
Mälardalen University Licentiate Thesis
No.114

Information Centric
Development of

Component-Based Embedded
Real-Time Systems

Andreas Hjertström

December 2009

School of Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden

Copyright c© Andreas Hjertström, 2009
ISSN 1651-9256
ISBN 978-91-86135-49-2
Printed by Mälardalen University, Västerås, Sweden
Distribution: Mälardalen University Press

Abstract

This thesis presents new techniques for data management of run-time data ob-
jects in component-based embedded real-time systems. These techniques en-
able data to be modeled, analyzed and structured to improve data management
during development, maintenance and execution.

The evolution of real-time embedded systems has resulted in an increased
system complexity beyond what was thought possible just a few years ago.
Over the years, new techniques and tools have been developed to manage soft-
ware and communication complexity. However, as this thesis show, current
techniques and tools for data management are not sufficient. Today, develop-
ment of real-time embedded systems focuses on the function aspects of the
system, in most cases disregarding data management.

The lack of proper design-time data management often results in ineffec-
tive documentation routines and poor overall system knowledge. Contempo-
rary techniques to manage run-time data do not satisfy demands on flexibility,
maintainability and extensibility. Based on an industrial case-study that iden-
tifies a number of problems within current data management techniques, both
during design-time and run-time, it is clear that data management needs to be
incorporated as an integral part of the development of the entire system archi-
tecture.

As a remedy to the identified problems, we propose a design-time data en-
tity approach, where the importance of data in the system is elevated to be
included in the entire design phase with proper documentation, properties, de-
pendencies and analysis methods to increase the overall system knowledge.
Furthermore, to efficiently manage data during run-time, we introduce database
proxies to enable the fusion between two existing techniques; Component
Based Software Engineering (CBSE) and Real-Time Database Management
Systems (RTDBMS). A database proxy allows components to be decoupled
from the underlying data management strategy without violating the compo-
nent encapsulation and communication interface.

i

Swedish Summary - Svensk
Sammanfattning

Inbyggda realtidssystem blir allt vanligare i de produkter och tjänster vi an-
vänder. Utvecklingstakten går allt fortare och programvaran blir allt mer kom-
plex. Inbyggda system finns idag i t.ex. mobiltelefoner, bilar, flygplan och
robotar, där programvaran kan utgöras av flera miljoner rader kod och tusen-
tals dataelement som är distribuerade över ett stort antal datorer ihopkopplade
i nätverk. Kostnaden för att utveckla dessa komplexa system blir allt högre.
För att utveckla elektroniksystemet i en modern bil närmar sig kostnaden för
mjukvaruutvecklingen idag 40% av den totala utvecklingskostnaden. Inom for-
donsindustrin drivs denna utveckling av framför allt hårdare miljökrav, nya
funktioner samt krav på bättre aktiv och passiv säkerhet.

För att hantera utvecklingen av dessa system försöker man strukturera bort
detaljerad information genom att gruppera funktioner i olika komponenter som
kan kommunicera genom ett förutbestämt gränssnitt. Denna teknik kallas för
komponentbaserad utveckling. Det finns en mängd olika verktyg och tekniker
för att utveckla dessa komponentbaserade system. Dessa tekniker och verk-
tyg fokuserar främst på funktionell strukturering, men är relativt dåliga på att
hantera den stora mängd data som utväxlas mellan dessa komponenter både på
en designnivå under utvecklingen samt under drift. Här finns ett tydligt glapp.

Denna avhandling introducerar nya koncept för hantering av data både un-
der utveckling, underhåll och drift av inbyggda realtidssystem. Resultaten i
denna avhandling baserar sig på en fallstudie som visar att hanteringen av data
måste ingå som en integrerad del av utvecklingen av hela systemets arkitektur.
För hantering av data på en utvecklingsnivå introducerar vi begreppet "data
entity", där vi poängterar vikten av att varje dataelement i systemet ska mod-
elleras och dokumenteras redan i utvecklingsfasen med korrekt dokumentation,

iii

iv

egenskaper och beroenden för att öka den totala kunskapen om systemet. För
hantering av data under drift introducerar vi begreppet "database proxy", som
syftar till att länka två existerande tekniker, komponentbaserad utveckling och
realtidsdatabaser, samman. En databas proxy möjliggör att dessa två tekniker
kan samverka utan att bryta mot grundläggande krav inom komponentbaserad
utveckling.

To Anna and Felix, you are my everything.

Acknowledgements

To be honest, I did not really know what to expect when I started as a Ph.D
student. It felt as I was in need of some expert guidance, and I got it!

The work presented in this thesis would not have been possible without the
expert guidance of my supervisors Dr. Dag Nyström and Prof. Mikael Sjödin.
Thanks for all the support and fruitful discussions! In addition I’m grateful for
the valuable input and guidance from the coauthors Rikard Land and Mikael
Åkerholm of the produced papers. Thanks also to Mimer Information Tech-
nology for the cooperation and input to the project. A special thanks to Peter
Wallin. If you wouldn’t have started your Ph.D studies and so warmly recom-
mended it, I would probably have missed this great opportunity.

I would also like to thank Jörgen Lidholm for the good discussions and
helping a friend in need. Many people at the department have made this journey
more enjoyable, thanks to Stefan Cedergren, Monica Wasell, Fredrik Ekstrand,
Lars Asplund, Karl Ingström, Kaj Hänninen and all the other wonderful people.

To the whole Progress gang, Hans Hanson, Tomas Nolte, Ivica Crnkovic,
Paul Pettersson, Hüseyin Aysan, Farhang Nemati, Moris Behnam, Mikael Ås-
berg, Severine Sentilles, Jukka Mäki-Turja, Johan Kraft, Yue Lu, Stefan Bygde,
Marcelo Santos, Jan Carlsson, Aneta Vulgarakis and all others who have been
great traveling companions, friends and that have provided a lot of input to my
work and thesis.

Most important, I thank my loving family, Anna and Felix for all the sup-
port and making my life wonderful. I love you. You are my everything!

This work is supported by the Swedish Foundation for Strategic Research within
the PROGRESS Centre for Predictable Embedded Software Systems.

Andreas Hjertström
Västerås, December, 2009

vii

List of Publications

Papers Included in the Licentiate Thesis
Paper A: Design-Time Management of Run-Time Data in Industrial Embed-

ded Real-Time Systems Development, Andreas Hjertström, Dag Nys-
tröm, Mikael Nolin and Rikard Land, In Proceedings of 13th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA’08), IEEE Industrial Electronics Society, Hamburg, Germany.
(2008)

Paper B: A Data-Entity Approach for Component-Based Real-Time Embed-
ded Systems Development, Andreas Hjertström, Dag Nyström and Mikael
Sjödin, 14th IEEE International Conference on Emerging Technology
and Factory Automation, Palma de Mallorca, Spain, September, 2009

Paper C: Database Proxies: A Data Management approach for Component-
Based Real-Time Systems, Andreas Hjertström, Dag Nyström and Mikael
Sjödin, Technical report, To be submitted

ix

xi

Additional Papers by the Author
INCENSE: Information-Centric Run-Time Support for Component-Based Em-

bedded Real-Time Systems, Andreas Hjertström, Dag Nyström, Mikael
Åkerholm and Mikael Nolin, Proceedings of the Work-In-Progress (WIP)
session, 14th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, p 4, Seattle, United States, April, 2007

Licentiate Proposal, INCENSE: Information-Centric Development of
Component-Based Embedded Real-Time Systems, Andreas Hjertström,
Technical report 2008

Contents

I Thesis 1

1 Introduction 3
1.1 Thesis Outline . 5
1.2 Paper Overview . 5

2 Background and Motivation 9
2.1 Embedded Systems . 9
2.2 Real-Time Systems . 10
2.3 Component-Based Software Engineering 10

2.3.1 SaveCCT . 12
2.3.2 ProCom . 13

2.4 Data Management . 14
2.5 Design-Time Data Management 14

2.5.1 dSpace Data Dictionary 15
2.5.2 Visu-IT Automotive Data Dictionary 15

2.6 Run-Time Data Management 16
2.7 Data Management System 16
2.8 Real-Time Database Management Systems 17

2.8.1 Mimer Real-Time Edition 18
2.8.2 DeeDS . 18
2.8.3 ARTS-RTDB . 18

3 Research Method and Contributions 21
3.1 Research Method . 21
3.2 Contributions . 23

xiii

xiv Contents

4 Conclusions and Future Research Directions 25
4.1 Conclusions . 25
4.2 Future Research Directions 26

Bibliography 29

II Included Papers 33

5 Paper A:
Design-Time Management of Run-Time Data in Industrial Embed-
ded Real-Time Systems Development 35
5.1 Introduction . 37
5.2 Research Method . 38

5.2.1 Case-Study Validity 39
5.2.2 Description of Companies 39

5.3 Design-time Data Management 41
5.3.1 State of Practice . 42
5.3.2 Use Cases and Scenarios 44

5.4 Observations and Problems Areas 46
5.4.1 Key Observations . 46
5.4.2 Identified Problem Areas 48

5.5 Remedies and Vision for Future Directions 51
5.6 Conclusions . 53
5.7 Future Work . 53
Bibliography . 55

6 Paper B:
A Data-Entity Approach for Component-Based Real-Time Embed-
ded Systems Development 59
6.1 Introduction . 61
6.2 Background and Motivation 63

6.2.1 Problem Formulation 63
6.2.2 Related Work . 64

6.3 The Data Entity . 65
6.3.1 Data Entity Definition 65
6.3.2 Data Entity Analysis 67

6.4 The Data Entity Approach 68
6.5 The ProCom Component Model 70

Contents xv

6.6 Embedded Data Commander Tool-Suite 71
6.7 Use Case . 73

6.7.1 Expanding an Existing System 74
6.7.2 Validation . 75

6.8 Conclusions . 76
Bibliography . 79

7 Paper C:
Database Proxies: A Data Management approach for Component-
Based Real-Time Systems 83
7.1 Introduction . 85
7.2 Background and Motivation 87

7.2.1 RTDBMS Access Mechanisms 88
7.2.2 System Requirements 89

7.3 System Model . 90
7.3.1 Real-Time Database Architecture 90
7.3.2 System Design and Modeling 92
7.3.3 Extended System Design and Modeling 92

7.4 Database Proxy . 93
7.4.1 Hard Real-Time Database Proxy 94
7.4.2 Soft Real-Time Database Proxies 95
7.4.3 Proxy Implementation Description 96

7.5 Implementation . 97
7.5.1 Mimer Real-Time Edition 98
7.5.2 SaveCCT Real-Time Component Technology 99
7.5.3 Embedded Data Commander Tool-Suite 99

7.6 Performance Evaluation . 100
7.6.1 The Application . 101
7.6.2 Benchmarking Setup 102
7.6.3 Real-Time Performance Results 102
7.6.4 Memory Consumption Results 104

7.7 Conclusions . 105
Bibliography . 105

I

Thesis

1

Chapter 1

Introduction

Many of the products we use in our daily life include functionality that are
controlled by embedded computers and software. These computer-controlled
systems have in the last 30 years become a natural part of our society and
account for more than 98% of the total computer systems available on the mar-
ket today. Furthermore they are in many cases the main way of realizing new
and innovative functionality. As an example, vehicular industry are continu-
ously adding new computer-controlled systems, e.g., embedded systems, and
replacing existing mechanical parts with electro-mechanical parts to achieve
higher safety, less pollution and to add new functionality. In fact, almost 90%
of the innovations in a car today is realized by computer software and hard-
ware [1]. Current embedded systems are also evolving from isolated systems
to be increasingly dependent on cross-platform communication with other sys-
tems. An example of this is Car to Car (C2C) [2] communication. This require
flexible handling of data to be shared between various systems.

This evolution is however not without drawbacks. The software and hard-
ware in many systems are becoming increasingly complex. For example, a
high-end car can have about 80 Electrical Control Units (ECUs) containing
as much as 2000 or more software based functions that communicates trough
an excess of 2500 or more signals [1, 3, 4]. I addition, these ECUs are also
distributed and communicates via several different kinds of networks.

Demands for short development cycles and time-to-market in combination
with the complexity of today’s embedded real-time systems require drastically
improved development strategies and tool support.

3

4 Chapter 1. Introduction

Two strategies that are intended to reduce complexity in embedded systems
are Component-Based Software Engineering (CBSE) [5, 6, 7] and Real-Time
Database Management Systems (RTDBMS) [8, 9]. Both CBSE and RTDBMS
have the common aim to reduce software complexity. However, CBSE target
functional complexity whereas RTDBMS target management of system data.

To achieve a higher level of abstraction for software development at design-
time, CBSE has been seen as a possible solution in an effort to lower the com-
plexity by dividing software into well defined building blocks. One of the main
driving forces within CBSE is to achieve more efficient development by reusing
existing components in order to limit the amount of re-implementation and test-
ing, and instead benefit from reusing existing well-tested components. This has
been adopted, not only within the vehicular industry [10, 11], but is also widely
used in a large range of systems such as home electronics [12]. However, cur-
rent design-time tools that are used to develop component-based systems are
largely focused on the components and does not manage the complexity resid-
ing from the large number of data items passed between the components in the
system.

Handling large amounts of data is not a unique problem for embedded sys-
tems. Several other areas such as banking financial and web based systems,
have experienced a similar evolution. A common solution in these cases has
been to incorporate a database management system (DBMS) to enable a higher
lever of abstraction for data management, similar to what was achieved for soft-
ware engineering by CBSE.

An RTDBMS target run-time data produced and consumed in real-time
systems by providing uniform storage and data access, concurrency-control,
temporal consistency, and overload and transaction management [13]. Further-
more, an RTDBMS can offer several additional features compared to tradi-
tional data storage using internal data structures. For example, an RTDBMS
can allow data to be exploited throughout the system using dynamic run-time
access with regular SQL queries, controlling data access and manage coexis-
tence of soft and/or hard real-time data [14].

Even though CBSE and RTDBMS seem to complement each other, com-
bining them is not intuitive since they promote opposing design goals; CBSE
promotes encapsulation and decoupling of component internals from the com-
ponent environment, whilst RTDBMS provide mechanisms for efficient and
safe global data sharing.

This thesis investigates how we can adopt an information centric-view for
information and data handling, when developing and maintaining component-
based embedded real-time systems. The aim has been to develop techniques

1.1 Thesis Outline 5

to manage data both during design-time and run-time and thereby bridging
the gap between component-based software engineering an data management
using real-time database systems.

The contribution of this theses includes a case-study that provides valuable
information about data management problems that embedded systems devel-
opers are facing. Based on these problems we propose a design-time data man-
agement approach denoted data entity. This approach allow data management
to be an integral part of the design environment as an additional architectural
view. Furthermore, the approach allow data, based on the system requirements,
to be modeled and analyzed in an early phase of the development, even before
component implementation. We propose a new technique denoted database
proxies to enable a fusion between RTDBMS and CBSE without violating the
CBSE principles. The usage of a RTDBMS in an component-based framework
will in addition introduce a whole new range of possibilities, such as dynamic
run-time queries aids in logging, diagnostics and monitoring and controlled
access to shard data.

The above concepts has been implemented in a tool called, the Embedded
Data Commander (EDC)

1.1 Thesis Outline
The outline of this thesis is divided into two parts:
Part I Presents the background and motivation for the thesis as well as related
techniques. In chapter 2, some of the related techniques within component-
based development, real-time database management systems and available tools
is presented. Chapter 3 presents the research method and contributions. Our
conclusions and future research direction is presented in chapter 4.
Part II Describes the technical contribution of the thesis in the form of three
papers.

1.2 Paper Overview

Paper A Design-Time Management of Run-Time Data in Industrial Embedded
Real-Time Systems Development. In Proceedings of 13th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA’08),
IEEE Industrial Electronics Society, Hamburg, Germany. (2008)

6 Chapter 1. Introduction

In this paper, we present the results of an industrial case-study conducted at
five companies in which we have studied the t’current state of practice in data
management and documentation in embedded real-time systems. The case-
study identify that there is lack of design-time data management which often
results in costly development and maintenance. Furthermore, inadequate tools
and routines for data management of internal ECU data results in costly devel-
opment and maintenance and is often entirely dependent of the know-how of
single individual experts. Ten specific problems are identified, four key obser-
vations and six suggested remedies are presented.

My contributions to the results is the design and realization of the case-study,
compilation of the results and being main author of the resulting paper.
Paper B A Data-Entity Approach for Component-Based Real-Time Embed-
ded Systems Development. 14th IEEE International Conference on Emerging
Technology and Factory Automation, Palma de Mallorca, Spain, September,
2009

This paper presents our design-time data management approach denoted, the
data entity approach. The approach allow efficient design-time management
of run-time data in component-based real-time embedded systems as an addi-
tional architectural view that complements the traditional architectural compo-
nent inter-connections and development view. The data entity approach elevate
data to be first level citizens of the architectural design, and allow data to be
modeled and analyzed in an early phase of the development. The paper also
presents a design-time data management tool suite that have been implemented
for our approach called Embedded Data Commander (EDC). EDC provides
tools for data modeling, visualization and analysis.

My contributions was to define the data entity approach, implement the tool
and being main author of the resulting paper.
Paper C Database Proxies: A Data Management approach for Component-
Based Real-Time Systems. Technical report, To be submitted

In our run-time data management approach we present the concept of database
proxies. Database proxies enable a fusion between RTDBMS and CBSE with-
out violating the CBSE principles such as reusability. The database proxies
acts as a communication link between the application components input ports
and output ports, and the RTDBMS. This enable component implementations
to be completely decoupled from the database. As a result, the system can fully

1.2 Paper Overview 7

benefit from the advantages of component-based software development com-
bined with the advantages of a real-time database management system since
the database proxies and RTDBMS is a part of the component framework.
Furthermore, the glue-code for the database proxies and the connection to the
RTDBMS is auto-generated by the framework. We implemented the approach
and performed an evaluation which shows an insignificant amount of overhead,
with respect to execution time and memory consumption.

My contributions was to define the database proxy concept, implement the tool
and being main author of the resulting paper.

Chapter 2

Background and Motivation

This chapter will briefly present some technical information about relevant ar-
eas within the scope of this thesis such as, embedded systems, real-time sys-
tems, component-based software engineering and real-time database manage-
ment systems. Furthermore, we present the background and some of the main
challenges when developing and maintaining a data intensive and complex em-
bedded real-time systems such as a vehicular systems. We will also present
some of the existing techniques currently targeting these challenges.

2.1 Embedded Systems

An embedded system differs from regular personal computers in many ways.
It is typically designed to perform a certain task or small set of tasks by inter-
acting through sensors and actuators. Nowadays, these systems can be found
almost everywhere. They are used in watches, vehicles, robots, airplanes or
even toothbrushes. Their purpose is most often to reduce mechanical parts, add
functionality or to save cost. Embedded systems are often characterized by lim-
ited hardware resources such as memory size and processor performance. Tra-
ditionally, embedded systems can been characterized as either insolated stand
alone devices or a part of a larger interconnected system. However, current and
upcoming demands on new functionality and features are now changing em-
bedded systems from being individual systems to be increasingly dependent
on cross-platform communication with other systems. An example of such a
system is car to car communication [2], which allow cars to interact with each

9

10 Chapter 2. Background and Motivation

other to share information such as a possible nearby hazard as well as connec-
tion the car to various internet services. This will introduce new requirements
on how data and systems is managed within areas such as flexibility, depend-
ability and security.

2.2 Real-Time Systems

A real-time embedded system, has additional requirements to not only perform
its task correctly, it also has to perform tasks within a predefined time interval;
not to soon and not to late. Many real-time embedded systems interact with
the environment where external events are received by sensors. These events
are then analyzed and actuated upon, based on the analysis result. A typical
example of a real-time system in a vehicle is an air-bag which has to be inflated
within a certain time frame if activated by a collision. If the inflation is made
too soon or too late the air-bag could cause the passengers even more harm
then a complete lack of inflation.

Traditionally, real-time systems are divided into two main classes, hard
and soft real-time systems. A hard real-time system should perform its results
within before a defined deadline. A failure in meeting the deadline can have
catastrophic consequences if the system is safety-critical. However, a hard real-
time system can also be an engine controller where a missed deadline leads to
poor performance and possibly increased pollution. A typical example of a
safety-critical hard real-time system is a vehicle air-bag.

A soft real-time system usually manages less critical applications where a
missed deadline can have a negative, but tolerable, effect on the performance
of the system. Examples of such systems are, displaying statistical informa-
tion, controlling power windows, perform logging or to display information.
In many applications, a combination of both hard and soft real-time tasks are
used.

2.3 Component-Based Software Engineering

In Component-Based Software Engineering (CBSE), the aim is to achieve a
high level of abstraction when designing systems by dividing systems into
well defined and encapsulated building blocks called components. These com-
ponents have well defined communication interfaces that enables them to be
reusable entities that can be put together into entire systems. It also introduces

2.3 Component-Based Software Engineering 11

Sensor Filter

Mode

Filter

Comp 1

Filter

HMI

Filter

Actuator

Filter

Comp 2

Filter

Comp 3

Required interface Provided interface

Pipe

Figure 2.1: CBSE architectural example

a possibility to maintain and improve systems by replacing individual compo-
nents. In this way a lot of development effort and cost can be saved [15].

Figure 2.1 shows an example of a pipe-and-filter [16] component model
where data is passed between components (filters) using connections (pipes).
The entry point for the connection to the components is the interface (port). No
communication outside of its interface is allowed since the interface is treated
as a components specification.

A component can have two types of interfaces, required and provided in-
terface. The required interface specifies what is needed as input to be able to
process (filter) the data and output the result to the provided interface. Further-
more, a component can be either a white-box or a black-box component. A
white-box component reveal it’s internal composition. This enable developers
to use the inside functionality and directly change the source code if needed.
A black-box component is typically already compiled and does not reveal any
internal details.

There is a great verity of component model which are suitable for different
types of systems. COM [17], EJB [18] and .NET [19] are typically used for
PC applications since they are not sufficiently considering important embedded
systems requirements such as timing properties, safety-criticality and the lim-
ited amount of resources available. Examples of component models aimed to
satisfy the requirements of embedded systems are Rubus [20], SaveCCM [21],
Koala [12], ProCom [22] and AUTOSAR [10].

In the following sections we describe SaveCCM and ProCom which are
used in paper B and paper C.

12 Chapter 2. Background and Motivation

<<Assembly>>
EngineContoller

<<SaveComp>>

oilTempIO
50 Hz

oilTempSensor

<<SaveComp>>

oilTempIO
50 Hz50 Hz

oilTempSensoroilTempSensor

Figure 2.2: Save graphical application design

2.3.1 SaveCCT
The SaveComp Component Technology (SaveCCT) [21] is focused on embed-
ded control software for vehicle systems with an aim to be predictable and
analyzable. The applications are built by connecting components input and
output ports using their interfaces, see Figure 2.2. Components are then exe-
cuted using a trigger based strict "read-execute-write" semantics.

A component is always inactive until triggered. Once triggered it starts
to execute by reading data on input ports to perform its computations. Data is
then written to its output ports and outgoing triggering ports are activated. This
allows the execution of a component to be functionally independent of any con-
current activity, once it has been triggered. SaveCCT also supports composite
components. A composite component is a collection of components that are
encapsulated into a single component with the same interface and behavior as
a primitive component. The difference is that there is only one behavior model
or code piece to consider instead of one for each included component.

Figure 2.2 illustrates an example of a SaveCCT graphical representation of
a component. There are two inports into the Engine Controller application, one
data port and one trigger port. Data is read by the oilTempIO component from
the oilTempSensor inport once triggered every 50Hz. Computations are done
and results propagated onto the output port. In this case the output port is a
combined trigger and output port.

SaveCCT supports manual design, automated activities such as task and
code generation, integrated analysis tools and an execution model. Developers
use an Integrated Development Environment (IDE), a tool supporting graphi-
cal composition of components to create applications. A number of tools are
also available in the IDE for automated formal analysis of components and

2.3 Component-Based Software Engineering 13

architectures. In SaveIDE, component development, architectural and system
modeling is performed manually while system synthesis, glue-code genera-
tion and task allocation are fully automated. Resource usage and timing are
resolved statically during the synthesis.

2.3.2 ProCom
The ProCom component model [22] extends SaveCCT by addressing key con-
cerns in the development of control-intensive distributed embedded systems.
ProCom provides a two-layer component model, and distinguishes a compo-
nent model used for modeling independent distributed components with com-
plex functionality (called ProSys) and a component model used for modeling
smaller parts of control functionality (called ProSave).

In ProSys, a system is modeled as a collection of concurrent, communicat-
ing subsystems. Distribution is modeled explicitly; meaning that the physical
location of each subsystem is not visible in the model. ProSys is an hierarchical
component model where composite subsystems can be built out of other sub-
systems. This hierarchy ends with the so-called primitive subsystems, which
are either subsystems coming from the ProSave layer or non-decomposable
units of implementation (such as COTS or legacy subsystems) with wrappers
to enable compositions with other subsystems. From a CBSE perspective, sub-
systems are the components of the ProSys layer, i.e., they are design or imple-
mentation units that can be developed independently, stored in a repository and
reused in multiple applications.

Figure 2.3: ProSys Component Model

A subsystem is specified by typed input and output message ports, express-
ing what type of messages the subsystem receives and sends. Message ports
are connected through message channels. An example of this is illustrated in
figure 2.3, where a message channel is connected to three subsystems. A mes-
sage channel is an explicit design entity representing a piece of information
that is of interest to one or more subsystems. The message channels make it

14 Chapter 2. Background and Motivation

possible to express that a particular piece of shared data will be required in the
system, before any producer or receiver of this data has been defined. This will
in addition allow information to remain in the design even if, for example, the
producer is replaced by another subsystem.

2.4 Data Management

Data management is defined by the Data Management Association (DAMA)
as:

"the development, execution and supervision of plans, policies,
programs and practices that control, protect, deliver and enhance
the value of data and information assets" [23]

All computer systems involve the usage of data in some way. As the amount
of data increases as well as the increased usage with different areas, an increase
of complexity is often unavoidable. Routines for documentation, storage, re-
trieval and security of data usually becomes additionally important.

In this thesis we distinguish between two types of data management: design-
time data management and run-time data management. This can be exempli-
fied by an embedded system, where design-time data management refer to how
run-time data is organized during the design and development phase. Run-time
data management refers to how data is organized in memory. So far most em-
bedded systems use internal data structures, but database management systems
are becoming more and more common in an effort to handle and structure the
large amounts of data, data complexity and to provide flexible access.

2.5 Design-Time Data Management

Design-time data management has become increasingly important in order to
handle the information complexity in today’s system development and main-
tenance. In addition, the development of systems are often distributed. This
often bring on security issues such as, who is allowed to access or alter infor-
mation. Design-time data management covers many different areas and aims to
provide a better overview and understanding of data throughout the whole sys-
tem life-cycle. This makes proper documentation and project management a
crucial part of design-time data management. Proper documentation and struc-
ture allows for easy access to information, such as properties that can specify
unique naming, type, size and where the data is used. Versioning is another

2.5 Design-Time Data Management 15

important aspect in order to have a common view of the data. Many data inten-
sive applications uses a database management system. Database modeling is
then an important part of design-time data management. This involves creating
a structure that will utilize effective storage, retrieval and proper use of data
from the database.

The number of dedicated design-time tools for managing data in embedded
systems is quite limited. Most tools focus on the properties for individual data
elements and how to create or define new data types. They do however not
present an overview or detailed information of how data is used in the system
during development. The rest of this section briefly presents two such tools.

2.5.1 dSpace Data Dictionary
dSpace Data Dictionary [24] is a central data container for model-independent
data management and holds information about an ECU application for calibra-
tion and code generation. The tool can be used to share information to an entire
project. An example could be interface variables, their scalings, typedefs, etc.,
which should be stored globally to remain consistent for all users.

The data dictionary is also used for managing AUTOSAR properties, along-
side AUTOSAR specification properties at block level in Targetlink [24]. The
input to the dSpace data dictionary is templates generated from Simulink [25].
The data dictionary provides access to information such as specifics on C mod-
ules, function calls, tasks, variable classes and data variants. dSpace data dic-
tionary also gives user the opportunity to import and export AUTOSAR SWC
XML description files which can be used by other tools. The information in-
cluded in dSpace data dictionary reflects the information included in the soft-
ware component templates and does not include information about the overall
system and what data and signals that are included. It is also possible to spec-
ify and produce signal lists and spreadsheets with information regarding data.
The development process in this tool is to start modeling components and their
structure.

This tool does not focus on managing or visualizing the data flow in the
system. Neither does it include analysis techniques to see data dependencies.

2.5.2 Visu-IT Automotive Data Dictionary
Automotive Data Dictionary (ADD), is a repository solution to centralize data
declarations and ensure label/variable uniqueness for companies. ADD has an
interface towards MATLAB and Simulink and is used to develop ECUs within
the automotive industry. The main goal is to close the gap between software

16 Chapter 2. Background and Motivation

development and requirements engineering to avoid inconsistency throughout
the whole development process. It gives the developers a view of the data
specification but does not include any implementation details [26].

ADD mostly focuses on requirements engineering and unique labeling and
does nor cover information about data flow and data dependencies.

2.6 Run-Time Data Management
Run-time data management concerns how data is managed during execution of
the system. So far, most embedded systems handle data in an ad hoc, tradition-
ally using internal data structures. A more high-level approach for run-time
data is to use a database management system.

2.7 Data Management System
A Database Management Systems (DBMS) is used to organize large amounts
of data. Figure 2.4 shows an high level picture of a DBMS system. The DBMS
is an interface to the physical data stored in memory. A typical application
has so far been large enterprise systems such as libraries, commercial web-
sites and banking. Examples of enterprise mainstream DBMS are Oracle [27],
Microsoft Access [28] and MySQL [29].

The main purpose of a DBMS is to provide a number of software programs
to organize data. Standard Query Language (SQL) [30] is one of the most
common language for uniform data access. SQL enables high level tools to
request desired information from large amount of data. A DBMS have several
important parts which includes a query language, optimized data structures and
mechanisms for various transactions.

To ensure a correct behavior and safe sharing of data, the database should
conform to the ACID properties [31]:

• Atomicity, either all information in a database transaction is updated or
none at all.

• Consistency, after a transaction is completed the database will be in a
valid state. If not, the transaction must be rolled back.

• Isolation, changes that are made to the database will not be revealed to
other users until the transaction is committed.

• Durability, any change to the database is permanent. The result of a
committed transaction can not be reverted.

2.8 Real-Time Database Management Systems 17

DB

Database

Management
System

App 3App 2App 1

QueriesQueries

Figure 2.4: DBMS overview

Most DBMS’s use concurrency control to handle concurrent operations,
avoid transaction conflicts to achieve logical correctness. The most commonly
used algorithm is Two-Phase-Locking (2PL) [32].

The increasing amount of data and growing data complexity have increased
the need for a DBMS also in embedded systems. There are now several com-
mercial Embedded DataBase Management Systems (DBMS) available that
have been developed to suite the specific needs of embedded systems, such
as small footprint in mind [8, 9, 33].

2.8 Real-Time Database Management Systems

DBMS has evolved to also support real-time embedded systems using Real-
Time DataBase Management System (RTDBMS). Embedded real-time sys-
tems have different requirements compared to large enterprise systems. CPU
usage, footprint and availability are highly important. For safety-critical em-
bedded real-time systems, predictable access to data is one of the most im-
portant features required of the database [34]. Compared to the concurrency
control algorithms used in a DBMS, a RTDBMS most not only enforce seri-

18 Chapter 2. Background and Motivation

alization, but also apply to the real-time timing constraints such as deadline.
Because of this other types of concurrency algorithms such as 2V-DBP [14]
are used.

Below we present some of the commercial and research RTDBMS that are
available.

2.8.1 Mimer Real-Time Edition

Mimer Real-Time Edition (Mimer RT) is a commercial real-time database
management system (RTDBMS) intended for applications such as vehicle sys-
tems, process automation and telecommunication systems. Mimer RT supports
applications with both hard and soft real-time requirements without jeopardiz-
ing database consistency using the 2V-DBP concurrency algorithm [14] for
hard transactions. The algorithm allows soft and hard transactions to share
data independent of each other. This is achieved by using two different user
interfaces to make soft and hard transactions coexist without compromising
real-time properties of the hard transactions. A query from soft transaction
uses a 2PL-HP protocol [35] and can be done at any time with regular SQL
query. This differs from the hard real-time database pointers since the pointer
is bounded to a specific data element during the initialization of the system.

2.8.2 DeeDS

DeeDS [36] is a distributed main-memory Real-Time database developed at
Skövde University, Sweden. DeeDS is built for the Enea OSE real-time oper-
ating system [37] and supports real-time database systems with soft and hard
deadlines. To support soft and hard deadlines, DeeDS uses a dedicated service
processor to execute hard transactions separate from the application functions.

In a distributed setting, each node are locally consistent. However, the
system view at several nodes might be inconsistent. This implies that critical
data has to be stored on a local node, whereas only less critical data can be
distributed.

2.8.3 ARTS-RTDB

Carnegie Mellon University, Pittsburgh, has developed a distributed relational
database, that supports both hard and soft real-time tasks, for the ARTS real-
time operating system [38], the ARTS-Real-Time DataBase (RTDB) [39].

2.8 Real-Time Database Management Systems 19

ARTS-RTDB have chosen to optimize the most commonly used data access
operations, SELECT, INSERT, UPDATE and DELETE. To avoid costly roll-
back operations, two phase locking with high priority abort (2PL-HP) [35] is
used. To manage the distribution, a file is used as a shared resource between
the different nodes. ARTS-RTDB also utilizes worker threads to periodically
do backups in main memory.

Chapter 3

Research Method and
Contributions

The aim of this research project is to improve current data management for
industrial companies, during development and maintenance of embedded real-
time systems.

3.1 Research Method

Current research has pointed out that the design-time and run-time data com-
plexness in today’s industrial and vehicular embedded systems as well as in
future embedded systems is reaching a point where current tools and tech-
niques are no longer sufficient [1, 4, 40, 41, 42, 43]. CBSE is increasingly used
within embedded systems development and seen as one solution. However,
CBSE does not target design-time and run-time data management. The focus
is rather towards encapsulating functionality and to achieve a higher level of
abstraction.

Studies has shown that an RTDBMS can be incorporated to manage run-
time data in complex embedded systems [34, 40]. However, the usage of a
RTDBMS in a component-based development setting in order to achieve more
structured data management of the data flow between components is not cov-
ered.

21

22 Chapter 3. Research Method and Contributions

Design-Time Data

Management

Paper B

Run-Time Data

Management

Paper C

Original ideas and

assump�ons

Problem 2

Problem 1

Outcome

Problem n

Incense: Informa�on-Centric Development Framework

Literature Studies

Paper A Case-Study

Figure 3.1: Research Overview

Figure 3.1 shows an overview of our research flow. From the initial ideas
stated above, we continued the research with literature studies. These studies
confirmed that the current status within data management in these systems in-
deed is becoming an increasing challenge for developers and system architects.
To get additional support for our research, we conducted a case-study with five
different companies within the industrial and vehicular domain of real-time
embedded systems. This study identifies a number problems regarding design-
time data management.

The result of this case-study is published in paper A. The continued re-
search was divided in two parts to form papers B and C, as seen in figure 3.1,
to form the Incense: Information-Centric Development Framework.

3.2 Contributions 23

3.2 Contributions
In this section we present the main scientific contributions of this thesis.
Case-Study

1. We indicate that current tools and methods for data management during
design-time and run-time are not adequate.

2. We conclude that the importance of data management needs to be sub-
stantially elevated in order to increase the knowledge and understanding
of the system.

3. We identify ten problems within documentation, tool support and rou-
tines.

4. We propose six remedies to address these problems.

Data Entity

1. We present the concept of the data entity that enables design-time mod-
eling, management, documentation and analysis of run-time data.

2. We propose that run-time data should be acknowledged as first class ob-
jects that can be modeled, analyzed, and where data dependencies can
viewed during the whole development phase.

3. We present a proof of concept implementation data management tool,
the Data Entity Navigator (DEN).

Database Proxy

1. We present a technique to enable a fusion between component-based
software engineering and a real-time database management system.

2. We introduce the concept of database proxies to decouple components
from the underlying database.

3. We have implemented a framework as proof of concept where a system
can be designed with or without a database, where database proxy prop-
erties are generated from its specifications to glue code and further to
executable C-code.

4. We evaluate the approach which indicate that the execution time over-
head and additional memory overhead is in order of 1-2%.

Chapter 4

Conclusions and Future
Research Directions

4.1 Conclusions

This research steams from the rapidly growing complexity with respect to the
amount of data and data flow between components in today’s embedded real-
time systems. This is not addressed by contemporary development techniques,
since they are mostly focusing on achieving a higher level of abstraction by
encapsulating functionality.

Current tools and techniques for managing data are mostly focusing on
distributed data and creating libraries to define and manage new data types.
However, our research has shown that current state of practice for managing
internal ECU data is not adequate. There is an increasing need for tools and
techniques that manage data at both design-time and run-time.

The result of this thesis is a set of new tools and techniques to enhance
current and future data management-strategies during design-time and run-time
by adopting an information-centric approach.

We have introduced a new design-time approach, the data entity approach,
that elevates run-time data to become a first class citizen in the system archi-
tectural design as a data architectural view. The approach allows data to be
documented, modeled and analyzed separately from the actual component im-
plementation.

25

26 Chapter 4. Conclusions and Future Research Directions

Similar to what has been adopted by several other areas that are data in-
tensive, with high demands on flexibility and structured data management, we
propose to use a database management system. However, the usage of a real-
time database management system, in conjunction with component-based de-
velopment is not obvious since the design goals of component-based software
engineering and real-time database management systems are contradicting. To
overcome these contradictions we have introduced the concept of database
proxies which enable a successful fusion between real-time database manage-
ment system and component-based software engineering. We have further-
more showed that this fusion introduces a number of new possibilities for
components-based development at a minimum cost with respect to executions
time and memory overhead.

From our point of view, the introduction of new data management tools
and techniques is inevitable in order to meet the needs of component-based
real-time embedded systems development of today and tomorrow.

4.2 Future Research Directions

Based on the results presented in this thesis, a number of new research direc-
tions are opened.

Paper B presents the data entity concept. The data-entity approach provides
designers with an additional architectural view which allows for graphical mod-
eling of data, visualization of dependencies, properties, documentation etc.
However, the graphical visualization implementation which enables develop-
ers to get an overview of the data architecture, similar as the architectural
overview of interconnected components, has not been completed. Further-
more, we aim to extend the analysis capabilities of our tool to include formal
end-to-end and relative timing validity analysis for producing and consuming
components [44]. In addition to this, we would like to perform an industrial
evaluation to validate our approach.

Paper C presents the concept of database proxies that enable a fusion between
Component-Based Software Engineering and Real-Time Database Manage-
ment Systems. The technique does however not consider composite compo-
nents. Information that a component within a composite component utilizes a
database is not reviled in the interface of the composite component. Additional
research on how to transfer knowledge about the existence of a database in-

4.2 Future Research Directions 27

side a composite component to its interface as well as possible usage without a
database is needed.

We would also like to extend soft database proxies to support additional
SQL data manipulation such as INSERT operations. Further evaluation and
analysis on an industrial application would also be interesting.

Additional research directions To reach a more extensive usage of our
database proxy approach further research on inter-process communication [45]
and distributed queries [46] is necessary in order to, for instance maintenance
and service tools to access different parts of the system.

An additional aim is to perform a case-study with several people developing
a system, with or without our approach, to further evaluate the impact in an
industrial setting.

Bibliography

[1] M. Broy. Automotive Software and Systems Engineering. In MEM-
OCODE ’05: Proceedings of the 2nd ACM/IEEE International Confer-
ence on Formal Methods and Models for Co-Design, pages 143–149,
Washington, DC, USA, 2005. IEEE Computer Society.

[2] CAR 2 CAR Communication Consortium. http://www.car-to-car.org/.

[3] Leen Gabriel and Heffernan Donal. Expanding Automotive Electronic
Systems. Computer, 35(1):88–93, Jan 2002.

[4] Stefan Voget. Future Trends in Software Architectures for Automotive
Systems. Advanced Microsystems for Automotive Applications, 2003.

[5] Ivica Crnkovic and Magnus Larsson. Building Reliable Component-
Based Software Systems. Artech House, 2002.

[6] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Professional, December 1997.

[7] George T. Heineman and William T. Councill. Component-Based Soft-
ware Engineering: Putting the Pieces Together (ACM Press). Addison-
Wesley Professional, June 2001.

[8] Mimer SQL Real-Time Edition, Mimer Information Technology. Upp-
sala, Sweden. http://www.mimer.se.

[9] eXtremeDB, McObject. Issaquah, WA USA. http://www.mcobject.com/.

[10] AUTOSAR Open Systems Architecture. http://www.autosar.org.

[11] Arcticus Systems. http://www.arcticus.se.

29

30 Bibliography

[12] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The Koala
Component Model for Consumer Electronics Software. IEEE Computer
Society, 33(3):78–85, Mar 2000.

[13] P. S. Yu, K. Wu, K. Lin, and S. H. Son. On Real-Time Databases: Concur-
rency Control and Scheduling. Proceedings of the IEEE, 82(1):140–157,
January 1994.

[14] Dag Nyström, Mikael Nolin, Aleksandra Tešanović, Christer Norström,
and Jörgen Hansson. Pessimistic Concurrency Control and Versioning to
Support Database Pointers in Real-Time Databases. In Proceedings of
the 16th Euromicro Conference on Real-Time Systems, pages 261–270.
IEEE Computer Society, June 2004.

[15] Ivica Crnkovic. Component-based Software Engineering - New Chal-
lenges in Software Development. In Software Development. Software
Focus, pages 127–133. John Wiley and Sons, 2001.

[16] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal, Peter Sommerlad, and Michael Stal. Pattern-Oriented Soft-
ware Architecture, Volume 1: A System of Patterns. John Wiley & Sons,
1996.

[17] Dale Rogerson. Inside com. Microsoft Press, 1997.

[18] EJB 3.0 Expert Group. Enterprise JavaBeansTM,Version 3.0 EJB Core
Contracts and Requirements Version 3.0. Final Release, 2006.

[19] .NET Framework. Microsoft Visual Studio Developer Center.
http://www.microsoft.com/NET/.

[20] Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Mats Lindberg, John
Lundbäck, and Kurt-Lennart Lundbäck. The Rubus Component Model
for Resource Constrained Real-Time Systems. In 3rd IEEE International
Symposium on Industrial Embedded Systems, June 2008.

[21] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
Save Approach to Component-Based Development of Vehicular Systems.
Journal of Systems and Software, 2006.

Bibliography 31

[22] Tomas Bures, Jan Carlson, Ivica Crnkovic, Séverine Sentilles, and Aneta
Vulgarakis. ProCom - the Progress Component Model Reference Manual.
Technical Report, Mälardalen University, 2008.

[23] DAMA International. The DAMA Guide to the Data Management Body
of Knowledge. Technics Publications, 2009.

[24] dSPACE Tools. http://www.dspaceinc.com.

[25] The MathWorks. http://www.mathworks.com.

[26] Visu-IT. http://www.visu-it.de/ADD/.

[27] ORACLE. http://www.oracle.com.

[28] Access, Microsoft. http://www.microsoft.com/.

[29] MySQL, Sun Microsystems. http://www.mysql.com.

[30] ISO SQL 2008 standard. Defines the SQL language, 2009.

[31] Fred R. McFadden, Mary B. Prescott, and Jeffrey A. Hoffer. Modern
Database Management. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1998.

[32] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The Notions of
Consistency and Predicate Locks in a Database System. The communica-
tions of the ACM, 19(11):624–633, November 1976.

[33] Enea Data, Polyhedra. http://www.enea.com/polyhedra.

[34] Dag Nyström. Data Management in Vehicle Control-Systems. PhD thesis,
Mälardalen University, October 2005.

[35] R.K Abbott and H. Garcia-Molina. Scheduling Real-time Transactions:
A Performance Evaluation. ACM Transactions on Database Systems, 17,
September 1992.

[36] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson, and
B. Eftring. DeeDS Towards a Distributed and Active Real-Time Database
System. ACM SIGMOD Record, 25, 1996.

[37] ENEA Data. OSE Real-Time System. http://www.enea.se.

[38] H. Tokuda and C. Mercer. ARTS: A Distributed Real-Time Kernel. ACM
SIGOPS Operating Systems Review, 23(3):29–53, July 1989.

[39] Y-K. Kim, M. R. Lehr, D. W. George, and S. H. Song. A Database Server
for Distributed Real-Time Systems: Issues and Experiences. In Proceed-
ings of the Second IEEE Workshop on Parallel and Distributed Real-Time
Systems, pages 66–75. IEEE Computer Society, April 1994.

[40] Sandro Schulze and Mario Pukall and Gunter Saake and Tobias Hoppe
and Jana Dittmann. On the need of data management in automotive sys-
tems. In Johann Christoph Freytag, Thomas Ruf, Wolfgang Lehner, and
Gottfried Vossen, editors, BTW, volume 144 of LNI, pages 217–226. GI,
2009.

[41] Manfred Broy. Challenges in Automotive Software Engineering. In ICSE
’06: Proceedings of the 28th international conference on Software engi-
neering, pages 33–42, New York, NY, USA, 2006. ACM.

[42] Alexander Pretschner, Christian Salzmann, and Thomas Stauner. 2nd
intl. icse workshop on software engineering for automotive systems. SIG-
SOFT Softw. Eng. Notes, 30(4):1–2, 2005.

[43] Håkan Gustavsson and Jakob Axelsson. Evaluating Flexibility in Em-
bedded Automotive Product Lines Using Real Options. In SPLC ’08:
Proceedings of the 2008 12th International Software Product Line Con-
ference, pages 235–242, Washington, DC, USA, 2008. IEEE Computer
Society.

[44] Nico Feiertag and Kai Richter et.al. A Compositional Framework for
End-to-End Path Delay Calculation of Automotive Systems under Dif-
ferent Path Semantics. In EEE Real-Time System Symposium (RTSS),
(CRTS’08) : Barcelona, Spain. IEEE, 2008.

[45] Mentor Graphics. http://www.mentor.com/products/vnd/.

[46] Thomas Nolte and Dag Nyström. Introducing Substitution-Queries in
Distributed Real-Time Database Management Systems. In Proceedings
of the 10th IEEE International Conference on Emerging Technologies and
Factory Automation. IEEE Computer Society Press, September 2005.

II

Included Papers

33

Chapter 5

Paper A:
Design-Time Management of
Run-Time Data in Industrial
Embedded Real-Time
Systems Development

Andreas Hjertström, Dag Nyström, Mikael Nolin and Rikard Land
In Proceedings of 13th IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA’08), IEEE Industrial Electronics Society,
Hamburg, Germany. (2008)

35

Abstract

Efficient design-time management and documentation of run-time data ele-
ments are of paramount importance when developing and maintaining modern
real-time systems. In this paper, we present the results of an industrial cases-
tudy in which we have studied the state of practice in data management and
documentation. Representatives from five companies within various business
segments have been interviewed and our results show that various aspects of
current data management and documentation are problematic and not yet ma-
ture. Results show that companies today have a fairly good management of
distributed signals, while internal ECU signals and states are, in many cases,
not managed at all. This lack of internal data management results in costly de-
velopment and maintenance and is often entirely dependent of the know-how
of single individual experts. Furthermore, it has, in several cases, resulted in
unused and excessive data in the systems due to the fact that whether or not a
data is used is unknown.

5.1 Introduction 37

5.1 Introduction
Most of today’s embedded system developers are experiencing a vast increase
of system complexity. The growing amount of data, the increasing number
of electrical control units (ECUs) and inadequate documentation are in many
cases becoming severe problems. The cost for development of electronics in
for instance high-end vehicles, have increased to more than 23% of the total
manufacturing cost. These high-end vehicle systems contain more than 70
ECUs and up to 2500 signals [1, 2].

A lot of research has been done in the area of run-time data management for
real-time systems. This has lead to the development of both research-oriented
data management solutions, such as [3, 4, 5], and commercial real-time data
management tools, such as [6, 7, 8]. However, in most cases this research
and these tools focus on run-time algorithms and concepts, but do not man-
age data documentation. In this case-study we investigate state of practice in
design-time data management and documentation of run-time data in indus-
trial real-time systems. An earlier case-study on data management in vehicle
control-systems has indicated a lack of data management and documentation
internally in the ECUs [9]. The case-study in this paper covers a broader scope
of companies, and focuses on the development process and documentation of
real-time data.

The study includes five companies, four vehicle companies active in differ-
ent domains and one company producing electrical control systems. The study
identifies ten problem areas in the development process and suggests remedies
and directions for further studies. Furthermore, we show that the importance
of adequate data management is growing along with the increasing complexity
of real-time and embedded systems [10].

The main observation from our study is the rudimentary, or in some cases
total lack of, data management and data documentation for internal ECU data.
This should be compared to distributed network data that, due to adequate tool
support, are fairly well managed and documented. We observed that this lack
of management, in some cases leads to inadequate development routines when
handling data.

Currently, companies developing safety-critical systems are becoming in-
creasingly bound to new regulations, such as the IEC 61508 [11]. These reg-
ulations enforce stronger demands on development and documentation. As an
example, for data management it is recommended, even on lower safety lev-
els, not to have stale data or data continuously updated without being used.
Companies lacking techniques for adequate data management and proper doc-
umentation will be faced with a difficult task to meet these demands.

38 Paper A

The main contributions of this paper include:

• A case-study investigating state-of-practice in data management for real-
time systems.

• Ten identified problem areas in current practice.

• Suggestions of remedies and future research directions.

The outline of the following parts of the paper is as follows. Section 2 de-
scribes our research method and the five participating companies. Section 3
reports the state-of-practice in data management and documentation of indus-
trial embedded real-time systems. In section 4 we present four key observations
and ten identified problem areas in current practice. In section 5 we propose
six remedies and future research directions. In section 6 and 7 we conclude the
paper and suggest future work based on the findings in this case-study.

5.2 Research Method
This qualitative case-study [12] has been conducted at five companies, mostly
in various vehicular business segments, developing systems in various appli-
cation areas within the embedded real-time domain. The main source of in-
formation has been interviews with open-ended questions [13] conducted at
the companies. One person at each company with in depth knowledge of their
system development, both on high and low level were interviewed. All inter-
views have, after promises of anonymity, been recorded to be able to have open
discussions that could later be evaluated.

The work-flow of these interviews has been as follows; (i) the interviewee
was contacted and asked to take part in this interview with a short explanation
of the contents. (ii) A short summary explaining our area of interest was sent
one week before the interview. (iii) The interview was executed, and set to
last for approximately one hour. (iv) After each interview, the recording from
the interview was analyzed and the answers written down as a summary ques-
tion by question. (v) A document with all of the questions and their respective
summaries where sent back to the interviewee for possible commenting and
approval. In some cases, the document included additional requests for clarifi-
cation of certain areas.

The interview questions were divided into five parts, with some general
questions in the beginning, more detailed in the middle, and open discussions
towards the end.

5.2 Research Method 39

The interviews consisted of the following five parts:
Part one of the interview was a series of personal questions to get background
information such as the interviewees position at the company, years employed
and area of expertise. This was made to ensure that the interviewee had the
desired background and knowledge.
Part two was a series of short yes/no questions to get some basic understand-
ing about the business domain, product characteristics, and how they manage
the system and information today.
Part three was the main part which included more exhaustive questions about
how data is managed and documented during the development. This section
also included questions regarding how and if documentation is continuously
updated when changes or corrections occur after release or during mainte-
nance.
Part four covered the development process and the organization.
Part five consisted of a more open part with a chance for the interviewee to
speak more freely about his/her own experiences and observed problems within
the area.

5.2.1 Case-Study Validity
All of the studied companies are among the world-leaders within their respec-
tive domains which indicate a representative selection. Based on this and the
fact that the findings are so conclusive among the companies, we believe that
the study provides a representative overview of the common practice and can
therefore be considered important. However, the purpose of this study is not
to claim, based on this population, that the results are statistically confident or
valid for all companies in these business segments.

5.2.2 Description of Companies
The studied companies have requested to be anonymous and are therefore de-
scribed in this paper as COMP1-COMP5.

COMP1 is a producer of heavy vehicular systems. They have a produc-
tion volume in the range of 50.000-70.000 units per year. Their system are
resource-constrained, distributed and with both critical and non-critical parts.
In their development they mainly use software components that are developed
in-house. The information is distributed between ECUs via two redundant
CAN [14] networks. The system is built on a software platform that is con-
tinually evolving.

40 Paper A

COMP2 produces heavy vehicular systems in the range of 60.000-80.000
units per year and they base their systems on a software platform. Distribution
of critical data is performed on three CAN networks with different criticality
levels where the communication on the most critical bus is cyclic whereas the
other two are event triggered.

COMP3 is another vehicular company with annual volumes in the range of
450.000-550.000 units. Their system can be considered highly safety-critical
and resource-constrained. Furthermore, they use several different types of net-
works to distribute data. Most of the hardware and software are developed
by subcontractors. Data is distributed using network protocols, such as CAN,
LIN [15] and MOST [16].

COMP4 is a manufacturer of public transportation systems producing ap-
proximately 1000 units per year. Network communication is made on field-
buses. They are now shifting to Ethernet communication with their own pro-
tocol layers in their latest platform. There are both periodic data and event
triggered data on the bus. They have a small amount of software redundancy
but are moving towards hardware redundancy. Almost all development is made
in-house. Their systems are based on software platforms that are continuously
refined during their 30 year product lifetime. Old products are during their
lifetime updated with new software platforms.

COMP5 develops around 10.000 units of large stationary logic control sys-
tems that are less resource-constrained than the other systems in the study.
Their systems are based on regular software development and where parts of
the system are developed separately as components. Their systems are con-
tinuously changing and functionality is added throughout the life-time of the
system. Network communication is quite limited and based on Ethernet [17].
They have developed their own standard for development based upon the water-
fall model [18]. The ECUs in the system contain both critical and non-critical
functionality. The system is built using a centralized configuration database
where involved nodes collect information such as system parameters and store
them locally before usage.

All five companies selected for this study have been active within research
and development of distributed embedded real-time systems for many years.
This also applies to the interviewees which all could be considered highly com-
petent and have at least five years of company experience. The companies de-
velop products that mainly incorporate both hard and soft real-time properties.
The investigation concerns how their systems are developed and maintained
throughout their life-cycle.

5.3 Design-time Data Management 41

C
om

pa
ny

V
eh

ic
ul

ar

Pr
od

uc
tV

ar
ia

nc
e

Sa
le

s
Vo

lu
m

e

H
ar

d
re

al
-t

im
e

So
ft

re
al

-t
im

e

R
es

ou
rc

e-
co

ns
tr

ai
ne

d

C
om

po
ne

nt
-b

as
ed

D
is

tr
ib

ut
ed

Pl
at

fo
rm

-o
ri

en
te

d

COMP1 Y 1 2 Y Y 3 Y Y Y
COMP2 Y 5 3 Y Y 4 N Y Y
COMP3 Y 4 5 Y Y 5 Y Y Y
COMP4 Y 2 1 Y Y 2 N Y Y
COMP5 N 2 1 Y Y 1 Y Y N

Figure 5.1: Company description.
Range: Low=1 and High=5. Yes=Y and No=N

Figure 5.1 shows some of the main similarities and differences between the
companies. As seen in the figure, four of the involved companies produce ve-
hicular systems and one company, COMP5 develops stationary industrial sys-
tems. The column "Product Variance" indicates if a company has large vari-
ances between their products. For example at COMP2, less than two products
delivered have the same configuration while almost all of COMP1 products
are off-the-shelf. Annual sales volume has a range between 1000 delivered
products to several hundreds of thousands. The products of all five companies
have both soft and hard real-time properties. Furthermore, all of the compa-
nies develop resource-constrained systems but systems developed at COMP1-
COMP3 are more resource-constrained than the others. The most resource-
constrained product developer is in this case COMP3 with high volumes and
limited amount of system resources. Finally, the column "Platform-oriented",
indicates if the company develops a company-common software platform as a
base used in several manufactured products but with different configurations.

5.3 Design-time Data Management

In this section we present some state-of-practice issues on how the interviewed
companies perform their documentation and process at design-time followed
by a number of use cases and scenarios.

42 Paper A

5.3.1 State of Practice

In the following part we present how the individual companies perform their
documentation and what kind tools and processes are used. The main focus is
to provide a better understanding of how data is managed throughout develop-
ment and maintenance. Since there is a lot of information about each company
in this section, we have classified each of the companies with a few keywords
for readability and overall understanding.

COMP1 uses Rubus Visual Studio [19], which is a development environment
that is tightly integrated with the Rubus operating system. In this tool they have
adequate documentation complying with the J1939 and J1587 standard for bus
messages. Except from bus messages they only have sparse documentation on
data types in the internals of the ECUs. For most of the documentation they
are entirely dependent on the person responsible for a specific part of the sys-
tem. According to the interviewee this has worked quite well previously when
their old software platform was used and the projects where smaller. Now
they are introducing a new, more advanced, platform and are experiencing a
big increase in data flow and system complexity. Current practice, where a
small group or a single person alone is responsible for this information, is not
sufficient anymore.

Company classification: Dependent on individual developers.

COMP2 Internally within an ECU, documentation and mechanisms such as
special control groups evaluating the work are not so extensive. It is more
up to the developer to manage data. The documentation and high-level devel-
opment of internal behavior is made in Enterprise Architect [20] and follows
Rational Unified Process (RUP) [21] as their development process.

For network communication they recently moved from text-based speci-
fications to a database built on Vectors CAN db-admin [22], with their own
company specific communication layer. An integration group has control of
the network documentation and is responsible for how the signals are used.
This enables them to have control of the network and its contents. Also, once
a month, a more detailed review that works as a filter for detecting errors is
performed. The documentation regarding the network is continuously updated
with new information but old data is never removed. A problem for them has
been the growing amount of documentation with several hundred pages of text
to describe small parts of the system.

5.3 Design-time Data Management 43

They strictly follow a defined process for adding, removing or searching for
data or data properties but have also worked out a "speedy" process if you need
fast decisions. They also have a routine to once a year go through the system
and check if all data on the bus is used and all code really executes.

Company classification: Network controlled by an integration group. Lit-
tle control on internal ECU data management

COMP3 uses Rational Rose [23] both for documenting internal signals within
the ECU and for external, public network signals. From Rational Rose, func-
tion, system and software descriptions are generated. All signals are then
semi-automatically put in a signal database and also in spread-sheets. From
the spread-sheets, a special appendix is generated with specifications on tim-
ing requirements, semantics signals etc. The appendix is open for viewing to
all involved developers. They struggle with large amount of text, sometimes
several thousand pages, needed for describing models etc. Most of the devel-
opment, both hardware and software is made by subcontractors.

This company builds their systems on different software platforms. Each
platform has a leader that has a lot to say about documentation. Except from
deciding what should be added or removed in the system, they also look at
the entire business case if a change is doable from a technical and economical
point of view. If not, they have the power to abort the introduction of new
functionality if deemed necessary.

The company’s knowledge about signals is documented in a signal database
on a global level but it is more up to the responsible person for each software
component to have internal control of each ECU. This is, according to them, a
known problem. For internal ECU changes, there is a standardized document
revision on dedicated meetings. Nothing is released to a subcontractor until it
is approved due to legal aspects.

They work according to a so called "superset" thinking in their software
platform where they have excessive signals to support different versions of
the system. A unique configuration file containing specific information for a
specific system is then distributed to all nodes in the system to enable or disable
desired functionality.

Company classification: Good global knowledge on signals. The platform
leader controls functionality. Each software developer is responsible for how
data is managed internally on the ECU.

COMP4 uses spread-sheets for both signals and the fieldbus. During devel-
opment all staff in a project can search and update these spread-sheets until

44 Paper A

they do a freeze. A first freeze is done before the actual implementation but
is changed if faults are discovered. After a freeze, only a special reference
group can perform changes in the freezed version. It is a living process un-
til the product is type approved at the customer. All developers can read and
reserve signals during development. A company defined process is used to
decide when freezes are supposed to be done.

Company classification: Reference group controlled. Uses freezed version
and spread-sheets for signals.

COMP5 uses Serena Dimensions [8], an application life-cycle tool where doc-
umentation is done together with the code. They also use high-level drawing
tools for component development with a specified system interface and c-code
generation. Both code and documentation is versioned in Serena Dimensions.
The main idea with their system is that data values can be changed in their cen-
tral database even when the system is up and running. When a change is made
in the configuration database and committed, all involved nodes are notified
that there are new data in the database. ECUs that use this data, collect a local
copy from the database for internal use. Which kind of data a person is able to
change in the central database depends on which authorization level the user
is assigned. The majority of the data communication is done internally on the
ECU and not on the network.

Company classification: Central configuration database. Access rights
controlled.

5.3.2 Use Cases and Scenarios
This section illustrates some of the important use cases that occur during devel-
opment and maintenance. What are the main differences in how the involved
companies handle adding, removing, and searching for data in their system?

Adding data to the system This is done differently in all companies. In
COMP1, the responsible technician verifies the system architecture, then de-
cides which node to use and how the data should be transported. This is then
discussed with the developer in an effort to find flaws in the solution. After that
there are no special routines for how this is done. It is up to the developer. This
same action is handled completely differently in COMP2 where a developer
has to write a function specification which is approved by the configuration
manager. In the change process, applicable on modeling and signaling COMP3
uses a rudimentary web interface to ask for a change. A team then examines
the change and physically synchronizes it to see if the change is technically

5.3 Design-time Data Management 45

justified. If it is a major change to the system, the business case is also eval-
uated. In COMP4, adding data is managed within the project but all signals
should be added and approved before implementation. If a change is requested
after the documentation is freezed, a reference group has to verify and approve
the change. COMP5 uses a similar process. If the new data is approved by an
authorized person it can be added and used.

Removal of data Even if companies have some routine for adding data to
the system, routines on how to remove data is usually non-existent. This raises
the question if it could be the case that there are signals in the system that are
produced but not consumed.

As in the previous section, in COMP1 it is up to the system responsible.
Rubus has no support for checking if a produced signal is used or not. In
COMP2, COMP3, and COMP5 they do not remove anything at all. COMP2
does a consistency check against a spread-sheet once a year to see if all code
in the system actually runs. If a signal on the bus is not to be used anymore, its
CAN ID is defined as occupied and is never used again. This is made in order
to minimize future mistakes. COMP3 has no technique to automatically do a
mapping and see if data is not used and can be removed without affecting the
system. It is considered too time consuming to do this mapping. Instead they
keep the old data and calculate with a 15% overhead in the system. In an effort
to minimize the need for removal of data, COMP4 does a consistency check
in the beginning of each project and only include required signals. They also
try to remove unnecessary signals during system updates but normally there are
buffers for extra signals in a project. This is because they want to avoid changes
in the system that can possibly have unknown consequences. If something is
removed in COMP5, it is verified in system tests. However they do not really
remove the data, instead they hide it so that it cannot be used in the future.

What seems to be unanimous for all of these companies is that removal of
signals is problematic. Since there is no good support for this in the tools or
routines, it is again up to the developer in COMP1 to take such a decision. In
the other companies they either try to eliminate signals when starting a new
project, use overhead in the system or do a consistency check and hide unused
signals.

Searching and usage of data How can a developer or system architect know
if a data is already produced or not? COMP1 has a developer responsible for
this knowledge and if a signal is needed by another developer, he/she has to

46 Paper A

ask that person. They have no documentation regarding the contents of the
nodes. The network however is better documented. In the other companies it
is possible to search for signals in a spread-sheet, signal database or some type
of development tool with more or less detailed information. COMP2 is very
strict on signals on the bus and developers have to go through an integration
group to require information, if a signal exists and can be used. They have
less knowledge about the internals of an ECU, what exists and can be used.
However a group of people review the system regularly to avoid errors. Both
COMP3 and COMP4 uses a spread-sheet where all developers involved can
search for a signal. In COMP3 you have to go through the platform group for
usage approval. COMP4 does not have the same control mechanism for the
usage of signals. If a signal is broadcasted on the bus it is open for usage, no
additional decisions has to be made when using the signal. There is however
only one that can write to any given signal. Except from COMP1, it is possible
to search for a signal and use after approval by some kind of control group.

5.4 Observations and Problems Areas
In this section we have, based on the above use cases and scenarios, formulated
four key observations and ten problem areas.

5.4.1 Key Observations

O1. Impact of product variability on documentation. All of the involved com-
panies in this study have different approaches and a variation of techniques
for preserving knowledge about their systems. These companies also produce
products that vary more or less. It seems that there is a relationship between
the quality of the documentation and the product variability. Figure 5.1 showed
how variances differ between different companies. COMP1 manufactures off-
the-shelf products. COMP2 and COMP3 both have large product variances
to support usage in different environment settings or to suit various vehicular
equipment alternatives. COMP4 and COMP5 have small variances. In COMP4
the variances mostly concern HMI settings.

With this information in mind, we can clearly see that this is reflected in
their system documentation. COMP1 that produces off-the-shelf products has
the least amount of documentation on their system. COMP2 and COMP3 has
large variances and both have a more rigorous documentation process. One of
the reasons for this could be that large product variances in COMP2-COMP3

5.4 Observations and Problems Areas 47

are one of the reasons that have forced them to have a more developed preser-
vation of system knowledge.
O2. Inclusion of Excessive Signals. All of the involved companies have ex-
cessive signals in the system as well as functionality that is turned on an off.
COMP2 always has excessive signals included in the system to support sev-
eral vehicle variations. Each system is then configured to suit the individual
vehicle configuration. An example of this is to have signals that support both
automatic and manual gearboxes. In this way they turn on and off required
functionality to suit their needs. The reasons for having excessive signals in
their systems vary. In most cases excessive signals are included, either to sup-
port product variations or because there is a desire to keep them in the system
since a change can have unknown effects to the system.

One reason for having excessive signals and functions in the system is to
minimize modifications to the system. If proper tools and documentation tech-
niques were available, it would be possible to build the system more optimized,
without unused signals and functionality to save system resources and reduce
cost.
O3. Prioritization of selected parts of the system. As a result of ineffective and
inadequate tools for documentation, parts of systems are prioritized. Although
COMP3 uses several different techniques to manage and document their sys-
tem, it is a known problem that they prioritize more critical parts of the system
as engine control, compared to the more soft infotainment functionality which
is lagging behind.
O4. Awareness that common practice is not enough.

To get a flavor of how companies and interviewees consider their documen-
tation and development process they where asked to rank themselves and how
they compare to their competitors at the end of each interview.

When ranking themselves on a scale from one to ten where one is the low-
est, a majority of the companies ranked themselves below average. One com-
pany ranked itself high with the motivation that as long as they don’t have to
extend their system with new signals and interfaces, current practice is suffi-
cient. This indicates that it is hard to expand, change or add new functionality
to their system, which could be a direct result of poor system documentation.
The fact that most companies rank themselves below average regarding their
documentation and development process indicates that there is much to be done
within this area.

When they ranked themselves compared to their competitors, the ranking
follows the same pattern with a below average score. This is interesting since
these companies use a variation of documentation, from person dependent to

48 Paper A

extensive signal databases and processes to handle signals, although mostly for
distributed signals.

In order to successfully manage these advanced systems, new techniques
for how to handle data has to be introduced. As stated earlier one single person
having extensive knowledge about the internals of an ECU is not ideal and
could be considered as a possible single point of failure.

The overall statement here is that this is how documentation is believed to
be handled within their application area. A question that arises here is why
companies that produce highly safety-critical applications in their own opinion
have below average control of their system, documentation and process.

5.4.2 Identified Problem Areas

There are several important aspects to consider regarding how these compa-
nies treat and documents data internally on ECUs or on the communication
network. We have from the above use cases and scenarios identified ten prob-
lems, divided into three areas:

Documentation volume and structure
P1. Growing information volume. A major problem that was repeatedly raised
during the interviews was the growing volume of information [10]. As an ex-
ample, model descriptions are today made in different tools and sometimes in
plain text. This is a major problem since there sometimes can be several thou-
sand pages of text. In most cases everything is backward compatible and noth-
ing is ever removed. This continuously adds to the complexity of the documen-
tation and the amount of text. It is not efficient to supply a system-responsible
person with several hundred of pages of information with some small changes.
This seems to be a neglected problem that is becoming an overwhelming issue
for developers and system architects.
P2. Obsolete documentation. Documentation is perceived as hard to maintain,
requiring a lot of effort and time. As a direct consequence of this, correct and
up-to-date documentation is lagging behind. One individual person or a group
of persons can be responsible for updating reported changes in documentation.
However it is hard to do this in parallel with development and this often intro-
duces a delay until the change is reflected in the documentation.

If a company has documentation, it is versioned and there is also some kind
of template specifying the how this should be done. However in all cases, how
this is done in practice is highly dependent on the individual person managing

5.4 Observations and Problems Areas 49

the documentation. This has in one company lead to a special template used as
a simple speedy possibility to go around their own rules. One way companies
do this is to let everybody change according to their needs and freeze a version
of the documentation regularly. COMP3 does not have this problem since a
developer has to request a change beforehand.
P3. Stale data. Poor preservation of knowledge and inadequate documentation
techniques often lead to stale signals in systems that the companies are or are
not aware of. An issue with this is that these stale data items, except from
adding to memory, bandwidth and CPU usage, may cause failures or unwanted
system behavior. Unknown effects such as these are addressed in new, more
stringent regulations such as IEC61508.
P4. Inadequate ECU data documentation. One thing correspond for all of the
involved companies. There is a difference in how they treat data and signals on
the network compared to internal data on ECUs. The network is documented
using various tools and techniques whereas internal ECU data in most cases are
not. The lack of efficient tools and techniques have made individual develop-
ers responsible for much of the knowledge about data items and functionality
inside an ECU.
P5. Dependency on individual developers. Internal knowledge of an ECU is
in several of the involved companies left to a single individual or a group of
developers. This is an important issue since companies could lose valuable
information due to poor, or non-existent, documentation. As an example, an
individual developer in COMP1 can have all information about a certain part
of the system or functionality. When other developers need a signal or infor-
mation regarding that system or function, they have to ask the developer for it.
When asked how this would influence the company if a staff member would
leave the company, they say that it would not be a disaster but it would mean a
lot of effort for someone else to get up to date.

The systems that COMP1 are developing have so far been quite small since
large parts of the product have been mechanically controlled. The current trend
is to introduce more and more computer-controlled parts, thus rapidly increas-
ing the system complexity. The small size and amount of data in the system
made it possible for persons to keep track of most things. This worked up until
now. New platforms are being released with more computer controlled sys-
tems that are too complex for a single developer to handle. The new systems
are redundant, safety-critical, contain more diagnostics, more signals, human-
machine interface (HMI), and other functionalities.

50 Paper A

Tool support
P6. Lack of efficient tool support. More efficient documentation, tools and pro-
cesses are needed and could in the end reduce development costs. Companies
themselves indicate that within a few years they will need to use a small set
of tools or one single flexible tool to limit the amount of text describing mod-
els today. Since systems and functions require a lot of effort and are costly to
develop, companies reuse as much of the system as possible. This puts high de-
mands on documentation in order for developers to be able to understand how
a function will work if it is reused in another setting with other dependencies.
This is especially true if it is a safety-critical function which often is rigorously
verified and tested.
P7. Lack of visualization. As systems are getting more heterogeneous and
more complex, in the sense of more signals, increasing number of ECUs and
more distributed data items, developers have raised the question of a need for
a graphical view of the whole development chain to aid developers and system
architects.
Important aspects to visualize are;

• how functions are connected

• how data is shared between functions

• how ECUs are connected

• where the nodes are physically placed

Routines
P8. Poor support for adding data. Routines for adding data to the system differ
a lot between the companies. A problem here is that there is a lot of manual
work done by individual developers, or just open discussions to verify how
additional data affects the system and there is no effective tool support for this
matter.
P9. Difficult to search for data. As long as a data item is distributed on the
network, it is in most cases possible to search for a data item. However the
possibility to search for an internal ECU data item is in most cases limited.
P10. No support for removal of data. Despite the fact that some of these
systems are resource-constrained and available resources are sparse, a lot of
unnecessary data items remain unused in the system. In an effort to reduce the
number of unused data items, some of the companies try to remove old data
when starting a new project but they are careful about doing so because they

5.5 Remedies and Vision for Future Directions 51

lack knowledge about system dependencies such as, who are producing and
who are consuming this data. Instead they either try to hide data, leave it as it
is, or mark them as occupied so there will be no new users. It seems that the
overall problem here is a lack of feedback from the development tools. There
is no way to automatically see dependencies for internal data.

5.5 Remedies and Vision for Future Directions

In this section we elaborate, based on the problems (P1-P10), observations
(O1-O4) from the study, and future standards and regulations, on possible im-
provements in data management tools and processes for embedded real-time
system’s development.

To improve data management we propose to lift data to a higher level dur-
ing development. A more data centric development is needed, where data is
considered early in the development phase and seen as its own entity. To sub-
stantially elevate existing data management and documentation towards a more
data centric development, we propose six remedies;
R1. A unified development environment. To successfully be able to manage the
problems stated in P1, P2, P5 and P6, scattered information needs to be gath-
ered in one development environment. As seen in the study, some companies
successfully use a signal database for bus messages. By extending this to also
include internal signal and state data, an integrated data management environ-
ment supporting the entire development chain including requirements, model-
ing, design, implementation, and testing is achieved. This data management
environment could aid developers by filtering out only the relevant documen-
tation for each development activity. Correctly implemented this environment
should provide an easy interface for developers from different sub-systems can
share to update and manage documentation.
R2. Global data warehousing and data-flow graphs. Data warehousing is
an effective technique, providing means to store, analyze and retrieve data.
By introducing global data warehousing, and data-flow graphs to the devel-
opment environment a company-common documentation base that develop-
ment projects of different sub-system can access and share is provided. It also
gives developers the possibility to identify and visualize data providers and
subscribers and thereby aiding designers when adding, managing and remov-
ing data. This gives developers the means to solve problems identified as P3,
P4, P8-P10.

52 Paper A

R3. Automated tools and techniques. To additionally aid developers solving
P2, P4-P5 and maximize the impact of a unified development environment,
automated tools and techniques must be introduced to link design-time docu-
mentation against run-time mechanisms.
R4. Physical visualization. By introducing physical visualization, showing the
physical layout and data streams of the system, identified as P7, we solve a
problem that was explicitly pointed out by some interviewees in the study.
R5. Meta-data information. To aid in solving P2 and P6, a natural coupling be-
tween system requirements and data properties meta-data information such as
resolution, real-time properties, priorities, criticality, etc. needs to be included
into the development environment.
R6. Integrated data modeling tool. During our previous case-study [9] it be-
came obvious that using internal data structures for internal data storage lead
to difficulties to keep track of data and to perform memory optimization. A
integrated data modeling tool can provide developers with means to organize
and structure all system data, thereby aiding in solving P5. Within the database
community several data modeling techniques, such as entity-relationship mod-
eling [24], exist.

Introducing these remedies and forming a uniform development environ-
ment give developers the prerequisite needed for effectively managing their
system development and maintenance. Figure 5.2 illustrates how the problems
are linked with the proposed remedies.

Remedies

Problems R1 R2 R3 R4 R5 R6
P1 X
P2 X X X X
P3 X
P4 X X
P5 X X X
P6 X X
P7 X
P8 X
P9 X

P10 X

Figure 5.2: Problem areas with associated remedy or remedies.

5.6 Conclusions 53

5.6 Conclusions

In this paper, we show that due to the increasing system complexity, current
state of practice in data management is not adequate. There are many im-
portant issues observed in this case-study. From these, we have identified ten
problem areas and formulated four key observations, based on current practice
and future needs. These problem areas and observations set the path for future
research and improvement.

It is confirmed by all involved companies that new processes and tech-
niques for achieving a satisfactory documentation on a software system are
needed to be able to handle the needs of today and tomorrow. This is some-
thing that could be required to meet the upcoming safety regulations, eg. as
specified by IEC 61508, and will be a complex and difficult transition for these
companies.

The study shows that there is much to be done within the area, especially
documentation of data internally on ECUs. Inefficient, or lack of, routines for
adding, removing or searching for data or data properties has in some cases
made companies completely dependent on individual experts instead of thor-
ough documentation. As the systems grow, this approach is no longer feasible.

Another more unwanted effect of inadequate data management is that there
are also data included which no one knows exists. These stale signals is an
important safety issue since they could have unknown consequences to the
system. An important fact is that these systems are in many cases resource-
constrained and stale data waste resources. This could be a major cost factor
for mass producing companies with high demands of cost-efficiency.

Currently, adequate tools to manage distributed data exist, resulting in a
much better data management for distributed data compared to internal ECU
data. In this paper, suggestions for improved tool-support for internal data,
as well as overall system data management is presented. It is our belief that
a novel tool that incorporate adequate data documentation, management and
design views, both for design and run-time would significantly improve current
data management practices.

5.7 Future Work

From this case-study we could also see an emerging need for more flexible
and efficient run-time data management. Several interviewees indicated that
there is an increasing need to manage both hard and soft real-time requirements

54 Paper A

within their systems. There are also indications that a more secure handling of
data is needed since there is a desire to connect to the system at run-time for
maintenance, upgrades and infotainment purposes. This issue is seems espe-
cially important when using telematics to access these safety critical systems.
Another issue is the coming standards and regulation which will put higher
demand on data management. These are some of the important issues still to
investigate based on the outcome from this case-study.

Bibliography

[1] A. Albert. Comparison of Event-Triggered and Time-Triggered Concepts
with Regard to Distributed Control Systems. pages 235–252, 2004.

[2] Leen Gabriel and Heffernan Donal. Expanding Automotive Electronic
Systems. Computer, 35(1):88–93, Jan 2002.

[3] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson, and
B. Eftring. DeeDS Towards a Distributed and Active Real-Time Database
System. ACM SIGMOD Record, 25, 1996.

[4] J. Lindstrom, T. Niklander, P. Porkka, and K. Raatikainen. A Distributed
Real-Time Main-Memory Database for Telecommunication. In Proceed-
ings of the Workshop on Databases in Telecommunications. Springer,
1999.

[5] Dag Nyström, Aleksandra Tešanović, Mikael Nolin, Christer Norström,
and Jörgen Hansson. COMET: A Component-Based Real-Time Database
for Automotive Systems. In Proceedings of the Workshop on Software
Engineering for Automotive Systems, pages 1–8. The IEE, June 2004.

[6] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano - a
Revolution in On-Board Communications. Technical report, Volvo Tech-
nology Report, 1998.

[7] Mimer SQL Real-Time Edition, Mimer Information Technology. Upp-
sala, Sweden. http://www.mimer.se.

[8] Serena Dimensions. http://www.serena.com/products/.

[9] Dag Nyström, Aleksandra Tesanovic, Christer Norström, Jörgen Hans-
son, and Nils-Erik Bånkestad. Data management issues in vehicle control

55

56 Bibliography

systems: a case study. In Euromicro Real-Time Conference 2002, June
2002.

[10] Kaj Hänninen, Jukka Mäki-Turja, and Mikael Nolin. Present and Future
Requirements in Developing Industrial Embedded Real-Time Systems -
Interviews with Designers in the Vehicle Domain. In 13th Annual IEEE
Int. Conf, Engineering of Computer Based Systems (ECBS), Germany,
2006.

[11] International Electrotechnical Commission IEC. Standard: IEC61508,
Functional Safety of Electrical/Electronic Programmable Safety Related
Systems. Technical report.

[12] Robert K.Yin. Case Study Research Design and Methods. Sage Publica-
tions, Inc, third edition edition, 2003.

[13] Carolyn B. Seaman. Qualitative methods in empirical studies of software
engineering. Software Engineering, 25(4):557–572, 1999.

[14] Robert Bosch GmbH. CAN Specification. Bosch, Postfach 30 02 40
Stuttgart, version 2.0 edition, 1991.

[15] Local Interconnect Network. http://www.lin-subbus.org.

[16] Media Oriented Systems Transport.
http://www.mostcooperation.com/home/index.html.

[17] Dave Dolezilek. IEC 61850: What You Need to Know About Func-
tionality and Practical Implementation. Power Systems Conference: Ad-
vanced Metering, Protection, Control, Communication, and Distributed
Resources, March 2006.

[18] W.W. Royce. Managing the Development of Large Software Systems:
Concepts and Techniques. In ICSE: Proceedings of the 9th international
conference on Software Engineering, pages 328–338. IEEE Computer
Society Press, 1987.

[19] Arcticus Systems. http://www.arcticus.se.

[20] Sparx Systems Ltd. http://www.sparxsystems.eu/.

[21] Ahmad Shuja Jochen Krebs. IBM Rational Unified Process Reference
and Certification Guide : Solutions Designer (RUP). IBM Press, Decem-
ber 2007.

[22] Vector Informatics, CANdb Admin. http://www.vector-worldwide.com.

[23] IBM Rational Software. New York, USA. http://www-
306.ibm.com/software/rational.

[24] Peter Pin-Shan Chen. The Entity-relationship Model - Toward a Unified
View of Data. ACM Trans. Database Syst., 1(1), 1976.

Chapter 6

Paper B:
A Data-Entity Approach for
Component-Based
Real-Time Embedded
Systems Development

Andreas Hjertström, Dag Nyström and Mikael Sjödin
14th IEEE International Conference on Emerging Technology and Factory Au-
tomation, Palma de Mallorca, Spain, September, 2009

59

Abstract

In this paper the data-entity approach for efficient design-time management of
run-time data in component-based real-time embedded systems is presented.
The approach formalizes the concept of a data entity which enable design-time
modeling, management, documentation and analysis of run-time data items.
Previous studies on data management for embedded real-time systems show
that current data management techniques are not adequate, and therefore im-
pose unnecessary costs and quality problems during system development. It is
our conclusion that data management needs to be incorporated as an integral
part of the development of the entire system architecture. Therefore, we pro-
pose an approach where run-time data is acknowledged as first class objects
during development with proper documentation and where properties such as
usage, validity and dependency can be modeled. In this way we can increase
the knowledge and understanding of the system. The approach also allows
analysis of data dependencies, type matching, and redundancy early in the de-
velopment phase as well as in existing systems.

6.1 Introduction 61

6.1 Introduction

We present the data-entity approach for efficient design-time management of
run-time data in embedded real-time systems. We propose methods, techniques
and tools that allow modeling of data into a design entity in the overall software
architecture. This enables developers to keep track of system data, retrieve
accurate documentation and perform early analysis on data items. The goal
is to achieve higher software quality, lower development costs, and to provide
higher degree of control over the software evolution process. We show how our
approach can be coupled to a development environment for component-based
software engineering (CBSE), thus bridging the gap between CBSE and tradi-
tional data management. For example, it bridges the encapsulation paradigm
of CBSE and the blackboard paradigm of traditional data-management tech-
niques.

Our approach primarily targets data intensive and complex embedded real-
time systems with a large degree of control functions, such as vehicular, in-
dustrial and robotic control-systems. These domains, and also software inten-
sive embedded systems in general, has in recent years become increasingly
complex; up to the point that system development, evolution and maintenance
is becoming hard to handle, with corresponding decreases in quality and in-
creases of costs [1].

For instance, the cost for development of electronics in for instance high-
end vehicles, have increased to more than 40% of the total development cost
and systems contain more than 70 electronic control-units (ECUs) and up to
2500 signals [2, 3, 4].

In an effort to handle the increasing complexity of embedded real-time sys-
tems, various tools and techniques, such as component-based software engi-
neering [5, 6], real-time data management [7, 8], and network bus manage-
ment [9], has previously been introduced. While these techniques and tools
have the common aim to reduce software complexity, they target different ar-
eas of system complexity. CBSE, for example, targets encapsulation of func-
tionality into software components that are reusable entities. Components can
be mounted together as building blocks, with a possibility to maintain and im-
prove systems by replacing individual components [5]. On the other hand,
real-time data management, e.g. database technologies, target data produced
and consumed by functions by providing uniform storage and data access,
concurrency-control, temporal consistency, and overload and transaction man-
agement. Network management in turn, aim to handle the increasing amount

62 Paper B

of data that is distributed throughout ECUs in the system and, e.g. manage the
temporal behavior of distributed data.

However, despite their common aim of reducing complexity, these tech-
niques in some cases have contradicting means of achieving their goals. For
example, the requirement of information hiding and component data interfac-
ing in component-based systems might conflict with the common blackboard
data storage architecture using real-time databases. To overcome these contra-
dictions, it is our belief that data management must be made to be an integral
part of the design environment as an architectural view. It is also becoming ad-
ditionally important to consider data freshness in embedded real-time systems
as have been done within the real-time database community [10].

The main contributions of this paper include:

• We introduce the concept of a data entity to encapsulate all metadata,
such as documentation, type, dependencies, and real-time properties con-
cerning a run-time data item in a system. The data-entity approach pro-
vides designers with an additional architectural view which allows for
data searching, dependency visualization, and documentation extraction.

• The data-entity approach provide techniques which are tightly coupled
with component-based software engineering.

• Our approach allows properties of data to be analyzed any time during
the development process. A model of data entities can be constructed
before development commences, thus giving the possibility to provide
early feedback to designers about consistency and type compatibility.
Alternatively, a model can be extracted from existing designs, allowing
analysis of redundancies and providing a base for system evolution.

• The data-entity architectural view complements other architectural views,
such as component-based architectural views, without violating para-
digms such as information-hiding, encapsulation and reuse.

• Finally, we have realized this approach by implementing it into a tool-
suite, using the existing component model ProCom [11] that also offers
a development environment. The tool includes data entity editors as well
as a number of analysis tools.

The rest of this paper is structured as follows; in section 7.2, we present
background and motivation for the approach. We also present four specific
problems that our approach addresses. In section 6.3, a definition of the data

6.2 Background and Motivation 63

entity is presented and the data entity approach is discussed in section 6.4.
Further, in section 6.5, we describe the ProCom component-model which is
used in our data entity tool-suite, presented in section 7.5.3. An example of
how the data entity tool-suite can be used is presented in section 6.7. Finally,
the paper is concluded in section 6.8.

6.2 Background and Motivation
The aim of our approach is to bridge the current gap between component-
based software engineering and data management by extending the architec-
tural views with a data-centric view that allow run-time data to be modeled,
viewed and analyzed. Current system design techniques emphasize the design
of components and functions, while often neglecting modeling of flow and de-
pendencies of run-time data. A recent study of data management at a number
of companies producing industrial and vehicular embedded real-time systems
clearly showed that this gap is becoming increasingly important to bridge, and
that current design-techniques are not adequate [1].

The study showed that documentation and structured management of inter-
nal ECU data is currently almost non-existent, and most often dependent on
single individual persons. Traditionally, the complexity of an ECU has been
low enough so that it has been possible for a single expert to have a fairly
good knowledge of the entire architecture. However recently, companies are
experiencing that even internal ECU data complexity is growing too large for a
single person to manage. This has led to a need for a structured data manage-
ment with adequate tool support for system data. A similar development took
place within the vehicular domain in the late 1990s, when the industry took a
technological leap with the introduction of bus-management tools, such as the
Volcano tool [9]. By that time, the distributed vehicular systems had grown
so complex that it was no longer feasible to manage bus packet allocation and
network data-flow without proper tool support. It is pointed out in the study,
that there is a clear need for a similar technological leap for overall system data
management.

6.2.1 Problem Formulation

The case study [1] identifies a number of problems related to poor data man-
agement in practice today. In this paper, four of these problems are specifically
addressed.

64 Paper B

Addressed problems:

P1 ECU signals and states are, in many cases, not managed and documented
at all, companies often are entirely dependent of the know-how of single
individual experts

P2 The lack of structured management and documentation has in several
cases led to poor routines for adding, deleting and managing data. Often
a "hands-off" approach is used where currently functioning subsystems
are left untouched when adding additional functionality, since reuse of
existing data is considered too risky due to lack of knowledge of their
current usage.

P3 Some companies calculate with up to 15% overhead for unused and stale
data being produced. It is considered too difficult to establish if and how
these stale data are being consumed elsewhere in the system.

P4 A lack of adequate tool support to model, visualize and analyze system
data.

To further complicate matters, companies developing safety-critical sys-
tems are becoming increasingly bound to new regulations, such as the IEC
61508 [12]. These regulations enforce stronger demands on development and
documentation. As an example, for data management it is recommended, even
on lower safety levels, not to have stale data or data continuously updated with-
out being used. Companies lacking techniques for adequate data management
and proper documentation will be faced with a difficult task to meet these de-
mands.

6.2.2 Related Work
Several tools within code analysis and code visualization have been devel-
oped to be able to explore data-flow and how functions are connected [13, 14].
These are however mainly built to interpret existing code and not focusing on
high level data management during development. The increase in complexity
and the amount of signals used within ECU development has also been ad-
dressed within the data modeling area. A number of data dictionary tools such
as dSpace Data Dictionary, SimuQuest UniPhi and Visu-IT Automotive Data
Dictionary [15, 16, 17], have been developed in an effort to get an overall
view of the systems signals as well as structured labeling and project man-
agement. These tools are tightly coupled with MATLAB/Simulink and MAT-
LAB/Targetlink [18] which is line with current state-of-practice. However

6.3 The Data Entity 65

none of these tools specifically target CBSE. dSpace Data Dictionary does
however additionally provide techniques for managing AUTOSAR [6] prop-
erty specifications. Furthermore, non of these tools target high-level data man-
agement where data can be modeled, analyzed and visualized in an early phase
of development.

To confront the intricacy of embedded system development of today and
tomorrow, CBSE will play a more central part. However, supporting tools,
specifically targeting component-based systems, needs to be developed to sup-
port the technological leap needed within data management.

Common for both CBSE and the data entity approach is that they aim to as-
semble and design systems at a higher level by encapsulating information and
functionality into components or entities. The aim with our approach is to add
to the functionality of the above stated tools. In our approach, data is seen as a
component/entity in the development strategy. This allows data to be modeled
separately with a possibility to perform early analysis such as relative validity.
It also allows system architects and developers to graphically view data depen-
dencies, similar as components can viewed during system development. This
information can then be connected to the data flow in the component model
and used as input to the system architect when developing the system.

6.3 The Data Entity
In this section we will first introduce the concept of data entity. Secondly we
present how data entities can be used and analyzed, both in an early phase of
development and for already developed systems.

6.3.1 Data Entity Definition
The concept of a data entity that encapsulates all metadata is the basis of our
approach. A data entity is a compilation of knowledge for each data item in
the system. A data entity can be defined completely separate from the develop-
ment of components and functions. This enable developers to set up a system
with data entities based on application requirements and perform early analysis
even before the producers or consumers of the data are developed. The infor-
mation collected by data entities are also valuable for developers and system
architects when redesigning or maintaining systems. Another important fea-
ture is that since a data entity is completely separated from its producers and
the consumers, it persists in the system regardless of any component, function
or design changes.

66 Paper B

Figure 6.1: Data Entity Description Model

A data entity consists of the following metadata (illustrated in Figure 6.1):

• Data Entity, is a top level container describing the overall information
of a set of data variants. Data entities are created to aid developers with
problem P1 and P2, by elevating the importance level of data during de-
velopment and maintenance. Required information is associated with the
data entity and its data variants, enabling it to persist on its own during
all the phases of a system life-cycle. As an example, a data entity could
be vehicleSpeed. The data entity also includes a top level description to
facilitate for a developer in need of high level information.

• Data Variant, is the entity that developers will come in closer contact
with and consist of properties, requirements, dependencies and docu-
mentation. A data variant can be of any type, size or have any reso-
lution. To continue our example from above where the top level data
entity is vehicleSpeed, we can add a number of variants. For example
vehicleSpeedSensorValue, vehicleSpeedInt, vehicleSpeedDouble, vehi-
cleSpeedMph and vehicleSpeedKmh. Each of these variants with their
own properties, requirements, dependencies and documentation. A data
variant could for instance be specified with consumer requirements, but
without any existing producer properties. The requirements then can
later be used as input when searching for an existing producer or when
creating a new producer.

• Data Producers, the set of components producing the given data variant.

• Data Consumers, the set of components consuming the given data vari-
ant.

6.3 The Data Entity 67

• Data Variant Properties, is either an existing producer’s property or a
set of properties that is based on the consumer requirements. If there
is no existing producer, these properties can be used as requirements by
the system architect. Examples of properties are: name, type, size, initial
value, minimal value, maximal value and frequency.

• Data Variant Requirements, are directly related to the requirements of
a consumer. These requirements can be matched against producer prop-
erties or be the source for the producer properties. Example requirements
are: frequency, accuracy and timing consistency parameters.

• Data Variant Dependencies, enables a possibility to see which data en-
tities that is dependent on each other regarding for instance temporal
consistency and precedence relations.

• Data Variant Documentation, gives the developer an opportunity to
describe and document the specifics of each data variant.

• Keywords, Data entities and data variants can be tagged with keywords
to facilitate a better overview and give developers additional benefits
where a data entity or a data variant with related information can be
searched for using keywords. Since companies can have their own unique
naming ontologies, keywords can be adapted to suite a specific need. As
an example, if a developer is interested a data entity regarding the ve-
hicle speed with a certain type and resolution. He/she can then search
using the keyword, for instance "speed", to receive all speed related sig-
nals. From there, find the appropriate data entity and its different data
variants.

6.3.2 Data Entity Analysis
Using the information contained in the data entities, data-entity analysis is pos-
sible during the entire development process, even in the cases where producers
or consumers are yet undefined. The approach open up for a number of possi-
ble analysis methods such as:

• Data Flow Analysis. This analysis show producers and consumers of
a specific data entity variant. It is able to detect unproduced as well as
unconsumed data, and is thereby directly addressing problem P2, P3 and
P4. The output of this analysis can the be forwarded to system archi-
tecture tools to expose which components that would be affected by a
change to a data entity.

68 Paper B

• Data Dependency Analysis. Data dependency analysis can facilitate
for developers and aid with problem P3, by providing information about
which producers and consumers that based on their properties and re-
quirements are dependent on each other regarding temporal behavior and
precedence relations.

• Type Check Analysis. Data types from the producer properties and the
requirements of the consumer is analyzed to make sure that there is a
match.

• Resolution/Domain Analysis. Matches the data resolution and possible
data domains to the connected producers and consumers.

• Absolute Validity Analysis. Absolute validity is a measurement of data
freshness [19]. An absolute validity interval can be specified for a data
entity variant, which specifies the maximum age a data can have before
being considered stale. The importance of knowing the end-to-end path
delay i.e. data freshness, in an execution chain, especially within the
automotive systems domain, have been identified in previous work, such
as [20]. Properties from producers are analyzed to see if the requirements
of the consumers are achieved.

• Relative Validity Analysis. Relative validity is a measurement of how
closely two interacting data entity variants have been produced [21].
Even though both data might be absolute consistent, they might be rela-
tive inconsistent, which indicate that any derived data would be consid-
ered inconsistent. Additional research on methods, tools and techniques
for how to find the relative data dependency between several execution
chains and their end-to-end deadline is needed in order to guarantee
the relative data freshness demanded by a consuming component. To
achieve this, we propose an extension of [20], with a formal framework
for relative dependency. Similar to absolute validity, properties from
producers are analyzed to see if the requirements of the consumers are
achieved.

6.4 The Data Entity Approach
The data entity approach provides designers with an additional architectural
view, the data architectural view. This view allows data to be modeled and
analyzed from a data management perspective during development and main-
tenance of component-based embedded systems.

6.4 The Data Entity Approach 69

System
Requirements

Data
Architecture

Development

Component
Architecture
Development

Central
Database

Data Analysis
Tool

Data
Modeling Tool

Component
Development

Tool

System
Analysis Tool

System
Architecture

Tool

Data
Entities

Process Tool Data

Legend

Figure 6.2: The data entity approach

Figure 6.2 show our proposed data entity approach (right-hand side). The
figure illustrates how our approach complements the traditional component-
based design approach (left-hand side). The central database in the middle of
the figure acts as the communicating link between the two approaches as well
as the main storage for information.

In the data modeling tool, data entities can be created, retrieved and modi-
fied. Furthermore, they can be associated with design entities such as message
channels created from the ProCom component architecture development [11].
The data analysis tool extracts data and data producer properties based on the
requirements placed upon the data from the data consumers. These properties
could then be propagated to a system architecture tool as component require-
ments on the components producing the data. It can also be used as input
to system synthesis and scheduling tools. Furthermore, the data analysis tool
could provide graphical visualization of all data dependencies, both with re-
spect to data producers and consumers for a certain data, but also visualize
dependencies between different data, such as relative consistency and prece-
dence relations.

System design using the data entity approach can start from data architec-
ture design, from system architecture design, or from a combination of both.
If for example, in the early stages of an iterative design process, a set of com-
ponents that provide a given function is designed, it is often the case that the
input signals to this function is not yet defined, and therefore left unconnected
in a functional design. If these unconnected data signals are modeled using a
data entity, the data analysis tool can be used to derive required properties of

70 Paper B

this data, which can later be sent as input to a system architect tool as com-
ponent requirements of the component that is later connected as producer of
this data. On the other hand, consider that a commercial, off-the-shelf (COTS),
component that provides certain functionality is integrated in a system archi-
tecture tool, and that component produces a set of signals of which a subset
is currently not needed, these data can still be modeled, and made searchable
for future needs. In this case, the data analysis tool can be used to derive the
properties of this data.

Also in management and extension of existing systems, the data modeling
tool can be used to search for existing data that might be used as producers
for the new functionality. The requirements for the new functionality can then
be matched towards the existing properties and requirements of the other con-
sumers of the data, to determine whether or not the data can be used for this
functionality. This solves the "hands off" problem presented in problem P2.

6.5 The ProCom Component Model

The ProCom component model aims at addressing key concerns in the de-
velopment of control-intensive distributed embedded systems. ProCom pro-
vides a two-layer component model, and distinguishes a component model
used for modeling independent distributed components with complex function-
ality (called ProSys) and a component model used for modeling smaller parts
of control functionality (called ProSave). In this paper we only focus on the
more large scale ProSys. The complete specification of ProCom is available
in [11].

In ProSys, a system is modeled as a collection of concurrent, communicat-
ing subsystems. Distribution is modeled explicitly; meaning that the physical
location of each subsystem is not visible in the model. Composite subsys-
tems can be built out of other subsystems, ProSys is an hierarchical component
model. This hierarchy ends with the so-called primitive subsystems, which
are either subsystems coming from the ProSave layer or non-decomposable
units of implementation (such as COTS or legacy subsystems) with wrappers
to enable compositions with other subsystems. From a CBSE perspective, sub-
systems are the components of the ProSys layer, i.e., they are design or imple-
mentation units that can be developed independently, stored in a repository and
reused in multiple applications.

6.6 Embedded Data Commander Tool-Suite 71

Figure 6.3: ProSys Component Model

For data-management purposes, the communication between subsystems is
the most interesting issue. The communication is based on asynchronous mes-
sage passing, allowing location transparency in communication. A subsystem
is specified by typed input and output message ports, expressing what type of
messages the subsystem receives and sends. The specification also includes
attributes and models related to functionality, reliability, timing and resource
usage, to be used in analysis and verification throughout the development pro-
cess. The list of models and attributes used is not fixed and can be extended.

Message ports are connected though message channels. A message chan-
nel is an explicit design entity representing a piece of information that is of
interest to one or more subsystems. Figure 6.3 shows an example with three
subsystems connected via one message channel. The message channels make
it possible to express that a particular piece of shared data will be required in
the system, before any producer or receiver of this data has been defined. Also,
information about shared data such as precision, format, etc. can be associated
with the message channel instead of with the message port where it is produced
or consumed. That way, this information can remain in the design even if, for
example, the producer is replaced by another subsystem.

6.6 Embedded Data Commander Tool-Suite

The embedded data commander (EDC) is a tool-suite that implements the data
entity approach for the ProSys component-model. The tool-suite, which so far
is implemented in the Eclipse framework [22] as a stand alone application that
provides a tight integration between Data Entities and ProSys message chan-
nels.

72 Paper B

Message

Channel

System

Descrip�on
Data En�ty

Data Collec�on Center (DCC)

Database

Subsystem

Proper�es

Data En�ty

Variant

Require-

ments
Ports Documenta�on

Requirements

Figure 6.4: DCC data model description

The tool-suite, consists of four main parts:

• The Data Collection Center (DCC), which is the common database that
holds all information regarding data entities, channels, requirements and
subsystems.

• The Data Entity Navigator (DEN), which is the main application and
modeling tool where data entities are administrated.

• The Data Analysis Tool (DAT), which performs data analysis on data
variants and subsystems.

• The Channel Connection Tool (CCT), which is the interface tool towards
the ProCom tool-suite.

The Data Collection Center, DCC is the central database that all EDC tools
communicates through. A commercial relational SQL database is used to im-
plement the DCC [7], allowing multiple tools to concurrently access the DCC
enabling use of the tool-suite in large development projects.

The DCC consists of three main storage objects (Figure 6.4), the data
entity-, the message channel- and the system description-object.

The Data Entity Navigator, DEN is the main application of EDC. In DEN
developers can create, retrieve or modify data entities. It is also in DEN devel-
opers can manage data entity properties, requirements, dependencies, descrip-
tion and documentation.

An important feature in DEN is that developers can view to which other
channels and component a data variant is connected, thereby providing valu-
able information regarding dependencies and an opportunity to navigate be-
tween data entities and related subsystems to access information.

6.7 Use Case 73

Lateral

accelera�on

sensor

YawAngle

LateralAccel

SteeringAngle

Thro�leAdjust

BreaksPressure

Stability

Control

System

Yaw

sensor

Steering

wheel angle

sensor

LfWheelSpeed

RfWheelSpeed

RrWheelSpeed

LrWheelSpeed

Wheels

Speed

Sensor

Figure 6.5: Existing ProSys Stability Control System application

The information available in the DEN can also be filtered and divided into
sections to facilitate for developers to find the appropriate information. It
would also be possible to extend the tool to produce custom-tailored reports
containing only the necessary information for its specific purpose.
The Data Analysis Tool, DAT, handles all analysis regarding data entities vari-
ants. The current version of the tool support analysis on data flow, type check,
resolution and domain analysis but will be extended to support absolute-, and
relative-validity analysis.
The Channel Connection Tool, CCT, is the connection point between the data
entity and the ProCom tool-suite. Since the ProCom tools has been separately
developed, a tool to extract architectural information and message channel in-
formation was needed.

6.7 Use Case

To illustrate our ideas, this section will describe two simple scenarios. The first
is, expanding an existing system and the second, verification of the consistency
between data-producers and consumer in connection with system validation.
This example is illustrated using the concept of data entities and the EDC tool
together with ProCom.

74 Paper B

Vehicle

Speed VehicleSpeedMph

C_1

Lateral

accelera!on

sensor

YawAngle

LateralAccel

SteeringAngle

Thro"leAdjust

BreaksPressure

Stability

Control

System

Yaw

sensor

Steering

wheel angle

sensor

LfWheelSpeed

LrWheelSpeed

RlWheelSpeed

RrWheelSpeed

Wheels

Speed

Sensor

Figure 6.6: Extended ProSys example

6.7.1 Expanding an Existing System

This example starts with an existing vehicle application which has already been
developed. A part of this system [23] is illustrated in Figure 6.5. We now face a
situation where we should add additional functionality. The new functionality
demand an additional component, called C_1, to be added that requires two
signals as input. To make it easier for the developer when adding these signals
and additional functionality the EDC tool can be used to facilitate reuse of
existing signals (if suitable signals exists) to avoid redundancy and also to gain
knowledge about possible dependencies between data entities.

The new component C_1 is added to the application with a number of re-
quirements. For simplicity we only consider those that are interesting for this
example. The signals required are vehicle steering wheel angle and vehicle
speed, with the following requirements:

SteeringAngle: VehicleSpeedMph:
Type: Integer Type: Integer
Size: 16 bit Size: 16 bit
Unit: Arcsec Unit: MPH
Absolute validity Absolute validity
interval: 20 ms interval: 20 ms

6.7 Use Case 75

Data variant Type Size Unit P(ms)
SteeringAngle Int 16 Arcsec 20

VehicleSpeedMph Int 16 MPH 10

Figure 6.7: Producer properties.

To be able to locate an existing data entity, a search in the existing ap-
plication can be performed using relevant keywords. A keyword search for
"steering" generated a possible candidate variant SteeringAngle, that is already
used in the system and can be seen in the center of Figure 6.6. If the proper-
ties of the proposed data variant satisfy the requirements, it can be used, and
no additional producer have to be added or implemented. A appropriate data
variant using the keyword "speed" results in several possible variants but none
that matches the requirements of "vehicle speed". A new data variant Vehi-
cleSpeedMph in the lower center of Figure 6.6, is created and associated to a
message channel, with properties such as type, size and unit according to the
requirements of C_1. These properties will then be the requirements of the
producer component.

6.7.2 Validation
When the system modifications are completed, a validation of the whole system
should be performed. However in this example we only focus on the newly
introduced component C_1. A series of analysis can be performed to validate
that the requirements of C_1 is fulfilled.

In this example we will focus on three types of analysis, type, size and
absolute validity analysis. The producer properties is stated in Figure 6.7.

• Type check analysis is performed by comparing the properties assigned
to SteeringAngle and VehicleSpeedMph and to make sure that they cor-
respond to the requirements of C_1. In this case requirements to receive
an integer is fulfilled.

• Size analysis is a similar analysis as type check where properties of
SteeringAngle and VehicleSpeedMph are compared with the requirements
of C_1. Requirements are fulfilled.

• Absolute validity is achieved if both SteeringAngle and VehicleSpeed-
Mph is updated within 20 ms. Requirements are fulfilled.

76 Paper B

This example illustrates developers can use the data entity approach when
adding functionality to an existing application and how to locate and use exist-
ing signals in the system. It also shows how a new data variant can be created
and defined according to requirements and how data entity analysis can be used
to validate the system or to how to use requirements as input to a system archi-
tect tool and scheduler. In this example we perform the analysis on one level
in the system. A next step could be to be to support timing and dependency
analysis through several steps in the chain, from sensor trough a chain on con-
sumers and producers. The DEA tool is still in an early stage of development
and additional research is needed to be able to deal with these more complex
issues.

6.8 Conclusions
We have presented our new data entity approach towards development of real-
time embedded systems. The data entity approach gives system designers a
new architectural view, the data architecture, which complements traditional
architectural views for e.g. component inter-connections and deployment. Us-
ing the data architecture view, run-time data entities becomes first level cit-
izens of the architectural design, and data can be modeled and analyzed for
consistency irrespectively any other implementation concerns, e.g. even before
implementation begins.

The motivation for our approach stems from observations industrial prac-
tices and needs [1]. Related to the four key problems that we stated in sec-
tion 6.2.1 the approach provides:

P1 A uniform way to document external signals and internal state data in
ECUs.

P2 A unified view of data in a whole system and their interdependencies.
Thus, providing the basis for safe modifications, updates and removal of
data entities.

P3 Tracking of data dependencies and dependencies to producers and con-
sumers of data. Thereby enabling removal of stale and obsolete data
without jeopardizing system integrity, allowing system resource to be
re-claimed when data entities are no longer needed.

P4 The foundation to build tools for automated analysis and visualization of
data in a system.

6.8 Conclusions 77

We have implemented support for our approach in a tool suite called Em-
bedded Data Commander (EDC). EDC provides tools for data modeling, visu-
alization and analysis.

EDC also provides integration with the ProCom component-model and al-
lows automated mapping between data entities and ProCom’s message chan-
nels. While our data entity approach is independent of any target platforms, the
integration with an implementation environment (ProCom in this case) gives
significant benefits since the transformation from the data-model to the imple-
mentation model can be automated. Our implementation also supports the pos-
sibility to generate a data-model from an existing component assembly; hence
allowing developers to re-gain control of their data in an existing legacy sys-
tem. To better understand how the data entity approach and the EDC tool-suite
could be used, a use case example is also presented.

In the future we will extend the analysis capabilities of the EDC to in-
clude end-to-end and relative validity by extending [20], introduce graphical
data modeling, implement EDC as an integrated part of ProCom development
environment and evaluate the tool-suite in real software development projects.
We also plan to release the EDC as open source, to enable other researchers
to provide integrations to other implementation environments. Specifically, it
would be interesting to study how the data entity approach would be mapped
to the AUTOSAR [6] component technology.

Bibliography

[1] Andreas Hjertström, Dag Nyström, Mikael Nolin, and Rikard Land.
Design-Time Management of Run-Time Data in Industrial Embedded
Real-Time Systems Development. In Proceedings of 13th IEEE Inter-
national Conference on Emerging Technologies and Factory Automa-
tion (ETFA’08), IEEE Industrial Electronics Society, Hamburg, Germany,
September 2008.

[2] A. Albert. Comparison of Event-Triggered and Time-Triggered Concepts
with Regard to Distributed Control Systems. pages 235–252, 2004.

[3] Leen Gabriel and Heffernan Donal. Expanding Automotive Electronic
Systems. Computer, 35(1):88–93, Jan 2002.

[4] Klaus Grimm. Software Technology in an Automotive Company - Major
Challenges. Software Engineering, International Conference on Software
Engineering, page 498, 2003.

[5] Ivica Crnkovic. Component-based Software Engineering - New Chal-
lenges in Software Development. In in Software Development. Software
Focus, pages 127–133. John Wiley and Sons, 2001.

[6] Harald Heinecke, Klaus-Peter Schnelle, and Helmut Fennel et al. AUTo-
motive Open System ARchitecture - An Industry-Wide Initiative to Man-
age the Complexity of Emerging Automotive E/E-Architectures. Techni-
cal report, 2004.

[7] Mimer SQL Real-Time Edition, Mimer Information Technology. Upp-
sala, Sweden. http://www.mimer.se.

79

80 Bibliography

[8] Krithi Ramamritham, Sang H. Son, and Lisa Cingiser Dipippo. Real-
Time Databases and Data Services. Journal of Real-Time Systems,
28(2/3):179–215, November/December 2004.

[9] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano - a
Revolution in On-Board Communications. Technical report, Volvo Tech-
nology Report, 1998.

[10] Yuan Wei, Sang H. Son, and John A. Stankovic. Maintaining data fresh-
ness in distributed real-time databases. In ECRTS ’04: Proceedings of
the 16th Euromicro Conference on Real-Time Systems, 2004.

[11] Tomas Bures, Jan Carlson, Ivica Crnkovic, Séverine Sentilles, and Aneta
Vulgarakis. ProCom - the Progress Component Model Reference Manual.
Technical Report, Mälardalen University, 2008.

[12] International Electrotechnical Commission IEC. Standard: IEC61508,
Functional Safety of Electrical/Electronic Programmable Safety Related
Systems. Technical report.

[13] Johan Andersson, Joel Huselius, Christer Norström, and Anders Wall.
Extracting simulation models from complex embedded real-time systems.
In Proceedings of the 2006 International Conference on Software Engi-
neering Advances, ICSEA’06. IEEE, October 2006.

[14] Understand, Analysis Tool by Scientific Toolworks.
http://www.scitools.com/products/understand/.

[15] dSPACE Tools. http://www.dspaceinc.com.

[16] SimuQuest. http://www.simuquest.com/.

[17] Visu-IT. http://www.visu-it.de/ADD/.

[18] The MathWorks. http://www.mathworks.com.

[19] Xiaohui Song. Data Temporal Consistency in Hard Real-Time Systems.
PhD thesis, Champaign, IL, USA, 1992.

[20] Nico Feiertag and Kai Richter et.al. A Compositional Framework for
End-to-End Path Delay Calculation of Automotive Systems under Dif-
ferent Path Semantics. In EEE Real-Time System Symposium (RTSS),
(CRTS’08) : Barcelona, Spain. IEEE, 2008.

[21] P. Raja, L. Ruiz, and J.D. Decotignie. Modeling and Scheduling Real-
Time Control Systems with Relative Consistency Constraints. Real-Time
Systems, 1994. Proceedings., Sixth Euromicro Workshop on, pages 46–
52, Jun 1994.

[22] The Eclipse Foundation. Ottawa, USA. http://www.eclipse.org/.

[23] Séverine Sentilles, Aneta Vulgarakis, Tomas Bures, Jan Carlson, and
Ivica Crnkovic. A Component Model for Control-Intensive Distributed
Embedded Systems. In Proceedings of the 11th International Sympo-
sium on Component Based Software Engineering (CBSE2008). Springer
Berlin, October 2008.

Chapter 7

Paper C:
Database Proxies: A Data
Management approach for
Component-Based
Real-Time Systems

Andreas Hjertström, Dag Nyström and Mikael Sjödin
Technical report

83

Abstract

We present a novel concept, database proxies, which enable the fusion of
two disjoint productivity-enhancement techniques; Component Based Soft-
ware Engineering (CBSE) and Real-Time Database Management Systems (RT-
DBMS). This fusion is neither obvious nor intuitive since CBSE and RTDBMS
promotes opposing design goals; CBSE promotes encapsulation and decou-
pling of component internals from the component environment, whilst RT-
DBMS provide mechanisms for efficient and safe global data sharing. Database
proxies decouple components from an underlying database thus retaining en-
capsulation and component reuse, while providing temporally predictable ac-
cess to data maintained in database. We specifically target embedded sys-
tems with a subset of functionality with real-time requirements, and the results
from our implementations shows that the run-time overhead from introduc-
ing database proxies is negligible and that timing predictability does not suffer
from the introduction of an RTDBMS in a component framework.

7.1 Introduction 85

7.1 Introduction

To enable a successful integration of a Real-Time DataBase Management Sys-
tem (RTDBMS) [1, 2, 3, 4] into a Component-Based Software Engineering
(CBSE) [5, 6] framework we present a new concept, database proxies. A
database proxy allows system developers to employ the full potential of both
CBSE and RTDBMS, which aim both to reduce complexity and enhance pro-
ductivity when developing embedded real-time systems.

Although both CBSE and RTDBMS aims to reduce complexity, a fusion
between them is not trivial since their design goals are contradicting. RTDBMS
promotes techniques, such as a common blackboard storage architecture to
share global data safely and efficiently by providing concurrency-control, tem-
poral consistency, and overload and transaction management. Furthermore the
typical interface provided by the RTDBMS opens up for a whole new range
of possibilities, much needed by industry, such as dynamic run-time queries
which could be a welcome contribution to aid in logging, diagnostics, monitor-
ing [7], compared to the pre defined static data access often used by developers
today.

CBSE promotes encapsulation of functionality into reusable software enti-
ties that communicates through well defined interfaces and that can be mounted
together as building blocks. This enable a more efficient and structured de-
velopment where available components can be reused or COTS components
effectively can be integrated in the system to save cost and increase quality.

The techniques offered by an RTDBMS allow the internal structure of the
RTDBMS to be decoupled from its users. However, using these techniques in
a component-based system implies calling the database from within the com-
ponent code, thereby introducing unwanted side-effects such as awareness that
the database exist, severely influencing component reusability. A component
with direct access to the database from within, introduces side-effects thereby
violating the components aim to be encapsulated. Furthermore, if the RT-
DBMS is used inside the component, the component cannot be used without a
database.

To overcome these problems we propose the concept of database prox-
ies which decouple the database from the component, and instead uses the
database as a part of the component framework.

As illustrated in figure 7.1, a database proxy is part of the component
framework, thus external to the component. The task of the database proxy
is to manage access to the RTDBMS to make it possible for components to in-
teract with a database through its interface as the coupling is embedded in the

86 Paper C

DB Unaware

Component B

DB Unaware

Component A

RTDBMS

DB

Proxy

DB

Proxy

Real-Time Database

Management System

Figure 7.1: Database Proxies Connecting Components to an RTDBMS

underlying glue code. By decoupling components from the database, and plac-
ing the database in the component framework, the decision to use a database
or not is moved from the component design to the system design.

The tools and techniques in this paper primarily targets data intensive and
complex embedded real-time systems with a large degree of control functions,
such as vehicular, industrial and robotic control-systems. These domains, and
also software intensive embedded systems in general, has in recent years be-
come increasingly complex; up to the point that system development, evolution
and maintenance is becoming hard to handle, with corresponding decreases in
quality and increases of costs [8, 9].
The results and main contributions of this paper include:

1. A framework where components and data is reliably managed and struc-
tured to enable flexibility and reusability.

2. A system where soft and hard real-time tasks can execute and keep iso-
lation properties.

3. A system that can handle critical transactions and at the same time enable
openness to run-time queries.

7.2 Background and Motivation 87

4. A system where new functionality can be added or removed without side
effects to the system.

The rest of this paper is structured as follows; in section 7.2, we present
background and motivation for the approach. We also present the specific prob-
lems that our approach addresses. In section 7.3, we present the system model.
Section 7.4 gives a detailed description of the database proxy. Further, in sec-
tion 7.5, we illustrate our ideas with an implementation example. Finally, we
show a performance and real-time predictability evaluation in section 7.6 and
concluded the paper in section 7.7.

7.2 Background and Motivation

The characteristics of today’s embedded systems are changing. Embedded sys-
tems are in many cases not isolated to a single system, or a small set of sys-
tems. Many embedded systems are increasingly dependent on cross-platform
communication with other systems. An example of this could be so called Car-
to-Car (C2C) [10] communication. This increases the need for flexible, reliable
and secure data management since nodes in different systems will interact with
each other by accessing and updating various data items. This implies that
a database with a well proven standardized interface such as Open Database
Connectivity (ODBC) would provide an attractive solution [7]. In addition,
this will require a clear separation between safety-critical and non-critical ac-
cess to data to preserve safety requirements.

A strong trend in embedded-system’s development is CBSE. However, to
achieve a successful integration of RTDBMS into the CBSE framework, a
number of CBSE requirement has to be fulfilled. In CBSE, a component en-
capsulates a function or a set of functions and only reveals its interfaces to
specify the services that it will provide or require.

A component which communicates with a database outside its revealed
interface, i.e directly from within the component-code, introduce a number of
unwanted properties such as hiden dependencies and limited reusability. We
define such a component to be database aware.

To fully utilize the benefits of CBSE, a component should be able to in-
teract with a database without any knowledge of the database schema, i.e.,
the structure of the data in the database. We define such a component to be
database unaware. A database unaware component has no notion of the un-

88 Paper C

derlying database and its structure, neither if a database is used or not. Fur-
thermore, a database unaware component introduces no side-effects such as
database communication outside the components specified interface, thus re-
taining components reusability.

The usage of an RTDBMS in a CBSE framework may not introduce any
side-effects that violates key CBSE architectural principles [11, 5]. For the
purpose of this paper, we define a component to be side-effect free if it is:

• Reusable: A component has to be reusable without any direct depen-
dencies to the surrounding environment.

• Substitutable: A component should be substitutable with another com-
ponent if the new component meets the original interface requirements.

• Without implicit dependencies: A component may not have any data
dependencies other then the dependencies expressed in its interface.

• Using only interface communication: A component may only commu-
nicate trough its interface.

7.2.1 RTDBMS Access Mechanisms

There are several existing RTDBMS mechanisms that could be used in order
to reach some of above stated principles by decoupling the internal structure of
the RTDBMS from its users. However, these mechanisms are placed directly
in the component code. This implies that there exists a dependency between
the component and the RTDBMS.
Available RTDBMS mechanisms [12];

• Pre-compiled statements, enables a developer to bind a certain database
query to a statement at design-time. The statement is compiled once
instead of a sending it to the database and compiling it for each use. This
has a decoupling effect since the internal database schema is hidden.
Each statement is bound to a specific name that is used to access the
data.

• Views, holds a stored predefined query that can represent a subset of the
data contained in one or several tables which can be accessed as a virtual
table. Views has similar decoupling effect as pre-compiled statements,
but in this case the name represent a simplified view of several tables.

7.2 Background and Motivation 89

• Stored Procedures, decouples logical functions that is moved into the
database, hidden from the user. Several SQL statements can be executed
within the database using declared variables and loop trough trough ta-
bles using, IF or WHILE statements etc. declared in the SQL language.
However only result sets can be returned for additional processing.

• Functions, is a subprogram, similar to a stored procedure, the logi-
cal functions, the internal database schema is decoupled from the user.
Functions perform a desired task and returns a single value.

These mechanisms seemingly provide means of decoupling a component
from the RTDBMS, however none of the above stated RTDBMS mechanisms
are sufficient to use in a component-based setting, since;

1. The database access is side-effect not visible in the component’s inter-
face.

2. The component are bound to always use a database.

3. The component is not fully decoupled from the database. The database
name, specific login details and connection information etc. resides
in the component. The component is therefore no longer generic nor
reusable.

4. The requirements expressed by the components interface does not reflect
the database dependency, the component are therefore no longer substi-
tutable.

An additional implication of using the existing RTDBMS mechanisms is
that since the component will be dependent on a database, the component will
determine whether a database should be used or not. As a result of this, the de-
cision to use a database or not is made on the component-design level, instead
of the system-design level. Usage of these mechanisms will also introduce
hidden dependencies since the communication is outside the components in-
terface. Individual components should not introduce side-effects or dictate the
overall system architecture.

7.2.2 System Requirements
In this section we list a number of requirements that has to be fulfilled to enable
the introduction of an RTDBMS into a component-based application without
violating the fundamental aim of CBSE. The usage of an RTDBMS should be

90 Paper C

seen as an additional design feature for systems where data management using
internal data structures are not sufficient.

R1 The decision to use an RTDBMS or not should be made on system, ap-
plication or product level.

R2 The usage of an RTDBMS should not introduce any side-effects to the
components or system.

R3 A component should be possible to use both with or without an RT-
DBMS.

R4 The real-time properties should not be compromised.

7.3 System Model
The tools and techniques in this paper primarily targets data intensive and com-
plex embedded real-time systems with a large degree of control functions, such
as vehicular, industrial and robotic control-systems. These applications involve
both hard safety-critical control-functions, as well as soft real-time function-
ality. Our techniques are equally applicable to distributed and centralized sys-
tems (however current implementations; as described in latter sections, are for
single node systems).

We consider a system where functionality are divided into the following
classes of tasks:
Hard real-time tasks, typically executed at high frequency to read or write
values from sensors or component output ports to memory or database. When
a database is used, hard real-time tasks require a predictable access to data
elements.
Soft real-time tasks, often running at a lower frequency controlling less crit-
ical functions such as presenting statistical information, logging or used as a
gateway for service access to the system by technicians to perform system up-
dates, fault management or if the system permits, perform ad-hoc queries at
run-time. These tasks puts high demands on system flexibility and standard
interfaces.

7.3.1 Real-Time Database Architecture
In order to support a predictable mix of both hard and soft real-time transac-
tions, we consider a database with two separate interfaces. Figure 7.2 illustrates
an RTDBMS which has a soft interface that utilize a regular SQL [13] query
interface to enable flexible access from soft real-time tasks. For hard real-time

7.3 System Model 91

RTDBMS

S
o

H
a
rdSQL DBP

Figure 7.2: RTDBMS Architectural Overview

transactions, a database pointer (dbp) [14] interface is used to enable the ap-
plication to access individual data elements in the database similar as a shared
variable. This approach enable us to share data between hard and soft real-time
tasks. To achieve database consistency without jeopardizing the real-time re-
quirements the 2V-DBP concurrency control algorithm [14] is used. 2V-DBP
allows hard and soft transactions to share data independent of each other.

Figure 7.3 shows an example of a database aware I/O task that periodically
reads a sensor and propagates the sensor value to the database using a database
pointer, in this case the oil temperature in the engine relation. The task consists
of two parts, an initialization part (lines 2 to 4) executed when the system is
starting up, and a periodic part (lines 5 to 8) scanning the sensor.

1 TASK oilTemp(void){
//Initialization part

2 int temp;
3 DBPointer *dbp;
4 bind(&dbp,"Select TEMP from ENGINE

where SUBSYSTEM=’oil’;");
//Control part

5 while(1){
6 temp=readOilTempSensor();
7 write(dbp,temp);
8 waitForNextPeriod();

}
}

Figure 7.3: A database aware I/O task that uses a database pointer

The initialization of the database pointer is first done by declaring the
database pointer (line 3) and then binding it to the data element containing

92 Paper C

Component

1
Sensor

Component

2

Component

3

Component

4

Actuator

Hmi

Task alloca!on

Synthesis

Glue code

System design and modeling

A"ribute

assignment

Applica!on

Figure 7.4: System Design and Modeling

the oil temperature in the engine (line 4). When the initialization is completed,
the task begins to periodically read the value of the sensor (line 6), then propa-
gates the value to the RTDBMS using the database pointer (line 7), and finally
awaits the next invocation of the task (line 8).

7.3.2 System Design and Modeling
In application design and modeling we assume a pipe-and-filter [6] component
model where data is passed between components (filters) using connections
(pipes). The entry point for the connection to the components is the inter-
face (port). Figure 7.4 shows an example of a system design and modeling
architecture for CBSE. A set of components are connected trough ports and
connections to form the system. From the modeled system, the low level code
is generated to tasks, attributes and glue code to the application.

7.3.3 Extended System Design and Modeling
We complement the classical architectural view, presented in section 7.3.2,
with a new additional view, the CBSE database-centric view. This new view

7.4 Database Proxy 93

visualizes the component ports that are connected to data elements in an RT-
DBMS, illustrated in figure 7.5. The notation simplifies the view of the system
by removing the actual connection between the producing and consuming com-
ponent, thus replacing it with a database symbol. To enable traceability, this
view can however be transformed at any time to reveal the data flow through
the connections such as shown in 7.4.

This is similar to an off-page connector that is used when designing elec-
trical schemas for embedded systems which could involve a large number of
components and connections. A connection ends in a symbol or a an identi-
fication name that is displayed at each producer and consumer. To display all
connections in a complex schematic diagram would make the electrical schema
impossible to read.

During the design of the system the system architect or developer can uti-
lize both traditional data passing through connections or via an RTDBMS pro-
viding a black-board data management architecture. An RTDBMS can be used
as the single source of memory management or a mix of both internal data
structures and an RTDBMS when additional flexibility is needed to meet the
system requirements.

As an example, the usage of an RTDBMS could be considered useful when
several components and tasks share data and/or there is a need to perform log-
ging, diagnostics or display information on an HMI. However, if two compo-
nents share a single data item that are of no additional interest, it is probably
not necessary to map that item to the RTDBMS.

7.4 Database Proxy

To succeed in combining CBSE and RTDBMS, we introduce an architectural
framework object, the database proxy which acts as a communication link be-
tween the application components and the RTDBMS as seen in figure 7.1. The
database proxy and communication interface to the database is embedded in
the glue code between component calls and connects to a components input
or output port. This creates an interface which matches the interface of the
component. As a result, the system can fully benefit from the advantages of
component-based software development combined with the advantages of a
real-time database management system since the components are decoupled
from a specific database engine or database schema. The database proxy in-
terface descriptions should be automatically generated, based on the system
design description and the appropriate data model.

94 Paper C

Task alloca�on

Synthesis

Glue code
A!ribute

assignment

Applica�on

Extended system design and

modeling environment

DB

DB

DB

DB

DB

DB DB

DB

DB

DB

DB

DB

Figure 7.5: Database View of Application Model

The architectural framework introduced in this paper distinguish between
two types of database proxies, namely hard real-time database proxies (hard
proxies) and soft real-time database proxies (soft proxies).

7.4.1 Hard Real-Time Database Proxy

Hard proxies are intended for hard real-time components, which need efficient
and deterministic access to individual data elements.
A hard real-time database proxy;

• is connected to a component’s in- or out-port, thereby acting as a com-
munication link to the database.

• is realized with a database pointer to enable predictable data access to
individual data elements.

• contains all information to set up a database pointer, which will be con-
structed in the component framework as glue code between component
calls.

7.4 Database Proxy 95

• uses a predictable concurrency control algorithm such as 2V-DBP [14]
that provides constant response-time for database pointers.

• can provide a data element of any type.

• can be used with any existing components since the database is fully
transparent to the component.

7.4.2 Soft Real-Time Database Proxies
Soft proxies are intended for soft real-time components, which might need
more complex data-structures. Consider a component monitoring the overall
status of a subsystem, e.g., all the temperatures in an engine, or logging of
errors etc.

In order for a component to be decoupled from the RTDBMS and use a soft
proxy, it utilizes a relational interface, which means that the components in-
terface has the notion of a relational table. Therefore a new type is introduced,
TABLE.

Query C-structResultset

Managed by database proxy Managed by component

select Mode, state

from Feedback order

by Mode;

struct{

char[10] Mode;

int State;

}Table_FeedBack;

Feedback

Mode State

Find 0

Follow 0

Turn 1

Figure 7.6: Description of Table Type

A TABLE is a realization of a relational table using standard C-types. Fig-
ure 7.6 illustrates the three steps from query to resultset and C-struct. At run-
time the database query returns a resultset that is converted by the soft proxy
into the defined TABLE to match the interface of the consuming component.
The specified type TABLE, is generated into the component code.

This approach enables a component to be database unaware as the database
proxy does not introduce any side-effects. Since a component can receive a

96 Paper C

DBProxy.h

DBProxy.c

int DBInit(){

setupDbSession();

….

initDB_task_1();

initDB_task_2();

}

int DBUninit(){

endDBSession();

unInit_task_1();

unInit_task_2();

}

main(){

…

DBInit();

start task_1();

start task_2();

DBUnInit();

}

applica!on.c

#include DBProxy.h

declare DBPointer dbp1;

int initDB_task_1(){

bind_DBP(…);

}

int unInit_task_1(){

unbind_DBP(…);

}

void hardProxy_r1(int *r1){

readDBPInt(..., r1);

}

void hardProxy_w1(int *w1){

writeDBPInt(..., w1);

}

void task_1(){

int r1, w1;

hardProxy_r1(&r1);

call_Component_C1(r1);

…

call_Component_C2(…);

hardProxy_w1(&w1);

}

task_1.c (code simplified for readability)

DB DBC1 C2

w1r1

#include DBProxy.h

Session sess;

Statement stmnt;

int initDB_task_2(){

BeginSession(sess, …);

BeginStatement(sess,…,&stmt);

}

int unInit_task_2(){

EndStatement(&stmnt);

EndSession(&sess);

}

void so Proxy_r2(Table_Mode log){

Fetch(stmnt);

GetInt(stmt, log->read_1);

Fetch(stmnt);

GetInt(stmt, log->read_2);

}

void task_2(){

Table_Mode log;

so Proxy_r2(&log);

call_Component_C3(log);

}

task_2c (code simplified for readability)

DB C3

r2

Figure 7.7: Hard and Soft Proxy Glue-Code Generation Example

type TABLE without the usage of a database proxy, the component is still
reusable without a database. This is possible since the data transformation
between the database and the TABLE is encapsulated in the proxy.
A soft real-time database proxy;

• is connected to a component’s in- or out-port, thereby acting as a com-
munication link to the database.

• uses standard SQL query language.

• converts the resultset from the database query into the format of the TA-
BLE which is realized by a standard c-type.

• hides the database query in the glue-code associated with the proxy.

7.4.3 Proxy Implementation Description
Figure 7.7, shows a simple example of how the glue-code generated from the
proxy specification for hard and soft database proxies are implemented. In the
lower left of the figure, two example applications are displayed. One appli-
cation includes component C1, that reads a value from the database, filters it

7.5 Implementation 97

and outputs to component C2. C2, writes a value to the database. The other
application shows an example of a soft database proxy implementation where
component C3 reads a type Table_Mode. Figure 7.7 has been simplified for
readability. The flow pointed out by the arrows in figure 7.7, for the hard real-
time task, task_1.c, is also valid for the flow in the soft real-time task, task_2.c.

The flow of the implementation can be divided in three phases, initialize,
running task and un-initialize.

Initialize

1. application.c, is the main application file. Before the task/tasks con-
taining a database proxy/proxies are called, the database is initialized
by calling the DBInit() function declared in the separate DBProxy.c file.
This is done for both hard and soft proxies.

2. Each tasks individual, initialization function, initDB_task_1() and
initDB_task_2() is called to bind hard proxy real-time database database
pointers and to setup soft proxy real-time statements.

Task execution

1. The database proxies are included in the task files, task_1.c and task_2.c.

2. The proxies are declared as a separate functions which is called before
the component call if it is connected to an input port in order to read the
required value/values.

3. If the proxy is connected to an output port the call to the proxy is made
after the component call to write/update the database.

Un-initialize

1. When the task has completed its execution, DBUninit() is called.

2. DBUninit() un-initializes the database connections in all tasks.

7.5 Implementation
In our approach, we have extended the CBSE system development framework
to include database proxies and data modeling, see figure 7.8. In this frame-
work the system architect can utilize the usage of a database as an additional
design feature. If a database is included in the design, the generated System

98 Paper C

System

Development

Tool

Data

Modeling Tool

Database Proxy

Descrip!on File

System

Descrip!on File

Database

Defini!on File

Code

Generator

DBTarget

Deployment

System Architect Data Administrator

Figure 7.8: The Approach

Description File, is extracted from the System Development Tool in order to
perform the data modeling and generate a Database Proxy Descriptions File.
These files are then weaved together with the Code Generator to form the run-
time C-code. A Database Definition File is also generated from the data mod-
eling to enable the database setup. Three existing tools and technologies have
been used in our proof of concept implementation of the approach in figure 7.8.
Save-IDE [21], Mimer Real-Time edition (MimerRT) [15] and the Data Entity
Navigator (DEN) [16].

7.5.1 Mimer Real-Time Edition

The Mimer SQL Real-Time Edition (Mimer RT) [15] is a real-time database
management system intended for applications with a mix of hard and soft real-
time requirements. Mimer RT uses the concept of database pointers [14] to
access individual data elements in an efficient and deterministic manner. For
soft real-time database management, standard SQL [13] queries are used. To
achieve database consistency without jeopardizing the real-time requirements
the 2V-DBP concurrency control algorithm presented in section 7.3.1

7.5 Implementation 99

7.5.2 SaveCCT Real-Time Component Technology

The SaveComp Component Technology (SaveCCT) [21] is described by distin-
guishing manual design, automated activities, and execution. The entry point
for a developer is the Save Integrated Development Environment (Save-IDE),
a tool supporting graphical composition of components, where the application
is created. Developers can utilize a number of available analysis tools with au-
tomated connectivity to the design tool. SaveCCT is based on a textual XML
syntax which allows components and applications to be specified. Automated
synthesis activities generate code used to glue components together and allo-
cate them to tasks. SaveCCT is, as Mimer RT, intended for applications with
both hard and soft real-time requirements.

SaveCCT applications are built by connecting components input and out-
put ports using well defined interfaces. Components are then executed using
trigger based strict "read-execute-write" semantics. A component is always in-
active until triggered. Once triggered it starts to execute by reading data on
input ports to perform its computations. Data is then written to its output ports
and outgoing triggering ports are activated. Except from regular connections,
SaveCCT also provide a flexible connection concept denoted complex connec-
tions. This is the entrance point in the component model for the database prox-
ies. The database proxy configuration is defined in the model of the complex
connection.

7.5.3 Embedded Data Commander Tool-Suite

The Embedded Data Commander (EDC) is a tool-suite that implements the
data entity approach [16] for the ProSys component-model [17]. A data en-
tity is a compilation of knowledge for each data item in the system and can be
defined completely separate from the development of components and func-
tions. This enable developers to crate a system with data entities based on
application requirements and perform early analysis even before the producers
or consumers of the data are developed.

This tool suite has in our continued research on database proxies been ex-
tended with new functionality that supports SaveCCT, real-time component
technology [21].
The tool-suite has been extended with:

• The System Signal Manager (SSM), manages the SaveCCT signals, pro-
xy and component information.

100 Paper C

1.<SIGNAL id="P_FindFB_W" component="Find">
2.<SNIPPETDEF type="int Fi_FindFB;"
pointerdefinition="MimerRTDbp dbp_P_FindFB_W;"/>

3.<SNIPPETINIT bindquery="MimerRTBindDbp(
&hrtsess,&dbp_P_FindFB_W,DBP_DEFAULT,
L"SELECT state FROM Mode WHERE
Subsystem="find");"/>

4.<UPDATECALL call="MimerRTPutInt(&
dbp_P_FindFB_W,Fi_FindFB);"/>

5.</SIGNAL>

Figure 7.9: Hard Proxy Representation

• The DataBase Administrator Tool (DBAT), used to model, setup and
generate database schemas, load files and database proxies.

Save-IDE generated description files can be imported and interpreted by
the SSM to give the developer a more data centric view and information rather
than focusing in components as in Save IDE. From this information the DBAT
is used to design the database and generate the appropriate load files for the
RTDBMS. This information is then used to generate the database proxy infor-
mation files that is exported to Save-IDE in order to generate the component
glue code.

A database proxy definition is represented in XML. Figure 7.9 shows an
example of a generated hard proxy description using MimerRT. The XML code
is disposed as follows. 1 the id of the signal and which component it resides
in. 2 the definition of type and pointer declaration. 3 the function to bind the
database pointer, including the sql query. 4 the type of call to use, in this case
an update call since it is a write proxy. 5 end of proxy definition.

7.6 Performance Evaluation

In this section we describe the results from a performance evaluation where we
have implemented an embedded control system and measured execution times
and memory overheads.

7.6 Performance Evaluation 101

Figure 7.10: Truck Application

7.6.1 The Application

To evaluate or approach, we have implemented an application in Save-IDE.
The application consists of seven components that simulates a truck. The ap-
plication has three modes, follow, turn and find which are connected to an
actuator component. Components follow, turn and find are also connected to
mode change component via feedback loops. The truck first follow a line. At
the end of the line, the truck turns for a certain amount of time until it finds the
line and starts following it again, see figure 7.10.

The application consists of two tasks, a hard real-time task and a soft real-
time task. The hard real-time task is triggered every 10ms and consist of
six components. A sensor component that outputs sensor values to the Mod-
eChange component that decides which of the three modes follow, turn and
find to activate and the actuator component. The architectural design decision
of the application is to replace the three interconnected loop-back signals from
the three mode components to the ModeChange component with hard real-
time database proxies. Components follow, turn and find each updates a value
in the database that is read by three database proxies connected to component
ModeChange.

Since the task performed by the included components is quite trivial, we
have added a more realistic work load in the system. We have added a complex
embedded benchmark code used within the area of worst-case execution time
(WCET) analysis [18] to components follow, turn and find. The benchmark
code performs a lot of bit manipulation, shifts, array and matrix calculations.

The soft real-time task is triggered every 20ms and consist of one HMI
component. The component uses a database proxy to periodically read the
three values updated by the hard real-time task.

102 Paper C

7.6.2 Benchmarking Setup
To evaluate our approach, we have performed a performance evaluation of four
possible implementations of the evaluation application. The aim of the eval-
uation is to measure if the usage of our approach using database proxies will
have an impact on the real-time performance and memory consumption of the
system.

The tests have been performed on a Hitachi SH-4 series processor [19] with
VxWorks [20] as real-time operating system. The hard real-time tasks are exe-
cuted 1800 times.

The four evaluated implementations shown in figure 7.11:

Test 1 Baseline implementation using regular memory without any database
connection. The feedback loops implemented as shared variables pro-
tected using semaphores.

Test 2 Implementation using database unaware components with access to the
database using the concept of database proxies.

Test 3 Implementation using database aware components with access to the
database from within the components using database pointers.

Test 4 Implementation using database aware components with access to the
database from within the component using only regular SQL queries
without hard real-time database pointers.

7.6.3 Real-Time Performance Results
Figure 7.11 shows the result of the response-times of the hard real-time control
application for the four test-cases. The graphs clearly show that the intro-
duction of a real-time database using database pointers, either directly in the
component-code or through proxies does not affect the real-time predictability
and adds little extra execution time overhead, while using SQL queries directly
in the component-code severely affects both predictability and performance
negatively. Table 7.1, shows a table with the evaluation results. The change
of the Average Case Execution Time (ACET) and Worst Case Execution Time
(WCET) in the two rightmost columns shows the change in percent, with test 1
as a benchmark. The ACET and WCET between the first three tests does not
differ more than a few percent. The fourth test does, as could be expected, not
perform anywhere near the other tests.

7.6 Performance Evaluation 103

0

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
2

0
0

0

1
4

0
0

0

1
5

0
1

1
0

0
1

1
5

0
1

T
e

s
t

1
:

N
o

D
a

t
a

b
a

s
e

E
x

e
c

u

o
n

m

e
 (

µ
se

c
)

W
o

rs
t-

C
a

se
 E

x
e

c
u

o

n
 T

im
e

 =
 1

0
9

8
 µ

se
c

A
v

e
ra

g
e

 E
x

e
c

u

o
n

 T
im

e

=

 8

7
8

 µ
se

c

0

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
2

0
0

0

1
4

0
0

0

1
5

0
1

1
0

0
1

1
5

0
1

T
e

s
t
 2

:
D

a
t
a

b
a

s
e

P

r
o

x
ie

s

E
x

e
c

u

o
n

m

e
 (

µ
se

c
)

W
o

rs
t-

C
a

se
 E

x
e

c
u

o

n
 T

im
e

 =
 1

1
2

2
 µ

se
c

A
v

e
ra

g
e

 E
x

e
c

u

o
n

 T
im

e

=

 8

9
4

 µ
se

c

0

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
2

0
0

0

1
4

0
0

0

1
5

0
1

1
0

0
1

1
5

0
1

T
e

s
t

3
:

D
a

t
a

b
a

s
e

P

o
in

t
e

r
s
 i

n
 C

o
m

p
o

n
e

n
t
s

E
x

e
c

u

o
n

m

e
 (

µ
se

c
)

W
o

rs
t-

C
a

se
 E

x
e

c
u

o

n
 T

im
e

 =
 1

0
8

4
 µ

se
c

A
v

e
ra

g
e

 E
x

e
c

u

o
n

 T
im

e

=

 8

7
2

 µ
se

c

0

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
2

0
0

0

1
4

0
0

0

1
5

0
1

1
0

0
1

1
5

0
1

T
e

s
t
 4

:
S

Q
L

 c
a

ll
s

in

 C
o

m
p

o
n

e
n

t
s

E
x

e
c

u

o
n

m

e
 (

µ
se

c
)

W
o

rs
t-

C
a

se
 E

x
e

c
u

o

n
 T

im
e

 =
 8

2
5

4
3

4
 µ

se
c

A
v

e
ra

g
e

 E
x

e
c

u

o
n

 T
im

e

=

6

7
7

1
 µ

se
c

Figure 7.11: Evaluation Results

104 Paper C

Test ACET WCET ACET (%) WCET (%)
1 878 1098 - -
2 894 1122 1.82 2.19
3 872 1084 -0.68 -1.28
4 6771 825434 771.18 75176.14

Table 7.1: Application Execution Time

Test Code Size Change (%)
No Database 653 512 bytes -
Database Pointers 666 564 bytes 1.99
Database Proxies 666 988 bytes 2.06

Table 7.2: Application Code Size

In these tests we are most interested in test 2, which shows that the ACET is
increased by only 1.82% and the WCET by 2.19%. Furthermore, the evenness
of the results clearly shows that the usage of database proxies is predictable,
and with the amount of overhead in average and worst-case execution time is
limited. We interpret the slight decrease in ACET and WCET for test 3 to be a
result of optimized synchronization primitives used by MimerRT compared to
the regular POSIX routines.

7.6.4 Memory Consumption Results

Table 7.2 shows how the client code size changes when using different data
management methods. As can be seen in the table, integrating a real-time
database client with the calls hand-coded in the component code introduces
1.99% extra code. By using database proxies that have been automatically
generated the code size grows with as little as 2.06%. Introducing a real-time
database server in the system of course also introduces extra memory con-
sumption, but embedded database servers are becoming smaller and smaller.
The Mimer SQL database family that is used in this evaluation has a footprint
ranging from 273kb for the Mimer SQL Nano database server, up to 3.2Mb
for the Mimer SQL Engine for enterprise systems. The RAM usage for Mimer

7.7 Conclusions 105

SQL Nano is as low as 24k. The increase of client code size, as well as the
small size of modern embedded database servers makes the memory overhead
for database proxies and real-time database affordable for many of today’s real-
time embedded systems.

7.7 Conclusions
This paper presents the database proxy approach which enable fusion between
real-time database management systems (RTDBMSes) and component-based
software engineering (CBSE). Our approach allows the introduction of RT-
DBMSes, and the associated range of new possibilities, to CBSE; this includes
the possibility to access data via standard SQL interfaces, concurrency-control,
temporal consistency, and overload and transaction management. I addition, a
new possibility to use dynamic run-time queries to aid in logging, diagnostics
and monitoring is introduced.

The motivation for our approach stems from observations of industrial
practices and documented needs [7, 8].

To evaluate our approach, an implementation that covers the whole de-
velopment chain has been performed, using both research oriented and com-
mercial tools and techniques. The system architecture is implemented in Save-
IDE. The architectural information is then generated and exported to EDC tool,
where the database proxies and interface to the database is created. The EDC
tool then generates the database proxy information back to Save-IDE for fur-
ther generation of glue-code and tasks for the entire system.

To validate our approach further, we has performed a series of execution
time tests on the generated C-code for a research application. These tests shows
that our approach only increase (both the average and the worst-case) execu-
tion time with approximately 2%. Furthermore, the memory overhead, also
about 2%, introduced by database proxies can be affordable for many classes
of embedded systems. We conclude that the database proxy approach offers
a range of valuable features that to real-time embedded systems development,
maintenance and evolution at a minimal cost with respect resource consump-
tion.

Bibliography

Bibliography

[1] B. Adelberg, B. Kao, and H. Garcia-Molina. Overview of the STanford
Real-time Information Processor (STRIP). SIGMOD Record, 25(1):34–
37, 1996.

[2] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson, and
B. Eftring. DeeDS Towards a Distributed and Active Real-Time Database
System. ACM SIGMOD Record, 25, 1996.

[3] J. Lindstrom, T. Niklander, P. Porkka, and K. Raatikainen. A Distributed
Real-Time Main-Memory Database for Telecommunication. In Proceed-
ings of the Workshop on Databases in Telecommunications. Springer,
1999.

[4] Krithi Ramamritham, Sang H. Son, and Lisa Cingiser Dipippo. Real-
Time Databases and Data Services. Journal of Real-Time Systems,
28(2/3):179–215, November/December 2004.

[5] Ivica Crnkovic and Magnus Larsson. Building Reliable Component-
Based Software Systems. Artech House, 2002.

[6] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal, Peter Sommerlad, and Michael Stal. Pattern-Oriented Soft-
ware Architecture, Volume 1: A System of Patterns. John Wiley & Sons,
1996.

[7] Sandro Schulze and Mario Pukall and Gunter Saake and Tobias Hoppe
and Jana Dittmann. On the need of data management in automotive sys-
tems. In Johann Christoph Freytag, Thomas Ruf, Wolfgang Lehner, and
Gottfried Vossen, editors, BTW, volume 144 of LNI, pages 217–226. GI,
2009.

106

[8] Andreas Hjertström, Dag Nyström, Mikael Nolin, and Rikard Land.
Design-Time Management of Run-Time Data in Industrial Embedded
Real-Time Systems Development. In Proceedings of 13th IEEE Inter-
national Conference on Emerging Technologies and Factory Automa-
tion (ETFA’08), IEEE Industrial Electronics Society, Hamburg, Germany,
September 2008.

[9] Nicolas Navet. Trends in Automotive Communication Systems. In Pro-
ceedings of the IEEE, volume 93, pages 1204–1223, June 2005.

[10] AUTOSAR Open Systems Architecture. http://www.car-to-car.org.

[11] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Professional, December 1997.

[12] ISO SQL 2008 standard. Defines the SQL language, 2009.

[13] Stephen Cannan and Gerhard Otten. SQL - The Standard Handbook.
MacGraw-Hill International, 1993.

[14] Dag Nyström, Mikael Nolin, Aleksandra Tešanović, Christer Norström,
and Jörgen Hansson. Pessimistic Concurrency Control and Versioning to
Support Database Pointers in Real-Time Databases. In Proceedings of
the 16th Euromicro Conference on Real-Time Systems, pages 261–270.
IEEE Computer Society, June 2004.

[15] Mimer SQL Real-Time Edition, Mimer Information Technology. Upp-
sala, Sweden. http://www.mimer.se.

[16] Andreas Hjertström, Dag Nyström, and Mikael Sjödin. A Data-Entity
Approach for Component-Based Real-Time Embedded Systems Devel-
opment. In 14th IEEE International Conference on Emerging Technology
and Factory Automation, September 2009.

[17] Tomas Bures, Jan Carlson, Ivica Crnkovic, Séverine Sentilles, and Aneta
Vulgarakis. ProCom - the Progress Component Model Reference Manual.
Technical Report, Mälardalen University, 2008.

[18] The Worst-Case Execution Time (WCET) analysis project.
http://www.mrtc.mdh.se/projects/wcet/.

[19] Hitachi SH-4 32-bit RISC CPU Core Family. http://www.hitachi.com/.

108 Bibliography

[20] VxWorks Real-Time Operating System, by Wind River.
http://www.windriver.com/.

