecified in very
different ways. Also computing the compositions of EFPsunegjdifferent
composition theories for different EFPs. In relation to garsability, one of the
challenges of CBSE is predictability. To enable analysik@tdesign stage and
to avoid expensive, tedious and non-accurate tests arebisereusability, a lot
of efforts has been made in CBSE research communities tgrdesimponent
models that enable predictability.

According to [9], the properties can be classified accortbrigpes of com-
positions in the following basic categories.

e Directly composable propertig@xample: static memory): A property
of an assembly is a function of, and only of, the same proparthe
components involved.

P(A)=f(P(C1),...,P(Ci),...,P(Cn))

e Architecture-related propertiegexample: performance): A property of
an assembly is a function of the same property of the compsmaeial of
the software architecture.

P(A) = f(SA,...P(Ci)..)),

1...n

1

SA

softwarearchitecture

e Derived propertiegexample: response time vs. execution time): A
property of an assembly depends on several different ptiepesf the
components.

P(A) = f(SA,...Pi(Cj)..),

1 = 1l...m

j = 1l...n
Pi = componentproperties
Cj = components

e Usage-depended propertiésxample: reliability): A property of an as-

6.2 The Classification Framework 77

sembly is determined by its usage profile.

P(AU) = f(SA,...Pi(Cy,U)...),
i = 1l...m
j = 1l...n
U = wusageprofile

e System environment context proper{iesample: safety): A property is
determined by other properties and by the state of the systefinon-

ment.
P(S,U,X) = [f(SA,...Pi(Cj,UX)...),
i = 1l...m
7 = 1...n
S = system
X = systemcontext

This idealised classification indicates the limitationsloé compositions
of EFPs. Determining the compositions of properties of congmts becomes
feasible when restrictions are imposed on the design ofidhaal components
(by means of rules/constraints in of the component model)system archi-
tecture. For example static memory usage of an assemblyeaefined as
the sum of static memory usage of involved components, biytusing par-
ticular composition policies (e.g. no concurrency). Irstivay, we can obtain
predictability of the considered property. Other propestare related to us-
age profile and if we cannot predict usage profile we cannaligirthe system
properties. Some other properties are not composable, @rallin that case
we cannot predict their composition.

Management of Extra-Functional Properties

Even if EFPs are not composable, they can be manageablthgyecan be
obtained by using some solutions encapsulated in compomaiels and stan-
dardized architectural solutions. Different types of EF&hagement exist ac-
cording to the way the component models handle them. Wendisigh two
main dimensions Fig 6.2:

78 Paper A

1. A property is managed by the components (endogenous ERBgaa
ment — approaches A and B), or by the system (exogenous EF&g@an
ment — approaches C and D) or managed.

2. A property is managed on a system-wide scale (approachad B), or
the property is managed on a per-collaboration basis (agpes A and

component O) component component O) component
EFP mar {EFP management| B] EFP management
Endogenous EFP
management
EFP management|
Component Execution Platform)
Component Execution Platform

H

=4

EFP management

Exogenous EFP
management % 5

EFP management|

Component Execution Platform

Component Execution Platform

EFP managed per collaboration EFP managed systemwide

Figure 6.2: Management of extra-functional properties

Approach Alendogenous per collaborati®nA component model does not
provide any support for EFP management, but it is expectgditicomponent
developerimplements it. This approach makes it possikitectode EFP man-
agement policies that are optimized towards a specific sysémd also can
cater for adopting multiple policies in one system. Thisehegeneity may
be particularly useful when COTS components need to berated. On the
other hand, the fact that such policies are not standardimgdbe a source of
architectural mismatch between components. This apprcaclinardly man-
age emerging properties.

Approach B(endogenous systemw)dén this approach, there is a mecha-
nism in the component execution platform that containscpesifor managing

6.2 The Classification Framework 79

EFPs for individual components as well as for EFPs involvingtiple compo-
nents. The ability to negotiate the manner in which EFPs anelled requires
that the components themselves have some knowledge abauthBoEFPS
affect their functioning. This is a form of reflection.

Approach C(exogenous per collaboratiprand Approach D(exogenous
systemwide In these approaches the components are designed suc¢hehat
address only functional aspects and not EFP. Consequantlye execution
environment, these components are surrounded by a cont@ime container
contains the knowledge on how to manage EFPs. Containersittar be
connected to containers of other components (approach €)rdainers can
interact with a mechanism in the component execution platfthat manages
EFPs on a system wide scale (approach D). The container agpi® a way
of realizing separation of concerns in which componentgentrate on func-
tional aspects and containers concentrate on extra-madtaspects. In this
way, components become more generic because no modifitatiequired to
integrate them into systems that may employ different pesifor EFPs. Since
these components do not address EFPs, another advanthgetisely are sim-
pler and hence cheaper to implement. A disadvantage of ppisoach might
be a degradation of the system performance.

Extra-Functional Properties Classification

For the EFPs we provide a classification in respect to thewatlg questions:

1. Management of EFPd/NVhich type of management (if any) is provided
by the component model?

2. EFP specificationDoes the component model contain means for spec-
ification and management of specific EFPs. If yes, which pitegseor
which types of properties?

3. Composability of EFPs Does the component model provide means,
methods and/or techniques for composition of certain extnational
properties and/or what type of composition?

6.2.4 Domains

Some component models are aimed at specific applicationidsraa for in-
stance consumer electronics or information systems. |h sases, require-
ments from the application domain penetrate into the corappmodel. The

80 Paper A

benefits of a domain-specific component models are that ttponent tech-
nology facilitates achieving certain requirements. Suarhgonent models are,
as a consequence, limited in generality and will not be sidyeasable in do-
mains that are subject to different requirements.

Some component models are of general-purpose. They proagiemech-
anisms for the specification and the composition of comptsndut do not
assume any specific architecture beyond general assumsliicminteraction
style, support for distributed systems, compilation or-tinme deployment).
A general solution that enables component models to be berierglly ap-
plicable but to also cater for specific domains is throughube of optional
frameworks. A framework is an extension of a component mdfuk may
be used, but is not mandatory in general. There is a third ¢fymemponent
models, namely generative; they are used for instantiatiqrarticular com-
ponent models. They provide common principles, and someramparts of
technologies (for example modelling), while other partssecific (for exam-
ple different implementations). According to this, we si&sthe component
models as

1. General-purpose component models;
2. Specialized component models;

3. Generative component models.

6.2.5 The Classification Overview

Fig. 6.3 summarizes the classification framework in a grapimf

6.2 The Classification Framework

81

Component
Model

Lifecycle

Constructors

Modelling

Implementation|

Packaging

Deployment

Interface
Specification

Interactions

At compilation

At run-time

Interface
Style

Distinction of
Provides / Requires|

Interface
Language

Interface
Levels

Distinctive
Features

Interaction
Style

ICommunication
Type

Binding Type

Endogenous
Collaborative

Management Endogenous
Systemwide
ExtrPa-FuncFlona Specification Exogenous
roperties Collaborative
Composition and Exogenous
Analysis Support Systemwise
Generative
i General -
Domains
Purpose
Specialised

Synchronous

Asynchronous

Exogenous /
Endogenous

Vertical

Figure 6.3: The hierarchical structure of the classificaframework

82 Paper A

6.3 Survey of Component Models

Nowadays a humber of component models exist. They vary widelusage,

in support provided, in concerns, in complexity, in formafiditions, etc.. In

our classification of component models, the first questiomhisther a partic-
ular model (or technology, method, or similar) is a compdmeadel or not.

Similar to biology in which viruses cover the border betwéfmnand non-life,

there is a wide range of models, from those having many elesy@ncom-

ponent models but still not assumed as component modelt)osa that lack
many elements of component models, but still are desigredeztbmponent
models, to those which are broadly accepted component modélerefore,
we identify the minimum criteria required to classify a mhae a notation as
a component model. This minimum is defined by the definitiooahponent
models given in the introduction: A model that defines rulesthe design
and specification of components and their properties andhsneftheir com-

position can be classified as a component model. It shouldbtesirthat this
condition is mandatory, but not sufficient. We have iderdiieveral models
that fulfil this condition, but still we have not included then the survey. We
can call them “almost” component models.

6.3.1 “Almost” Component Models

A wide range of modeling languages contains the term “coreptirand even
(semi)formally specifies components and component cortipnsi For exam-
ple in the classification of ADLs [5] one of the basic elemertscomponents
(and connectors as means for construction composition).L 2\ is even
closer to component models since it provides a metamodeidomponents,
interfaces and ports. Still we have deliberately chosentmselect them as
component models, in difference to some other classificat{such as [11]).
One reason is that their purpose is not component-basetbgevent but rather
the specification of system architectures. ADLs and UML 2e0sxcellent lan-
guage candidates for modeling component-based systemsoamgbnents in
the design phase, but are missing other characteristios teblared as com-
ponent models. Certain languages derived from UML, suchlidlx[14]
in which the component specification is translated to anedde entity, are
even closer candidates for component models. However xUML samilar
languages do not operate with components as first clasertitifor example
components are not treated as separate development otaxeantities), but
components are only architectural elements.

6.3 Survey of Component Models 83

On the other side of the lifecycle line are services. One cgneathat
services are special types of components. Services arsddamn run-time
retrieval and run-time deployment. Similar to componesgsyices are speci-
fied by an interface, and provide support for constructs asitipns [15]. Still
we have not included services in the classifications forlammeasons as for
ADLs their focus is not component-based development. Itoglyao ADLS,
services are not component models but rather use comporeiatisn Further,
we have not included technologies such as Unix processeparel& filter”
mechanisms, or modeling environments such as Simulinkaleriy [16], as
again the components are not the primary concern in theseagipes.

Finally we have not included technologies like Eclipse ooteshop that
enable the integration of plugins from third parties anchis tvay suit well to
a part of Szyperskis definition of components (“deployepehdently and is
subject to composition by third party”). However they do paotvide mecha-
nisms of compositions between components, rather mechdesveen com-
ponents and the underlying platform.

For these “almost component models” one can argue that tieegoapo-
nent models or technologies, and that they could be inclimtecthe survey.
Our position is that their inclusion will break the spiritthie component mod-
els as defined in this paper according to the arguments fiegsen

6.3.2 Component Models

In our classification framework we have selected a numbeowiponent mod-
els that appeared in the research literature and in prattibde some of them
are widely spread and proven, others are used as demonswatliustrations
of ideas in research.

The classification framework does not show the success t€plar com-
ponent models, or any business model, but it is based on thaital char-
acteristics only. The components models that we have iedil the list are
shortly referred to in the appendix 6.7.

Itis worth to mention that for some of the component modedswe found,
our selection criteria were satisfied, however becauseartiyg of available
documentation it was impossible to get the needed detaifednation (which
usually is a sign that no activity around the model is goingy tmthese cases,
we have decided to omit them from our list.

84 Paper A

6.4 The Comparison Framework

The characteristics of the component models are collectatid tables be-
low, following the dimensions in the classification frametyonamely life-
cycle (Table 6.1), constructs (Tables 6.2, and 6.3), extnational properties
(Table 6.4), and the domains (Table 6.5) lined in the alptialoeder. Follow-
ing each table, a short discussion gathering observatimh&ir rationales is
presented.

6.4.1 Lifecycle Classification

From the observation of Table 6.1, one can notice that thseaegroup of
component models that do not provide any support for mogelicomponents
or component-based applications, but cover only impleatent part (specifi-
cation and deployment). All these component models belotige state of the
practice and most of them are widely used. Does that mearnhbahodeling
of components is not supposed to be a part of a component thddietioes
it mean that other tools, for example general-purpose nuglébols, such as
UML or ADLs are used for modeling, while component technidsgre used
for the implementation? It is partially true that most of giractitioners do not
model their systems using formal specification languagesrdiher express
their design in a non-formal way for documentation purpaodg, @r in a semi-
formal way typically using UML. In both cases neither thegise definitions
of components nor their interactions are assumed to be bfgrigrity. This is
also an indicator of differences between state of the arstatd of the practice;
many solutions that include modeling of components or theperties from
the state of the art have still not been realized or scaled ppactice.

The second observation from Table 6.1 is the fact that mogteo€ompo-
nent models use object-oriented languages for the impl&atiens with dom-
ination of Java. Still there exist component models usimgotanguages, for
example imperative programming languages such as C.

It seems that the packaging and component repositorieoaie focus of
component models. In most cases, certain standard ardneesed (such as
DLL or JAR packages). The lack of repositories indicatesiafticus of reuse,
in particular of COTS components.

Deployment at compile time and run-time occurs almost dgoéten. De-
ployment at compile time limits the flexibility at run-timieuyt on the other hand
enables easier predictability, richer composition fesd(such as hierarchical
composition), and more efficient reuse (such as deploynfémigementation

6.4 The Comparison Framework 85
Table 6.1: Lifecycle Dimension
Component f .)
Models Modelling Implementation REWC] Deployment
Non-formal
AUTOSAR N/A C specification of| Compilation
container
A 3-layered representation:
BIP behavior, interaction, and BIP Language N/A Compilation
priority
BlueArX N/A C N/A Compilation
Deployment
CCM N/A Language independent Unit archive Run-time
(JARs, DLLs)
COMDES I ADL-like language C N/A Compilation
Deployment
CompoNETS | Behavour modeling (Petri Net$) Language independent Unit archive Run-time
(JARs, DLLs)
EJB N/A Java EJB-Jar files Run-time
ADL-like language (Fractal | Java (in Julia, Aokell) File system
Fractal ADL, Fractal IDL), C/C++ (in Think) based rg ositor Run-time
Annotations (Fractlet) .Net lang. (in FracNet) P
ADL-like languages (IDL,CDL| File system .
FORLA and DDL) c based repositor Compilation
KobrA UML Profile Language independent N/A N/A
Function Block Diagram (FBD|
Ladder Diagram (LD) Structured Text (ST) .
ISC @ikl Sequential Function Chart Instruction List (IL) N/A Compilation
(SFC)
IEC 61499 Function Block Diagram (FBD) Language independent N/A Compilation
JavaBeans N/A Java Jar packages | Compilation
Compilation
MS COM N/A OO languages DLL and
run-time
OpenCOM N/A OO languages DLL Run-time
] Compilation
. Jar-files
OSGi N/A Java (bundles) anq
run-time
Palladio UML profile Java N/A Run-time
PECOS ADL-like language (CoCo) C++ and Java Jar pScLlEages 0 Compilation
Pin ADL-like language (CCL) C DLL Compilation
ProCom ADL-like language, timed c File system Compilation
automata based repositor
) . _. | Compilation
ROBOCOP ADL-like language, resource Cand C++ Structures in zig and
management model files -
run-time
; File system .
RUBUS Rubus Design Language C based repositor Compilation
SaveCCM ADL-like (SaveComp), timed c File system Compilation
automata based repositor
SOFA 2.0 Meta—mod:el based specification Java Repository Run-time
anguage

86 Paper A

parts that will be used in the application). This might be asmn why this
is the primary deployment style chosen by specialized carapbmodels (cf.
Table 6.5).

6.4.2 Constructs Classification

Tables 6.2 and 6.3 show interface and interaction spedditabf the se-
lected component models. Although the existence of interfa a “condition
sine qua non” for component models, and all selected comyponedels iden-
tify the interface as an indispensable part of a componeati|eT6.2 shows
that interfaces can be of different types. Most interfacesofioperation type,
thus using functions and parameters for defining elemergsrefces the com-
ponent provides and requires. Still, many component magsgsports as in-
terface elements using them for passing data. Such compaorefels are
typically used in embedded systems and have their groundstine concept
of hardware components. Some component models do notglisimbetween
required and provided interface, but the interface is ifiedtwith the provided
interface, similar to the object-oriented approach. Int{b@sed interfaces, in-
put and output interfaces consisting of ports that receingesend data (often
designated as sink and source) are distinguished, whiglesnds to pro-
vided and required interface.

Since interfaces are an obligatory part of the componertifsgegion, all
component models provide at least the first level, i.e. gyittapecification.
A considerable number of component models also have bahsperifica-
tions, in most cases specified by a particular form of finisesimachines
(state charts, timed automata). Rather few of the compomeatels iden-
tify semantic of the interfaces. If semantics are defineel timostly pre- and
post-conditions are used for this. Itis worth to mentiort theerface semantics
should not be mixed with other types of semantics that someponent mod-
els can have (e.g. SaveCCM has execution semantics whicteddfie process
of the component execution in respect to time).

In line with the type of an interface (operation vs. portspnfi the infor-
mation provided in Table 6.3 one can conclude that the dainigpanterac-
tion styles in the component models are “request respomggitally used in
client/server architectures), and dataflow and pipe & fil@ome component
models have specific additions to interaction styles — edeméen, broadcast
or rendez-vous.

6.4 The Comparison Framework

87

Table 6.2: Constructs — Interface Specification

Distinction
Component Interface of - Interface
Models type EraviilEs Distinctive features Interface Language Leves
Requires
Operation-
AUTOSAR based Yes AUTOSAR Interface C header files Syntactic
Port-based
BIP Port-based No Complete interfaces, BIP Language ggrrl:zﬁttlﬁ:
Incomplete interfaces guag B
Behaviour
BlueArX Port-based Yes N/A C Syntactic
Operation- Facets and receptacle
CCM based Yes Event sinks and event| CORBA IDL, CIDL | Syntactic
Port-based sources
COMDESII | Portbased| Yes NIA C header files Statg Syntactic
charts diagrams | Behaviour
Operation- Facets and receptacle .
. CORBAIDL, CIDL, | Syntactic
CompoNETS based Yes Event sinks and event Petri nets Behaviour
Port-based sources
EJB Operation- No N/A Java + Annotations| Syntactic
based
Operation- Component Interface, IDL, Fractal ADL, or Syntactic
Fractal based Yes Control Interface JavaorC, Behaviour
Behavioural Protoco|
Operation- Diversity Interface,)
KOALA based Yes Optional Interface IDL, CDL Syntactic
KobrA Operation- | -/, N/A UML Syntactic
based
IEC 61131 Port-based Yes N/A N/A Syntactic
Event input and event
IEC 61499 Port-based Yes output Data input and N/A Syntactic
data output
JavaBeans Operation- Yes N/A Java Syntactic
based
MS COM O%eargggn— No Ability to extend interface ~ Microsoft IDL Syntactic
Interfaces additional to
Operation- COM-interface managing .)
OpenCom based No lifecycle, introspections Microsoft IDL Syntactic
etc.
OSGlI Operation- Yes Dynamic Interfaces Java Syntactic
based
palladio Operation- Yes P055|k_)|llty to annotate UML Synta(_:tlc
based interface Behaviour
Coco language, | Syntactic
PECOS Port-based Yes Ability to extend interface Prolog query, Petri| Semantic
nets Behaviour
Component
;) Composition Syntactic
Pin Port-based Yes N/A Language (CCL), | Behaviour
UML statechart
ProCom Port-based Yes Data and trigger ports XML based, Timed Synta(_:tlc
Automata Behaviour
Ability to extend differen Robocop IDL Syntactic
Robocop Port-based Yes types of (RIDL), Protocol YN
.) e Behaviour
interface/annotations specification
RUBUS Port-based Yes Data and trigger ports C header files Syntactic
’ SaveComp .
5 Data, trigger, and - Syntactic
SaveCCM Port-based Yes data-trigger ports (XMLbased),Timed Behaviour
Automata
Utility Interface,
Operation- Possibility to annotate Syntactic
ety based Yes interface and to control Java, SPC algebra Behaviour
evolution

88 Paper A

Table 6.3: Constructs — Interface Interaction

Component Interaction Styles Communication Type
Models Type Exogenous Hierarchical
Request response, Synchronous, .
AUTEEAR Messages passing Asynchronous No Delegation
Triggering,
BIP Rendez-vous, Egnﬁ:i:?g:gjs No Delegation
Broadcast Y
BlueArX Pipe&filter Synchronous No Delegation
Request response, Synchronous,
el Triggering Asynchronous No No
COMDES I Pipe&filter Synchronous No No
| Synchronous,
CompoNET$ Request responsg Asynchronous No No
EJB Requestrespons¢ SYnehronous, No No
Asynchronous
Fractal Multiple interaction| ~ Synchronous, Yes Delegathn,
styles Asynchronous Aggregation
| Delegation,
KOALA Request respons¢ Synchronous No Aggregation
KobrA Request respons¢ Synchronous No Delegatlc_)n,
Aggregation
IEC 61131 Pipe&filter Synchronous No Delegation
Event-driven, :
IEC 61499 Pipegiilter Synchronous No Delegation
JavaBeans Requgst response, Synchronous No No
Triggering
MS COM Request respons¢ Synchronous No Delegatlgn,
Aggregation
L Delegation,
OpenCOM | Requestresponsg Synchronous No Aggregation
OSGi Requgst response, Synchronous No No
Triggering
Palladio Request respons¢ Synchronous No No
PECOS Pipe&filter Synchronous No Delegation
Request responsg,
Pin Message passing Egnﬁ:i:?g:gjs No No
Triggering 4
B Pipe&filter,) Synchronous, Yes Delegation
Message passing ~ Asynchronous
| Synchronous,
Robocop Request responsg Asynchronous No No
Rubus Pipe&filter Synchronous No No
SaveCCM Pipe&filter Synchronous No Delegatlgn,
Aggregation
Multiple interaction| ~ Synchronous, .
SOFA 2.0 styles Asynchronous Yes Delegation

6.4 The Comparison Framework 89

Table 6.3 shows that the dominant communication type in aorapt mod-
els is synchronous. Component models that provide suppoasfynchronous
type of communication also support synchronous commuitafT his indi-
cates that component models are not concerned about atahégarchitec-
tural design), but rather targeting detailed design. Téds is also reflected in
the use of connectors. Quite a few of the component modetsd@mwectors as
first class entities, which indicates that components inyntamponent mod-
els are implicitly assumed as fine-grained entities, in i@stto architectural
components.

Finally, one can observe that many component models do ppiostiver-
tical binding, i.e. the means for hierarchical compositi@omposition of ver-
tical binding is implemented either through delegatedrfates (i.e. selected
interfaces from sub-components build up the interface efchmposite com-
ponents) or as aggregation in which the composite compdoeit this case
just an assembly) include all interfaces of the aggregatetponents.

6.4.3 Extra-Functional Properties Classification

From Table 6.4 an interesting observation can be found: Mamgponents
provide certain support for management of EFPs, eitheesystide or per
container. However a significantly smaller number of conggdammodels have
formalisms for EFPs specifications. Even smaller numbeviges means for
composition of EFPs. This is particularly true for commalcomponent mod-
els. This is not surprising since many EFPs are either natdtly defined, or
are considered too complex.

Some of the component models provide architectural solat{@or exam-
ple redundancy or authentication) which in general imptbesquality of sys-
tems. These solutions have an impact on different prope(t@ example
reliability and availability). The solutions are usuallgtrpart of components
themselves but are built into the underlying platform, addetd as additional
service used in some particular domains (for example COM# irsMS COM
and .NET technologies). While these component models geosupport for
increasing quality, they still do not support EFP compositiand by this do
not obtain “predictability by construction”. Clearly, cgmsition of EFPs still
belongs to research challenges. A vast majority of EFPsaraexplicitly
managed (specified and composed) belong to resource uségjenarg prop-
erties.

90 Paper A
Table 6.4: Extra-Functional Properties
Campams Management of EFP Properties specification Clongreiifion el s
Models support
AUTOSAR | Endogenous per collaboration (A) N/A N/A
BIP Endogenous system wide (B) Timing properties Behaviour compositions
BlueArX Endogenous per collaboration (A) Resource usage, Timing N/A
properties
CCM Exogenous system wide (D) N/A N/A
COMDES II| Endogenous system wide (B) Timing properties N/A
CompoNET$Endogenous per collaboration (A) N/A N/A
EJB Exogenous system wide (D) N/A N/A
) bility to add properties (b
Fractal Exogenous per collaboration (G gdding property controllers) N/A
KOALA Endogenous system wide (B) Resource usage Compile time checks of
resources
KobrA Endogenous per collaboration (A) N/A N/A
IEC 61131 | Endogenous per collaboration (A) N/A N/A
IEC 61499 | Endogenous per collaboration (A) N/A N/A
JavaBeans | Endogenous per collaboration (A) N/A N/A
MS COM Endogenous per collaboration (A) N/A N/A
OpenCOM | Endogenous per collaboration (f\) N/A N/A
OSGi Endogenous per collaboration (A) N/A N/A
Palladio Endogenous system wide (B) Performar)ge properties Performance properties
specification
Timing properties, generi
PECOS Endogenous system wide (B) specification of other N/A
properties
Pin Exogenous system wide (D) Analytic mterfa_ce, timing Dlﬁergnt EFP compositior)
properties theories, example latenc
ProCom Endogenous system wide (B) Timing and resources T|m_|ng and resources at
design and compile time
M.T.?%?%%‘?g;:gizts'on‘ Memory consumption and
ROBOCOP Endogenous system wide (B) reliability, ability to add tlmlgg pkr)opr)re]:enrlftzs at
other properties pioy
RUBUS Endogenous system wide (B) Timing Timing protpi)gr:es atdesig
Timing properties, generi¢ . . .)
SaveCCM Endogenous system wide (B) specification of other Timing prot;i)ﬁ]rges atdesig
propertie
SOFA 2.0 Endogenous system wide (B)| Behavioural (protocols) Composition at design

6.4 The Comparison Framework 91

6.4.4 Domains Classification

From Table 6.5 we see that the distribution between gempengdese compo-
nent models and specialized component models is equal. Vie eapect
more specialized; Probably in practice there are more afis®il proprietary
and not published component models. We have also observegration of
certain component models. For example OSGI was originakyghed for em-
bedded systems, but later has been used as general-pugpgserent model
in different domains. There is also an opposite trend ta fBisneral-purpose
component models have been adapted for particular doma@msbmbination
of addition of new features and restriction of some functio8uch examples
are CompoNETS and OpenCOM.

Specialized component models belong to two domains: a) édduksys-
tems, and b) information systems. The component models fhenrembed-
ded systems domain have some common characteristics: ¢haf tise “Pipe
& Filter/Dataflow” architectural style, components are albudeployable at
compilation time, components are resource-aware and tffiene is support
for management of timing properties. These component rsoake signif-
icantly different from general-purpose component modelfie component
models from the information systems domains are signifigambre similar to
general-purpose component models. Typically they haviesioharacteristics
as general-purpose component models, such as use of “tegsjgsnse” inter-
action, support for run-time run-time deployment, expdntelaterface, imple-
mentation in object-oriented language but they can bendjstshed from gen-
eral purpose component models through specific supportistitaited com-
ponents, data transaction support, interoperability \d#dkabases, and some
architectural solutions such as redundancy or locatiorsparency.

Table 6.5: Domains

%)

= 0
nu 29 c<2 S o
Wzo_. 93§28 on £§ 0«
028 683<23m38 -50 838 90«
Z3ERSEE009,2023:.858¢58
Domain oo uIefUUSsoo0fadac o n
General-purpose X XXX X XXX X X X
Specialised XXX X X X|X X X XX [X]|X
Generative X X X

92 Paper A

6.5 Related Work

Over the last decade, several attempts to identify key featnf software com-
ponents and component models have been proposed: cldgsifioastudies
of components and interfaces ([17], [18]), interfacesfaftinctional proper-
ties ([9]), ADLs ([5]), component models ([11]), charadstics of component
models for particular business domains ([10]), among sther

The models presented in [17] and [18] do not consider any coraipt
model but rather focus on practical issues of componerntaitibn and reuti-
lization. In [17], the interface classification is splitantwo categories: appli-
cation interfaces and platform interfaces. Applicatioteifaces describe the
information about the interaction with other componenteg¢sages protocol,
timing issues to requests) whereas the platform aspectisecrates on the
interaction between components and the executing platf@imilarly in [18]
a model for characterizing components is proposed whicke®the classifi-
cation model of interfaces from [17]. A component is thergareled as the
description of three main items (informal descriptionegrtls and internals)
each of them split into several subelements. The informstietion is con-
nected with a set of human-related features which can inflien the selection
of a component such as its age, its provenance, its leveluskrdts context,
its intent and if there is any related component solving dlaimproblem. The
externals are concerned with interaction mechanisms bitthother applica-
tion artifacts and with the platform (application interéag platform interfaces,
role, integration phase, integration frameworks, tecbgpband non-functional
features). Finally the internals are concerned with eldmesiated to the po-
tential information needed during the development prooéasystem (nature,
granularity, encapsulation, structural aspects, belaai@aspects, accessibility
to source code).

Similar to our work to some extent, a classification framéwtorclassify
each of the proposed models, frameworks, or standards moged in [19],
trying to determine what the core features of a software corapt are. The
classification approach is different from ours; it includésntification of a
component by a set of elements/characteristics (unit ofpamition, reuse,
interface, interoperability, granularity, hierarchysiility, composition, state,
extensibility, marketability, and support for OO). The sddication includes
only business components and business solutions. One pfdfséems with
this classification is the non orthogonality of some of tharelsterized items.

In [5], in which ADLs are classified, components are defineassc ele-
ments of ADLs. The components are distinguished by theatig features:

6.6 Conclusion 93

interface, types, semantics, constraints, evolution,raomdfunctional proper-
ties.

In [10], a classification model is proposed to structure tBSE body of
knowledge. All research results are characterized acegtdi several aspects
(concepts, processes, roles, product concerns and bsisioeserns, technol-
ogy, off-the-shelf components and related developmeradigms). Here, the
component model is only considered as one of the fifty elesnarthe CBSE
items. However, in this work, a more precise taxonomy of @gtibn do-
mains is proposed. The paper identifies the following apfibcn domains in
which component-based approaches are utilized: aviotwesmand and con-
trol, embedded systems, electronic commerce, financethicea, real-time,
simulation, telecommunications and, utilities.

In[7], several componentmodels (JB, COM, MTS, CCM, .NET @8GI)
are mainly described according to the following criteriaerfaces and Assem-
bly using ACME notation, Implementation, and Lifecycle.€limodels are not
compared or valuated, but rather these characteristicdem@ibed for each
component model.

In [11], a study of several component models is presentetdctivasiders
the following aspects: syntax, semantics and compositioough an ideal-
ized component-based development lifecycle,. A smallenimer of com-
ponent models are considered (also UML and ADLs are includ&hsed
on this study, a taxonomy centered on the composition @itas proposed,
which clarifies at which steps of the development procesgofen component
model, components can be composed and whether they carriegedtfrom
a repository to be composed. Further the different typesrafibgs (compo-
sitions) of some of the component models are discussed ie details. This
taxonomy does not consider EFPs.

6.6 Conclusion

In this survey, we have presented a framework for the claasifin and com-
parison of component models, which identifies issues mlaiecomponent-
based development. This survey indicates that many ptexigpmprised in
the component-based approach are not always included iy esenponent
model. Many of these principles are taken and further dgezldrom other
approaches (OO development, modeling using ADLs) which etsitributes
to an unclear understanding of component-based develdpmen

94 Paper A

The intention of this work is to increase the understandincponponent-
based approach by identifying the main concerns, commoracteistics and
differences of component models. The proposed framewoek dot include
all the elements of all component models since many of theve kaecific
solutions some related to models, some related to partitedanology solu-
tions. Further we have not characterized the componentstlers (like im-
plementation, internal behavior, whether componentsetieseor passive, and
similar). The framework however identifies the minimal erié for assuming
a model to be a component model and it groups the basic ckasdicts of the
models.

From the results we can recognize some recurrent patteicisas: general-
purpose component models utilize the “request respongé, sthile in the
specialized domains (mostly embedded systems) “pipe &f/filisgaflow” is
the predominate style. We can also observe that supporofoposition of
extra-functional properties is rather scarce. There amymeasons for that: in
practice explicit reasoning and predictability of EFPsti sot widespread,
there are unlimited number of different EFPs, and finallydbmpositions of
many EFPs are not only the results of component propertigs|§o a matter
outside component models for example of system architestuhich makes
EFP an aspect that is difficult to handle at the level of tradél implementa-
tion languages.

In similarity with other technologies we could expect a cengence of the
main characteristics of component models, i.e. becomes standardized,
using more commonly accepted concepts and terminology,iétlee number
of different component models will not necessary decreasée aim of this
work is to provide a help in this convergence process.

6.7 Appendix — Survey of Component Models

In this appendix, we provide a brief overview of componenteie taken in the
survey and their main characteristics. The component rsatellisted in the
alphabetic order. The list should be understood as a poovii some charac-
teristic examples, or examples of widely used componentatsad Software
Engineering.

Note that when listing the component models we have not gdealitheir
product name with edition number except for cases in whiehetfition num-
bers are part of the name or indicate significant differemamfthe previous
version.

6.7 Appendix — Survey of Component Models 95

AUTOSAR (AUTomotive Open System ARchitecture)[20], the new
standard in automotive industry is the result of the padiniprbetween sev-
eral manufacturers and suppliers from the automotive figlle main focus
of AUTOSAR is standardization of architecture, architeatcomponents and
their interoperability, which allows a separation of deghent of component-
based applications from the underlying platform. AUTOSAIRorts both the
client-server and sender-receiver communication typas ABTOSAR soft-
ware component instance is only assigned to one computer nBtkctronic
Control Unit (ECU). The AUTOSAR software components arelengented in
C. The main focus of AUTSOAR is the architecture not the congm model
itself.

BIP (Behavior, Interaction, Priority) [21] framework developed at Ver-
imag is used for modelling heterogeneous real-time commsnd his hetero-
geneity is considered for components having different byowization mech-
anisms (broadcast/rendez-vous), timed components otim@a components.
BIP focuses on component behaviour through a model withegethayer struc-
ture of the components (Behaviour, Interaction and Pyigrét component can
be seen as a point in this three-dimensional space coestityteach layer. In
this model, compound components, i.e components created diready ex-
isting ones, and systems are obtained by a sequence of fsemaformations
in each of the dimension. BIP comes up with its own prograngnanguage
but targets C/C++ execution. Some connections to the asalysls of the
IF-toolset [22] and the PROMETHEUS tools [23] are also pded.

BlueArX [24][25] is a component model developed and used by Bosch
for the automotive control domain. BlueArX defines a hiehézal component
model with focus on design-time, which does not requiretéaail run-time or
memory resources on the target hardware. A BlueArX compoecarsists of
specification, documentation and implementation (as obje€ source code).
BlueArX components and interfaces are specified using MSRBahufac-
turer Supplier Relationship SoftWare), a standardized Xtimat. Compo-
nents communicate using client-server and sender-redategfaces. Besides
name and type the interfaces specification lists additidetlils (e.g. mapping
between internal and physical representation, value raamgg physical unit).
Other interfaces address component configuration (varigioints), calibra-
tion data and extra-functional properties, like timingmogy usage or generic
specification of other properties.

COMDES II [26], developed at University of Southern Denmark, defines
various types of components to address both architectndadbahavioral prop-
erties of control software systems. It employs a two-leveldsi to specify

96 Paper A

system architecture. At the first (system) level a distedutontrol application
is conceived as a network of communicating actors and atebersl (actor)
level an actor is specified as a software artefact contaiisiggle actor task
and multiple 1/0 drivers. The functional behavior is spetfby a composition
of different function block instances which implement caate computation
or control algorithms. COMDES Il defines four kinds of furmctal blocks:

basic, composite, modal and state machine. The former twdeaused to
model continuous behavior (data flow) and the later two desc¢he sequen-
tial behavior (control flow). All non-functionalinformatth such as physicality,
real-time and concurrency is specified with respect to actor

CompoNETS|[27], developed at Université Toulouse 1, is based on CCM
where additionally the internal behavior of a software comgnt and inter-
component communication are specified by Petri Nets. Adoglyl a map-
ping from the constructs of the component models (e.g. $aceteptacles,
event sources and sinks) to the constructs of Petri-netltizdgavioral formal-
ism (e.g. places, transitions etc.) is defined. Other clariatics are the same
(or very similar) to CCM.

CCM (CORBA Component Model) [28] evolved from Corba object mod-
el and it was introduced as a basic model of the OMGs comp@peifica-
tion. The CCM specification defines an abstract model, a progring model,
a packaging model, a deployment model, an execution moded aretamodel.
The metamodel defines the concepts and the relationships otther models.
CORBA components communicate with outside world througtispoCCM
uses a separate language for the component specificatiterfalce Defini-
tion Language (IDL). CCM provides a Component Implementatrrame-
work (CIF) which relies on Component Implementation DeforitLanguage
(CIDL) and describes how functional and nonfunctional jmdirh component
should interact with each other. In addition, CCM uses XMIsat@tors for
specifying information about packaging and deploymenttiarmore, CCM
has an assembly descriptor which contains metadata abautwm or more
components can be composed together.

EJB (Entreprise JavaBeans) [29], developed by Sun MicroSystemi-
sions the construction of object-oriented and distribitiesiness applications.
It provides a set of services, such as transactions, pemsist concurrency,
interoperability. EJB differs three different types of qooments (The Entity-
Beans the SessionBean and the MessageDrivenBeans). E#usefbeans
is deployed in an EJB Container which is in charge of their aggament at
runtime (start, stop, passivation or activation) and EERBsl{ as security, relia-
bility, performance). EJB is heavily related to the Javegpaonming language.

6.7 Appendix — Survey of Component Models 97

Fractal [30] is a component model developed by France Telecom R&D
and INRIA. It intends to cover the whole development lifdey(esign, im-
plementation, deployment and maintenance/managemertthgilex software
systems. It includes several features, such as nestingnghe components
and reflexivity in that sense that a component may respégtieecreated from
other components, be shared between components and caseatgiaternals
to other components. The main purpose of Fractal is to peoaid extensi-
ble, open and general component model that can be tuned tafgevariety
of applications and domains. Fractal includes differestantiations and im-
plementations: a C-implementation called Think, whiclyéds especially the
embedded systems and a reference implementation, callacdd written in
Java.

Koala [31] is a component model developed by Philips for buildio§-s
ware for consumer electronics. Koala components are uhdssign, devel-
opment and reuse. Koala has a set of modelling language$a Kol is used
to specify Koala component interfaces, its Component Di@miLanguage
(CDL) is used to define Koala components, and Koala Data DiefinLan-
guage (DDL) is used to specify local data of components. &camponents
communicate with their environment or other componenty émlough ex-
plicit interfaces statically connected at design time. lddargets C as imple-
mentation language and uses source code components wjilesiteraction
model. Koala pays special attention to resource usage sustaic memory
consumption.

KobrA (KOmponentenBasieRte Anwendungsentwicklung) [32] isaa-hi
archical component model that supports a model-driven, thdsed represen-
tation of components. In KobrA components are not physicaigonents like
in the contemporary physical technologies (e.g. CORBA,,ENET) but logi-
cal building blocks of the software system. The componesrise constructed
in any UML modelling tool and deposited into a file system. {han be com-
pared to subsystems in UML with additional behavior. KobsgsiUML class
diagrams to specify structure, functional model to descfimctionality and
finally the behavioral model describes the component behaZiomposition
of components is done in the design phase by direct meth&sd cal

IEC 61131 [33] is a standard for the design of Programmable Logic Con-
trollers approved by the International Electrotechnicatinission (IEC). In
this standard, the software units are called function Id@eid based onincom-
ing events, they execute some algorithms to update thenateariables. This
standard has been further extended to IEC 61499 [34] whiohighes distribu-
tion in the runtime environment through high-level absiatof communica-

98 Paper A

tion primitives. IEC 61499 is an open communication staddar distributed
control systems.

JB (Java Beans)[35]developed by Sun Microsystems is based on Java
programming language. In the JavaBeans specification a ibeameusable
software component that can be visually composed into &p@eplications,
servlets, and composite components, using visual apjglicéuilder tools.
Programming a Java component requires definition of three afedata: i)
properties (similar to the attributes of a class); ii) metfoand iii) events
which are an alternative to method invocation for sendirtg.dzavaBeans was
primarily designed for the construction of graphical useeiface. The model
defines three types of interaction points, referred to asp@) methods, as in
Java, (ii) properties, used to parameterize the componeonaposition time,
(i) event sources, and event sinks (called listenersgf@nt-based communi-
cation.

COM (Microsoft Component Object Model) [36] is one of the most
commonly used software component models for desktop anersside ap-
plications. A key principle of COM is that interfaces are cfied separately
from both the components that implement them and those sieethem. COM
defines a dialect of the Interface Definition Language (IDhattis used to
specify object-oriented interfaces. Interfaces are dghpeiented in the sense
that their operations are to be implemented by a class arskgasreference
to a particular instance of that class when invoked. A cohkapwn as in-
terface navigation makes it possible for the user to obtgioiater to every
interface supported by the object. This is based on VTabléthosgh COM
is primarily used as a general-purpose component mode$ibban ported for
development of embedded software and extended for diggdbnformation
systems

OpenCOM [37] is a lightweight component model developed at Lancaste
University which aims at exploiting component-based téghes within mid-
dleware platforms. It is built atop a subset of Microsofts MOrlhese in-
clude the binary level interoperability standard, MicritséDL, COMs glob-
ally unique identifiers and the lUnknown interface. The leidével features of
COM such as distribution, persistence, transactions acutisg are not used.
The key concepts of OpenCOM are capsules, componentdaicest recepta-
cles and connections. Capsules are runtime containershagcbst compo-
nents. Each componentimplements a set of custom receptaulenterfaces.
A receptacle describes a unit of service requirement, anfate expresses a
unit of service provision, and a connection is the bindingveen an interface
and a receptacle of the same type.

6.7 Appendix — Survey of Component Models 99

OSGi (Open Services Gateway Initiative) [38] is a consortium ofrer-
ous industrial partners working together to define a sergitented framework
with an open specifications for the delivery of multiple seeg over wide area
networks to local networks and devices. Contrary to mostpmmment defini-
tions, OSGI emphasis the distinction between a unit of caitipm and a unit
of deployment in calling a component respectively servicbundle. It offers
also, at contrary to most component models, a flexible a¥chite of systems
that can dynamically evolve during execution time. This liegpthat in the
system, any components can be added, removed or modified-titre. In
relying on Java, OSGl is platform independent. There essteral additions
of OSGi that provides additional characteristics.

Palladio Component Model [39], developed at University of Oldenburg
and University of Karlsruhe, provides a domain specific nlatglanguage
for component-based software architectures, which isduneenable early
life-cycle performance predictions. Palladio defines vimanetamodel speci-
fied in EMF/Ecore and divided into several domain specifiglaages for each
developer role (i.e. component developers, software &aisi system deploy-
ers and domain experts). All specifications can be combioetétive a full
Palladio component model instance. As a starting pointrfgeiémenting the
systems business logic, the instance can be convertedavocdde skeletons
via Model2Text transformation. Components are specifiaghovided and re-
quired interfaces which consist of a list of service signeguln order to allow
accurate performance prediction, a so called resourcemtdingaservice effect
specification can be added to each provided service to thesitre sequence
of called required services, resource usage, transitiobafnilities, loop itera-
tion numbers, and parameter dependencies. Componentsanbtes can be
connected via assembly connectors to build an assembly.

Pecod40] is a joined project between ABB Corporate Research aerth B
University. Its goal is to provide an environment that supgpgpecification,
composition, configuration checking and deployment foctiga embedded
systems built from software components. There are two tgpesmponents,
leaf components and composite components. The inputs dpdtswf a com-
ponent are represented as ports. At design phase composifgoaents are
made by linking their ports with connectors. Pecos targets @ Java as im-
plementation language, so the run-time environment in #payment phase
is the one for Java or C++. Pecos enables specification of Ef¢Psas tim-
ing and memory usage in order to investigate in predictioihefbehaviour of
embedded systems.

100 Paper A

Pin [41] component model developed at Carnegie Mellon Softvizargi-
neering Institute (SEI) is used as a basis in predictiorblemecomponent tech-
nologies (PECTSs). By using principles from PECT it aims dtie¢ing pre-
dictability by construction i.e. constraining the desigiddhe implementation
to analyzable patterns. To achieve predictability of aipaldr property PECT
proposes a building of a reasoning framework that includesnaponent tech-
nology powered by analytical interface used for a speciticabf a property
of interest and analysis theory used in provision of theesygproperty com-
posed from component properties. Accordingly, in orderadgrm analysis,
proper analysis theories must be found and implemented uitabse under-
lying component technology. PECT currently supports theasoning frame-
works fro Pin Component model 454 — for predicting average latency in
assemblies with periodic tasks,; — for predicting average latency in stochas-
tic tasks managed by a sporadic server and ComFoRT — for feerification
of temporal safety and liveness. Pin Components are definad ADL-like
language, in the component and connector style, so calledt@ation and
Composition Language (CCL). Pin components are fully esckgted, so the
only communication channels from a component to its enwvirent and back
are sink and source pins. Composition of components ismddady connect-
ing source and sink pins and the behavior of the interactitigh is specified
as executable state machines.

ProCom [42] is a component model for control-intensive distrillitan-
bedded systems being developed at PROGRESS Strategic&teSsater at
Malardalen University, Sweden. ProCom consists of twetayin order to ad-
dress different concerns that exist at different levels dist&ributed embedded
system. The upper layer, ProSys, focuses on modelling ofvtiwe system
or large subsystems. It considers complex active subsgsésntomponents
and captures the message flow between them. The lower lap&a®e, serves
for modelling of ProSys components on a detailed level. piekly captures
the data transfer and control-flow between the componeirig asrich set of
connectors which makes a platform for modelling controple a way that
allows them to be easily analyzed and synthesized. The sinagyfacilitated
by the explicit control-flow and by the abstraction providadcomponents
(read-execute-write semantics, encapsulation). The hmdeides support
for different types of analysis by making possible to atteatious models (be-
haviour, timing, resource utilization, etc.) to differearchitectural elements
such as components, connections, subsystems, etc. Futtbensiders de-
ployment as a specific activity which includes componertzations, trans-
formation of components to the entities complied with thearion model,

6.7 Appendix — Survey of Component Models 101

and synthesis, i.e. creation of a glue code.

Robocop[43] is a component model developed by the consortium of the
Robocop ITEA project, inspired by COM, CORBA and Koala comeot
models. It aims at covering all the aspects of the compobhased develop-
ment process for the high-volume consumer device domairbo&tp com-
ponent is a set of possibly related models and each modeide®particular
type of information about the component. The functional elalbscribes the
functionality of the component, whereas the extra-fumalanodels include
modelling of timeliness, reliability, safety, securitjpcamemory consumption.
Robocop components offer functionality through a set ofises and each ser-
vice may define several interfaces. Interface definitioaspecified in a Robo-
cop Interface Definition Language (RIDL). The componentsioa composed
of several models, and a composition of components is caltedpplication.
The Robocop component model is a major source of for ISO atan&O/IEC
23004-1:2007 Information technology - Multimedia Middiene.

Rubus [44] component was developed as a joint project betweendust
Systems AB and Malardalen University. The Rubus componetel runs
on top of the Rubus real-time operating system. It focusetherreal-time
properties and is intended for small resource constraingaedded systems.
Components are implemented as C functions performed as tAslomponent
specifies a set of input and output ports, persistent sti@t@gsg requirements
such as releasetime, deadline. Components can be combif@ut a larger
component which is a logical composition of one or more congmds.

SaveCCM [45], developed within the SAVE project by several Swedish
universities, is a component model specifically designeéabedded control
applications in the automotive domain with the main objextf providing
predictable vehicular systems. SaveCCM is a simple modgkthnstrains the
flexibility of the system in order to improve the analysagitf the dependabil-
ity and of the real-time properties. The model takes intosamgration the re-
source usage, and provides a lightweight run-time framkwesr component
and system specification SaveCCM uses SaveCCM languagé vshimsed
on a textual XMLsyntax and on a subset of UML2.0 componergrdias.

SOFA (Software Appliances)[46] is a component model developed at
Charles University in Prague. A SOFA component is specifigitdframe
and architecture. The frame can be viewed as a black box afedfiites the
provided and required interfaces and its properties. Hewavramework can
also be an assembly of components in a composite componér.arthi-
tecture is defined a grey-box view of a component, as it dessrihe struc-
ture of a component until the first level of nesting in the comgnt hierar-

102 Paper A

chy. SOFA components and systems are specified by an ADUdikguage,
Component Description Language (CDL). The resulting CDtospiled by a
SOFA CDL compiler to their implementation in a programmiagduage C++
or Java. SOFA components can be composed by method callgthconnec-
tors. The SOFA 2.0 component model is an extension of the S€oRfponent
model with several new services: dynamic reconfigurationtrol interfaces
and multiple communication styles between the components.

Bibliography

[1] Clemens SzyperskiComponent Software: Beyond Object-Oriented Pro-
gramming Addison-Wesley Professional, December 1997.

[2] George T. Heineman and William T. CouncilComponent-Based Soft-
ware Engineering: Putting the Pieces Togeth&ddison-Wesley Long-
man Publishing Co., 2001.

[3] Michel Chaudron and lvica Crnkovi&Software Engineering: Principles
and Practice, 3rd Editionchapter 18 in H. van Vliet, Component-Based
Software Engineering. Wiley, 2008.

[4] Nenad Medvidovic, Eric M. Dashofy, and Richard N. Taylbtoving Ar-
chitectural Description from under the Technology Lamppb¥. Softw.
Technol, 49(1):12-31, 2007.

[5] Nenad Medvidovic and Richard N. Taylor. A Classificatiamd Compar-
ison Framework for Software Architecture Description LaagesIEEE
Trans. Softw. Eng26(1):70-93, January 2000.

[6] Ivica Crnkovic, Michel Chaudron, and Stig Larsson. Campnt-based
Development Process and Component Lifecydeurnal of Computing
and Information TechnologyL3(4):321-327, November 2005.

[7] lvica Crnkovic and Magnus LarssonBuilding Reliable Component-
Based Software Systermfgtech House, Inc., Norwood, MA, USA, 2002.

[8] Antoine Beugnard, Jean-Marc Jézéquel, Noél Plouzeand Damien

Watkins. Making Components Contract Awaf@omputey 32(7):38-45,
1999.

103

104 Bibliography

[9] Ivica Crnkovic, Magnus Larsson, and Otto Preiss. Conicey Pre-
dictability in Dependable Component-Based Systems: @ileetson of
Quality Attributes. pages 257-278. 2005.

[10] Gerald Kotonya, lan Sommerville, and Steve Hall. TadgA Classifi-
cation Model for Component-Based Software EngineeringeReth. In
EUROMICRO '03: Proceedings of the 29th Conference on EUROMI
CRQ page 43, Washington, DC, USA, 2003. IEEE Computer Society.

[11] Kung-Kiu Lau and Zheng Wang. Software Component ModeBEE
Transactions on Software Engineerjrgg(10):709-724, 2007.

[12] Oxford advanced learners dictionary.

[13] The Object Management Group. UML Superstructure Sjpation v2.1,
April 2009.
http://ww. ong. or g/ docs/ pt ¢/ 06- 04- 02. pdf .

[14] Stephen J. Mellor and Marc BalceExecutable UML: A Foundation for
Model-Driven ArchitecturesAddison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002. Foreword By-Jacoboson, Ivar.

[15] Hongyu Pei Breivold and Magnus Larsson. ComponenieBaand
Service-Oriented Software Engineering: Key Concepts atmtiples.
pages 13-20, Aug. 2007.

[16] John Reekie, Stephen Neuendorffer, Christopher Hidaand Edward A.
Lee. Software Practice in the Ptolemy. Technical Report GSR-
1999-01, Gigascale Silicon Research Center, April 1999.

[17] Sherif Yacoub, Hany Ammar, and Ali Mili. A Model for Cla#ying
ComponentInterfaces. Becond International Workshop on Component-
Based Software Engineering, in conjunction with the 21 trhmational
Conference on Software Engineering (ICSE$8ges 17-18, 1999.

[18] Sherif Yacoub, Hany Ammar, and Ali Mili. Characterigira Software
Component. Inin Proceedings of the 2nd Workshop on Component-
Based Software Engineering, in conjunction with ICSE®®D9.

[19] Klement J. Fellner and Klaus Turowski. Classificatiomifework for
Business Components. HHCSS '00: Proceedings of the 33rd Hawaii In-
ternational Conference on System Sciences-Volymeade 8047, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

Bibliography 105

[20] AUTOSAR Development Partnership. Technical Overvisi@.2.1,
February 2008.
http://ww. aut osar. org.

[21] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modédfiateroge-
neous Real-time Components in BIP. Rroc. of the 4th IEEE Interna-
tional Conference on Software Engineering and Formal Méghpages
3-12. IEEE, 2006.

[22] Marius Bozga, Susanne Graf, lleana Ober, Iulian Obed aoseph
Sifakis. The IF Toolset. I$FM pages 237-267, 2004.

[23] Gregor Gossler. Prometheus — A Compositional Modglifol for
Real-Time Systems.

[24] Bernhard F. Weichel and Martin Herrmann. A Backbone t@no-
tive Software Development Based on Xml and Asam/Msr. SAEI&Vor
Congress, 2004.

[25] Ji Eun Kim, Rahul Kapoor, Martin Herrmann, Jochen Haeid, Franz
Grzeschniok, and Peter Lutz. Software Behavior DescriptibReal-
Time Embedded Systems in Component Based Software Develttpm
In ISORC '08: Proceedings of the 2008 11th IEEE Symposium oedDbj
Oriented Real-Time Distributed Computimmages 307-311, Washington,
DC, USA, 2008. IEEE Computer Society.

[26] Xu Ke, Krzysztof Sierszecki, and Christo Angelov. COMS-II:
A Component-Based Framework for Generative Developmeridisf
tributed Real-Time Control Systems. Rioc. of the 13th IEEE Interna-
tional Conference on Embedded and Real-Time Computingr@gsind
Applications pages 199-208. IEEE, 2007.

[27] Rémi Bastide and Eric Barboni. Component-Based Bighawl Mod-
elling with High-Level Petri Nets . IMMOCA '04 - Third Workshop
on Modelling of Objects, Components and Agents , Aahrusiriaek,
11/10/04-13/10/04pages 37—46. DAIMI, octobre 2004.

[28] OMG CORBA Component Model v4.0. Available at
www. ong. or g/ docs/ f or nal / 06- 04- 01. pdf.

[29] EJB 3.0 Expert Group. JSR 220: Enterprise JavaBeangdiigion 3.0
EJB Core Contracts and Requirements Version 3.0, FinalaRe]eéMay
2006.

106 Bibliography

[30] Eric Bruneton, Thierry Coupaye, and Jean-Bernarda®iefThe Fractal
Component Model Specificatiomhe ObjectWeb Consortium, Tech. Rep.,
February, 2004.

[31] Rob van Ommering, Frank van der Linden, Jeff Kramer, &ffl Magee.
The Koala Component Model for Consumer Electronics Sogwa@om-
puter, 33(3):78-85, 2000.

[32] Colin Atkinson, Joachim Bayer, Christian Bunse, ErikrKsties, Oliver
Laitenberger, Roland Laqua, Dirk Muthig, Barbara Paeahyer Wust,
and Jorg ZettelComponent-Based Product Line Engineering with UML
Addison-Wesley Longman Publishing Co., Inc., Boston, MASA)
2002.

[33] IEC. Application and Implementation of IEC 61131-3.0F1995.

[34] IEC. IEC 61499 Function Blocks for Embedded and Disttédal Control
Systems Design. IEC, 2005.

[35] Sun Microsystems. JavaBeans Specification, 1997.
[36] Dale Rogersonlnside COM Microsoft Press, 1997.

[37] M Clarke, GS Blair, G Coulson, and N Parlavantzas. Arcedfit Com-
ponent Model for the Construction of Adaptive MiddlewaPeoceedings
of the IFIP/ACM International Conference on Middlewa2901.

[38] OSGi Alliance. OSGi Service Plaform Core Specificatigd.1, 2007.

[39] S Becker, H Koziolek, and R Reussner. Model-Based Pexdioce Pre-
diction with the Palladio Component Modéhe 6th international work-
shop on Software and performan@907.

[40] Oscar Nierstrasz, Gabriela Arévalo, Stephane DsgaRoel Wuyts, An-
drew P. Black, Peter O. Mller, Christian Zeidler, Thoman6&sler, and
Reinier van den Born. A Component Model for Field DevicesPitoc. of
the 1st Int. IFIP/ACM Working Conference on Component Daplent
pages 200-209. Springer, 2002.

[41] Gabriel A. Moreno. Creating Custom Containers with Emtive Tech-
niques. INGPCE '06: Proceedings of the 5th international conference
on Generative programming and component engineeiages 29-38.
ACM, 2006.

[42] Séeverine Sentilles, Aneta Vulgarakis, Tomas Bures) Carlson, and
Ivica Crnkovic. A Component Model for Control-Intensiveddibuted
Embedded Systems. In Michel R.V. Chaudron and Clemens S#Hipe
editors, Proceedings of the 11th International Symposium on Compo-
nent Based Software Engineering (CBSE20p8yes 310-317. Springer
Berlin, October 2008.

[43] H. Maaskant. A Robust Component Model for Consumer tEbedc
Products. IrDynamic and Robust Streaming in and between Connected
Consumer-Electronic Devicegolume 3 ofPhilips Researchpages 167—
192. Springer, 2005.

[44] Arcticus Systems. Rubus Software Components.
http://ww. arcti cus-systens.com

[45] Mikael Akerholm, Jan Carlson, Johan Fredriksson, Hans Hanssbn, Jo
Hakansson, Anders Moller, Paul Pettersson, and Massinai.T The
SAVE Approach to Component-Based Development of VehicSlgs-
tems.Journal of Systems and Softwa89(5):655-667, May 2007.

[46] Tomas Bures, Petr Hnétynkal, and FrantiSelsiPIZEOFA 2.0: Balancing
Advanced Features in a Hierarchical Component MoBebceedings of
SERA2006.

Chapter 7

Paper B:

A Component Model Family
for Vehicular Embedded
Systems

Tomas Bures, Jan Carlson, Séverine Sentilles and Ahdtgrakis
In Proceedings of the Third International Conference omv&oe Engineering
Advances, IEEE, Sliema, Malta, October, 2008.

109

Abstract

In this paper we propose to use components for managing ¢hesising com-
plexity in modern vehicular systems. Compared to other@ggres, the distin-
guishing feature of our work is using and benefiting from comgnts through-
out the development process from early design to developarah deploy-

ment, and an explicit separation of concerns at differarglteof granularity.

Based on the elaboration of the specifics of vehicular systgasource con-
straints, real-time requirements, hard demands on rétigbthe paper identi-
fies concerns that need to be addressed by a component moties$ fdomain,

and describes a realization of such a component model.

7.1 Introduction 111

7.1 Introduction

Vehicles of various types have become an integral part oétieeyday life. In
addition to cars, which are the most common, they compriserdtansporta-
tion vehicles (such as trucks and busses) and special purmdscles (e.g.
forestry machines). It is a general trend that the level afioterization in the
vehicles grows every year. For example in the automotivashg, the com-
plexity of the electrical and electronic architecture iswing exponentially
following the demands on the driver’s safety, assistancecamfort [1].

The computerization is present in vehicles in the forneofbedded sys-
tems which are special-purpose built-in computers tailoregédform a spe-
cific task by combination of software and hardware. In cornigoarto general
purpose computers, one important characteristic of endzbdystems is that
they typically have to function under severe resource &tions in terms of
memory, bandwidth and energy, and often under difficult emrental con-
ditions (e.g. heat, dust, constant vibrations).

As embedded systems are often used in safety-critical Ggjans, there
are typically requirements amal-time behaviourmeaning that a system must
react correctly to events in a well-specified amount of timaither too fast nor
too slow) since any infraction of these requirements cad tea catastrophe.
The criticality of tasks performed by embedded systemsiaipties that they
have to be thoroughly tested or better still, formally vedfifor correctness
(both functional and with respect to timing).

The restrictions in available resources (power, CPU and engrenviron-
mental conditions and harsh requirements in terms of safigbility, worst-
case response time, etc. make the development of embedstednsyrather
difficult and time-demanding. Moreover, what may be feasibhen the em-
bedded systems in a vehicle are few and simple gets immemsely difficult
when they grow in number, get more complex and become mytdefiendent
(many systems are designed as distributed systems comatingiover some
network) — as is the trend today. Even the typical solutiorifbeen applied
so far in the vehicular domain — decomposing the functiapatito subsys-
tems that are realised by dedicated nodes with their own GRlUrEmory —
does not scale any more due to restrictions in physical saadecommuni-
cation bandwidth. Instead there arises a need to colloesatra subsystems
on one physical unit which even more adds to complexity asuregs have
to be shared. All this introduces a new challenge in softwigrelopment for
embedded systems in vehicular domain.

112 Paper B

A promising solution lies in the adoption of a Component&hPevel-
opment (CBD) approach, which allows construction (resgodgposition) of
software systems out of (resp. in) independent and welkddfpieces of soft-
ware, calledcomponentsCBD has the potential to significantly alleviate the
management of the ever-increasing complexity and giveilpitigsto reuse
already developed elements — thus increasing reliability shortening the
development time.

CBD has already proved to be successfully used in enterpyiseems,
service-oriented and desktop domains [2]. However, inraaleffectively em-
ploy CBD in embedded systems it is necessary to adapt it toatippecifics
of the embedded systems from the vehicular domain (i.engtdependence
on hardware, distribution, real-timeness, to mention gugw).

There have been several approaches (e.g. [3, 4, 5, 6, 7])et€B® in
embedded systems. Although these approaches were sutdassblving
particular pieces of the puzzle, an approach that suppuetsise of compo-
nents throughout all stages of the embedded system devetdprocess is
still missing.

Striving for a CBD process in vehicular embedded systemg)ave taken
a step back and re-evaluated the requirements of embedstetnsyin the ve-
hicular domain with the goal of setting up CBD and underlyaomponent
models that would allow using components throughout theld@ment pro-
cess from early design to deployment.

The goal of this paper is to establish concepts and requitestier a CBD
process for vehicular embedded systems and to charactegzeomponent
models underlying it — with the main objectives of (a) aliggithe CBD with
specifics of vehicular embedded systems, (b) reducingrsystenplexity, (c)
increasing dependability by allowing various kind of arsaly (functional be-
haviour, timing behaviour, reliability), and (d) reducidgvelopment time by
supporting reuse. An emphasis also lies in supporting coreis in all stages
of the development process.

The remainder of this paper is organized as follows: Se@iortroduces
a concrete example of an embedded system in the vehiculaaida@and Sec-
tion 3 describes the background of this work. Section 4 ifleatkey concerns
to be addressed when applying CBD to the vehicular domaintid®e5 out-
lines a suitable component model family, and Section 6 disesia realization
of this component model family. Related work is describe&attion 7, and
Section 8 concludes the paper.

7.2 Motivating Example 113

7.2 Motivating Example

As an example demonstrating the specific concerns of thewtshidomain,
we consider the electronic systems of a modern car, focusingn anti-lock
braking system (ABS) in particular.

The physical system architecture of a modern car consisadaifly large
number of computational nodes (ECUs), connected by a nuofhdifferent
networks. For example, a Volvo XC90, depicted in Figure fds around 40
ECUs, two CAN busses of different speed, several LIN bussad,a MOST
bus for the infotainment systems.

=5

"z
—il

TR

S

71

Figure 7.1: The electronic system architecture of Volvo RC9

In the automotive domain, low production cost is a very int@otrconcern,
since each car model is manufactured in large quantitieshésame time,
many of the electronic systems are highly safety-critiaati some are subject
to hard real-time constraints. Thus, a key design challenfiyeding a minimal
system design (with respect to cost, but this typically nseamimal in terms
of resources, as well) that can provide the desired funalityrwith a sufficient
level of dependability.

114 Paper B

Looking specifically at the ABS, its role is to improve the kirgy perfor-
mance by preventing the wheels from locking. When a whedbisiato lock
— asituation characterised by the speed of that wheel b&ngisantly lower
than that of the other wheels — the brake force should be dseceuntil the
wheel starts to move faster again.

In addition to the main functionality, the ABS is responsilidr monitor-
ing hardware or software faults, including faults in thecasated sensors and
actuators. Transient faults should be handled locally,iamése of persistent
problems, the system should be deactivated in a safe wayardtiter should
be informed.

Figure 7.2 shows the ABS subsystem architecture. In itsIsifigym the
ABS includes rotation sensors physically placed on or ctosthe wheels, a
brake valve actuator, and an ECU that includes control so#wTypically the
ECU includes a set of software components that togetheiigedkie service.
It is clear that different types of communication would bguieed between
components within the ECU and between components, sensdsctuators.

@ Compbnents)
Rotation LJ Middleware || ECU Rotation
sensor sensor

RTOS

Rotation Iil Rotation
sensor Brake valve sensor
Y actuator D

Figure 7.2: The ABS subsystem architecture.

Functionally, the ABS is fairly independent from other sygisms, al-
though it shares some information about the state of thecleekiith other
subsystems. For example, if the ABS is deactivated, othesysiems might
want to change the way they operate. Also, the ABS could shheel speed
sensors and brake actuators with, e.g. a traction contstgsy(TCS).

At a more fine-grained level of detail, there are many desggisions to
be made in order to achieve an optimal performance: what hepeed differ-
ence should be tolerated without the system consideringpitkang situation,
exactly how much and for how long should the braking forcedjasted, etc.

7.3 The PROGRESSApproach 115

These concerns are tightly connected to the behavior ofdtuakcar interact-
ing with its environment, and might require significant iregtand fine-tuning.
For many of them, control theory provides well establishachmeterised so-
lutions that can be adjusted by simulations and tests.

The correctness and quality of the ABS system strongly dépem its
real-time behaviour, e.g. how often the wheel speed is szargohd the time
delay between sampling and actuating. This adds to the @xitylsince these
temporal aspects depend on many factors outside the ABB asuather sub-
systems using the same communication bus. The current iineantomotive
systems is towards running multiple subsystems on the sdiysigal node,
which introduces additional temporal dependencies duetteduling.

It is common that subsystems are developed relatively iedégntly by a
few large manufacturers, who sell them to car manufactueeoe used (with
some modifications) in several car brands. This brings tleessity to be able
to reuse the overall design of the ABS at a level which abttrfaom the in-
terference from other subsystems in the car. Although tleeadhfunctionality
remains unchanged when the ABS subsystem is reused in eediffsar model,
it is typically necessary to adjust details, e.g. how muehttake force should
be decreased in a locking situation, depending on the ctegistics of the
car. Thus, it is not enough to reuse the ABS subsystem justialaek box”.
Instead, it is necessary to be able to access the internatste to make ad-
justments on the appropriate level of detail. This alscsdalt a separation of
software- and hardware design, yet many properties of th® Wi depend on
both software and hardware characteristics.

7.3 The PROGRESsApproach

Our work on development of vehicular software is conducted gart of the
larger research vision off®® GRESS which is a Swedish national research cen-
tre for predictable development of embedded systems. $rs#ttion we pro-
vide a brief overview of the ROGRESSvision as it provides background and
motivation for our work.

The goal of ROGRESSS to provide theories, methods and tools to increase
quality and reduce costs in the development of systems fucukar, automa-
tion and telecommunication domains. Together they are tercthe whole
development process, supporting the consideration ofgieddlity and safety
througout the development. To support this idea and propsssis for work,
PROGRESsSrelies on a holistic approach using CBD throughout all tlages

116 Paper B

of the embedded system development process together witlteatacing of
various kind of analysis and an emphasis on reusabilityeissu

To be able to apply a CBD approach across the whole develapraress
(starting from a vague specification of the system based dy regjuirements
up to its final and precise specification and implementateady to be de-
ployed), RROGRESSadopts a particular notion for component. Similarly to
SaveCCM [3] and Robocop [6], a component is considered ashtadel, i.e.
a collection gathering all the information needed and/ecdped at different
points of time of the development process. That means a coempcomprises
requirements, documentation, source code, various mddej®ehavioural
and timing), predicted and experimentally measured valees performance
and memory consumption), etc., thus making a componentfgingiconcept
throughout the development process.

In addition to modelling with components (which is the topithis paper),
PROGRESSputs a strong emphasis on analysis and deployment.

The analysis parts of ®OGRESSaim at providing estimations and guaran-
tees of different important properties. The analysis isené throughout the
whole development process and gives results dependingeocothpleteness
and accuracy of the components’ models and descriptions igians that
an early (and rather inaccurate) analysis may be perforraadgldesign to
guide design decisions and provide early estimates. Orcddbhelopment is
completed the analysis may be used to validate that theedteammponents
and their composition meet the original requirements. Tifferént analyses
planned for RoGRESSinclude reliability predictions, analysis of functional
compliance (e.g. ensuring compatibility of interconnddtgerfaces), timing
analysis (analysis of high-level timing as well as low-lewerst-case execu-
tion time analysis) and resource usage analysis (e.g. nyeemnmunication
bandwidth).

Deployment in ROGRESSIs strongly conforming to specifics of embed-
ded real-time systems. The design and development of coemp®is sup-
plemented by deployment activities consisting of two paft3 allocation of
components to physical nodes and (2) code synthesis. Ingodbesis, the
codes of components are merged, optimized and mappedfectsf an un-
derlying real-time operating system. This step also inetucteating real-time
schedules. The binary images resulting from code syntlasiseady to be
executed at the target physical nodes.

7.4 Towards CBD in Vehicular Systems 117

7.4 Towards CBD in Vehicular Systems

This paper concerns the component modelling aspectsotRESS and thus
we analyze in this section the main modelling concers witpeet to early
design and high level of predictability.

In a broad sense the development of an embedded system osystarh
means going from an abstract specification to a concretaipto8tarting with
vague or incomplete descriptions, information regardimg $oftware struc-
ture, timing, the physical platform, etc., is graduallyrettuced in order to
approach a finished system. As discussed earlier, this vgnotess should be
supported by analysis to support early detection of probJend to achieve a
high quality in the final product. When a system is developetkising exist-
ing components, which is a key idea in CBD, this progressiomfabstract to
concrete becomes more complex, since concrete reused cemgare mixed
with early (i.e. abstract) versions of components to be ld@ezl from scratch.

Another important concern — conceptually separate fronptiogression
from abstract to concrete — relates to component granuldrita system as
complex as those found in the vehicular domain, it is cleat tomponents
representing big parts of the whole system are differembftttose responsible
for a small part of some control functionality.

These two concerns, the scale from abstract to concrete @anganent
granularity, are discussed further in the remainder ofgaigion.

7.4.1 From Abstract to Concrete

The development of an embedded system or a subsystem tytats with
use-cases, domain diagrams and basic sketches of the syEtese abstract
models are then gradually detailed and refined to eventealdyup with an
implementation.

Some properties of the system may be specified in a very cenaral
detailed manner already in early stages of developmentr@galjtime require-
ments, messages used for interaction with existing systetng, however, it
is the fact that the overall system is far from a concrete @m@ntation that
makes it abstract at this stage.

With regard to CBD, the transition from abstract to conctgpécally means
that a system is first modelled by a set of components, whieteher have
only vague boundaries and only some properties and regeirenspecified.
Also the communication among the components is perhapsrephgsented
by lines representing arbitrary exchange of some data. u@tydduring the

,,,,,,,,,,,

,,,,,,,,,,,

Informal documentation Abstract, semiformal Mix of abstract and Concrete, formal
i ifi i concrete specification specification

Figure 7.3: Development process.

development this abstract view is made more concrete, mgdhat compo-
nents are assigned behaviour, communication is detaitat;rete interfaces
are identified and components are implemented.

A closer inspection reveals that this process from abstmacbncrete is
far from a straightforward linear progression in a serieswelf-defined system
wide steps (see Figure 7.3). In particular, the followirguess must be taken
into consideration:

e It is often necessary to move back and forth between the adtistn
levels in order to explore and reject different design akiives.

e At a particular point in time, different parts of the systentl e mod-
elled at different levels of abstraction — for example, wheunsing an
existing (concrete) component in a system which is not yanature
otherwise, or when the development of different parts ispasformed
concurrently and at the same pace (which is the typical case)

e Some analysis techniques require a certain level of altstraeither
because the required information is not present at highstradiions,
or because the complexity of a more concrete level makes #thad
prohibitively expensive.

This requires the underlying component model to providgsuor ini-
tial and abstract design as well as detailed and concretgrdesn important
requirementis also to provide traceability between abstnad concrete (as op-
posed to just having multiple descriptions without any clireorrespondence
between them). Moreover a component should contain thenrgtion from
all levels of abstraction through which it has progressedhat even a reused
concrete component may be used in the abstract design evgeitih other
abstract components.

7.4 Towards CBD in Vehicular Systems 119

Two particular aspects of the abstract-to-concrete saal@iacussed fur-
ther: structural decompositioandtarget platform Other important concerns,
which are not elaborated here, incluikita, timing andresource consumption

Structural Decomposition

In an abstract form, a component can be modelled as a blackbbkecause
the internal structure must remain hidden but because ihbabeen decided
yet. The functionality of the component, as well as aspesitted to timing,
resource consumption, communication, etc., can be mabefign respect to
the externally visible interface of the component, whidbwas the information
to be taken into account in the analysis.

As one important part of the progression to a concrete sygtesrinternal
structure of the component should be elaborated. Thisdeslufor example,
deciding whether to realise the component by means of coedpmsbhcompo-
nents (reusing existing or developing new), or to implemeas an atomic
unit.

Target Platform

The coupling between the software and the target platfortypieally quite
high in an embedded system. One reason is to achieve theeddunctional-
ity with the least manufacturing costs, especially wherdpoing a system in
large quantities. As the result, the hardware is typicallyeggrestricted and the
software is tailored and optimized specifically for thattigalar hardware and
real-time operating system.

The target platform is often predetermined to some extepady by the
initial requirements on the system, and additional knog#edomes from ex-
perience with previous versions of the system, or similadpcts. However
it is not always fully known in all details. A lot of details@refined as the
actual system is being developed and assumptions of indiVicbmponents
on the target platform are being clarified. Thus the develamof a system
influences and in turn is influenced by the target platforncsioation.

In our example, it is known a priori that the ABS will be distnied over at
least five physical nodes, dictated by the physical locatioime wheel speed
sensors and the actuators. We would also typically be ablaake some
assumptions about the nature of these nodes and the netetwkdn them,
based on experience from other systems. However, the finaebf hardware
might be made later, as well as the decision whether the maictibnality of

120 Paper B

the ABS will be allocated to a dedicated node or if it will sha node with
other subsystems.

This reality of system development being interwoven witlgyéa platform
specification is however in contrast to the main goals of CBxemponent
reusability. This poses a challenge for the component mamttthe associated
CBD process, which must be able to take into account thettptagorm while
not sacrificing the reusability of components.

7.4.2 Component Granularity

In a distributed embedded system, components constitbigpgarts of the
system are different from those responsible for a smallgfasbme low-level
control task. Components at different granularity havéedént needs in terms
of execution model, communication style, synchronisatéia., but also with
respect to the kind of information that should be associattdthe component
and the type of analysis that is appropriate.

In general, the big components encapsulate complex furaditg but they
are relatively independent. In current systems it is oftendase that each of
those big components is allocated to one or several dedi¢aBdJs. Thus,
the communication between big components often manifestsessages sent
over a bus in order to share data (e.g. the current vehickdspsed by several
subsystems) or to notify other components of importantevérhe small com-
ponents (e.g. control loops, tasks), on the other hand,ttehdve dedicated,
restricted functionality, simple communication and sgensynchronisation.
The semantics of small components is also tailored for sqraeific purpose
(e.g. control logic).

With respect to the component model this means having difitdinds of
components with different semantics depending on at wigieél lof granular-
ity the component lies and what it is meant for. Having thes#tipie levels
of components it is vital to establish the relation betwdwnt, for example
allowing a big component to be modelled out of several snaatigonents.

7.5 Conceptual Component Model Family

Next, we present a conceptual component model family théitemdes the re-
quirements identified in the previous section. ldeally, Wiele range from
abstract to concrete but also from big to small componemtsldtbe addressed
by a single unified component model. However, since the ddmdiffer sig-

7.5 Conceptual Component Model Family 121

status InfoPanel

wheel speed status

TCS
*Use cases H
« Domain diagrams |
* Activity diagrams ;
* RT requirement H
* Resource regs.

small<——big

Compute Control
brake force brake
adjustment valve

Detect
locking

Read
wheel
sensor

abstract<—-concrete

Figure 7.4: Proposed component model family.

nificantly between the end points of the two scales, this isamoeasy task.
Instead, we split the abstract to concrete scale into twiindislevels of ab-

straction. Similarly, in order to address the differencsdated to component
size, the concrete half is further split into two levels ofugularity. This par-

titioning into three distinct segments is depicted in Fegdr4. The benefit of
this separation is that a different formalism can be useédoh segment, with
semantics matching the concerns of that particular level.

Regarding the abstract to concrete scale, the abstractdmkésents the
formalisms used to capture overall requirements, scesaeitz. It also in-
cludes abstract models of resource usage, functional bmlradependability
and timing.

The component models used for the concrete segments aretoircthe
sense that they allow modelling of concrete concerns (e gmneunication
ports and concrete resource usage) and eventually end upgtade imple-
mentation for all primitive components. It is however imgaort to note that
they target a rather large interval of the abstract-to-oetecscale, and not just
the most abstract point, since the concrete component smiedpport compo-
nents also in relatively abstract forms, i.e. where therirgtkstructure, alloca-
tion to physical nodes, etc. is yet to be determined. It isjids to manipulate
such “unfinished” components in the same way as the conetetines (i.e.
storing them in a repository, composing them with other congmts, include
them in analysis, etc.). Gradually, as a component is fill@étl imformation,
including realisation in terms of source code or an intestalcture of sub-
components, it is available to more analyses and eventicedlynthesis.

In order to address the coupling between components andithet tplat-
form, we allow components to express their partial asswomptabout the plat-
form (e.g. the minimum available memory, required opepsiystem function-

122 Paper B

ality). The detailed specification of the hardware and ttaéfpim, as well as

the allocation of components to physical nodes, are giveselmarate models
connected with deployment — i.e. they are not part of the aomept specifi-

cation.

In the component model targeting the upper level of graitylarompo-
nents represent the concept of subsystems in the vehiauiaaid. These sub-
system components are quite large, relatively indeperatahthey are units
of distribution and binary packaging. Furthermore, they bave their own
threads of activity and the communication between themazed by asyn-
chronous message exchange, following the typical way irclwvBubsystems
are built in industry today.

A subsystem can in turn be composed out of smaller subsystiensform-
ing a hierarchical component model. On the top-level a casitipn of subsys-
tems forms a system, which in our case corresponds to albftweare running
in a vehicle.

The decomposition into smaller subsystems stops at pvienftibsystem
components. These can, however, be further modelled irotim@onent model
for the lower level of granularity. At that level, compongserve for modelling
the control logic, such as reading data from sensors, déing@ctuators, etc.
In this respect they provide an abstraction of the tasks anttal loops typi-
cally found in control systems.

Contrasting the subsystem components, the small compoaenpassive
and do not have their own threads of activity (i.e. once imebkhey run
to completion). Components are composed into more compiegtares by
means of connections specifying the data- and control flohis Tomputa-
tional model, with passive components connected in a papeksfilters fash-
ion, is suitable for low level modelling of embedded vehausystems [8].
During deployment, the small components are synthesiggher to make up
the code of the primitive subsystem.

7.6 Realization of the Proposed Component Model
Family

Our research so far has been primarily focused on realitiagoncrete part
of the proposed component family. The two models that we ligveloped
serve here as the proof-of-concept: SaveCCM [3] and Pro@pnSaveCCM
was sucessful in providing a solid, concrete model for lewel modelling of
control logic. In particular, SaveCCM allows for timing dysis using timed

7.6 Realization of the Proposed Component Model Family 123

automata, schedulability analysis and transformationaofigonents to exe-
cutable code.

The experience with SaveCCM has proved its applicabilitysfoall and
low-level systems. However, high-level design of largdribated systems is
relatively complicated — mainly due to different concernshe higher level
of granularity. That led to the development of ProCom, whallows the idea
of two distinct levels of granularity.

At the lower level of granularity ProCom uses the ProSaveehomhich
originates from SaveCCM. Among other improvements it gjtieans the con-
cept of components as reusable well-defined encapsulatisd Arcomponent
in ProSave loosely corresponds to a task (in the operatisigis\s sense) and
in its simplest form it is realized by a single C function. Thaély restricted
semantics of a component and the fact that the data- andbtdlotw is explic-
itly captured by connectors helps significantly in analysis in deployment,
which involves transformation of components to tasks amdtssising them
to executable code.

At the higher level of granularity, ProCom relies on a newbveloped
model called ProSys. ProSys components are active and coivaiel by mes-
sage passing via explicit message channels. The use otiéxpdissage chan-
nels allows the definition of the data being exchanged tagetfith contracts
and QoS properties (e.g. stating a maximum frequency of aages accuracy
of measured data, etc.).

The two models (ProSys and ProSave) are inter-related inélyethat a
primitive ProSys component may be implemented by an asgeoiltfroSave
components, thus following the two levels of granularitpvéver, a primitive
ProSys component can also be realized by legacy code, winigilifies the
transition of existing legacy systems to a component-basgdtecture.

With regard to the abstract part of the proposed componerityfave see
UML [10] and related languages (e.g. SysML [11]) as suitalaledidates. A
strong advantage of UML is its extensibility via profiles ansimall number of
restrictions in modelling. The price of using UML, which tgplly comes in
terms of relatively informal and sligthly loose design, ismathan acceptable
for the abstract part. Connections to the concrete modeldeaestablished
using MDD and model-to-model transformations.

124 Paper B

7.7 Related Work

To our knowledge, there is no approach specializing on amsda the vehicu-
lar domain and promoting the use of components througheul¢velopment
phase. However, concentrating on individual parts of omceptual family, it
is possible to find related approaches. Some of them ared@user solution,
either explicitly or by adopting a similar strategy.

The abstract part of the abstract-to-concrete scale isemted to general
purpose modeling languages such as UML [10], in particulagmtargeting
the whole system or big components. Use-case, interactidrdaployment
diagrams are suitable for capturing vague information &batly requirements
and modelling, but have no clear mapping to code. Issuetedia timing and
resource usage are addressed by specialized profiles, eARTEI[12] for
modelling real-time and embedded systems.

Detailed control functionality can also be modelled in sdorenalism that
abstracts from the concrete system structure. As an exa@tailink [13]
from MathWorks is a tool for modelling dynamic systems irheit continu-
ous or sampled time. These models can be simulated and adabd there
is support for synthesising executable code. There is hemmsw support for
adding concrete information about allocation on nodesgctiral decomposi-
tion or resources.

On the concrete side of the scale, an interesting approadsifog on “big”
components is the Automotive Open System Architecture (BSAR) initia-
tive from the automotive domain [14]. AUTOSAR aims at defgqia stan-
dardized platform for automotive systems, allowing sutmys to be more
independent of the underlying platform and of the way fuiity is dis-
tributed over the ECUs. AUTOSAR components communicatesparently
regardless whether they are located on the same or diffei@dts. The sup-
ported communication styles are based on the client-sandgsender-receiver
paradigms.

With regard to the granularity, most contemporary componesdels —
including COM [15], CORBA [16] and OSGi [17] — fall into the gment
of “big” concrete components. However, these models censidmponents
only as concrete binary units, thus addressing only the cwsirete point at
the end of the abstract-to-concrete scale. Also, inadedimaing predictability
and the additional computing and memory resources conshyngbe run-time
component framework make them less suitable for developofeembedded
real-time systems. Recently, approaches to extend and taese component
models to better suit this domain have been proposed [5, 18].

7.8 Conclusion 125

Most component models that specifically target embeddesgsfocus
primarily on “small” granularity components. Exampleslirde Philips’ Koala
component model for consumer electronics [7], Robocoptf@,Rubus com-
ponent model [19] for distributed embedded control systesitts mixed real-
time and non-real-time functions, the component modelrfdustrial field de-
vices developed in the PECOS project [20] and SaveCCM [3gfobedded
control applications in the automotive domain.

Compared to many general purpose component models, thesélbab-
stract in the sense that components are design time enttilesr than exe-
cutable units, and a dedicated synthesis step is assumetidéh the com-
ponent based design is transformed into an executablensyktewever, com-
pared to pure abstract modeling of functionality, the cormgrds here represent
concrete units that are realized by individual pieces ofa®@aode and usually
provide some concrete information about resource usagéraing.

Interesting is also the approach of COMDES Il [4], where a-texel
model is employed to address the varying concerns at diftéegels of gran-
ularity. At the system level, a distributed system is modele a network of
communicating actors, and at the lower level the functibyalf individual
actors is further specified by interconnected function kéoc

7.8 Conclusion

In this paper we have aimed at establishing concepts, meints and a com-
ponent model family for a CBD process in vehicular embedgstesns. Com-
pared to existing approaches, we have put emphasis on siqgpozmponents
throughout the development phase from early design to glepat. We have
demonstrated specifics of vehicular embedded systems ohBBeexample,
we have discussed the requirements on the CBD and outlireetathily of
component models supporting this CBD. We have also shownweweal-
ize the proposed component model family. The experienceave pained so
far from concretely realizing the family shows that the agpicial division of
the model family significanly simplifies the use of a compdsehroughout
the development phase. Mainly because it allows using adittomponent
semantics that exactly addresses the concerns in a partgtage of develop-
ment.

As what regards to the on-going work, we focus on implemegntibE
support for the concrete part of the component family andsingumodel-to-
model transformations to interface with abstract modglimUML.

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

[7]

H. Fennel et al. Achievements and Exploitation of the ADHAR Devel-
opment Partnership. Presented at Convergence 2006, D&ttplUSA,
October 2006.

http://ww. aut osar. org.

Ivica Crnkovic and Magnus LarssonBuilding Reliable Component-
Based Software Systermfgtech House, Inc., Norwood, MA, USA, 2002.

Mikael Akerholm, Jan Carlson, Johan Fredriksson, Hans Hansshn, Jo
Hakansson, Anders Moller, Paul Pettersson, and Massinadi.T The
SAVE Approach to Component-Based Development of VehicSlgs-
tems.Journal of Systems and Softwa89(5):655-667, May 2007.

Xu Ke, Krzysztof Sierszecki, and Christo Angelov. COMBH:
A Component-Based Framework for Generative Developmeridisf
tributed Real-Time Control Systems. Rtoc. of the 13th IEEE Interna-
tional Conference on Embedded and Real-Time Computingr@gsind
Applications pages 199-208. IEEE, 2007.

Frank Luders. An Evolutionary Approach to Software Components in
Embedded Real-Time SystenihD thesis, Malardalen University, De-
cember 2006.

H. Maaskant. A Robust Component Model for Consumer Eteit
Products. IrDynamic and Robust Streaming in and between Connected
Consumer-Electronic Devicegolume 3 ofPhilips Researchpages 167—
192. Springer, 2005.

Rob van Ommering, Frank van der Linden, Jeff Kramer, aftiMagee.
The Koala Component Model for Consumer Electronics Sokwa@om-
puter, 33(3):78-85, 2000.

127

[8] Anders Mdller, MikaelAkerholm, Johan Fredriksson, and Mikael Nolin.
Evaluation of Component Technologies with Respect to IndiRe-
quirements. Ifeuromicro Conference, Component-Based Software Engi-
neering Track August 2004.

[9] Tomas Bures, Jan Carlson, lvica Crnkovic, Séverfdentilles, and
Aneta Vulgarakis. ProCom — the Progress Component Mode¢rRef
ence Manual, version 1.0. Technical Report MDH-MRTC-280&-1-
SE, Malardalen University, June 2008.

[10] Object Management Group. UML 2.0 Superstructure Sjpation, The
OMG Final Adopted Specification, 2003.

[11] Object Management Group. OMG Systems Modeling Langu&(d..0,
2007.

[12] Object Management Group. A UML Profile for MARTE, BetaAlygust
2007. Document number: ptc/07-08-04.

[13] Simulink, MathWorks.
www. mat hwor ks. com

[14] AUTOSAR Development Partnership. Technical Overvisi@.2.1,
February 2008.
http://ww. aut osar. org.

[15] Dale Rogersonlnside COM Microsoft Press, 1997.
[16] Fintan Bolton.Pure CORBA Sams, 2001.
[17] OSGi Alliance. OSGi Service Plaform Core Specificatiga.1, 2007.

[18] Douglas C. Schmidt and Fred Kuhns. An Overview of the IRéae
CORBA SpecificationComputey 33(6):56—63, 2000.

[19] Arcticus Systems. Rubus Software Components.
http://ww. arcti cus-systens.com

[20] Oscar Nierstrasz, Gabriela Arévalo, Stephane DssaRoel Wuyts, An-
drew P. Black, Peter O. Miller, Christian Zeidler, Thoman6&sler, and
Reinier van den Born. A Component Model for Field DevicesPitoc. of
the 1st Int. IFIP/ACM Working Conference on Component Daplent
pages 200-209. Springer, 2002.

Chapter 8

Paper C:

A Component Model for
Control-Intensive
Distributed Embedded
Systems

Séverine Sentilles, Aneta Vulgarakis, Tomas Bura$Cllson, lvica Crnkovic
In Proceedings of the 11th International Symposium on Camepb Based
Software Engineering (CBSE2008), Karlsruhe, Germanypkit 2008.

129

Abstract

In this paper we focus on design of a class of distributed eltibe systems that
primarily perform real-time controlling tasks. We propastvo-layer compo-
nent model for design and development of such embeddednsystéth the
aim of using component-based development for decreasengdmplexity in
design and providing a ground for analyzing them and pred@ait properties,
such as resource consumption and timing behavior. The dayerimodel is
used to efficiently cope with different design paradigms dfecknt abstrac-
tion levels. The model is illustrated by an example from tekigular domain.

8.1 Introduction 131

8.1 Introduction

A special class of embedded systems are control-intenstribdited systems

which can be found in many products, such as vehicles, auionms/stems, or

distributed wireless networks. In this category of systesis most embedded
systems, resources limitations in terms of memory, banttiveidd energy com-
bined with the existence of dependability and real-timeceons are obviously
issues to take into consideration.

Another problem when developing such systems is to dealtiv@mapidly
increasing complexity. For example in the automotive ity the complexity
of the electronic architecture is growing exponentialisedted by the demands
on the driver’s safety, assistance and comfort [1]. In thasg of systems, dis-
tribution is also an important aspect. The architecturbe®ectronic systems
is distributed all over the corresponding product (car,dpiation cell, etc.),
following its physical architecture, to bring the embeddgstem closer to the
sensed or controlled elements.

In this paper, we propose a new component model called Pro@itm
the following main objectives: (i) to have an ability of hding the different
needs which exist at different granularity levels (provsdi&able semantics at
different levels of the system design); (ii) to provide cage of the whole
development process; (iii) to provide support to faciétahalysis, verification,
validation and testing; and (iv) to support the deploymdrdamnponents and
the generation of an optimized and schedulable image ofys®ems. The
focus of this paper is on the component model itself, desdrds means for
designing and modelling system functionality and as a fraonk that enables
integration of different types of models for resource andrig analysis.

The component model is a part of the®sRESSapproach [2] that distin-
guishes three key activities in the development: desigalyars and deploy-
ment. Thedesignactivity provides the architectural description of thetsys
compliant with the semantic rules of the component modedgmted in this
paper and enables the integration analysis and deployrapabdities.Anal-
ysisis carried out to ensure that the developed embedded syséats its de-
pendability requirements and constraints in terms of nesolimitations. The
proposed component model provides means to handle andtreugéferent
information generated during the analysis activity. Heploymenactivity is
specific for control-intensive embedded systems; due tmgmequirements
and resource constraints, the execution models can be ifeggedt from the
design models. Typically, execution units are processddstarads of tasks.

132 Paper C

The main focus of this paper is oriented towards system dedige two
supplementary activities (analysis and deployment) argideithe scope of the
paper. A component model that enables a reusable desigs,itek considera-
tion the requirements’ characteristics for control-irsiee embedded systems,
and is used as an integration frame for analysis and deployiseslaborated
in the subsequent sections.

The ideas underlying ProCom emanate partly from the preweork on
the SaveComp Component Model (SaveCCM) [3] within the SAY&jqzt,
such as the emphasis on reusability, a possibility to aradgenponents for
timing behavior and safety properties. Several other qaiscand component
models have inspired the ProCom Design. Some of them areuhesRompo-
nent model [4], Prediction-Enabled Component Technol®dy&T) [5], AU-
TOSAR [1], Koala [6], the Robocop project [7], and BIP [8].

8.2 The ProCom Two Layer Component Model

In designing our component model, we have aimed at addetsirkey con-
cerns which exist in the development of control-intensiggrihuted embedded
systems. We have analyzed these concerns in our previokg9lowith the
conclusionthatin order to cover the whole developmentgssof the systems,
i.e. both the design of a complete system and of the low-legntrol-based
functionalities, two distinct levels of granularity arecessary.

Taking into consideration the difference between thosel$ewe propose
a two-layer component model, call@®toCom It distinguishes a component
model used for modelling independent distributed comptmeith complex
functionality (calledProSy3 and a component model used for modelling small
parts of control functionality (calleBroSavé. ProCom further establishes how
a ProSys component may be modelled out of ProSave comporgmsfol-
lowing subsections describe both of the layers and theiticel. The complete
specification of ProCom is available in [10].

8.2.1 ProSys — the Upper Layer

In ProSys, a system is modeled as a collection of concurcemymunicat-
ing subsystemgpossibly developed independently. Some of those subagste
calledcomposite subsystentan in turn be built out of other subsystems, thus
making ProSys a hierarchical component model. This hibgeeads with the
so-calledprimitive subsystemsvhich are either subsystems coming from the

8.2 The ProCom Two Layer Component Model 133

ProSave layer or non-decomposable units of implementésioch as COTS
or legacy subsystems) with wrappers to enable compositigthsother sub-
systems. From a CBSE perspective, subsystems are the “camisd of the
ProSys layer, i.e. design or implementation units that eaddyeloped inde-
pendently, stored in a repository and reused in multipldiegions.

The communication between subsystems is based on the asyocis
message passing paradigm which allows transparent coratiam (both lo-
cally or distributed over a bus). A subsystem is specifiedyiped input and
outputmessage portsexpressing what type of messages the subsystem re-
ceives and sends. The specification also includes attslauté models related
to functionality, reliability, timing and resource usage,be used in analysis
and verification throughout the development process. Htefimodels and
attributes used is not fixed and can be extended.

Message ports are connected riassage channels explicit design enti-
ties representing a piece of information that is of inteteseveral subsystems
— as exemplified in Fig. 8.1. The message channels make itp@8s express
that a particular piece of shared data will be required irsfrgtem, before any
producer or receiver of this data has been defined. Alsorrmdtion about
shared data such as precision, format, etc. can be assbuwiiethe message
channel instead of with the message port where it is prodocednsumed.
That way, it can remain in the design even if, for example, gheducer is
replaced by another subsystem.

S ~>| Subsystem B D
2] subsystem A >—»

> Subsystem C
3]

Figure 8.1: Three subsystems communicating via a messagmeh

8.2.2 ProSave — the Lower Layer

The ProSave layer serves for the design of single subsydigitslly inter-
acting with the system environment by reading sensor dataantrolling ac-
tuators accordingly. On this level, components providelastraction of tasks
and control loops found in control systems.

134 Paper C

Figure 8.2: A ProSave component with two servicesh&s two output groups
and S has a single output group. Triangles and boxes denote triggd data
ports, respectively.

A subsystem is constructed by hierarchically structuretiiaterconnected
ProSaveomponentsThese components are encapsulated and reusable design-
time units of functionality, with clearly defined interfacto the environment.
As they are designed mainly to model simple control loopsaedisually not
distributed, this component model is based on the pipesfiiads architectural
style with an explicit separation between data and contoal.flThe former is
captured bydata portswhere data of a given type can be written or read, and
the latter bytrigger portsthat control the activation of components.

A ProSave component is of a collection of services, eachigiry a par-
ticular functionality. A service consists of amput port groupcontaining the
activation trigger and the data required to perform theisepvand a set of
output port groupswvhere the data produced by the service will be available.
Fig. 8.2 illustrates these concepts. The data of an outpuiggare produced at
the same time, at which the trigger port of that group is attivated. Having
multiple output groups allows the service to produce tinigcad parts of the
output early.

ProSave components guassivei.e. they do not contain their own execu-
tion threads and cannot initiate activities on their owne&ch service remains
in a passive state until its input trigger port has been atgy. Once activated,
the data input ports are read in one atomic operation andettvéce switches
into an active state where it performs internal computatimmd produces data
on its output ports. Before the service returns to the imactate again, each
of its output groups should be written exactly once.

Input data ports can receive data while the service is gdbiveit would
only be available the next time the service is activateds Ehmplifies analysis
by ensuring that once a service has been activated it isiunadly (although
not temporally) independent from other components exegutoncurrently.

8.2 The ProCom Two Layer Component Model 135

typedef struct {
int *speed;
float =*dist;
} in_S1;
typedef struct {
[]: control int =control;
} out_S1;
void init();
void entry_S1(in_S1 *in, out_S1 *out);

speed []
dist i []

Figure 8.3: A primitive component and the correspondingleeéile.

A component also includes a collection of structuatiibuteswhich de-
fine simple or complex types of component properties sucheasnboural
models, resource models, certain dependability measamesjocumentation.
These attributes can be explicitly associated with a spquifit, group or ser-
vice (e.g. the worst case execution time of a service, or #heevrange of a
data port), or related to the component as a whole, for examppecification
of the total memory footprint. New attribute types can algoddlded to the
model.

The functionality of a component can either be realized bgecfrim-
itive component or by interconnected sub-componentsrfiposite compo-
nen). For primitive components, in addition to a function cedllat system
startup to initialise the internal state, each service iglé@mented as a single
non-suspending C function. Fig. 8.3 shows an example of ¢aelér file of a
primitive component.

Composite components internally consissab-componentgonnections
and connectors A connectionis a directed edge which connects two ports
(output data port to input data port of compatible types antgut trigger port
to input trigger port) whereasonnectorsare constructs that provide detailed
control over the data- and control-flow. The existence dédiént types of con-
nectors and the simple structure of components makes ittpess explicitly
specify and then analyse the control flow, timing propewied system perfor-
mance.

The set of connectors in ProSave, selected to support tyqgmtiaboration
patterns, is extensible and will grow over time as additiala#a- and control-
flow constructs prove to be needed. The initial set includemectors for
forkingandjoining data or trigger connections, selectingdynamically a path
of the control flow depending on a condition. Fig. 8.4 showgical usage of
the selection connector together withconnectors.

136 Paper C

Figure 8.4: A typical usage afelectionandor connectors. When component
A is finished, either B or C is executed, depending on the vatlee selection
data port. In either case, component D is executed aftesyarith the data
produced by B or C as input.

ProSave follows the push-model for data transfers and itgetred service
always uses the latest value written to each input data §orte communica-
tion may eventually be realised over a physical connecti@ntransfer of data
and triggering is not an atomic operation. For triggering data appearing
together at an output group, however, the semantics spbeifall data should
be delivered to their destinations before the triggeringasasferred, to avoid
components being triggered before the data arrives.

8.2.3 Integration of Layers — Combining ProSave and
ProSys

ProCom provides a mechanism for integrating the low-leesligh of a sub-
system described by ProSave into the high-level desigrritbescby ProSys.
A ProSys primitive subsystem can be further specified usho@&ve (as ex-
emplified in Fig. 8.6). Concretely, in addition to ProSavenpmnents, con-
nections and ProSave connectors, additional connectes tgge introduced to
(a) map the architectural style (message passing used in Pto®yses-and-
filters used in ProSave, and vice versa), @mdspecify periodic activation of
ProSave components.

Periodic activation is provided by the clock connectorjvatsingle out-
put trigger port which is repeatedly activated at a givee.rafo achieve the
mapping from message passing to trigger and data, and visa,vthe mes-
sage ports of the enclosing primitive subsystem are tresgembnnectors with
one trigger port and one data port when appearing on the Ped8eel. An
input message port corresponds to a connector with outptg.p&vhenever a
message is received by the message port, it writes the needatayto the out-

8.3 Example 137

put data port and activates the output trigger. Opposibeifput message ports
correspond to a connector with an input trigger and inpua gatrts. When
triggered, the current value of the data port is sent as aagess

These composition mechanisms do not only allow a consistesign of
the entire system by integrated pre-existing subsysteitre$mprovide mech-
anisms for analysis of particular attributes such as tinpngperties or per-
formance of the entire system using specifications or arsatgsults of the
subsystems.

8.3 Example

To illustrate the ProCom component model we use as an examkctronic
stability control (ESC) system from the vehicular domaimatdition to anti-
lock braking (ABS) and traction control (TCS), which aim aeyenting the
wheels from locking or spinning when braking or accelexgtirespectively,
the ESC also handles sliding caused by under- or overstgerin

AN A

D————> vVawange >——5]
Yaw

S Tateratagoel >3]
sensor
—> Seemgange >3] Stability

Brake
valves

N

l
|—< A

§ Traction > Thiotlle agust >——5]
5| Conwol L s ads 5] combiner
> |

System
P Lo pese— 3]
Anti-lock

Braking [———>Brakes pressure>— |
System

Control

Lateral System

acceleration
sensor

LF wheel speed

Steering P—

wheel angle ———>RF wheel speed
sensor

Wheels £ |
speed)_r

sensor

Figure 8.5: The ESC is a composite subsystem, internallyattexdiin ProSys.

The ESC can be modeled as a ProSys subsystem, as shown irBim-8
side, we find subsystems for the sensors and actuators ¢élatat to the ESC.
There are also subsystems corresponding to specific pafe BSC function-
ality (SCS, TCS and ABS). In the envisioned scenario, the RAGABS sub-

138 Paper C

systems are reused from previous versions of the car, whie &®rresponds
to the added functionality for handling under- and overstee Finally, the
“Combiner” subsystem is responsible for combining the atigs the three.

The internal structure of a SCS primitive subsystem is nexdigl ProSave
(see Fig. 8.6). The SCS contains a single periodic actidtyggmed at a fre-
quency of 50 Hz, expressed by a clock connector. The clodkafits/ates the
two components responsible for computing the actual andtedkdirection,
respectively. When both components have finished theirectiye tasks, the
“Slide detection” component compares the results (i.e. attual and desired
directions) and decides whether or not stability controéiguired. The fourth
component computes the actual response, i.e. the adjustinerakeage and
acceleration.

Stability Control System

. Computing Throttle adjust.
Slide braking
detection pressure Brak
and throttle rakes pressure

Lateral acceleration
Yaw angle

LF wheel speed
RF wheel speed

LR wheel speed

RR wheel speed

®{

50 Hz ;- Computing

Steering angle 0 c!eswgd .
direction

Figure 8.6: The SCS subsystem, modelled in ProSave.

O

8.4 Conclusions

We have presented ProCom, a component model for contiesive dis-

tributed embedded systems. The model takes into accoumdkeimportant

characteristics of these systems and consistently usetieept of reusable
components throughout the development process, from @asign to deploy-
ment. A characteristic feature of the domain we considenas the model of
a system must be able to provide both a high-level view ofdgosoupled

subsystems and a low-level view of control loops contrglrparticular piece
of hardware. To address this, ProCom is structured in twerkagProSys and
ProSave). At the upper layer, ProSys, components corréspparomplex ac-
tive subsystems communicating via asynchronous messagimpaThe lower

8.4 Conclusions 139

layer, ProSave, serves for modelling of primitive ProSymponents. It is
based on primitive components implemented by C functiond, explicitly
captures the data transfer and control flow between comp®msimg a rich
set of connectors.

The future work on ProCom includes elaborating on advaneatiifes of
the component model (e.g. static configuration, mode shiférror-handling,
etc.), building an integrated development environmenteuaduating the pro-
posed approach in real industrial case-studies.

Bibliography

[1] AUTOSAR Development Partnership. Technical Overviev.X/1,
February 2008.
http://ww. aut osar. or g.

[2] Hans Hansson, Mikael Nolin, and Thomas Nolte. BeatirgAhitomotive
Code Complexity Challenge. Mational Workshop on High-Confidence
Automotive Cyber-Physical Systemsoy, Michigan, USA, April 2008.

[3] Mikael Akerholm, Jan Carlson, Johan Fredriksson, Hans Hanssbn, Jo
Hakansson, Anders Moller, Paul Pettersson, and Massinai.T The
SAVE Approach to Component-Based Development of VehicSlgs-
tems.Journal of Systems and Softwa89(5):655-667, May 2007.

[4] Arcticus Systems. Rubus Software Components.
http://ww. arcti cus-systens.com

[5] Kurt C. Wallnau. Volume III: A Technology for PredictablAssembly
from Certifiable Components (PACC). Technical Report CMEIf3003-
TR-009, Carnegie Mellon, 2003.

[6] Rob van Ommering, Frank van der Linden, Jeff Kramer, aftiMagee.
The Koala Component Model for Consumer Electronics Sogwaom-
puter, 33(3):78-85, 2000.

[7] Robocop project page.
www. ext ra. resear ch. philips.conm euprojects/robocop.
[8] Ananda Basu, Marius Bozga, and Joseph Sifakis. ModeHatgroge-
neous Real-time Components in BIP. Proc. of the 4th IEEE Interna-

tional Conference on Software Engineering and Formal Méghpages
3-12. IEEE, 2006.

141

[9] Toméas Bure§, Jan Carlson, Séverine Sentilles, andt# Vulgarakis.
A Component Model Family for Vehicular Embedded Systems. In
The Third International Conference on Software EnginegAavances
IEEE, October 2008.

[10] Tomas BureS, Jan Carlson, lvica Crnkovi¢, SawerSentilles, and
Aneta Vulgarakis. ProCom — the Progress Component Moded¢rRef
ence Manual, version 1.0. Technical Report MDH-MRTC-280&-1-
SE, Malardalen University, June 2008.

Chapter 9

Paper D:

Integration of
Extra-Functional Properties
In Component Models

Séverine Sentilles, PeBtépan, Jan Carlson and Ivica Crnkovit

In Proceedings of tha2!" International Symposium on Component Based
Software Engineering (CBSE 2009), LNCS 5582, SpringeriBgast Strouds-
burg University, Pennsylvania, USA, June, 2009

143

Abstract

Management of extra-functional properties in componentietois one of
the main challenges in the component-based software ergigecommunity.
Still, the starting point in their management, namely tlsgiecification in a
context of component models is not addressed in a systemvagic Extra-
functional properties can be expressed as attributes (obictions of them)
of components, or of a system, but also as attributes of elkerents, such as
interfaces and connectors. Attributes can be defined asastins, or can be
measured, or modelled; this means that an attribute cangressed through
multiple values valid under different conditions. This papddresses how this
diversity in attribute specifications and their relatioo€bmponent model can
be expressed, by proposing a model for attribute speciicatnd their inte-
grations in component models. A format for attribute speatfon is proposed,
discussed and analyzed, and the approach is exemplifiatthits integration
both in the ProCom component model and its integrated dpuedat environ-
ment.

9.1 Introduction 145

9.1 Introduction

One of the core challenges still remaining in componenebaoftware en-
gineering (CBSE) is the management of extra-functiongbertes, often ex-
pressed in terms of attributes of components or of systenswkole. In
CBSE, one desired feature is the integration of componenéiautomatic
and efficient way. The integration process is achieved byitf\g? components
through their interfaces. The second aspect of the integra the composi-
tion of extra-functional properties and this part is sigrafitly more complex.
The problem already appears in the specifications of ategouNVhile compo-
nent models precisely define interfaces as a means of furatpecification,
specifications of attributes in relation to component dpeation is either not
defined, or unclear. Is an attribute a property of a compoaetite result of
interaction between components, or maybe the result obparhg a function
that is part of the component interface, or the result of doimg a compo-
nent and its environment? So far these questions have notduekessed in a
systematic way.

This paper addresses the question of attribute specificaticomponent
models. The specification of attributes has several aspeattsve discuss and
demonstrate on a component model.

First, we address the question of the form of attribute sjpations. Our
starting points are related to Shaw’s specification whignidies the specifi-
cation of attributes as a triple containing attribute nawadye and credibility
information [1]. We refine this definition in extension of uak and credibility.

The second aspect of attribute specification that we adisasdated to
the component and system lifecycle. During the lifecycl@a@omponent an
attribute changes with respect to how the value is obtaimeldtlae accuracy
(credibility) of its value. In early phases of the componkfiecycle a com-
ponent is being modelled and then the attribute value camteestimation or
even a requirement. The accuracy of the estimation duriagldvelopment
process can be changed, as a result of an increasing amauofdrofiation or
a change in the way the value is obtained. In the run-timeegfasven in the
development phase in some cases), the attribute value cardmured.

The third aspect of the attribute specifications concemsadhiations of the
values — not only as a result of different ways of obtaining¥hlue, but also
different values depending on the external context. Soiribates are directly
related to the system context— for example, the executioa tf a component
does not only depend on the component behaviour and inpairggers, but
also on the platform characteristics. For such cases itugoab that we need

146 Paper D

to be able to specify these different values and the comditimder which the
attribute value is valid.

There are also other aspects of integration of componenelsaad their
attributes. By nature the attributes are parts of (i.e. ttieracterize) compo-
nents, but they also can be related to a particular elemeatcoimponent or
a system. For example, an attribute can be annotated to aot@mnpdirectly,
or to a port in the interface of a component, or to a connedtogeneral, a
component model that supports the management of attrishtmdd have the
possibility to relate attributes to different architeetelements of the compo-
nent model.

The aim of this paper is to analyze the different aspectstdbate spec-
ifications to formalize their form and their integration witomponent mod-
els. A formal specification of an attribute format makes gieato manage
component and system properties. It also catalyzes thegsarf integrating
extra-functional properties into component models.

Since attributes are very different, the concrete resuts lwe shown on
particular classes of attributes integrated with partic@lomponent models.
To illustrate the attribute specifications in a componenteiowe use Pro-
Com [2, 3], and annotations of attributes as an immanentgfatie model.
We also provide implementation examples.

The rest of the paper is organized as follows. Section 9.2éefihe at-
tribute specifications. Section 9.3 discuses the attrispgeifications of com-
posite components in relation to the attributes of complesabmponents.
Since an attribute can include different values, i.e. d#ifee versions of an
attribute can exist, in a system analysis or verificatiorcpss it is important
to select a particular version of an attribute. The selecfianciples and a
possible supportis discussed in Section 9.4. The prirgipiattribute specifi-
cations are exemplified in the ProCom component model, amdtatgpe tool
that manages attributes is demonstrated in Section 9.5tio8ex6 surveys
related work, followed by a short discussion in Section 8&afpre the paper
concludes with a summary and future work.

9.2 Annotation of Attributes in Component Mod-
els
The purpose of attributes is to provide additional inforimagbout the compo-

nents, complementing the structural information that mvyated by the com-
ponent model.

9.2 Annotation of Attributes in Component Models 147

This additional information is intended to give a betterighs in the be-
haviour and capability of the component in terms of relispisafety, security,
maintainability, accuracy, compliance to a standard,ussconsumption, and
timing capabilities, among many others. In that senseabatts bridge the gap
between the knowledge of what a component does and its botaghbilities.

9.2.1 Attributes in a Component Model

As mentioned in [4], the additional information provideddtyributes does not
necessarily concern the component as a whole, but in faeh @ibints more
precisely to some parts of a component such as an interfaae @peration of
an interface. In our view, this relation should not be lirdite components,
interfaces and operations, but be extended so that atslman be associated
with other elements of a component model, including for eplaports, con-
nectors or more notably component instances. For instdnaséng an extra-
functional property on connectors to capture communiodttency, makes it
possible to reason about the response time of complex opesdhat involve
communication between components.

Following this standpoint, we define a#tributablean element of a com-
ponent model¢omponentinterface component instangceonnector etc.) to
which extra-functional propertiegitributeg can be attached. By this means,
all attributable entities are treated in similar way withaeds to the definition
and usage of attributes. Fig. 9.1 depicts these relations.

Attributable Attribute
Jd:String

Z}

Componentinstance| Component Interface Operation Connector

Figure 9.1: The relation between attributes and the elesnafnd component
model.

9.2.2 Attribute Definition

The exhaustive list of possible attributes to consider dless and, as stated
in [5], there is no a priori, logical or conceptual method t&tatmine which
properties exist in a system or in components. Furthernzos@gle property

148 Paper D

can have a multitude of possible representations. Thisl@mmheres in one

of the fundamental characteristics of extra-functionap@rties and properties
in general: they are issued by humans. Therefore, differssts will consider

different types of information important for the developmhef the software

system, and for the same property they might associate ereliff meaning

and representation.

Consequently, the definition of a suitable format specificafor extra-
functional properties able to deal with the great varietpaperties possibly
of interest remains a challenge. This definition should beege and flexible
enough to handle the heterogeneity of properties whileghetensible to sup-
port the emergence of new ones. This means that the spdoififatmat must
be able to cope with different formats and different levdlfoomalism.

An informal way to specify these properties is to use aniaiat However,
it gives too much freedom concerning the definition and thiisds problems
to manage extra-functional properties at a large scaleawtiomated processes
such as composition or analysis.

In order to move towards a precise formalisation of extnaefional prop-
erties, which allows an unambiguous understanding and @sgreemantics
both with respect to meaning and valid specification fornfahe value, we
define the concept dittributeas:

Attribute = (Typeldentifier Value")
Value = (Data, Metadata ValidityConditiori)

where:

e Typeldentifierdefines the extra-functional property (i.e. the identifier
property in Fig. 9.1);

e Datacontains the concrete value for the property;

e Metadataprovides complementary information on data and allows to
distinguish between them; and

¢ ValidityConditiongdescribe the conditions under which the value is valid.

The remaining of this section details these concepts, basedagrams issued
from the meta-model of our attribute framework (the full em@todel is given
in Appendix 9.8). However, an important aspect of this d&éini which is
worth noting already at this point, is the possibility for aftribute to have a
several values. This is further explained in Section 9.2.5.

9.2 Annotation of Attributes in Component Models 149

9.2.3 Attribute Type

Similarly to the concept of “class” in object oriented pragrming, arattribute
typedesignates a class of attributes. In this respect, anwtrib then compa-
rable to a class instance, and must comply with the spedifictsire imposed
by the attribute type. An attribute type specifies thusdamtifier which is a
condensed significative name describing the principaladtaristics of the at-
tributes (e.g. “Worst Case Execution Time”, “Static Memblyage”, etc.), a
list of attributableelements to which the property can be attached, and a spec-
ification of thedata formatthat the attribute instances must conform to. As
illustrated in Fig. 9.1, the identifier of the attribute tyigeshared by all the at-
tributes of the same attribute type, and an attribute bedém@ single attribute
type only.

Consequently, the uniqueness of the attribute types mustfered so that
it is not possible to have two attributes with the same idemntbut different
value formats. This requires techniques outside the dieimdf the attribute
concept itself. A simple technique is to keepeagistry of attribute types,
where all the declaration of attribute types are stored suentheir unique-
ness. Fig. 9.2 illustrates an attribute type registry doirig several attribute

types.

Attribute Type Registry

Type Identifier: Power Consumption
Attributable(s): Component

Data Format: Reference to external model
Documentation: ...

Type Identifier: Worst-Case Execution Time
Attributable(s): Component, Interface, Operation
Data Format: Integer

Documentation:

Type Identifier: Value Range
Attributable(s): Port

Data Format: [Float; Float]
Documentation: ...

Type Identifier: Static Memory Usage
Attributable(s): Component

Data Format: Float

Documentation: ...

Figure 9.2: Attribute type registry.

Although this way of specifying attributes types (or atirtiés, in a broader
sense) provides the great advantages of being open andsikéeso that it

150 Paper D

can fit the multitude of extra-functional properties whiaked to be defined,
it still requires users to have an intuitive and common usi@geding of what
the meaning and intended usage of the attributes were wlegnvibre cre-

ated. Therefore it is important to provide proper attritiyfge documentation

This documentation is stored in the attribute type regiatrgl consists of an
informal text written in natural language. Neverthelesmust supply enough
information to primarily clarify the meaning of the attrileutype as well as its
intended usage.

It is reasonable to assume that hundreds of attribute type®ce will be
introduced. Several classification schemes (e.g. [6] ahjdhBle been pro-
posed which can be used as basis to identify groups of atritypes such
as “resource usage”, “reliability”, “timing”, etc. Thesategories could al-
low navigation across attributes more easily and possilulg the whole set
of attribute types that are uninteresting for a particulajgrt. A remaining
challenge is in this case to determine appropriate categjosis the proposed
classifications are distinct and often non-orthogonal astimeed in [5]. How-
ever, this is not within the scope of this paper.

9.2.4 Attribute Data

To elicit information on the element of the component motieltare associ-
ated with, the part of attributes concerned with expresgatg must be repre-
sented in an unambiguous and well-tailored format. Thidiesghat in addi-
tion to supporting primitive types such as integers, floats,, and structured
types such as arrays, complex types must also be coverese Thmplex types
include representation of value distributions, variougmal models, images,
etc.

Attributevalue -data Data
&>
1 1
IntegerData StringData RefData
-value: Integer -value: String e o o [-value: Object

Figure 9.3: Attribute data.

9.2 Annotation of Attributes in Component Models 151

For this, we define a generic data structure, calletd, which is specialized
into a number of simple data types and a reference to any ecnatlject, as
illustrated in Fig. 9.3. This structure can be extended ftdbuore complex
data structure such as records or tuples.

9.2.5 Multiple Attribute Values

Attributes emerge during the software development proassadditional in-
formation needs to be easily available either to guide threldpment, to make
decisions on the next step to follow, to provide appropri{a&ly) analysis
and tests of the components, or to give feedbacks on thentisteus. This
need for information starts already in early phases of theldpment, in which
extra-functional properties are considered as conssrtoriie met and expected
to be satisfied later on, thus becoming an intrinsic part@tttmponent or sys-
tem description.

This implies that through the development process, (i) tleamng of an
attribute typically changes from a required property to avfted/exhibited
property, and (ii) its value changes too as the knowledgethedmount of
information about the system increases. Thus the actualatatvell as the
appropriate metadata needs to be successively refined teptsced by the
latest and most accurate value. For example, an attribstienated in a de-
sign phase, is replaced with a new value coming from a meamneafter
the implementation phase is completed, or with more inféionaavailable the
analysis become more efficient and reliable and thereferedhfidence in the
property, expressed by the accuracy metadata, increases.

However, the gradual refinement of an attribute towards @istraccurate
value is not always the expected way to deal with extra-ioned properties.
Often, values which are equally valid in the current devalept phase, need
to exist simultaneously. In other words, this means thatatest value must
not replace the previous one. This requires an ability foatbute to have
multiple values to cope with information coming from varsocontext of uti-
lization, to keep different values obtained through défermethods, to keep
the required value and a provided value for verifying thefoomity to the ini-
tial requirement, or to compare a range of possible valuesake a decision.
This ability of an attribute to have multiple values is depétin Fig. 9.4.

152 Paper D

Attribute ~values AttributeValue
-id:String

1 1.

Figure 9.4: Multiple attribute values.

9.2.6 Attribute Value Metadata

Introducing the possibility to have multiple values forriites also requires
the ability to distinguish between them. Furthermore, iniportant to docu-
ment the way an attribute value has been obtained to ensaranfbrmation
about a component (or another element of a component madedyiect and
up-to-date. These two functions are provided bydttebute value metadata
or simply metadata which role is to capture the context in which the corre-
sponding attribute value has been obtained: when, how as&ildy by whom.
However, the question of determining the complete list ef@nts that meta-
data should cover remains.

We define a partial list of metadata that we consider indisgkle to pro-
vide a basic support for the concepts around the attribdieitien (see Fig. 9.5).
The list consists of the version of the current attributeigathe timestamp in-
dicating when the attribute value was created or updatexistiurce of the
value (“requirement”, “estimation”, “measurement”, “foal analysis with the
tool X", “simulation”, “generated from model”, “generatédm implementa-
tion”, etc.). Other metadata are optional; for example twieacy of the value
or some informal comments about the attribute value.

Metadata

-version:String
Attributevalue -metadata |-timestamp:Date
PR -source:String
-accuracy:Float
1 1 |-comment:Sting

Figure 9.5: Attribute value metadata.

9.2.7 Validity Conditions of Attribute Values

Reusability is a desired feature of component-based softersgineering, which
implies that a component is assumed to be (re-)useable iy ditierent con-

9.2 Annotation of Attributes in Component Models 153

texts. As an intrinsic part of components, revealing what ¢cbmponent is
capable of, attributes are intended to be reusable too. méans that the va-
lidity of their information must still be accurate in the neantext in which the

component is reused. Hence, to keep consistent all theniafiton concern-
ing the component, both its expected behaviour and capebjland the actual
ones, it is necessary to specify in what type of contexts aibate value is

valid, i.e. fully or partially reusable.

We refer to these specifications of context restrictionyalslity condi-
tions The validity conditions explicitly describe the partiaulcontexts in
which an attribute value can be trusted. Different typesaoitexts exist and,
as with attribute types, an attempt to identify them all isiba to fail. They
include, at least, constraints on the underlying platf@pgcification of usage
profile, and dependencies towards other attributes, adrdted in Fig. 9.6.

With the intentions of developing an automated processlézsenly valid
values for the current context, the validity conditions trhesdefined in a strict
manner and it is important that they are publicly exposedwéler, strictly
ensuring the respect of all the validity conditions is a testrictive approach
since in this case, only the attribute values for which tHelitg conditions are
fully satisfied would be reusable. For instance, a compomégiit be reused
even though some of its attribute values are not trustwddhthe current de-
sign. This reuse might require a manual intervention to fatve confidence
in the provided values. We envision that, as a conscioussidegisome at-
tribute values could be reused regardless of their valihtyditions not being
satisfied, but it would typically affect the values. For exd@ythe value might
be reused with a lower accuracy, or with the data modified tbsaine safety
margins.

Attributevalue -validityconditions ValidityConditions

1 0.*

Platform UsageProfile AttributeDependency|

Figure 9.6: Validity conditions of attribute values.

154 Paper D

9.3 Attribute Composition

So far, the attributes has been in focus, and the attribeiglbments have sim-
ply been viewed as black-box units of design or implemenitatio which at-
tributes can be attached. However, the existence of higiiccomponent
models that also include composite components — comporeritsout of
other components — influences the ways in which the valuetirithates can
be established.

Ideally, all attributes of a composite component should ibectly deriv-
able from the attributes of its sub-components. While thisdsily achievable
for some attribute types, e.g. static memory usage, ottegyerdl on a com-
bination of many attributes of the sub-components, or otwso€ architecture
details [5].

Even for composable attributes, we argue that it is benéf@alow them
to also be stated explicitly for the composite componential sin particular,
this allows analysis of the system also at an early stageefldvelopment
when the internals of a composite component under congiruate not fully
known, or not fully analyzed with respect to all attributeguired to derive the
attributes of the composite component.

The ability of the proposed attribute framework to storetiplé values for
a single attribute permits explicitly assigned informatio co-exist with infor-
mation generated by composition. To distinguish betweemttihe metadata
field sourcecan be given the valueompositiorto indicate that the value was
derived from the sub-components.

Specification of attributes of a composite is illustratedrig. 9.7. The
composite component has been explicitly given an estimed&d for the at-
tribute representing static memory usage, and anotheevalprovided by
composition, which for this attribute simply means a suniomedver the sub-
components.

Attribute composition can be viewed as the responsibilitthe develop-
ment process, i.e. it should specify when and how attribatees should be
derived for composite components, possibly supported bynaated functions
in the development tools. An interesting alternative, imtipalar for easily
composable attributes such as static memory usage, isltmathe specifica-
tion of a composition operator in the attribute type registr

9.4 Attribute Configuration and Selection 155

« value: 15, ko
+ source: estimation
Static
[—> Memory
Usage
g] + value: 25, ko
Component A + source: composition
Component B Component C
[Static « value: 15, ko

[Memory |+ source: measurement

Static « value: 10, ko
Memory »|+ source: measurement
Usage O

Figure 9.7: A composite component with co-existing explaid derived at-
tribute values.

9.4 Attribute Configuration and Selection

From the previous sections we realize that an attribute ee many values.
The question is which value of an attribute is of interestdqrarticular anal-
ysis, and what is the criteria to select it? The second questelated to the
consistency of definition when using several attributesgise Which values of
different attributes belong together?

This problem is addressed in version- and configuration geamant, and
we apply the principles from Software Configuration Managat(SCM).
SCM distinguishes two types of versioning: {grsions(also called revisions)
that identify evolution of an item in time. Usually the latesrsion of an item
is selected by default, but also an old version can be selgftieexample us-
ing a time stamp (select the latest version created befopedcifi time); and
(ii) variantswhich allow existence of different versions of the same it@m
the same time. The versions and variants can be selectetamgto certain
selection principles, such astate(select the latest version with the specified
state),version namealso called label or tag (select a version designed by a
particular name). The latter is explicit since version naraes unique, while
states are not.

We adopt these principles in management of attributes.eSancattribute
can have many values, each value is treated as an attribsterveA developer
has two possibilities of managing attribute versions.

Attribute navigation The possibility to navigate through different versions

156 Paper D

of an attribute (i.e. through different values), and updhteselected
value (changing data, or metadata information, or modgfyire validity
conditions).

Configuration Values are selected, for one or several attributes, acoptdi
a given selection principle (e.g. based on version namemastiamp).

The configuration filteris important as it can be applied to the entire sys-
tem, or to a set of components, and then all architecturai@igs expose par-
ticular versions of the attributes that match the filter. sTisiimportant when
some system properties are analyzed using consistenomsrsf several at-
tributes (for example in an analysis of a response time oéaao performed
on a particular platform).

The configuration filter is defined as a combination of attebmetadata
and validity conditions, and the use of the following keydsr

Latest The latest version.
Timestamp The latest version created before the specified date.
Versionname A particular version designated by a name.

Metadata and validity conditions are equivalent from tHec®n point of
view. In the selection process the filter defines constraiwés metadata or
validity conditions in the same way. The difference is hogram understand-
ing the filtering mechanism and in helping the developer aording possible
problems if the validity conditions that are filtered are tradictory (for exam-
ple if the developer specifies to use attribute values validgdlatform X” and
“platform Y”).

The configuration filter is defined as a sequence of matchimgliGons
combined with AND or OR operators. The conditions are testeatder, and
if a condition is not fulfilled the next one is examined. Thafiguration filter
is specified in the following format:

Condition, [AND Conditions ...] OR
Conditions [AND Conditions ...] OR

The conditions within a line are combined by AND operatorjleifines are
combined with the OR operator. A concrete example of the gardiion filter

9.4 Attribute Configuration and Selection 157

(Platform: X) AND (Source: Measurement) OR
is the following: (Release 2.0) OR

Latest

In this example the configuration filter will select first allues with validity
conditions matching “Platform: X" and with “Source: Measorent” in the
metadata. If such values exist, the latest one is seledtedt,ithe filter will
select the latest version labeled with “Release 2.0”. If nohsversion was
found, simply the latest version of the attribute will beesééd. The selected
attributes values are shown as gray boxes in Fig. 9.8.

value: 15, kB

version: 2

timestamp: 080220#10:00
source: measurement

E . platform: X
Static
o— Component 1 |—m| Memory
Usage « value: 10, kB
» version: 1

timestamp: 080120#17:44
source: estimation

Worst « value: 30, clock cycle
Case . |* version:1
Execution * |+ timestamp: 090128#13:00
Time * source: measurement
« platform: X
g « value: 152, kB
Static * version:
o— Component 2 |— pemory »|+ timestamp: 080220#10:00
Usage * source: measurement
« platform: X
Vc\lg;sét « value: 30, clock cycle
Execution »- (PERVELSION:
Time |+ timestamp: 090105#15:00
* source: estimation

+ value: 25, clock cycle

* version: 1

« timestamp: 090128#11:00

+ source: analysis
platform: X

Figure 9.8: Attribute value selection.

158 Paper D

9.5 A Prototype for ProCom and the PROGRESS
IDE

This section concretizes and exemplifies the proposedatitriframework in
the context ofProCom a component model for distributed embedded sys-
tems [2, 3]. The characteristics of this domain make compthased de-
velopment particularly challenging. For example, the ttigbupling between
hardware and platform, and high demands on resource efficiare to some
extent conflicting with the notion of general-purpose rélsaomponents.

ProCom applies the component-based approach also in eaalgep of
development, when components are not necessarily fullyeimented. Al-
ready at this point, however, it is beneficial that the congmis are treated as
reusable entities to which properties, models and analgsidts can be asso-
ciated. Safety and real-time demands are addressed byedyvafianalysis
techniques, in early stages based on models and estimatelgtar based on
measurements, source code and structural informatiortidtftiy is achieved
by a deployment process in which the component-based sykisign is trans-
formed into executables that require only a lightweight poment framework
at runtime.

This extensive analysis support throughout the design eptbgment pro-
cess requires a large amount of information to be associgitbdvarious en-
tities at different stages of the development. Informatioat is of interest
to more than one type of analysis, or which should be reusgether with
the entity, is captured by attributes. Concretely, ProCsinased around two
main structural entities — components and subsystems —df@thich areat-
tributable (as defined in Section 9.2.1). The attributable elementsiatdude
component services, message ports, and communicationelsaamong oth-
ers.

The initial set of attribute types is influenced by the erongid analysis of
timing and resource consumption, and includes informadilbout execution
times, static and dynamic memory usage, and complex befsawiodels han-
dled by external model checking tools. Table 9.1 lists soimén® attribute
types used in ProCom.

To ease the development in ProCom, an integrated develdmneinon-
ment called ROGRESSIDE is being developed. It is a stand-alone application
built on top of the Eclipse Rich Client Platform, and inclgde component
repository, architectural editors to independently desigmponents and sys-
tems, a C development environment, and editors to specitgyieur and re-
source utilization.

9.5 A Prototype for ProCom and the PROGRESSIDE 159

Table 9.1: Examples of attributes in ProCom.

Identifier Attributable(s) | Data format | Documentation (short)
The amount of memory
Component, Int (in kB) statically allocated
Subsystem by the component or sub-
system.

The maximum number of
clock cycles the service
can consume before ter-
minating.
Upper and lower bounds
Value range Port [Int;Int] on the values appearing
on the port.

A REMES model speci
Resource model Subsystem External file | fying resource consump
tion.

Static memory

WCET Service Int

A variant of the proposed attribute framework is includeth@& PROGRESS
IDE, in the form of two plugins: one for the core concepts thi required
e.g. by analysis tools interested in, or producing, atteébalues; and one
for the graphical user interface through which the developa view and edit
attributes. In its current version, the prototype does nppsrt validity con-
ditions, nor is the selection mechanism fully implementeck. a detailed pre-
sentation of the attribute framework prototype, see [8].

The graphical part of the framework consists of an addifi¢ala in the
property view, where the attributes of the currently seldogntity are pre-
sented. In Fig. 9.9, a component is selected in the top edibarits attributes
(Resource modedind WCET) are shown in the property view below. In the
depicted scenario, each attribute has two values, digshgd by the metadata
timestamp.

The attribute type registry is realized by an extension{tbiat allows other
plugins to contribute new attribute types. In addition te thformation spec-
ified in Section 9.2.3 (e.g. data format and documentatibe)extension can
also define how the new attribute type is handled by the gcapimterface, by
defining classes for viewing, editing and validating itsadat

& ProCom - ProCom Projec g prosave - Progress IDE = [
Fle Edit Project ProSave Editor Window Help
(&5 ProCom | £ [F ~ [
[Project Explorer 2 | ¥ = 5(Myprosave & =8
4 &5 ProCom Project [Resource Set
4 & components PR ce/ProCom%20 Unit_4,
4 & ComputationUnit 4 (5a_|| 4|4 Companent
& documents 4 4 Senice
4 @& models 4 % Input Port Group
@ My.prosave <+ Input Trigger Port
= 4 Input Data Port
[l component.metadata 4 4 Output Port Group.
+ Output Trigger Port
4 Output Data Port
Selection|Parent| List| Tree | Table Tree with Columns
¥ Tasks | & Properties £ | =5

Add Value Remove Value Add new attribute View dats Editdats

Attribute type Data Source

Resources

EMF

Attributes
Resource model

2009-01-03
2009-01-10
Timing
WCET
2009-02-05 200
2009-02-10 183

C:\Users\Peta\Documents\other\eras...
C:\Users\Peta\Documents\other\eras...

Estimation
Estimation

Estimation
Measurement

P} F—p— > < i [

Selected Object: Component

Figure 9.9: The attribute framework integrated in tirORRESSIDE.

9.6 Related Work

Although a lot of work has been done studying extra-funclquroperties
in general, few component models actually integrate supijporspecifying
and managing extra-functional properties. When this sttpgasts, it con-
cerns specific types of extra-functional properties sudem@poral properties
or resource-related properties and is intended for reagaard predictability
purposes.

The relation between extra-functional properties andtional specifica-
tions of component models was first explicitly addressecha Prediction-
Enabled Component Technology project (PECT) [9]. In PEQTFaefunctional
properties are handled through “analytical interfacesijaimtly with analyt-
ical models to both describes what are the properties thatrgponent must
have and the theory that should support the property aisalysi

In Robocop [10] the management of extra-functionality inelthrough the
creation of models: a resource model describes the rescorsimption of
components in terms of mathematical cost functions and avietral model
specifies the sequence in which their operations must béeavoAdditional
models can be created.

9.6 Related Work 161

The support for extra-functional property proposed by Kdafl] handles
only static memory usage of components. The informatioruatias prop-
erty is provided through an additional analytic interfad@sk must be created
and filled for every components existing in the design. Itas possible to
add information about this property to already existing poments. More-
over, through diversity spreadsheets, Koala proposes hamexn outside the
analytical interface to deal with dependencies betweeibatés.

Contrary to our approach, which allows various elements afraponent
model to have attributes, these components models managefexctional
properties on component- or system-scale only.

The closest approaches to our concept of attributes are tvbgch de-
fine extra-functional properties as a series of name-vadiies;pfor example
Palladio [12] and SaveCCM [13]. Palladio uses annotatiars$ @ntracts
to specify extra-functional properties concerned withf@enance prediction
of the system under design. SaveCCM follows the concept edenntials
proposed by Shaw [1], where extra-functional propertiesrapresented as
triples (Attribute, Value, Credibility) where Attribute describes the com-
ponent property, Value the corresponding data, and Ciégibpecifies the
source of the value. Similarly to our registry of attribugpes, these creden-
tials should be used conjointly with techniques to managectbation of new
credentials.

Other approaches not related to a particular component Inhagle also
been proposed. Zschaler [14] proposes a formal specificiti@xtra-function-
al properties with the aim to investigate architecturahatats and low-level
mechanisms such as tasks and scheduling policies that no@lugarticular
extra-functional properties. In this specification, extractional properties
are split between intrinsic properties which are inheritedh the implementa-
tion and are fixed, and extrinsic properties which are prioggewhich depend
on the context. In [15], a specification language for spéuifithe quality
of service of component-based systems is proposed. Thedgegsupports
specification of derived attributes for composites, ankidihetween attribute
specification and measurement.

Comparing with what exists for UML, our approach relates®MARTE
sub-profile for non-functional properties [16] which exdenUML with vari-
ous constructs to annotate selected UML elements. Simjikextra-functional
properties are defined in a “library” as types with qualifiarsl used in the
models. Attribute values can be specified through a ValueiSgation Lan-
guage, which also defines value dependencies betweentdtithrough sym-
bolic variables and complex expressions. Dependenciedvimg more than

162 Paper D

one element are expressed through constraints. MARTE alswowledges
the need for co-existing values from different sourcestlbeibssociated infor-
mation is not as rich as our metadata concept, and the selengchanism is
not elaborated. However, MARTE does not support compoheaséd develop-
ment and design space exploration, nor provide means togeaeéinement
of non-functional properties. Our work could gain in intating the generic
data type system and also in integrating the value speddficiinguage for
supporting the specification of the attribute values, wtdoh now left to the
creator of the attributes.

Our approach also relates to work on service level agreesr(&htA) in
service-oriented systems [17], although our motivatiarcépturing non-func-
tional properties comes mainly from the need to performyaisl rather than
as the basis for negotiation of quality of service betweerraise provider
and consumer. In the context of SLA, non-functional praperare used in
the formal specification of services, defining, e.g., thelalkdity of a service
or the maximum response time, while we associate non-fomatiproperties
with architectural entities to facilitate predictable seu

In summary, our approach differs from previous in focusingeuse of at-
tribute values, proposing an attribute concept allowinigaee multiple values
and a mechanism to select among them, and encompassingtaependen-
cies that must be satisfied for a value to be valid in a new gbnte

9.7 Discussion

Our purpose with this attribute model is to provide a streetior managing
extra-functional properties closely interconnected ®mdbmponent model el-
ements with the long-term vision of supporting a seamleggation and as-
sessment of extra-functional properties in an automataret efficient way.
This structure is intended to be used throughout a compdvesed develop-
ment process from early modelling to deployment steps ¢iaverview of this
development process, see [18]). In particular, it shoul@dsible for reused
components with extensive, detailed information to casewith components
in an early stage of development, and for analysis to trestitb transparently.
With regards to other models, our proposition is charanterby the sup-
port for multiple attribute values. Although for some simalttributes such as
number of lines of cod®ne and only one value is correct at a given point in
time, for other attributes the value vary according to théhroés or techniques
used to obtain it, and it is not always possible to say thatwahee is more

9.7 Discussion 163

correct than another. An example of such attributes isatbest-case execu-
tion timefor which different analysis techniques give differentuesd, all of
which can be considered equally true in the characterizatfahe attribute.
For instance, a “safe” static analysis technique gives hdrigumber than a
probabilistic method but the confidence in the fact that takie cannot be
exceeded is higher. For components in an early stage ofg@weint, even a
simple attribute such dses of codeould be estimated by several approaches,
and thus have multiple values that are equally correct atirifee

One possible way to manage multiple property sources waeilt lsreate
a separate attribute type for each variant of the propeeigting e.g.estimated
worst case execution timrmndmeasured worst case execution tiagetwo sep-
arate attribute types. However, viewing them as a singtidate with multiple
values facilitates analysis that use attributes as inpot. ekample, analysis
that derives the response time of an operation can be bastt @xecution
time attribute without having to deal with the different pilide sources of this
information. Thus, the same response time analysis canrbeped based on
early execution time estimates, safe values from statie ewdlysis, or mea-
surements. Multiple values also significantly reduces theunt of properties
types which can be defined (in the case in which the methodsd@oesults
for the same property) while preserving the source of inftiom through the
metadata and the usage context through the Validity Camditi

Another noticeable characteristic of our model is the dption of valid-
ity conditions for individual attribute values. Many alttiites depend on fac-
tors external to the entity, such as underlying middlewaneavdware. When
a component is reused in the same, or similar, context, thbwge value can
also be reused without restrictions. If, on the other hahd,domponent is
reused in a context that does not match the validity conditibe value will
not be used (e.g. in analysis) unless proceeded by a cossibémision by the
developer. For example, the value can be used with lowerdemde as an
early estimate, or fully reused if the developer believé ithetill applies in the
new context.

The approach presented in the papers aims for increasigsabdity and
predictability of component-based systems. It howevepdhices a complex-
ity in the design process. By having many attribute typesdiffierent versions
of attributes, there is a need for a selection of a “propetritatte version.
There is also a need for ensuring consistency betweenuw#silof different
types. We propose that this is handled outside the attibritantity, by a
configuration management-like mechanism in the develop@rironment.
This allows the developer to specify which attribute vemsfoom a number of

164 Paper D

currently “correct” ones, that should be used in the analgsiformed at this
point. The attribute version can be determined by diffepamameters, such as
specification of the context (identified by ValidityConditis).

The defined infrastructure for attributes facilitates a ptete analysis that
includes analysis of different properties and relatiortsvben them, including
a trade-off analysis. For example, by simple changes of dndéiguration fil-
ters, the process of the analysis and presentation of tbé#sésr all attributes
is simpler, and consistent.

9.8 Conclusion

Providing a systematic way of attribute specifications &t tintegration into
a component model is important for an efficient developmeotgss; it en-
ables building tools for attribute management, such asifigegon, analysis,
verification, and first of all efficient management of differattributes, or the
same attributes attached to different components. It alsitithtes integration
of different analysis tools. This paper proposes a modedtfvibute specifica-
tion which is expandable in the sense of allowing specificatif new attribute
types or new formats of attribute presentations. The moiihduishes at-
tribute types (defined by a name and a data type), attributeesavhich in-
clude metadata and specification of the conditions undectwthie attribute
value is valid. The main challenge in the attribute spedificeformalization
is to provide a flexible mechanism to cover a large varietytivifaate types and
their values, and keeping them manageable. This is themegsp the model
is extensible.

The proposed model has been integrated into ProCom, a canpoodel
aimed for development of component-based embedded systembich the
modeling, estimation and prediction of extra-functionadperties are of cru-
cial importance. The prototype, developed and integraieitié FROGRESS
IDE, covers both introduction of new attribute types andctftion of at-
tributes for components and other modeling entities, watadormats ranging
from primitive types to complex models handled by exteroalg.

Our plan is to further develop the model and the tool. Thediglicondi-
tions can be further formalized to enable automatic seladadf attribute values
depending on the context in the development process. The isatmue for the
filter selection mechanism that should enable the devedapeeasy selection
process. Further, we plan to develop an attribute navigatol that will be
able to show differences between different attribute \&@hred validity condi-

9.8 Conclusion 165

tions. Finally, a set of predefined attributes will be spedifior the ProCom
component model, which will improve the efficiency and siicipy of attribute
management.

Appendix A: Attribute Framework Meta-model

Below, the full attribute framework meta-model is presente

Metadata 1 1 -data Data
Nersion:String AttributeValue
-timestamp:Date
-source:String -metadata o B
-accuracy:Float AN
l-comment:Sting
values | L. 1
IntegerData StringData RefData
Value: Integer [Value: String « « o [value: Object
~validityconditions ValidityConditions
0.*
i Af
Attribute Platform UsageProfile AttributeDependency|
Cid:String
0.*
1
Attributable
Componentinstance Component Interface Operation Connector

Bibliography

[1]

(2]

Mary Shaw. Truth vs Knowledge: The Difference Betweenatt Com-
ponent Does and What We Know It Doetternational Workshop on
Software Specification and Desigrage 181, 1996.

Séverine Sentilles, Aneta Vulgarakis, Tomas Burdsn Carlson, and
Ivica Crnkovic. A Component Model for Control-IntensivésBibuted
Embedded Systems. In Michel R.V. Chaudron and Clemens SHipe
editors, Proceedings of the 11th International Symposium on Compo-
nent Based Software Engineering (CBSE2008yes 310-317. Springer
Berlin, October 2008.

[3] Tomas Bures, Jan Carlson, lvica Crnkovic, Séverigentilles, and

[4]

[5]

[6]

[7]

Aneta Vulgarakis. ProCom — the Progress Component Mode¢rRef
ence Manual, version 1.0. Technical Report MDH-MRTC-280&-1-
SE, Malardalen University, June 2008.

Ivica Crnkovic and Magnus LarssonBuilding Reliable Component-
Based Software Systermfgtech House, Inc., Norwood, MA, USA, 2002.

Ivica Crnkovic, Magnus Larsson, and Otto Preiss. Conicgy Pre-
dictability in Dependable Component-Based Systems: @ieestson of
Quality Attributes. InArchitecting Dependable Systems llblume 3549
of Lecture Notes in Computer Scien@ages 257-278. Springer Berlin,
2005.

ISO/IEC. Information Technology - Software product tjtya- Part 1:
Quality model. Report: ISO/IEC FDIS 9126-1:2000, 2000.

Manuel F. Bertoa and Antonio Vallecillo. Quality attutes for COTS
components. I16th International Workshop on Quantitative Approaches
in Object-Oriented Software Engineering (QAOOSE’'2(I02.

167

168

Bibliography

[8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Petr étépén. An Extensible Attribute Framework for ProCom. skéa's
thesis, Malardalen University, Sweden, 2009.

Scott Hissam, Gabriel Moreno, Judith Stafford, and Kietlinau. Pack-
aging predictable assembly with prediction-enabled camepbtechnol-
ogy. Technical Report: CMU/SEI-2001-TR-024, 2001.

H. Maaskant. A Robust Component Model for Consumer tEbeic
Products. IrDynamic and Robust Streaming in and between Connected
Consumer-Electronic Devicggolume 3 ofPhilips Researchpages 167—
192. Springer, 2005.

Rob van Ommering, Frank van der Linden, Jeff Kramer, dgftiMagee.
The Koala Component Model for Consumer Electronics Sogwa@om-
puter, 33(3):78-85, 2000.

Heiko Koziolek. Parameter Dependencies for Reusable Performance
Specifications of Software Componeri®hD thesis, Oldenburg, Univer-
sity, 2008.

Mikael Akerholm, Jan Carlson, Johan Fredriksson, Hans Hansshn, Jo
Hakansson, Anders Moller, Paul Pettersson, and Massinvai.T The
SAVE Approach to Component-Based Development of VehicSlgs-
tems.Journal of Systems and Softwa89(5):655-667, May 2007.

Steffen Zschaler. Formal Specification of Non-FuncébProperties of
Component-Based Software. lim Proc. Workshop on Models for Non-
functional Aspects of Component-Based Systa6t.

Jan @yvind AagedalQuality of Service Support in Development of Dis-
tributed SystemsPhD thesis, Faculty of Mathematics and Natural Sci-
ences, University of Oslo, 2001.

Huascar Espinoza, Hubert Dubois, Sébastien Gérarlio L. Medina
Pasaje, Dorina C. Petriu, and C. Murray Woodside. AnnajativiL

Models with Non-functional Properties for Quantitative aysis. In
Jean-Michel Bruel, editoiMoDELS Satellite Events/olume 3844 of
LNCS pages 79-90. Springer, 2005.

Philip Bianco, Grace A. Lewis, and Paulo Merson. Ses\ievel Agree-
ments in Service-Oriented Architecture Environments.hihécal Report
CMU/SEI-2008-TN-021, Carnegie Mellon, 2008.

[18] Rikard Land, Jan Carlson, Stig Larsson, and lvica Cwitko Towards
Guidelines for a Development Process for Component-BasdaeBded
Systems. InVorkshop on Software Engineering Processes and Applica-
tions (SEPA) in conjunction with the International Confeze on Com-
putational Science and Applications (ICCS&pringer, June 2009.

Chapter 10

Paper E:

Save-IDE — A Tool for
Design, Analysis and
Implementation of
Component-Based
Embedded Systems

Séverine Sentilles, Anders Pettersson, Dag Nystrom,

Thomas Nolte, Paul Pettersson, Ivica Crnkovit

In Proceedings of thg1*! International Conference on Software Engineering
(ICSE), Vancouver, Canada, May 2009.

171

Abstract

The paper presents Save-IDE, an Integrated DevelopmenbEnvent for the
development of component-based embedded systems. SBvedliports ef-
ficient development of dependable embedded systems bydimgwviools for
design of embedded software systems using a dedicated cempmodel,
formal specification and analysis of component and systdmiers already
in early development phases, and a fully automated tramsfoon of the sys-
tem of components into an executable image.

10.1 Introduction 173

10.1 Introduction

Certain domains such as dependable embedded systemsteayiing a high-
confidence in the quality of products being developed. Fsr thfundamental
desiderata is to have the ability to deal with requiremeunth ss dependabil-
ity (e.g. reliability, availability, safety), timing (sicas release and response
time, execution time, deadline), and resource utilizatiocluding memory,
CPU, message channels, power consumption). This demanasig empha-
sis on the analyzability and automation of the developmentgss to ensure
the necessary quality of the final products with respecteseirequirements.

At the same time the growing complexity of embedded systexgsires
methods that increase the abstraction level, improve bditgaand enable
concurrency in the development process. An approach teeeltis is Com-
ponent-Based Software Engineering (CBSE). Both typesafirements (de-
velopment efficiency, and dependability) can be achievedjube component-
based development approach based upon formally analyzamjponent mod-
els and complemented with adequate analysis tools. Howaest component-
based technologies today lack the formal analysis tooldettéo ensure de-
pendability.

In this paper we present theave Integrated Development Environment
(Save-IDE) which gathers tools and techniques needed imetelopment pro-
cess of dependable embedded systems and integrates thieroowiponent-
based development. It includes development support basedaommponent
model SaveCCM [1] that is designed to enable efficient desfggmbedded
systems and behavioral, temporal analysis of the model.paoad to the ma-
jority of existing IDEs which focus mainly on the programmiaspect, the
Save-IDE applies a novel approach which integrates theviallg activities:
(i) design, (ii) analysis, (iii) transformations, (iv) vécation and (v) synthesis.
The paper briefly describes these development phases atwbthéntegrated
into Save-IDE.

The rest of the paper is organized as follows. Section 19e5gin overview
of the development process and Save-IDE. Sections 10.3,&@ 10.5 de-
scribe the particular development phases and the supgadoih, namely com-
ponent-based design, component and system analysis, atitesis. Sec-
tion 10.6 concludes the paper.

174 Paper E

10.2 Software Development Process

The development process (designated SaveCCT - SaveCompadent tech-
nology) is designed as a top-down approach with an emphaseusability. It
includes three mayor phases: Design, Analysis and Realizas illustrated
on Figure 10.1.

The process begins with theystem desigphase in which the system is
broken down into subsystems and components compliant h&lSaveCCM
Component Model [2]. If components (partially) matching ttrequirements
already exist, theselect and adapéctivity is taken. Otherwise, new com-
ponent(s) need to be developed (i.e. tenponent developmeattivity is
taken). Correspondingly, the components are first analgnedverified indi-
vidually towards the requirementfo(mal component verificatign In a fol-
lowing phase, after having reconstructed the system (ds [dirthe system)
out of individual components and their assembliggs{em compositignthe
obtained compositions also need to be analyzed and verfiechdl system
verification). The system and component design and verification proeadur
being repeated until the results are acceptable from thgsisaoint of view.
The phase that follows, thealizationphase, consists afynthesi@ndexecu-
tion or simulationactivities. The system is synthesized automatically based
the input from the system design, on the implementationb®tbmponents
and, on static algorithms for the resource usage and tinongtcaints. All the
necessary glue code for the run-time system is producedréchdted image
can then be tested on a simulator or downloaded into thettplaigorm.

The development process is semi-automatic, with sevetaheaated activ-
ities. A first automated activity is the production of thelgken of the imple-
mentation files (C files and their corresponding header filasgd on the spec-
ification of the component. Another one is the generatiorhefihterchange
file used as communication medium between tools [2]. Thelthive occurs
during the synthesis which includes transformation of congnts into the ex-
ecutable real-time units, tasks, glue code generatiotysion of a particular
scheduling algorithm, compilation and linking all elenirt the executable
image.

This process is supported by a set of tools integrated intntagrated
Development Environment, Save-IDEThe Save-IDE is designed as a plat-
form with an extensible set of tools providing integrategsuort to achieve
the SaveCCT approach as presented in [1, 3]. Save-IDE idapmatas a set

1The Save-IDE is available for download from the web page
http://sourceforge.net/projects/save-ide/

10.2 Software Development Process 175

Sta,m | Software
Component
Software Development System
System Design Select Composition
and
Adapt T
Formal ok
Component —<>J Formal System
Verification | not ok Verification
not ok-¢
ok
Synthesis
&~
Simulation Execution
Processes done in » Workflow

several iterations

Figure 10.1: The SaveCCT development process

of plugins for the Eclipse framework and it comprises threg &ctivities in

the development process: (i) system and component develuihat includes
modeling and design of the components, the architectusidid®f the system
and specification and implementation of components, (igtanalysis of the
system and the components, and (iii) the synthesis thatdesl transforma-
tion from components to tasks, setup of execution paraméter priorities

and periodicity of execution, glue code generation and dlatign. Save-IDE

enables interactive and automatic use of these tools antinesthe entire
development chain into a common environment.

In Figure 10.2, the organization of the Save-IDE tool-chaishown. The
development part consists of @achitecture Editorwhere system and com-
ponent models can be created. Individual components campkeinented
from generated c-template files in the C environment tool T@&zlipse plu-
gin). In addition to the specification of functional interéa the Architecture
Editor makes it possible to assign different attributesh®components, such
as execution time, or behavioral model; for the latter tirPAlaL tool [4] and
its front-end tool WPAAL PORT? is used. Finally, systems can be synthesized
using the synthesis tool. This process is done automaticayinthesis is per-
formed towards the SaveOS (Save Operating System), whauh ébstraction
layer that allows Save-based systems to be easily porteiffeoetht operating

2UpPPAAL PORT is available for download from the web page http://wuppaal.org/port

176 Paper E

Save-IDE
Component-Based .
Design Analysis
Architecture [Timed Automata UpPPAAL-Port
Editor Editor Simulator

AN AN
save TA AN
.save

plate »| Behaviour
| Model Merger

Component
Development
Editor Synthesis
Synthesis
Tool

Compiler

Figure 10.2: Overview of the Save-IDE tool-chain

systems and hardware platforms. The final step in the ch&ndempile and
download the application to the target. Furthermore, usingexternal tool,
CC-Simtech [5], systems can be simulated on a standardajes&mputer.

10.3 Component-Based Design

As depicted in Figure 10.1, the design of a system in Savedg§linguishes
between two independent activitieftware system desigmdsoftware com-
ponent developmenSoftware system design consists of designing a system
out of independent and possibly already implemented compisni.e. compo-
nents being produced through the component developmewityact

The Architecture Editorenables designing a system following the seman-
tics prescribed by the Save CCM component model. To achiactable anal-
ysis of the system being developed (Section 10.4), the fpatodn capabil-
ity of this component model has been restricted. It congifta minimum

10.3 Component-Based Design 177

€ Pugin berelopment - TruckbemoAiruck iruck saveccm, dagram: Ecipse Pation ENEIES)
B-H&i$-0-Q i BHGC- O+ :d <2 25 | 4> Plogin Develop...
= S0 BB I|A- O 4 - |D|Bi- B - || 2 XD [
18 pacape ek 2= 0]) rucksavacom o =0
E Faletie
N
X toom
2 ot
trottieTriggerln
<<AssonDly>> 199er
Follow al Component
>0 Trrottle
Headk
lefiSensor followTriggerOut e
Thro
]
o™ ™=
followTrigger ¢ e
el Bind ports
drection
rightSensor [H&——@{]
drection
o ==
s

Figure 10.3: Architecture Editor

set of architectural elements (component, assembly, ceitepalock, delay
and switch) connected through “pipe-and-filter” portsidigtiishing between
control- and data-flows. Also the execution semantics ottiraponents and
composites (compound components) have been restrictetkéal-execute-
write” sequences performing computation (i.e. being &tiwhen they are
triggered by control ports. Otherwise, the components i passive state.
More details about the component model can be found in [1]2hd

For each composite architectural element two views co@xite Archi-
tecture Editor (see Figure 10.3): theternal viewand theinternal view The
external view describes the name and type of the elemenfdits, and the
models annotated to the element (such as time behaviorsanirby a timed
automata), whereas the internal view handles the inneregiesand their con-
nections. This view can be hierarchical since SaveCCM allbigrarchical
compositions of components and assemblies. The intereal presents the
component implementation using the Component Developriditor pro-
vided by the Eclipse C/C++ Development Tooling (CDT). Skates for the
C and header files containing mapping from ports to varialflestion head-
ers are generated by the Architecture Editor.

178 Paper E

10.4 Analysis

The Analysis partin the Save-IDE consists of a Timed Aut@nizditor (TAE),

a simulator, and a model-checker. The TAE provides the deeslwith a
graphical user interface for creating a formal model of thterinal behavior
of a SaveCCM element. The behavior is described as a timexnation [6]
but with a distinct end location. The model of timed auton{@#s) and its cost
extended version priced timed automata is suitable for firggikinctional and
timing properties, and well as extra functional propersiesh as e.g. resource
consumption.

Informally, the TA is assumed to start in its initial locatievhen the el-
ement is triggered. The element then behaves as specifidtebyAt until it
reaches its end location. At this point values are writteth&® output ports
and the output trigger of the element is activated. Usinghaagtomatic map-
ping process the user associates the external ports of £6&4element with
variables of the internal TA. In this way, it becomes possiiol create formal
models of individual elements composed into composite amepts or whole
architectural descriptions.

The output of the TAE and the associated mapping can be ced(iily
Save-IDE) into an XML-format accepted by the toobkhAL PORT which
features a graphical simulator and a formal verifier. Usimg $simulator —
which is graphically fully integrated into the Save-IDE —isitpossible explore
the dynamic behavior of a complete SaveCCM design in thg daxlelopment
phases of a project, prior to implementation. In this wayg tkesigner can
validate the design and gain increased confidence in thgrdedising the
verification interface, it is possible to establish by medeécking whether
a SaveCCM model satisfies formal requirements specified rasufas in a
subset of the logic Timed CTL. In this way, it is possible thi@ve further
increased confidence in the component-based design, a.gt. functionality
and timing.

The tool UPPAAL PORT is based on the timed automata model-checker
UpPPAAL [4], but extended with partial order reduction techniquésch ex-
ploits the structure and semantics of SaveCCM model to ingptioe model-
checking performance [7]. The technique and tool have beavep efficient
for benchmark examples [7] and for an industrial controteiys[8].

10.5 Synthesis 179

€ pugin Devetopment - x.Turnisteering.sta - Ectipse Platform
Ele £t Souce Refaor Qsgam bavigwe Seyth Projec Run FiodAsst Wodow Heb
$-0-Q- BEGC-OF d < 5| 4> Pl Devel.

12 Packsge Explore 5 = 0 [0) mksavecem dogam | [9) wcksavecem dogra¥t | [*sesrngns

Patert
Seea
O Tumingleft f:’:
= @&y
© tocaion
mode==L_TURN(] Q=
0 ek
O p mode==goStraight{] @
o .
Entry 0 o '
mode==R_Tur{] \\;O ra

Figure 10.4: Behavioral Editor
10.5 Synthesis

As part of the Save-IDE tool chain, the synthesis includestapsautomated
generation tools which transform and compile a SaveCCMeahaltbwing the
developer to follow the SaveCCT work-flow in a more intuitivay. Via the
graphical user interface the developer can invoke the thaincby a simple
mouse-click which invokes a sequence of tools.

There are three steps in the automated generation tool:cheireration
synthesiandrun-time environment compilation

The first step, generation, is a transformation of the maatel auxiliary
files in XML-format conforming to the SaveCMM-Language [During the
generation step the user creates template source files dbraceemponent in
which the behavior of the component can be implemented.

The second step in the automated generation tool chain isythidesis
part, where the application is transformed from the compbon®del into the
execution model. The synthesis takes the SaveCCM model @mstracts a
set of trees based on the applications triggers. These @reethen used to
generate the software code realized into the tasks, i.efuttation calls to the
software components as well as glue code needed for passiafpetween the
components. Each tree is mapped to one real-time task, arabtifiguration
of the task is done with respect to the parameters of thedrjggg. setting of

180 Paper E

periods and priorities.

Finally, once the synthesis is performed, the run-timeremnhent compi-
lation and linking can be performed, and finally the execletaln be down-
loaded on the hardware target or executed by a simulator.

The synthesis is independent of the run-time environmenthbyuse of
SaveOS, an abstraction layer between the actual run-timeament and the
application. The applications do not call any native opegasystem services
directly, but indirectly calling services using SaveOSlaggtion programming
interface. SaveOS is designed and implemented in a wayttretuires min-
imal computing and memory resources and provides a negigotierhead.
By using the SaveOS the configuration of the run-time enwirent can be
changed without having to change the model or the implendeoedavior of
the components.

10.6 Conclusion

We have presented the Save-IDE, an integrated developmeénbement that
provides support in the development of predictable compthased embed-
ded systems following the approach which emphasizes ondobmhavior
modeling and automated generation of the executable. Asgfutork we plan
to extend the modeling language to a richer component mad#ed Pro-
Com [9], and a new language, called REMES [10], for modelihipternal
and external component behaviors and embedded resources.

Bibliography

[1]

(2]

(3]

[4]

[5]
[6]

Mikeal Akerholm, Jan Carlson, Johan Fredriksson, Hans Hanssbn, Jo
Hakansson, Anders Moller, Paul Pettersson, and Massinvai.T The
SAVE Approach to Component-Based Development of VehicSlgs-
tems.Journal of Systems and Softwa89(5):655-667, May 2007.

Mikael Akerholm, Jan Carlson, John Hakansson, Hans HanssoneMika
Nolin, Thomas Nolte, and Paul Pettersson. The SaveCCM LagmRef-
erence Manual. Technical Report ISSN 1404-3041 ISRN MDHTZR
207/2007-1-SE, Malardalen University, January 2007.

Seéverine Sentilles, John Hakansson, Paul Petterssahivica Crnkovic.
Save-IDE — An Integrated Development Environment for BuaigdPre-
dictable Component-Based Embedded SystemsPréweedings of the
23rd IEEE/ACM International Conference on Automated SaivEngi-
neering (ASE 2008B5eptember 2008.

Kim G. Larsen, Paul Pettersson, and Wang YRR4AL in a Nutshell.Int.
Journal on Software Tools for Technology Transfed 34-152, 1997.

CC Systems AB. CCSimTech. http://www.cc-systems.com/

Rajeev Alur and David L. Dill. A Theory of Timed Automat&heoretical
Computer Sciencd 26:183-235, 1994.

[7] John Hakansson and Paul Pettersson. Partial OrderdReddor Verifi-

cation of Real-Time Components. In Jean-Franois RaskirP®dThia-
garajan, editorRroceedings of the 5th International Conference on For-
mal Modelling and Analysis of Timed Systems, Lecture Not€emputer
Science 4763ages 211-226. Springer Verlag, October 2007.

181

[8] Davor Slutej, John Hakansson, Jagadish Suryadevanatif@ Sece-
leanu, and Paul Pettersson. Analyzing a Pattern-Based IMbdeReal-
Time Turntable System. 16th International Workshop on Formal Engi-
neering approaches to Software Components and ArchiestiESCA),
ETAPS 2009, York, UKElectronic Notes in Theoretical Computer Sci-
ence (ENTCS), Elsevier, March 2009.

[9] Séverine Sentilles, Aneta Vulgarakis, Tomas Buresy Qarlson, and
Ivica Crnkovic. A Component Model for Control-Intensiveddibuted
Embedded Systems. In Michel R.V. Chaudron and Clemens &#ipe
editors, Proceedings of the 11th International Symposium on Compo-
nent Based Software Engineering (CBSE20p8yes 310-317. Springer
Berlin, October 2008.

[10] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pssitar. REMES: A
Resource Model for Embedded Systems. Technical Report [B8M-
3041 ISRN MDH-MRTC-232/2008-1-SE, Malardalen Univeys{Dcto-
ber 2008.

