- From Single to Multiprocessor Real-Time Kernels in Hardware -

Lennart Lindh, Johan Stidrner and Johan Furunis
Milardalens University
IDt/ Department of Real-Time Computer Systems
P O Box 883, S-721 23 Visteras, Sweden
Fax: xx46 21 101460
email: lennart.lindh@mdh.se, johan.starner@mdh.se, johan.furunas @mdh.se

Abstract

This article presents three different implementations of a
traditional Real-Time Kernel in hardware. All approaches
improved performance and determinism by several orders
of magnitude when compared with software-based real
time kernels.

The first implementation provides an integrated
deterministic CPU and a deterministic and high
performance multitasking real time kernel in hardware.
The second implementation provides a deterministic and
high performance standalone multitasking real time kernel
in hardware and the last implementation provides a
deterministic and high performance real time kernel for
Homogeneous and Heterogeneous Multiprocessor Real-
Time Systems.

1. Introduction

The real time kernel is most commonly implemented in
machine code which resides in the primary memory.
Considerable predictability problems are encountered in
these systems because of the non-deterministic behaviour
of the kernel. pi-coded real time kernels are implemented
directly in the CPU. The implementation is similar to
that of machine code except that the operations of the real
time kernel are performed more rapidly. One advantage is
that the micro program has direct access to the data paths
and the working units (such as ALU) in the CPU,

The separation of the real time kernel from the CPU raises
the performance of and improves the predictability in
Real-Time systems. The processor load is reduced and new
possibilities are created for implementing real time
functions without affecting the performance of the CPU.

The implementation of a real time kernel in a state
machine (hardware) is an acceleration of its
implementation in a von Neuman architecture CPU. A
coprocessor for multi-processor scheduling in the
SPRING project is implemented in a state machine with

1080-1812/95 $04.00 © 1995 IEEE

42

data paths [Spring93]. The state machine controls several
"working units" simultaneously. The hardware architecture
is scalable for different numbers of tasks :and resources.
With an internal clock rate of 100 MHz, a speed increase
of two or three orders of magnitude is expected for
scheduling tasks, as compared with a separate CPU
solution.

2. FASTCHART

This section provides a survey of the integrated Real Time
Unit (RTU) and CPU we designate FASTCHART (a
FASt Time Deterministic CPU and HArdware based
Real-Time-kernel).

With FASTCHART [FASTCHARTY91] we obtain a
predictable real time hardware architecture, in which
FASTCHART is deterministic with respect to:

Execution of CPU instructions,

Execution of the real time operating system
service.

.

The FASTCHART has two concurrent running parts. One
is a CPU designed for our purposes and the other is the
Real Time Unit .

The performance of real time systems is increased by
implementing a task switch mechanism in hardware. This
has two benefits. Firstly, a task switch can be manage
(exchange the register contents) in zero time - this means
that one can switch between two tasks without the loss of
the CPU time needed to exchange the contents of the CPU
registers. Secondly, the task switch becomes deteérministic
since there is no expenditure of execution time.

The RTU contains a scheduler with a priority scheduling
algorithm, a dispatcher which controls the task switch
mechanism, two wait queues, one for inactive tasks and
one for tasks waiting for a time event and a ready queue
for tasks waiting to be executed by the CPU.

3. FASTHARD

FASTHARD (a FASt Time deterministic HARDware
based real-time kernel) is a standalone Real-Time Kernel
which can work with almost all CPU's on the market
[FASTHARD93].

The FASTHARD prototype can handle 64 tasks and 8
priority levels.

The following real time functions are implemented in
FASTHARD: Interrupt handler, periodic start of tasks,
relative delay of tasks, scheduler (priority algorithm),
activate and terminate task, on/off task switch and VME
bus interface [VME].

4. RTUY94

RTU94 is based on the FASTHARD concept [RTU%] .
The main new feature of RTU94 is its ability to control
multiple heterogeneous CPUs. The number of function
calls is increased to include semaphores, event flags and
watch dogs. All function calls implemented in
FASTHARD have been rewritten to support a
multiprocessor environment.

A task can be initialized to execute on a fixed CPU (local
tasks), but it is also possible to allow the task to execute
on any CPU (global tasks). A local task has all the
program information in the local RAM, but the global
tasks must have their data region in the global memory.

The scheduling concept is a priority-based, pre-emptive
algorithm. The RTU94 consists of three schedulers, one
for each CPU. There is one ready queue for each CPU
(local queues), and one queue for the tasks that can execute
on any CPU (global queue). Each scheduler checks both
the local and the global queues. Since the RTU94 has
information about the load on each CPU it is possible to
have dynamic balance of the task load in the system.

5. Conclusion

A "true" definition of the advantages of a hardware based
Real-Time kernel can not be generalised for all aspects,
because the requirements and constraints are very different
for different applications. Given the qualification
concerning applications, we can however observe that
utilization of a separate hardware-based real time kernel
yields the following advantages:

PERFORMANCE and DETERMINISM

« deterministic multitasking and multiprocessor real time
kernel,

» the speed with which real time service calls are executed
is increased by several orders of magnitude compared with
a conventional CPU-based solution.

* no clock tick interrupt to the CPU is needed.

PORTABILITY

* N0 memory requirements,

* no special instruction format,

* no special CPU, only one interrupt and an external data
bus (FASTHARD and RTU9%4).

SOFTWARE DESIGN

» simpler software system since the program code for the
real time kernel does not occupy CPU memory,

* simpler timing analysis of the system,

¢ improved understandability when the system is divided
into parts (complexity reduction),

¢ all RTK service calls are isolated in the RTU (no
problem with interference between different service call
codes),

* no external interrupt handler in the software,

* simplified debugging of the software tasks, since
different protection modes are not required,

In principle, the motivation for using an RTU is the same
as that for using an arithmetical processor in a computer
system, i.e. to improve the performance of the
application. An arithmetical processor is specialized in
performing fast calculations. An RTU is specialized in
quickly performing the calls of a real time operating
system.

References

[FASTCHARTO1] L. Lindh, & F. Stanischewski,
FASTCHART - Idea and Implementation, IEEE press,
International Conference on Computer Design (ICCD)
Cambridge MIT, USA, 14-16 Oct. 1991.

[FASTHARD93] L. Lindh,

FASTHARD Prototype - A Real-Time-Kernel Implemented In
One Chip. [EEE press, Real-Time Workshop, Oulu, 3-5 June,
1993.

[RTU94] RTU Data Book,
RF RealFast AB, Dragverksg 138, S-724 74 Visteras,
Sweden, Fax xx46 (0)21 811198

[Spring93] Wayne Burleson, Jason Ko, Douglas Niehaus,
Krithi Ramamritham, John A. Stankovic, Gary Wallace

and Charles Weems,

The Spring Scheduling Co-processor: A Scheduling
Accelerator, In To Appear:Proceedings of the International
Conference on ComputerDesign. IEEE, October 1993.

[VME] The VMEbus Specification
ANSI/IEEE STD1014-1987, IEC821 and 297, VMEbus
International Trade Association, 10229 N. Scottsdale Road,
Suite E Scottsdale, AZ 85253 USA

43

