
Bridging the Semantic Gap between Abstract
Models of Embedded Systems?

Jagadish Suryadevara, Eun-Young Kang, Cristina Seceleanu, and
Paul Pettersson

Mälardalen Real-Time Research Centre,
Mälardalen University, Väster̊as, Sweden.

E-mail: {jagadish.suryadevara, eun.young.kang, cristina.seceleanu,

paul.pettersson}@mdh.se.

Abstract. In the development of embedded software, modeling lan-
guages used within or across development phases e.g., requirements,
specification, design, etc are based on different paradigms and an ap-
proach for relating these is needed. In this paper, we present a formal
framework for relating specification and design models of embedded sys-
tems. We have chosen UML statemachines as specification models and
ProCom component language for design models. While the specification
is event-driven, the design is based on time triggering and data flow.
To relate these abstractions, through the execution trajectories of corre-
sponding models, formal semantics for both kinds of models and a set of
inference rules are defined. The approach is applied on an autonomous
truck case-study.

1 Introduction

Embedded systems (ES) are increasingly becoming control intensive, and time
sensitive. To ensure predictable behaviors, the development phases of an ES
require extensive modeling and analysis. These development phases/ abstrac-
tion layers e.g., requirements, specification, design, and implementation, pro-
vide opportunities for applying different predictability analysis techniques. Such
models have to be precise enough to support formal analysis, and must ensure
inter-operability during design. However, they may use paradigms for describ-
ing behavior that cannot be immediately compared and related, due to their
apparently incompatible nature.

There exist several paradigms for behavior specification of embedded sys-
tems. For example, statemachine based approaches, such as UML statemachines
[11], are intended to specify timed aspects of computation and communication,
besides functionality. They often use an aperiodic, event-triggered representation
of behavior, since such a paradigm facilitates easy changing of a model’s configu-
ration or set of events. On the other hand, behavior models might use a different

? This work was partially supported by the Swedish Foundation for Strategic Research
via the strategic research centre PROGRESS and Q-ImPrESS EU project.

modeling paradigm, e.g., a periodic, time-triggered behavioral description, in-
stead of an event-triggered representation. With time-triggered communication,
the data is read from a buffer, according to a triggering condition generated by,
e.g., a periodic clock. Although these modeling capabilities are invaluable to ob-
taining a mature ES development process tailored for predictability, in order to
ensure the correctness of the process, one needs to guarantee that the behavioral
models are indeed consistent.

In this paper, we present a formal framework and a methodology for relating
event-based and time triggered, data-flow driven models of behavior, which may
be used at the same abstraction layer, e.g., at specification level, or across various
layers of abstraction, from specification, to, e.g., the design level of embedded
system development. Concretely, we consider UML statemachines [11] for event-
based specification models and the ProCom component language [15] for design
models. Hence, as it stands now, the framework is tailored to a specific class of
embedded systems, which employ the above mentioned formalisms for modeling
behavior. However, the framework and the methodology could be generalized
to include other similar classes of systems (e.g., component based systems) and
other behavioral paradigms (e.g., finite state machines).

The proposed framework is based on comparison of execution trajectories of
corresponding behavior models. To accomplish this, the formal semantics of both
kinds of models is defined in terms of underlying transition systems. As the exe-
cution trajectories generated by above described models can be extremely large
and incomprehensible, they need to be reduced to more readable and analyz-
able forms. Hence, we propose two sets of inference rules, one for simplification
of specification trajectories and other for simplification of design trajectories.
Moreover, in order to be able to relate and compare the above two sets of sim-
plified trajectories, we introduce a set of transformation rules that lets one relate
an event-triggered trajectory with corresponding time-triggered one.

We apply our approach on an autonomous truck system, by comparing some
trajectories of its specification with those of corresponding component-based
design model. By virtually simulating the models, we show a “run” of each model,
respectively, by outlining corresponding sets of representative trajectories. Then,
we show that, by applying our rules, we can first simplify the design model
trajectory and then transform it into a trajectory equivalent to the one generated
by the specification model. The timing aspects of both runs are also apparent in
the respective trajectories, hence we show how to relate them too. For creating
the truck’s design model, we use the development environment of SaveIDE [12],
an integrated design environment for ES. SaveIDE is developed as part of the
PROGRESS project [1] for component-based development of predictable ES in
the vehicular domain. It supports the subset of ProCom modeling language used
for the case study design of the paper.

The rest of the paper is organized as follows. In Section 2, we describe event-
based, and time triggered formalisms for modeling embedded systems. Corre-
sponding to these formalisms we formally define semantics of a subset of both
UML statemachines and ProCom design languages. In Section 3, we present the

case study details. In Section 4, we describe our methodology, and introduce
three sets of inference rules for simplification and comparison of trajectories of
specification and design models. Some related work is discussed in Section 5. In
section 6, we make conclusions and some aspects of the future work of the paper.

2 Abstract Models of Embedded Systems

In this section, we define the modeling formalisms for model-based specification
and design of embedded systems used in this paper. As specification language,
we will consider UML statemachine notation with timing annotations [11], and
for design models, we will use the ProCom component modeling language [3].

2.1 Specification model of embedded systems

We specify embedded systems using the UML statemachine notation [11]. In
order to model timing, we will use the notion of timeouts provided in UML.
An example of a UML statemachine is shown in Fig. 1. We now give a formal
definition of the model:

Definition 1 (Statemachine Syntax). A statemachine is a tuple 〈L, l0, A,E ,
M 〉 where

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– A = {a0, ..., an , tm} is a set of events, where
• ai is an external event with zero or more parameters,
• tm is a timeout representing the expiry of a timer, and

– M : L → {ε} ∪ N is a mapping from locations to the natural numbers (in-
cluding zero), or ε denoting absence of timeout,

– E ⊆ L×A× L is a set of edges. ut
Fig. 1 shows a UML statemachine with the three locations Follow, Turn, and
Find. The edges from Follow to Turn and from Find to Follow are labeled with
the external events e o l() and line found(), respectively. The edge from Turn to
Find is labeled with event after(4), intuitively denoting a timeout that expires
after four time units1.

We now give the semantics of a UML statemachine specification model de-
fined in terms of a finite state transition system.

Definition 2 (Statemachine Semantics). The semantics of a statemachine
is defined as a transition system 〈S , s0,T 〉 where

– S is a finite set of states of form 〈l ,m〉 with l ∈ L and m ∈ {ε} ∪ N,
– s0 ∈ S is the initial state 〈l0,M (l0)〉,

1 In the figures, we use timeout events of the form after(n), where n ∈ N, instead of
annotating the source location (e.g., location Turn in Fig. 1) with timeout value n.

Follow

Turn

Find

e_o_l()

after(4)

line_found()

Fig. 1. A UML statemachine specification model of the autonomous truck.

– T ⊆ S×A∪{tick}×S where tick is a periodic internal event, is a transition
relation such that
• 〈l ,m〉 ai−→ 〈l ′,m ′〉 if 〈l , ai , l ′〉 ∈ E, and m ′ = M (l ′)

• 〈l ,m〉 tick−−→ 〈l ′,m ′〉 if l = l ′, m 6= 0, and m ′ =

{
ε if m = ε

m − 1 otherwise

• 〈l ,m〉 tm−−→ 〈l ′,m ′〉 if 〈l , tm, l ′〉 ∈ E, m = 0, and m ′ = M (l ′)
ut

Intuitively, the initial state represents the initial location, and its timeout value,
in the statemachine. The first rule describes the state change when an external
event specified over an edge from current location, and in the current state,
occurs. By second rule, if a timeout is defined at current location, the current
value of the timeout decreases in steps of one corresponding to each occurrence of
an internal periodic tick event. The tick event is ignored in the current state if no
timeout is associated with the corresponding location. The third rule describes
the occurrence of timeout event, and hence the location and corresponding state
change, when the timeout duration associated with the current location expires
i.e. becomes zero.

A trajectory of a UML specification model is an infinite sequence

τ = 〈l0,m0〉 λ0−→ 〈l1,m1〉 λ1−→ 〈l2,m2〉 ...

where 〈l0,m0〉 is the initial state, and 〈li ,mi〉 λi−→ 〈li+1,mi+1〉 ∈ T and λi ∈
{a0, ..., an , tick , tm} for all i ∈ N.

2.2 Design model of embedded systems

As design modeling language we will use ProCom [3], a component model for em-
bedded systems. It consists of the two sub-languages: ProSys, which is designed
to model systems at high level (i.e., in terms of large-grained components called
subsystems), and ProSave [15] which is designed to model detailed functionality
of the subsystems. In this paper, we will focus on the ProSave model as it is

better suited for our purposes. A ProSave model consists of atomic or composite
components connected through ports (divided into input and output ports), and
connections. Ports and connections represent data flow between components.

Definition 3 (Component Syntax). A component C is a tuple 〈I ,O ,P , in,
out , f , e〉, where

– I, O, and P are mutually disjoint sets of input, output, and private variables
respectively,

– in : I → Bool is a boolean expression over input variables I that triggers the
execution of the component,

– out : O → Bool is a boolean expression over output variables O that indicates
that the component has completed its execution,

– f : I × P → P × O is a function that maps input and private values to the
private and output values, and

– e ∈ N is a constant representing the execution time of the component.
ut

We denote by X = I ∪O∪P the set of all variables with size |X | = |I |+|O |+|P |.
We will further use C .n to denote the elements of a component, hence e.g., C .I
denotes the input variables of component C . We now introduce the formal syntax
of the ProSave model.

Definition 4 (ProSave Syntax). A ProSave design model is a tuple 〈C,→〉,
where

– C = {C0, ...,Cn} is a set of components,
– → ⊆ C × C is a set of component connections, such that output variables

Ci .O may be connected to input variables Cj .I ut
We will write Ci .Om → Cj .In to represent the connection from output variable
m of component Ci to input variable n of component Cj .

A ProSave system is typically driven by a periodic clock which periodically
generates a control (or trigger) signal. A clock component is defined as follows:

Definition 5 (Clock Component). A component C = 〈I ,O ,P , in, out , f , e〉
is a clock component with period p iff | I |=| O |= 1, e = p, and C .O → C .I .

ut
Fig. 2 shows a ProSave design model consisting of seven components (depicted
as boxes) interconnected by data and control flow connections (depicted as solid
arrows indicating the flow direction). Component SystemClock is a clock com-
ponent with period 40. The other six components have execution time 10. Their
internal behavior may be specified using a formalism based on statecharts [14]
or timed automata [2], which we are not explicitly concerned with in this paper.
A component starts execution when it receives control input. It then reads its
input and proceeds with internal computation. When the internal execution is
completed, data and control output is generated for other components.

SystemClock
(sc)

Sensor
(se)

Follow
 (fo)

Turn
(tu)

Find
(fi)

Controller
(co)

Actuator
(ac)

40 10

10

10

10

10

10

trig

sl, sr sl,
 sr

, fo

sl, s
r, t

u

sl, sr, fi

FBfo

FBtu

FBfi

tfo

ttu

tfi

Fig. 2. Schematic view of a ProSave design model of the autonomous truck.

We will now give the formal semantics of the subset of ProSave used in this
paper. For the semantics of the full ProCom language, we refer the reader to [15].

For a ProSave model consisting of components C0, ...,Cn , we use V to denote
the set of all variables in a model, i.e., V = X0∪...∪Xn . The semantics is defined
using valuations α mapping each variable in V to values in the type (or domain)2

of V , and vectors β̄ of βi ∈ {0, ..., ei ,⊥} representing the remaining execution
time of all components Ci .

We use fi(α) to denote the valuation α′ in which α′(xi) for each xi ∈ Pi ∪Oi

is the value obtained by applying the function Ci .f in the valuation α, and
α′(x ′) = α(x ′) for all other variables x ′. To update the execution time vector β̄
we use β̄[βi := n] to denote the β̄′ in which β′i = n and β′j = βj for all j 6= i ,
and we write β̄ 	 n to denote the β̄′ in which β′i := βi − n for all βi ≥ n.

Definition 6 (ProSave Semantics). The semantics of a ProSave design model
〈{C0, ...,Cn},→〉 is defined as a transition system 〈Σ, σ0, T 〉 where

– Σ is a set of states of the form of a pair 〈α, β̄〉,
– σ0 ∈ Σ is the initial state 〈α0, β̄0〉 which is such that α0 |= Ci .in for all clock

components Ci and α0 |= ¬Cj .in for all other component Cj , and β̄0 = ⊥̄,
– T ⊆ Σ × {CDi ,CSi ,TP} ×Σ is a set of transitions such that the following

conditions hold:

• (component start) 〈α, β̄〉 CSi−−→ 〈α′, β̄′〉 if (Ci .in ∧ (βi = ⊥)), β̄′ = β̄[βi :=
ei], and for all i 6= j : βj 6= 0,

• (component done) 〈α, β̄〉 CDi−−−→ 〈α′, β̄′〉 if βi = 0, α′ = fi(α), and β̄′ =
β̄[βi := ⊥],

• (time passing) 〈α, β̄〉 TP−−→ 〈α′, β̄′〉 if for all i : ¬(Ci .in ∧ (βi = ⊥)) and
βi 6= 0, β̄′ = β̄ 	 1, and (α′ = α).

where CSi ∈ {CS0, ...,CSn} and CDi ∈ {CD0, ...,CDn}. ut
2 We assume all variables in V are of type Boolean or finite domained integers.

Fig. 3. Path of the truck movement.

Intuitively, in the initial state only the clock components are triggered and the re-
maining execution time of all components are undefined. The “component start”
rule describes how components are started. A component Ci may start its exe-
cution provided that all completed components have written their output. When
Ci starts, its execution time is set to ei . The “component done” rule describes
that when a component Ci completes its execution, its output values are gen-
erated and mapped to the input values of the connected components according
to connection relation →, and its remaining execution time is updated to ⊥ to
reflect that it is inactive. Rule “time passing” describes how time progresses in
the design model. As time progresses the remaining execution time βi of each
active component Ci is decremented by 1.

A trajectory of a design model is an infinite sequence

π = 〈α0, β0〉 γ0−→ 〈α1, β1〉 γ1−→ 〈α2, β2〉 ...

where 〈α0, β0〉 ∈ σ0 is an initial state, and 〈αi , βi〉 ai−→ 〈αi+1, βi+1〉 ∈ T is a
transition such that γi ∈ {CDi ,CSi ,TP} for all i ∈ N.

3 Case Study: Autonomous Truck

The autonomous truck is part of a demonstrator project conducted at the
Progress research centre3. The truck moves along a specified path (as illustrated
in Fig. 3), according to a specified application behavior. In this section we give
an overview of the truck application followed by a specification, and a design
model, described in the modeling languages introduced in the previous section.

We will study a simplified version of the case study, in which the truck should
simply follow a line. When it reaches the end of the line, it should try to find
back to the line, follow the line again in the opposite direction, and repeat its
behavior. The truck will have the following operational modes (see also Fig. 1):

3 For more information about Progress, see http://www.mrtc.mdh.se/progress/.

Fig. 4. The design model of the autonomous truck in SaveIDE.

– Follow: in which the truck follows the line (the thick line of Fig. 3) using
light sensors. When the end of the line is detected, it changes to Turn mode.

– Turn: the truck turns right for a specified time duration, and then changes
to Find mode.

– Find: the truck searches for the line. When it is found, the truck returns to
Follow mode.

A specification model of the case study is given in Fig. 1. It starts in location
Follow. The end of the line is modeled using external event e o l(). In location
Turn, it turns for four seconds, and then proceeds to location Find when the
timer expires. The external event line found() models that the line is found and
control switches back to the initial location Follow.

The schematic view of a ProSave deign model of the case study is given in
Fig. 2. The original model (as shown in Fig. 4) was developed using SaveIDE
[12], an integrated development environment supporting the subset of ProSave
used in this paper. As shown in Fig. 2, the design model consists of components
SystemClock (a periodic clock), Sensor, Controller, Follow, Turn, Find and Actu-
ator. Component SystemClock triggers the complete model periodically through
the component Sensor which reads the light sensors of the truck. The sensor
values (left, right) are communicated through the data ports sl and sr. Note,
a connection between two components as shown in Fig. 2, denotes a collection

of independent port connections between corresponding data or trigger ports of
the components. Component Controller acts as a control switch for triggering
the components Follow, Turn, and Find selectively , through control ports fo, tu,
fi respectively, which contain the functionality of the corresponding modes of
the truck behavior. The completion of execution of each operational mode (the
corresponding component) is indicated by data (port) values FBfo , FBtu , and
FBfi respectively. Component Actuator, triggered by control port tfo, ttu, or tfi,
actuates the corresponding hardware to cause the physical activity of the truck
movement. As discussed previously, the periodicity of the SystemClock is 40 time
units and the execution times of each of other components is 10 time units.

4 Methodology Description

In Section 2, we have described the syntax and semantics of two models used in
the development of embedded system software: the event-based model of UML
statemachines, and the time-triggered and data-flow oriented model of ProCom.
These are examples of modeling languages that are aimed at providing different
views of embedded systems, used in different stages or at different abstraction
levels during system development. The common use of different models creates a
need for comparing descriptions of systems made in different modeling languages.

In this section, we propose a method for comparing event-based and time-
triggered models of embedded systems. The method will be described and illus-
trated on UML statemachines and ProCom models of the autonomous truck case
study described in the previous section. Constructing a semantic bridge between
the two models requires a series of steps that need to be systematically applied.
Our methodology for bridging the gap between the paradigms consists of the
following five steps: (i) given a specification trajectory, generate a correspond-
ing design trajectory by e.g, simulating the model; (ii) simplify the specification
trajectory (can be omitted); (iii) simplify the design trajectory; (iv) transform
the design trajectory into one comparable to the event-based specification tra-
jectory; (v) compare the reduced specification and design trajectories.

To support above described steps (ii) to (iv) of the method we will present
in Sections 4.1 to 4.3 a number of inference rules for simplifying specification
and design trajectories, and for transforming between the two. In the latter
transformation step, we need to take two crucial steps. One is to relate events
in the UML statemachine model to the data-flow of the ProCom model. This is
done by mapping events observed in the specification trajectories to predicates
over the data variables used in the design model. We expect that a designer will
easily be able to provide this mapping based on his insights and knowledge in
the models. For the autonomous truck system, we can assume a mapping given
in Table 4.2 in section 4.2. A second important step in relating two models of
embedded systems regards the different time scales that may be used. We take
a rather straightforward approach and assume a δ, as defined in section 4.3, for
characterizing the sampling period in design models, in comparison to the time
base used in the specification model.

4.1 Specification simplification inference rules

In the following rules, we denote by si ∈ S , i ∈ N, the states of an arbitrary
specification model trajectory.

Skip time rule. This rule states that a sequence of tick transitions correspond-
ing to a location without an associated timeout can be ignored.

si
tick−−→ si

tick−−→ . . .
tick−−→ si

si
(skip)

By applying this rule to the original specification trajectory of the Autonomous
truck (omitted due to space limitations), we get the simplified trajectory shown
in Fig. 5.(a).

Time passing rule. The intuition behind this rule is that one can collapse a
sequence of tick transitions corresponding to a timeout location in the specifica-
tion model, into a single transition that collects all the ticks. Consequently, the
intermediate states generated by the individual ticks become hidden.

si
tick−−→ si+1

tick−−→ . . .
tick−−→ si+n

si
n.tick−−−−→ si+n

(n tick)

To show the rule at work, we have used it to reduce the sequence of tick tran-
sitions (s1 to s5) displayed in Fig. 5.(a), to the corresponding sequence in Fig.
5.(b).

Timeout start rule. Here, we introduce the virtual event tm−start needed
to distinguish the transition leading to the corresponding timeout annotated
location, from the one fired when the timeout countdown starts. Although not
a simplification rule by itself, its usefulness is shown in the rules skip and n TP,
presented later.

si
event−label−−−−−−−→ si+1 m = value m ′ 6= ε ∧m ′ 6= 0

si
event−label−−−−−−−→ si+1

tm−start−−−−−−→ si+2

(tm start)

In the above rule, value ∈ {0, ε}. In case value = 0, that is, m = 0, it follows
that event−label = tm; on the other hand, if value = ε, that is, m = ε, then
event−label = a.

Timeout rule. A sequence of n-tick transitions beginning at a location having
timeout n that is then followed by a timeout transition can be reduced to a
single transition denoted by tm(n), as shown below:

si
n.tick−−−−→ si+1

tm−−→ si+2

si
tm(n)−−−−→ si+2

(tm)

After applying the timeout rule, the sequence of the 4-tick transitions (s1 to s5)
followed by the tm transition (s5 to s6), depicted in Fig. 5.(b), is reduced to
transition (s1 to s6), as in Fig. 5.(c).

s0<Follow, >

e_o_l

s1<Turn, 4>

tick

tick

tick

s4<Turn, 1>

tick

line_found

s2<Turn, 3>

s3<Turn, 2>

s6<Find, >

s7<Follow, >

s0<Follow, >

e_o_l

s1<Turn, 4>

4. tick

s5<Turn, 0>

tm

line_found

s6<Find, >

s7<Follow, >

s0<Follow, >
e_o_l

s1<Turn, 4>
tm(4)

line_found

s6<Find, >

s7<Follow, >

(a) (b) (c)

n_tick

tm

s5<Turn, 0>

tm

Fig. 5. Examples of specification trajectories simplifications of the autonomous truck.

4.2 Design simplification inference rules

As already mentioned, in order to be able to relate the specification and design
models formally, we require the detailed mapping of the external and timeout
events of the specification model onto predicates over data values of the cor-
responding design model. In addition to the observable events, such mapping
should also include the virtual timeout start event, tm start. We assume that
such a mapping is provided by the ProSave designer, as he/she “implements”
the specification model. For the current design model of the autonomous truck,
one such mapping is given in Table 4.2.

Events Predicates

e 0 l sl ∧ sr ∧ FBfo

line found (sl ∨ sr) ∧ FBfi

tm(timeout event) FBtu

tm start ttu

Table 5. Events and corresponding predicates of the autonomous truck models.

Below, we denote by σi ∈ Σ, i ∈ N, the states of an arbitrary design model
trajectory. In Fig. 6, we give an excerpt of a design trajectory of the autonomous
truck, and, on the right-hand side of the figure, we explain the used notation in
terms of Definition 6 of Section 2.

σ0 <sc.in, β0>σ1 <-, βsc=2>

CSsc

σ3 <-, βsc=0>

TP

σ4 <sc.in,sr.in, ->

CDsc

CSsc

σ2 <-, βsc=1>

TP

..

.

α0 �sc.in i.e., sc.in holds in α0, and β0 is the initial valuation of β α1 �sc.in and also no other predicates hold in α1α2=α1 and ∀x∈β . x≠ βsc β2[x]=β1[x] and β2[βsc]=1α3=α2 and ∀x∈β . x≠ βsc β2[x]=β1[x] and β2[βsc]=0α4 �sc.in Λ sr.in and β4 = β3
:

:

:

:

:

Fig. 6. Interpretation of example design trajectory notation w.r.t. Definition 6.

Skip time rule. This rule states that a sequence of TP-transitions from states
that do not satisfy the predicate corresponding to the virtual event tm start can
be ignored. Such transitions correspond to time passing in the design trajectory,
which are of no interest, that is, not related to observable timeout events.

σi
TP−−→ σi+1 σi 2 Predtm start

σi
(Skip)

We apply the skip time rule on a design trajectory of the autonomous truck (see
Fig. 7), and, as a result, we simplify the trajectory by reducing states σ1, σ2, σ3,
and σ4, to state σ1 only. The complete trajectory is given in the Appendix.σ0 <sc.in, β0> σ1 <-, βsc=4>CSsc σ5 <-, βse=0>σ6 <sc.in,sr.in, ->

CDsc

CSsc

TP σ2 <-, βsc=3> TPσ3 <-, βsc=2> TP σ4 <-, βsc=1> TP

...σ0 <sc.in, β0> σ1 <-, βsc=4>CSsc σ6 <sc.in,sr.in, ->CDsc CSsc ...

skip

Fig. 7. Application of skip rule on a design trajectory of the autonomous truck model.

Hide CS rule. By this rule, a CS-transition, hence the target state, can always
be ignored.

σi
CSi−−→ σi+1

σi
(hide CS)

Assuming a design trajectory of our case-study, the application of the above rule
on this trajectory is shown in Fig. 8.

σ41 <-, βsc=1,βtu=0> CDtu σ42 <ac.in, βsc=1> CSac σ43 <-, βsc=1,βac=1> TPσ44 <-, βsc=0,βac=0> CDac CSscσ47 <-, βsc=4> σ49 <-, βsc=3,βsr=0>TPσ50 <ct.in, βsc=3>

CDsr

CSct σ51 <-, βsc=3,βct=1> TP σ52 <-, βsc=2,βct=0> CDctσ53 <tu.in, βsc=2> CS tu σ54 <-, βsc=2,βtu=1> TP σ55 <-, βsc=1,βtu=0> CDtuσ56 <FBtu, βsc=1> TPσ41 <-, βsc=1,βtu=0> CDtu σ42 <ac.in, βsc=1> TP σ44 <-, βsc=0,βac=0> CDacσ46 <sc.in,sr.in, -> σ49 <-, βsc=3,βsr=0>TPσ50 <ct.in, βsc=3>

CDsr

TP σ52 <-, βsc=2,βct=0> CDct σ53 <tu.in, βsc=2> TPσ55 <-, βsc=1,βtu=0> CDtu σ56 <FBtu, βsc=1> TPσ42 <ac.in, βsc=1> TP σ46 <sc.in,sr.in, -> TPσ50 <ct.in, βsc=3> TP σ53 <tu.in, βsc=2> TP σ55 <-, βsc=1,βtu=0> CDtuσ56 <FBtu, βsc=1> TP σ42 <ac.in, βsc=1> 4.TP σ56 <FBtu, βsc=1> TP

hide_CS

hide_CD

n_TP

a)

b)

c)

d)

...

...

...

...

CDac σ46 <sc.in,sr.in, ->

CSsr σ48 <-, βsr=1>

σ45 <-, βsc=0>

CDacσ45 <-, βsc=0>

σ41 <-, βsc=1,βtu=0> CDtuσ41 <-, βsc=1,βtu=0> CDtu

Fig. 8. (a) a partial design trajectory of the autonomous truck, and (b) to (d) corre-
sponding reduced trajectories after application of the inference rules of Section 4.2.

Hide CD rule. This rule stipulates that a CD-transition and the correspond-
ing source state can be ignored if the target state does not satisfy any event
occurrence predicate.

σi
CDi−−−→ σi+1 ∀a ∈ A · σi 2 Preda

σi+1
(hide CD)

An example application of the above rule is given in Fig. 8.

Time passing rule. A sequence of TP transitions starting in a state satisfying
the predicate corresponding to tm start, and ending in a state where the cor-
responding timeout occurs, can be collected into a single transition, while the
intermediate states are ignored.

σi
TP−−→ σi+1...

TP−−→ σi+n
CDj−−−→ σi+n+1 σi |= Predtm start σi+n+1 |= Predtm

σi
n.TP−−−→ σi+n+1

(n TP)
We have applied the above rule on a design trajectory of our Autonomous Truck,
in Fig. 8. The rule works on the states σ42, σ46, σ50, σ53, σ55 and σ56.

Precedence of inference rules. In order to get the correct simplified design
trajectory, we assume the following precedence rule when applying the above
inference rules over design trajectories (rule hide CS binds the strongest):

hide CS precedes hide CD precedes n TP precedes Skip

4.3 Rules for transforming the design model trajectories

The following rules let one obtain design trajectories that are comparable to the
event-based specification model trajectories. The first rule focuses on relating
the time scales in both models; in order to achieve the goal, we assume a fixed
quanta of time (number of time units), called δ, which can be viewed as the
minimum amount of time guaranteed to be free of events. Then, this smallest
amount of time becomes the basic time-unit that all time-related elements in
both trajectories can be expressed by.

TimeOut Rule. We assume that a TP-transition “consumes” δ time units,
the time duration associated with a tick event is (m* δ)(m ∈ N), and an ‘n’
time units timeout in a specification trajectory, tm(n), equals (n* tick). Then,
it follows that an n.m.TP transition in the design trajectory is equivalent to the
‘n’ timeout event, tm(n):

∃ σk , σk+1 . σi
n.m.TP−−−−−→ σi+1

∃ sk , sk+1 . sk
tm(n)−−−−→ sk+1

(TO)

EventOccur Rule. An event occurrence in a specification trajectory corre-
sponds to a CD-transition in the design trajectory, such that the predicate as-
sociated to the event holds in the target state of the design trajectory.

∃ σi , σi+1 . σi
CDj−−−→ σi+1 σi+1 |= Preda

∃ sk , sk+1 . sk
a−→ sk+1

(EO)

Next, we apply the above rules on a (simplified) design trajectory of our example,
in order to obtain a trajectory comparable to the corresponding specification
trajectory.

4.4 Applying the methodology

Here, we show our methods at work, on the Autonomous Truck case study,
presented in Section 3. We do this by transforming a trajectory of the design
model (Fig. 2), which we present in the Appendix, into one that is comparable
to the corresponding specification model (Fig. 1) trajectory. First, the design
trajectory is simplified by applying the inference rules introduced in section
4.1. Similarly, a trajectory of the specification model is then simplified to a
minimal form by applying inference rules in 4.2. Both simplified trajectories are
shown in Fig. 9. Next, we relate these trajectories by using the inference rules
of transformation (section 4.3), as follows:

σ0 <sc.in, β0>
CDfoσ30 <sl, sr, FBfo, βsc=1>

4.TPσ56 <FBtu, βsc=1>

CDfiσ82 <sl, FBfi, βsc=1>

...

s0<Follow, >

e_o_l

s1<Turn, 4>
tm(4)

line_found

s5<Find, >

s6<Follow, >

(b)(a)

...

EO

tm(4)

EO

Fig. 9. Comparison of completely reduced trajectories of (a) the design model, and (b)
the specification model, of the autonomous truck.

– by EO rule, the CDfo-transition to state σ30 corresponds to the occurrence
of event e o l , since the (e o l) predicate, that is, FBfo ∧ sl ∧ sr , holds in the
target state σ30. Further, σ30 corresponds to the completion of the Follow
mode of the truck behavior, as FBfo holds (by design).

– similarly, by EO rule, the CDfi -transition to state σ82 corresponds to the
occurrence of event line found , since Predline found , that is, FBfi ∧ sl , holds
in the target state σ82. Further, σ82 corresponds to the completion of the
Find mode of the truck behavior, as FBfi holds (by design).

– by TO rule, the timeout event, tm(4), between specification states s2 and s6

corresponds to the 4.TP -transition between design states σ30 and σ56 that
satisfy Predtm start , and Predtm , respectively. Further, σ56 corresponds to
the completion of the Turn mode, as FBtu holds (by design).

By applying the rules on the truck example, we have shown that, at least with
respect to this example, it is possible to transform and compare a simplified
design model trajectory of the Autonomous Truck with a simplified specification
model trajectory. The transformation correlates also the time scales in both
models. In this particular case, we have reduced the design model trajectory to
an event-based trajectory identical to the specification one.

The above steps are necessary in proving the correctness of design with re-
spect to specification, however they are not sufficient. To get closure, one has
to first consider all possible design behaviors for transformation, and then pos-
sibly apply refinement techniques to prove that the design does implement the
functional and timing requirements represented by the specification model (see
Section 6).

5 Related Work

The problem of relating design to specification models is a topic with a grow-
ing interest in the research community. For synthesizing executable programs
from timed models, a timed automata [2] based semantic framework, relying

on non-instant observability of events is proposed [6]. Time-triggered automata
(TTA) - a sub class of timed automata (TA) - are used to model finite state
implementations of a controller that services the request patterns specified by a
TA. This technique enables deciding whether a TTA correctly implements a TA
specification. In comparison, although ProCom oriented, our methodology can
be applied within a generic component-based framework, and is not being tied
to any particular formal verification framework either.

Sifakis et al. propose a methodology for relating the abstractions of both
real-time application software and corresponding implementation [13]. The re-
lated formal modeling framework integrates event-driven, and time triggered
paradigms by defining untiming functions. Problems of correctness, timing anal-
ysis, and synthesis are considered in the methodology. In contrast to our ap-
proach, this one does not address the intermediate design layer commonly used
in system development.

In recent years, component and architecture based developments have been
recognized as a viable way of building software systems [5]. Plasil and Visnovsky
describe a formal framework based on behavior protocols, in order to formally
specify the interplay between components [10]. This allows for formal reasoning
about the correctness of the specification refinement and about the correctness
of an implementation, in terms of the specification. Further, the framework is
validated in the SOFA component model environment [4]. While the approach
provides much needed formal correctness in component-based development, it
does not address timing issues and vertical layers of abstractions in real-time
system development.

UML has emerged as an industrial standard notation in system development
and provides various sub-languages namely statemachines, sequence diagrams,
etc [11]. For specification and design of real-time systems, a sub-language called
UML/MARTE has been proposed [9]. In [7], the expressiveness of MARTE for
event-triggered, and time-triggered communication is described. MARTE-based
approaches facilitate various analytical methods for analysis, e.g., schedulability,
system performance analysis; however, it falls short in providing formal support
for comparing models at different abstraction levels.

Egyed, A. et al. [8] develop a methodology to mainly bridge the information
gap created by heterogeneous models across the software life-cycle by transform-
ing architecture description into (high-level) UML designs. The latter are then
further refined into lower level designs. In contrast to our approach, their work
does not provide details on the behavioral transformations. Indeed, a formal ap-
proach for establishing the semantic links between different terminologies and
concepts across an architectural and a number of design models is not sufficiently
addressed during the transformation.

6 Conclusions and Future work

In this paper, we have presented a formal approach for relating system models
used in different design stages of embedded systems. For the early specification

phases, we chose the UML statemachine language in which system behaviors are
described in terms of abstract states, event triggered state changes, and timeouts
relating to the external system and timing behavior. For the later design stages,
we use the ProCom component design model in which systems are specified
using data-flow connectors and time-triggered component behaviors closer to
the timing granularity and behavior exhibited on the target platform.

As a main result, we have described a formal way of comparing behavioral
models of a system modeled in the two different languages. The solution is based
on a set of inference rules that can be applied to gradually transform trajectories
of a ProCom design model into a trajectory of a UML specification model. This
enables a designer to make sure that a component-based and time-triggered
ProCom design model implements the behavior of a more abstract and event-
triggered UML specification of the same system.

Our initial experiences from applying the proposed technique to a truck con-
trol system, indicates that the design model trajectories can often be manually
transformed into trajectories of the specification model. However, as this is not
the case in general, we plan as future work to apply simulation relation check-
ing to the specification trajectories, to prove (or disprove) conformance between
non-identical trajectories. We will apply proof assistant tools to support these
techniques.

References

1. Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John H̊akansson,
Anders Möller, Paul Pettersson, and Massimo Tivoli. The SAVE approach to
component-based development of vehicular systems. Journal of Systems and Soft-
ware, 80(5):655–667, May 2007.

2. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

3. Tomas Bures, Jan Carlson, Ivica Crnkovic, Sverine Sentilles, and Aneta Vulgarakis.
ProCom - the progress component model reference manual, version 1.0. Technical
Report ISSN 1404-3041 ISRN MDH-MRTC-230/2008-1-SE, Mälardalen Univer-
sity, June 2008.

4. Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Sofa 2.0: Balancing advanced
features in a hierarchical component model. In SERA ’06: Proceedings of the Fourth
International Conference on Software Engineering Research, Management and Ap-
plications, pages 40–48, Washington, DC, USA, 2006. IEEE Computer Society.

5. Ivica Crnkovic and Magnus Larssom. Challenges of component-based development.
J. Syst. Softw., 61(3):201–212, 2002.

6. Pavel Krčál, Leonid Mokrushin, P.S. Thiagarajan, and Wang Yi. Timed vs time
triggered automata. In Philippa Gardner and Nobuko Yoshida, editors, Proc. of
CONCUR’04., number 3170 in Lecture Notes in Computer Science, pages 340–354.
Springer–Verlag, 2004.

7. Frédéric Mallet, Robert de Simone, and Laurent Rioux. Event-triggered vs. time-
triggered communications with UML Marte. In FDL, pages 154–159, 2008.

8. Nenad Medvidovic, Paul Grünbacher, Alexander Egyed, and Barry W. Boehm.
Bridging models across the software lifecycle. J. Syst. Softw., 68(3):199–215, 2003.

9. OMG. Unified modeling language (uml) profile for modeling and analysis of real-
time and embedded systems (marte). In Document ptc/07-08-04. OMG, 2007.

10. Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software compo-
nents. IEEE Trans. Softw. Eng., 28(11):1056–1076, 2002.

11. James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language
Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

12. Sverine Sentilles, Anders Pettersson, Dag Nyström, Thomas Nolte, Paul Petters-
son, and Ivica Crnkovic. Save-IDE - a tool for design, analysis and implementation
of component-based embedded systems. In Proceedings of the Research Demo Track
of the 31st International Conference on Software Engineering (ICSE), May 2009.

13. Joseph Sifakis, Stavros Tripakis, and Sergio Yovine. Building models of real-time
systems from application software. In In Proceedings of the IEEE Special issue on
modeling and design of embedded, pages 100–111. IEEE, 2003.

14. Davor Slutej, John H̊akansson, Jagadish Suryadevara, Cristina Seceleanu, and Paul
Pettersson. Analyzing a pattern-based model of a real-time turntable system.
In Barbora Zimmerova Jens Happe, editor, 6th International Workshop on For-
mal Engineering approaches to Software Components and Architectures(FESCA),
ETAPS’09, York, UK, March, pages 161–178. Electronic Notes in Theoretical Com-
puter Science (ENTCS), Vol 253, Elsevier, September 2009.

15. Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlson, Cristina Seceleanu, and
Paul Pettersson. Formal semantics of the procom real-time component model. In
35th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), August 2009.

APPENDIXσ0 <sc.in, β0>σ1 <-, βsc=4>

CSscσ5 <-, βse=0>

4.TPσ6 <sc.in,sr.in, ->

CDsc

CSsc,CSsrσ8 <-, βsc=4,βsr=1>σ9 <-, βsc=3,βsr=0>

TPσ10 <ct.in, βsc=3>

CDsr

CSctσ11 <-, βsc=3,βct=1>
TPσ12 <-, βsc=2,βct=0>

CDctσ13 <fo.in, βsc=2>

CSfoσ14 <-, βsc=2,βfo=1>

TPσ15 <-, βsc=1,βfo=0>

CDfoσ16 <ac.in, βsc=1>
CSacσ17 <-, βsc=1,βac=1>

TPσ18 <-, βsc=0,βac=0>

CDsc,CDacσ20 <sc.in,sr.in, ->

CSsc,CSsrσ22 <-, βsc=4,βsr=1>σ23 <-, βsc=3,βsr=0>

TPσ24 <ct.in, βsc=3>

CDsr

CSctσ25 <-, βsc=3,βct=1>
TP

σ26 <-, βsc=2,βct=0>
CDctσ27 <fo.in, βsc=2>
CSfoσ28 <-, βsc=2,βfo=1>
TPσ29 <-, βsc=1,βfo=0>

CDfoσ30 <sl, sr, FBfo, βsc=1>

TPσ31 <-, βsc=0>

CDscσ32 <sc.in,sr.in, ->

CSsc,CSsrσ34 <-, βsc=4,βsr=1>σ35 <-, βsc=3,βsr=0>

TPσ36 <ct.in, βsc=3>

CDsr

CSctσ37 <-, βsc=3,βct=1>

TPσ38 <-, βsc=2,βct=0>

CDctσ39 <tu.in, βsc=2>
CStuσ40 <-, βsc=2,βtu=1>
TPσ41 <-, βsc=1,βtu=0>
CDtuσ42 <ac.in, ttu, βsc=1>
CSacσ43 <-, βsc=1,βac=1>

TPσ44 <-, βsc=0,βac=0>

CDsc,CDacσ46 <sc.in,sr.in, ->

CSsc,CSsrσ48 <-, βsc=4,βsr=1>

σ49 <-, βsc=3,βsr=0>

TP

σ50 <ct.in, βsc=3>

CDsr

CSctσ51 <-, βsc=3,βct=1>

TPσ52 <-, βsc=2,βct=0>
CDctσ53 <tu.in, βsc=2>

CStuσ54 <-, βsc=2,βtu=1>

TPσ55 <-, βsc=1,βtu=0>
CDtuσ56 <FBtu, βsc=1>

TPσ57 <-, βsc=0>
CDscσ58 <sc.in,sr.in, ->

CSsc,CSsrσ60 <-, βsc=4,βsr=1>σ61 <-, βsc=3,βsr=0>

TPσ62 <ct.in, βsc=3>

CDsr

CSctσ63 <-, βsc=3,βct=1>

TPσ64 <-, βsc=2,βct=0>

CDctσ65 <fi.in, βsc=2>
CSfiσ66 <-, βsc=2,βfi=1>
TPσ67 <-, βsc=1,βfi=0>
CDfiσ68 <ac.in, βsc=1>

CSacσ69 <-, βsc=1,βac=1>

TP

σ70 <-, βsc=0,βac=0>

CDsc,CDacσ72 <sc.in,sr.in, ->
CSsc,CSsrσ74 <-, βsc=4,βsr=1>σ75 <-, βsc=3,βsr=0>

TP

CDsrσ76 <ct.in, βsc=3>

CSctσ77 <-, βsc=3,βct=1>
TPσ78 <-, βsc=2,βct=0>

CDctσ79 <fi.in, βsc=2>
CS fiσ80 <-, βsc=2,βfi=1>
TPσ81 <-, βsc=1,βfi=0>

CDfiσ82 <sl,FBfi, βsc=1>
TPσ83 <-, βsc=0>

CDscσ84 <sc.in,sr.in, ->
CSsc,CSsrσ86 <-, βsc=4,βsr=1>σ88 <-, βsc=3,βsr=0>

TP

CDsrσ89 <ct.in, βsc=3>

CSctσ90 <-, βsc=3,βct=1>
TPσ91 <-, βsc=2,βct=0>

CDctσ92 <fo.in, βsc=2>

CSfoσ93 <-, βsc=2,βfo=1>
TP

Fig. 10. An execution trajectory of the design model of the autonomous truck.

