
Performing a project in a
Distributed Software Development Course: Lessons Learned

Federico Ciccozzi
Department of Innovation, Design and Engineering

Mälardalen University
Västerås, Sweden

Email: federico.ciccozzi@mdh.se

Ivica Crnković
Department of Innovation, Design and Engineering

Mälardalen University
Västerås, Sweden

Email: ivica.crnkovic@mdh.se

Abstract—Distributed software development approaches
have to face with several issues like cultural differences, collab-
oration and communication mechanisms, which can undermine
the overall development success if not handled in a proper
manner. In order to provide a real environment for students
placed in different countries to learn and apply the best
practices in distributed software development, a course has
been developed jointly by two european universities. The course
aims at providing the students an insight in the complexity
of distributed development and giving the possibility to work
in distributed teams for actual implementations, in order to
minimize the gap between theory and practice. This paper
describes the course design, challenges, results and success
factors, from a students perspective.

Keywords-Global Software Engineering; Distributed Soft-
ware Development; DSD GPXCleaner; DSD Course

I. INTRODUCTION

Global Software Engineering (GSE) is based on Dis-
tributed Software Development (DSD) which provides sev-
eral benefits such as a broader area, from which an higher
number of skilled personnel and resources in general can
be gathered and enrolled, as well as lower costs derived
from outsourcing. In addition to the common well-known
problems related to standard software engineering, in dis-
tributed software development other issues and challenges
arise, especially in the establishment of communication
between the distributed teams, caused by cultural, time-
zone and language differences. Exchange of information and
communication between distributed developing teams must
be effectively and efficiently handled in order to achieve
an harmonious and smooth development process and avoid
costly delays in time-to-market.
GSE requires additional skills which are usually not built-
up in software engineering courses. For this reason there is
a need for having dedicate courses specifically addressing
the issues related to GSE. Mälardalen University (MDH)
in Västerås-Sweden and Faculty of Electrical Engineering
(FER) in Zagreb-Croatia have jointly developed a DSD
project course [1] in the academic year 2003/2004, which,
due to its successful results have been run every year, and
is currently at its seventh edition. The main goal of the

course is to train students in a real distributed development
environment by giving theoritecal notions to be applied in
an actual distributed implementation project, which gives
a unique experience for the students to encounter and
overcome challenges coming from a real project. Students
from the two institutions are expected to work together on
a software system implementation in distributed teams. A
certain number of lectures gives basic notions on distributed
software development as such, since the DSD course is
strongly focused on the actual development with submission,
presentation and evaluation of deliverables by each project
team. In the academic year 2008/2009, the best developed
projects participated to the selections for the SCORE com-
petition [2], organized by ICSE’09 in Vancouver, Canada.
Out of 50 project teams from prestigious universities, six
finalist teams were selected, and three of them, including
the GPXCleaner project, were developed within the DSD
course. In most of the cases educational papers report
experiences in teaching from a teachers’ point of view, but
this paper aims at reporting such experience from a students’
point of view starting obviously from the course design, but
focusing on challenges, results and success factors from the
DSD GPXCleaner project’s perspective. In section 2, related
work is presented and section 3 describes DSD course
design, settings, goals and challenges. In section 4, both
technical and non-technical challenges, selected approach
and achieved results of the DSD GPXCleaner project are
given in order to motivate lessons learned and success factors
individuated from the project perspective and described in
section 5. The paper is concluded by the section 6.

II. RELATED WORK AND MOTIVATION

The spread of outsourcing and other distributed devel-
opment approaches in industry generates new challenges
to be addressed by evolving software engineering curricula
[3]. These challenges have been widely studied in liter-
ature and a systematic review of such can be found in
[4]. The need of developing new courses to form a new
generation of software developers with an insight of global-
ization and distributed/collaborative development arises; in



[5] the Distribute Software Engineering Laboratory course
and derived lessons learned are described. A similar course,
but rather focused on the importance of rapid reaction to
unpredictable factors in distributed settings, is named Global
Studio Project and described in [6]. The purpose of this work
is giving the perception of such a course from a student
perspective, in order to describe the actual challenges to be
faced by the main actors, i.e. the students, in developing a
project in multicultural distributed settings.

III. DSD COURSE DESIGN

The course has been planned and developed in the aca-
demic year 2003/2004 by a collaboration MDH and FER.
During the planning phase, a time-based model (fig. 1) was
created in order to describe a way to correlate instructional
and course design of the course to the student projects
results. The model is composed by two correlated sub-
models [7]:

∙ Instructional Design Model - describes the teaching
perspective and focuses on the process intended to
be followed in order to build an effective teach-
ing approach, using the ADDIE model [8] including
the phases (i) analysis, (ii) design, (iii) development,
(iv)implementation and (v) evaluation.

∙ Software Development Model - describes the student
projects development through the following phases: (i)
requirements analysis and team forming, (ii) concept
presentation, (iii) detailed design, (iv) development, (v)
QA testing and (vi) release and maintenance.

The main idea was to individuate a correlation betweeen
instructional and course design and results of the student
projects which achieve the best results.

In fig.1, on both plains, the three cycles represent the
related deliveries of the course: (i) course planning, (ii)
first semester, (iii) second semester. Initial instructional
design was carried out a semester prior to the first delivery
by a graduate student from MDH, whom spent a semester
in Zagreb for planning and creating the course with his
Croatian counterparts at FER. When the Instructional
Design Model reaches the analysis phase, the results of
the students’ software development projects are evaluated
in order to determine how they can make a meaningful
contribution to the instructional and course design for
the next semester. Later, while deciding on future student
projects during course delivery, Instructional Design cycle
starts affecting software development cycle, setting priorities
for future software development projects, team formations
and inventive role-playing [7].

Further the main risky challenges, whose inefficient
management may undermine the course’s success have
been considered:

∙ Work environment: it is not easy to reproduce the

Figure 1. Instructional and Software Design Plains

conditions of a real distributed project, mainly due to
the limitations coming from the academic environment

∙ Resources limitation: another academic limitation is the
availability of finances and equipment, whose usage has
to be maximized

∙ Time limitation: the course lasts 11 weeks, which
is obviously a short period compared to real-world
distributed developments. In this short period both in-
struction and assistance to the projects development has
to be provided, taking into account the harmonization
between the two different institutions

∙ Projects management: if badly handled, may lead to
wrong-directed effort by the students with consequent
possible incomplete implementations as final result

The two institutions succeeded in providing a complete work
environment with a well-assorted set of resources in order to
allow the students to exclusively focus on the projects. Time
limitation and misleading projects management could also
invalidate students and teachers effort. Therefore the first
phase of the course focused on students individual research
of the technology intended to be used in the projects and
presentation of the results; this phase brings two advan-
tages: acquisition of basic knowledge on the technologies
and increase of students’ confidence in communicating in
front of others in English, not mother-tongue for all the



students. Afterwards, the available projects are presented
during joint distributed lectures, through videoconferencing,
in order to collect students’ preferences about the project
to develop and, considering them, build up the project
teams. A project contractor is assigned to each project
with the duty of defining the characteristics of the product
by communicating with the project leader for defining the
project demands, a project plan, monitor the development
and finally provide a product evaluation. Each project team
is composed by students from the two institutions in a
fairly equal proportion, and two leaders are selected in
order to lead each sub-team: a team leader, whose task
is to coordinate the communication among the local sub-
team members and between the two distributed sub-teams,
and a project leader, who acts in fact as a team leader for
his/her sub-team, but in addition has to coordinate the work
of the whole project team, communicating with the remote
team leader and with the project contractor. A core activity
in a distributed students project development is monitoring
what has been achieved through two mechanisms: (i) weekly
reports and (ii) a fixed number of presentations of the state
of the project in which the students have to defend the
current state of their project in front of the other teams and
eventually the project contractor.

IV. A STUDENTS PROJECT PERSPECTIVE: DSD
GPXCLEANER

A. The Project

The DSD GPXCleaner application was intended to pro-
vide several features to allow users to easily manage GPX
data files received from GPS devices. The application is
supposed to be used to handle personal excursion recordings
and to set up GPX data files before sharing them with
others, since most often GPS records are poorly suited to
be directly used for sharing activities due to their heavy
rendering; the DSD GPXCleaner application’s main feature
is the possibility to accurately render the GPS record in a
much lighter manner by sensitively reducing the record’s
number of points composing the track [9].
As a result of DSD GPXCleaner being a university project,
worked on by students without experience in distributed
collaborative software development, no formal development
process was used; rather a mixed process incorporating
elements of waterfall, iterative, and evolutionary prototyping
models emerged (fig.2).
Evolutionary prototyping, defined as building robust proto-
types in a structured manner, which could be constantly and
continuously refined, was successfully used in designing a
data manipulator class, which started out having only a few
basic functions, and was expanded gradually as needed (the
expansion was generally triggered by the gradual completion
of the graphical user interface module, or by modifications
at the requirements specification by the customer) [10].

Commercial off-the-shelf software was used for the em-
bedded map component and GPX files reading and writing
functionalities; those were implemented by pre-existing code
from the NASA World Wind Java code base. Our develop-
ment process can be said to have had three major iterations
over its course.

B. Challenges

The project faced challenges which derived mostly from
the distributed nature of the development and that could be
summarized as follows:

∙ Cultural differences: a distributed development, espe-
cially in the case of the DSD GPXCleaner in which
students from two universities placed respectively in
Croatia and Sweden and moreover coming from four
different countries (Italy, Sweden, Croatia, Netherlands)
composed the project team, may have to face with
cultural differences. They can comprise language differ-
ences as well as a different approach to the work such
as heterogeneous workload schedule by each sub-team
or even each member. Working in such development
other differences can be noticed, for instance in the
willingness to overwork for specific reasons or to work
during holidays.

∙ Communication and Coordination: they can be consid-
ered important issues in any sort of software develop-
ment, but they become core issues in the particular case
of a distributed development, especially when, as for
the DSD GPXCleaner project, no face-to-face meetings
could be run between the two sub-teams [11]. More-
over, the team was composed by students that were
not used to work in a distributed manner and had to
establish appropriate communication and coordination
channels by themselves. Since the parties involved were
three (project teams, supervisors, customers), we had to
face a three-fold communication challenge. A lack in
either of these issues could have severely increased the
probability of failure.

∙ Technical skills: the DSD GPXCleaner project was
based on two GPX file formats which were unknown
to the whole project team. Moreover, the tool was
developed as a Java desktop application, and not all
the team members had knowledge of the Java program-
ming language as well as the GPL graphics handling
which was needed for rendering the GPS tracks on the
Earth’s surface. The NASA World Wind application
was adapted and embedded in the DSD GPXCleaner
tool for the tracks rendering on the globe, and none of
the team members had knowledge of such application.
Mathematical algorithms had also to be implemented
in order to provide path reduction and wild points
detection functionalities.

∙ Customer satisfaction: the requirements specification
was changing throughout the development according



to the customer requests and these changes could have
undermined a successful development if not accurately
and promptly managed. Having external customers and
internal supervisors made it even more complicated,
since actions had to be taken in order to satisfy both at
the same time.

∙ Timeliness: the DSD course was run within an eleven-
weeks study period in which the involved students
had to meet severe deadlines while following and
working for other courses as well. In order to achieve
the prefixed goals, a detailed schedule about project
actions and milestones had to be defined and respected
even though none of the team members had previous
experience on such activities.

C. Approach and Results

In this section the solutions, which we adopted to face the
challenges listed in the previous section, will be described
with a special focus on the DSD GPXCleaner project
perspective.
Since the project was developed as part of the DSD course
with defined and mandated milestones, the early stages of
development followed a waterfall model. Several project
stages along with pertaining documentation were required
to be completed at set dates. These were: the project
description, the project requirement definition and the design
description, along with three written feature descriptions, in
that order. When most of the document milestones were
met, we switched to an iterative model in order to meet
possible modifications at the requirements specification by
the customer (fig.2).

Figure 2. DSD GPXCleaner Development Process

These iterations helped in decreasing the risk of develop-
ing incomplete functionalities; generally, the mixed approach
helped in satisfying both the supervisors, through the first
steps inherited from the waterfall model, and the customer,
through the ensuing iterative steps.
In order to solve communication and coordination issues,

multiple channels have been built-up.
Communal web pages had been made available to each
DSD project. These web pages were used for communication
between local supervisors and the teams; in particular, for
sharing files required by the university-assigned milestones
(mostly documents and presentations), for sharing team
summary weekly reports, and for sharing minutes of meeting
of internal team meetings.
Moreover, each DSD project had the possibility to use a
dedicated server running a software versioning system. This
server was used for all collaborative code development.
The two universities made their teleconferencing facilities
available to the staff and students of the DSD course once
a week. Usually, that was used by the supervisors to com-
municate with the students, but it was made also available
for the students to communicate amongst themselves.
Concerning the DSD GPXCleaner project, early in the de-
velopment process, the team members agreed to run weekly
teleconference meetings in order to discuss the current
project status and to distribute the workload among the team
members in a more flexible and effective manner. Detailed
meeting notes were then published on the project web pages
in order to make them reachable for everyone involved in
the course.
A special Google Group was created in order to provide a
forum-like venue of communication. The group was used
to discuss development topics in depth, as an addition to
the weekly Skype meetings, and for collaborative creation
of documentation.
Email and instant messaging were used for communica-
tion between individual team members, and especially for
communication between the project manager and both local
and SCORE supervisors. This form of communication was
mostly used for person-to-person communication, while the
other methods were used for group communication.
In order to avoid that lack of technical skills could lead to
delays or overwork, we divided the workload tasks according
to each single team member’s knowledge and interests when
possible. Nevertheless every component of the team group
had the possibility to gain in terms of improved skills in
both implementing and documenting a software product.

V. LESSONS LEARNED AND SUCCESS FACTORS

The road to a successful completion of the project was
not straightforward. For the whole project team, this was
the first distributed project with members of four different
nationalities with different cultures and located in two coun-
tries without the possibility to meet in person. Besides the
concrete outcome, the DSD GPXCleaner application, we
believe that the non-visible outcomes are more important;
this project resulted in a very valuable experience on how to
work in a team and how to cope with distance with members
that are not always around to help each other. Furthermore,
this gave us real world experience since we learned how



to communicate with supervisors and a customer, work
out problems and come to solutions together despite the
particular distributed nature of the project.

A multicultural composition of the project team may be
frightening and may undermine the successful completion
of the project if taken as an obstacle. Our experience led
to the conclusion that it is, on the contrary, a very positive
characteristic for a project team since cultural diversity may
mean also different approaches to the same problems that
may generate unexpected and valuable solutions. Obviously,
these differences have to be handled in the right manner in
order to lead to positive results.

The team workload has to be strictly organized and
scheduled, and every team member has to know exactly
what to do and when to deliver it. This however includes the
success of the software architecture design, not only adjusted
to the run-time system, but also to the development structure.

Communication is a core aspect of a distributed develop-
ment, especially for the DSD GPXCleaner case in which no
face-to-face meetings have been run. Tools and schedules for
distance communication had to be set and strictly followed
in order to reach the prexifed milestones.

Members from different cultures may also have different
ways to express their opinions and reach an agreement; this
does not mean that individualism is worse than collectivism
or vice versa, but rather that everyone’s opinion has to be
taken into serious consideration, trying not to impose one’s
own. If a member looks at the team’s objectives as his/her
own, the gap between individualism and collectivism may
be reduced, and both the member and the whole team would
benefit from that. Even if distributely located, most of the
team members became not only colleagues but rather friends
during the development, and that increased the willingness
to help each other.

The successful completion of several projects within the
DSD course highlights the fact that the supervising activities
had a key role in such a success.

Going back to the success factors, we perceived, from
a DSD GPXCleaner developer’s perspective, that the most
important were the following: (i) DSD course design, (ii)
communication & coordination management, (iii) positive
attitude towards the cultural differences and (iv) team mo-
tivation coming from the double goal given by the course
completion and the participation at the SCORE competition.
This perception is partially supported by anonymous stu-
dents’ surveys evaluating the DSD course [12], which high-
light the course design and communication & coordination
management as particularly positive factors. Besides these
factors, at the end of the development some issues, which
could have been treated in a different and perhaps better
way, can be identified. The versioning system offered by
the common repository has not been completely trusted, due
to some initial technical problems of the repository itself.
Therefore we kept on using both the versioning system and a

direct manual exchange of files that could have led to version
conflicts resulting in loss of precious time. Furthermore,
the testing phases have not been very well planned and
carried out since we did not set up any automation in the
procedure; this may be considered the weakest spot of the
whole development process.

VI. CONCLUSION

In this paper we have presented challenges of working in
a distributed project in a distributed software development
course from a student’s perspective.
A provident design and structuring of the course itself has
been a core success factor. From a project perspective,
the management of communication and coordination issues,
the team motivation coming from the given double goal
(the course itself and the SCORE competition) and a very
positive attitude towards the challenging cultural differences
are undoubtly to be highlighted as essential success factors.

REFERENCES

[1] I. Crnković, R. Land, I. Bosnić, I. Čavrak, and M. Žagar,
“Customers’ Role in Teaching Distributed Software Devel-
opment,” in Proocedings of CSEET ’10. IEEE Computer
Society, 2010, to appear.

[2] The SCORE 2009 Contest. (2009) Official Website. [Online].
Available: http://score.elet.polimi.it/

[3] M. J. Hawthorne and D. E. Perry, “Software engineering
education in the era of outsourcing, distributed development,
and open source software: challenges and opportunities,” in
Proceedings of ICSE ’05. ACM, 2005, pp. 643–644.

[4] M. Jimnez, M. Piattini, and A. Vizcano, “Challenges and
Improvements in Distributed Software Development: A Sys-
tematic Review,” Advances in Software Engineering, 2009.

[5] J. Favela and F. Peña Mora, “An Experience in Collaborative
Software Engineering Education,” IEEE Software, pp. 47–53,
2001.

[6] A. E. Milewski, N. Mullick, P. Keil, and I. Richardson,
“Distributed development: an education perspective on the
global studio project,” Software Engineering, International
Conference on, pp. 679–684, 2006.

[7] I. Crnković, R. Land, I. Bosnić, I. Čavrak, and M. Žagar.
(2004) DSD Course Design. [Online]. Available: http:
//www.fer.hr/rasip/projekti/rpi/en/design

[8] C. Peterson, “Bringing ADDIE to Life: Instructional Design
at Its Best,” Journal of Educational Multimedia and Hyper-
media, pp. 227–241, 2003.

[9] M. Young. (2008) SCORE Project Specification.
GPXCleaner: GPS Path Editing and Simplification. [Online].
Available: http://score.elet.polimi.it/projects/young.pdf

[10] F. Ciccozzi, T. Tvrtković, T. Bregović, J. Labor,
C. Tempelaars, P. Santibañez Jara, and J. Jut-
terström. (2009) DSD GPXCleaner SCORE Report.
[Online]. Available: http://www.fer.hr/ download/repository/
DSD GPXCleaner SCORE report.pdf

[11] D. Woit and K. Bell, “Student communication challenges in
distributed software engineering environments,” in Proceed-
ings of ITiCSE ’05. ACM, 2005, pp. 286–290.

[12] DSD Course Team. (2004) DSD Course Evaluation Students’
Surveys. [Online]. Available: http://www.fer.hr/rasip/projekti/
rpi/en/surveys


