
Using Temporal Isolation to Achieve
Predictable Integration of Real-Time Components

Rafia Inam, Jukka Mäki-Turja, Jan Carlsson, Mikael Sjödin
Mälardalen Real-Time Research Centre

Västerås, Sweden
Email: rafia.inam@mdh.se

Abstract—We present the concept of a virtual node as means
to achieve predictable integration of software components
with real-time requirements. The virtual node is based on
the technology using the hierarchical scheduling framework
to achieve temporal isolation between components (or sets of
components). The temporal isolation means that all components
deployed to a virtual node will retain their temporal properties
when integrated with other components on a physical node.
We present how the concept of virtual nodes is applicable to
three different component technologies: ProCom, Autosar and
AADL.

Keywords-real-time systems; component integration

I. INTRODUCTION

Integration of software components with real-time re-
quirements is a tricky business. When multiple components
are deployed on the same hardware node the timing be-
havior of each of the components is typically altered in
unpredictable ways. This means that a component that is
found correct during unit testing may fail, due to a change
in temporal behavior, when integrated in a system. Even if a
new component is still operating correctly in the system, the
integration could cause a previously integrated (and correctly
operating) component to fail. Similarly, the temporal behav-
ior of a component is altered if the component is reused in
a new system. Since also this alteration is unpredictable, a
previously correct component may fail when reused.

Using temporal models of component behavior and re-
quirements some of these problems may be mitigated by
using scheduling analysis [1], [2]. However, contemporary
technique only allow very simple models; typically simple
timing attributes such as period and deadline are used.
Thus, often components exhibit a too complex behavior to
be amenable for scheduling analysis. And, even if a suit-
able analysis technique should exist, such analysis requires
knowledge of the temporal behavior of all components in
the system. Thus, a component cannot be deemed correct
without knowing which components it is integrated with
and the reuse of a component is restricted since it is very
difficult to know beforehand if the component will pass a
schedulability test in a new system.

To remedy this situation we propose the concept of a
virtual node, which is an execution-platform concept that

preserves temporal properties of the software executed in
the virtual node [3]. The virtual node is intended for coarse-
grained components for single node deployment and with
potential internal multitasking. In this paper we describe
the virtual node concept and how it can be applied in
the run-time infrastructure in three different component
technologies: ProCom [4], Autosar [5], and AADL [6].

Paper Outline: Section II describes the component tech-
nologies we study in this paper. In section III we describe
the virtual node execution-mechanism, and in section IV we
conclude the paper with a description of ongoing work.

II. COMPONENT TECHNOLOGIES

Component-Based Software Engineering (CBSE) and
Model-Based Engineering (MBE) are two emerging ap-
proaches to develop embedded control systems like software
used in trains, airplanes, cars, industrial robots, etc. In
this section we briefly outline the component technologies
we will target in our work. We discuss technologies that
use CBSE (e.g., AUTOSAR) or MBE (e.g., AADL) or
both CBSE and MBE (e.g., ProCom). We present these
technologies from the perspective of deployment of the
components on a physical platform and the generation of
final executables of the system.

A. ProCom

ProCom model uses both CBSE and MBE for the develop-
ment of its components hence it not only exploits the benefits
of both approaches (i.e. encapsulation and reusability of
CBSE, and early analysis and automated code generation
of MBE) but also achieves additional benefits of combining
both approaches (like flexible reuse, support for mixed
maturity, reuse and efficiency tradeoff) [3].

Modeling in ProCom is supported by four distinct but
related formalisms as shown in Figure 1. ProSave and
ProSys are used to model the functional architecture of the
system under construction, addressing the different concerns
that exist on different levels of granularity in distributed
embedded systems. In short, ProSys models a system as a
collection of active, concurrent subsystems communicating
via asynchronous message passing, and ProSave addresses



Figure 1. An overview of the deployment modelling formalisms and
synthesis artefacts.

the detailed structure of an individual subsystem, by speci-
fying how data and control are transferred between passive
components. Both ProSys and ProSave allow composite
components, i.e., components that are internally realized by
a collection of interconnected subcomponents. For details on
ProSave and ProSys, including the motivation for separating
the two, see [4], [7].

Deployment is performed in two steps, introducing an
intermediate level where ProSys subsystems are allocated to
virtual nodes that, in turn, are allocated to physical nodes.
This approach allows more detailed analysis to be performed
without full knowledge of other parts that will share the
same physical node in the final system. A realisation based
on hierarchical scheduling and resource budgets ensures that
a virtual node can be analysed independently from the rest of
the system, also with respect to timing. Section III describes
this further.

B. Autosar

AUTomotive Open System ARchitecture (AUTOSAR) [5]
is an open standard for automotive electronics architecture
whose latest version was released in 2010. It is developed
by a number of automotive manufacturers and suppliers
to deal with the increasing complexity and to fulfill a
number of future vehicle requirements (such as safety and
availability, driver assistance, software updates, environ-
ment, and infotainment). The key features of AUTOSAR
are modularity, configurability, standardized interfaces and
a runtime environment. It provides standardized modular
software infrastructure and basic software for embedded
automotive systems. A layered-software platform has been
developed to achieve modularity, scalability, transferability,
and reusability of components.

AUTOSAR Methodology is a standardized technique that
describes all the major steps in a complete development
cycle of a system. It encloses all steps from the system
level configurations till the generation of ECU1 executable
binaries. Functional software is developed using component-
based approach. A component is developed over many

1An ECU, Electronic Control Unit, is a node in an automotive network.

layers of AUTOSAR, including: Application layer, Runtime
Environment (RTE), Basic software and ECU hardware.
Some important layers are:

• Application layer resides at the top of RTE. At this
layer, an application consists of one or many AU-
TOSAR software components and sensor/actuator com-
ponents.

• RTE connects AUTOSAR components. It is respon-
sible for configurations and communication among
components. It enables both communication between
components on the same ECU and also communica-
tion between components on different ECUs. Hence it
makes the components completely independent from
the underlying hardware. Components communicate
with each other using ports (e.g., PPort, RPort) and
port interfaces (e.g., client-server, sender-receiver).

• Basic software (BSW) provides services to In-
put/Output (I/O), communication, memory, and system.
It has access to hardware (e.g., sensors, actuators),
Internal/External memory, microcontroller onboard pe-
ripheral devices and communications. BSW consists
of Internal drivers (e.g., EEPROM, CAN, etc.), exter-
nal drivers (e.g., external EEPROM, etc.), Interfaces
that offer generic API for upper layers, handlers, and
managers. BSW uses complex drivers to handle timing
and functional requirements of complex sensors and
actuators.

• Microcontroller Abstraction layer resides at the bottom
just above the underlying ECUs. It separates the above
layers from the hardware and provides standardized
interfaces for communication of upper layers to the
ECU.

Software component (SW-C) at ECU level contains at least
one or several runnable entities (or simply runnables). A
runnable is small fragment of sequential code within a
component. Runnable entities are grouped into operating
system tasks executed on ECUs. Runnables grouped onto
one task may belong to different software components.
Operating system controls and schedules these tasks. These
OS tasks can be of one of the categories, basic tasks
(Category1 without WaitEvent) or extended tasks (Category2
with WaitEvent). All runnables are activated by RTEEvents
[8].

Deployment in AUTOSAR begins when RTE generator
maps all runnables to the OS tasks and build inter-ECU
and intra-ECU communications among them. This mapping
is dependent on different extra-functional properties and
behaviors of the runnables e.g., runnable with Category1 will
be mapped differently from the runnable with Category2.
Three different rules for mapping are given in the AU-
TOSAR RTE specifications [8]. After mapping, RTE gener-
ator configures each ECU. In the last, the OS tasks bodies
are constructed by RTE generator. The main disadvantage



of AUTOSAR is that it lacks clear and well-defined timing
properties that further affect the execution semantics too. A
tool suite supporting the complete AUTOSAR methodology
is still missing.

C. AADL

Architecture Analysis and Design Language (AADL) was
developed as a SEA Standard AS-5506 [6] in 2004 to
design and analyze software and hardware architectures of
distributed real-time embedded systems. It supports MBE
and has both textual and graphical representations. It also
supports syntax and semantics analyses of the language.
Modeling of software and hardware parts is supported by
software components (e.g., process, data, thread, thread
group, subprogram), and execution platform components
(e.g., processor, memory, bus, device) respectively. It also
allows hybrid components (e.g., system) [9]. Properties and
new functional aspects can be attached to the elements (e.g.,
components, connections) using the properties defined in the
SEA standard, and communication among components is
performed using component interfaces i.e., ports. Ocarina
[10] is a tool suite by Telecom Paris that facilitates the design
of AADL models and their mapping on a hardware platform,
assessment of these models (e.g., syntactic/semantic analy-
sis, schedulability analysis performed by Ocarina and Ched-
dar [11]), and then automatic code generation from these
models and their deployment. Automatic code generation is
done using the Ocarina compiler [9] that comprises of two
traditional parts: the frontend(lexical, syntactic, and sematic
analyses and instantiation) and the backend (expansion and
conversion of instance tree, and code generation in C or
Ada).

Ocarina supports code generation in Ada and C languages
using a middleware API called PolyORB (PolyORB for
Ada while PolyORB-HI for C). This middleware provides
execution services and wraps the POSIX API, hence it
is POSIX compliant. Runnable entities are presented by
processes. A process contains many tasks and it is a self-
contained runnable entity that executes on a hardware plat-
form without any programmatic dependencies. The final
executable binaries are generated by compiling the Ocarina
automatic generated code (in C or Ada) together with the
user written application code (in C or Ada) and the AADL
runtime (e.g. PolyORB, PolyORB-HI).

III. VIRTUAL NODES

The concept of a virtual node is based on a two-level hi-
erarchical scheduling framework [12]. A HSF is introduced
to support CPU time sharing among servers under different
scheduling disciplines. In HSF, a system S consists of one or
more servers Ss ∈ S. The HSF can be generally viewed as a
two-level tree, where each leaf-node represents a server with
its own local scheduler for scheduling internal tasks, and
CPU time is allocated from the parent node, as illustrated in

Global scheduler

Subsystem1

Local
scheduler

Subsystem2

Local
scheduler

Subsystemn

Local
scheduler

Figure 2. Two-level hierarchical scheduling framework.

Figure 2. The HSF provides partitioning of the CPU between
different servers. Thus, server-functionality can be isolated
from each other for, e.g., fault containment, compositional
verification, validation and certification, and unit testing.

A virtual node represents the functionality of component
(or a set of integrated components) combined with allocated
execution resources2.

A virtual node includes the executable representation of
the components (i.e. a set of tasks), a resource allocation,
and a real-time scheduler to be executed within a server in
the HSF. The server will execute with a guaranteed temporal
behavior, using its allocated CPU bandwidth, regardless of
any other execution on the physical node. Thus, once a
server has been configured for the virtual node, its real-
time properties will be preserved when the virtual node is
integrated with other virtual nodes on a physical node, or
when a virtual node is reused in another context. We do
not prescribe what type of scheduler a virtual node should
use; it can be any type of scheduler that provides real-time
guarantees.

To get the final compiled binary that can be downloaded
and executed on the target, a set of virtual nodes and simple
real-time scheduler is linked together. The scheduler is the
top level scheduler in the hierarchical scheduling framework,
and is responsible for dispatching the servers of each virtual
node according to their bandwidth reservation.

In the component models we are currently studying the
virtual node concept can be applied in the following way:

ProCom
In ProCom the Virtual Node is an integrated model

concept. That means that the virtual nodes exist both on
the modelling level and as executable entities. A set of
ProSys subsystems are mapped to one virtual node which
can then be integration-tested and validated for correct
temporal behaviour.

This virtual node then becomes a reusable entity that is
ready to deploy in numerous systems and stored for future
reuse.
Autosar

For Autosar, we propose to map a number runnables to a
virtual node. An Autosar component can be deployed to a

2Currently, we focus mainly on the resources CPU-bandwidth and
memory. However, in future work other resources, such as energy, could
be added.



set of virtual nodes; the natural choice would be to use one
virtual node per physical node that the component will be
distributed over. Using this approach the component can
be developed and its timing behaviour tested without ac-
counting for interference from other Autosar components
deployed at the same physical nodes.

However, since the Autosar component-model and
methodology does not recognize the virtual node as an
entity of its own, reuse in different organizations or
different software architectures may be difficult. However,
the virtual node still provides strong encapsulation of
the runnables and thus makes the functionality robust
against future changes in both the runnables and in other
components running in other virtual nodes.
AADL

We propose to map the generated code from AADL
models along with user written code to the virtual node.
Hence instead of synthesizing the whole system in a
single big step, the synthesis will be performed in smaller
steps. It will be done at two levels. First the individual
runnables will be created in isolation and timing analy-
sis will be performed on them. Then some middleware
(e.g., PolyORB, PolyORB-HI) could be used for their
intra-communications and to generate a whole system.
Currently a similar concept of two level code generation
has been used for ARINC653 systems [13] using AADL,
supported by the tool suite POK [14] that uses Ocarina
for AADL models and Cheddar for scheduling analysis.
POK supports partitioning and HSF for the underlying
ARINC653 systems by using virtual processor. This ap-
proach is not generic in embedded real-time systems since
ARINC653 is an avionics standard.

IV. CONCLUSIONS AND ONGOING WORK

We have described our technique to allow predictable inte-
gration of software components with temporal requirements.
The technique is based on the concept of virtual nodes which
use hierarchical scheduling to achieve predictable execution
of components allocated to the virtual nodes. We have
described how this technique can be used for three different
component models: ProCom, Autosar and AADL.To get
minimal changes and better utilization of the system, it will
be good to match scheduling techniques to the underlying
system (e.g. using fixed-priority scheduling for AUTOSAR,
TDMA for AADL). Ongoing work is to implement the
hierarchical scheduling framework in FreeRTOS [15] for
our target platform EVK1100 (an AVR32-based board) [16].
Also, code synthesis for generating and configuring virtual
nodes from ProSys subsystems is ongoing. Once these
implementation efforts are complete, we will have all the
links in a complete development chain for model driven
engineering of component based system in the ProCom
component technology:

• Using the ProCom Integrated Development Environ-
ment (PrIDE) components can be developed, assembled
and deployed to virtual nodes.

• Using scheduling analysis of hierarchically scheduled
systems [17] we can determine schedulability of both
individual virtual nodes and the final composition of
multiple virtual nodes on a single physical node.

• And, with our implemented code synthesis and runtime
platform we can generate and execute the components
and their applications in a predictable way.

The next step will be to validate the generality of the
virtual-node concept by applying it to Autosar and AADL.

REFERENCES

[1] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker,
A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K.
Mok, “Real Time Scheduling Theory: A Historical Perspec-
tive,” Real-Time Systems, vol. 28, no. 2/3, pp. 101–155, 2004.

[2] J. Stankovic, M. Spuri, M. D. Natale, and G. Buttazzo,
“Implications of Classical Scheduling Results for Real-Time
Systems,” IEEE Computer, pp. 16–25, June 1995.

[3] J. Carlsson, J. Feljan, and M. Sjödin, “Deployment Modelling
and Synthesis in a Component Model for Distributed Embed-
ded Systems,” To appear in SEAA, September 2010.

[4] T. Bureš, J. Carlson, I. Crnković, S. Sentilles, and A. Vulgar-
akis, “ProCom – the Progress Component Model Reference
Manual, version 1.0,” Mälardalen University, Technical Re-
port MDH-MRTC-230/2008-1-SE, June 2008.

[5] “Autosar project-page,” www.autosar.org.
[6] SAE International, “AADL specification,”

http://www.sae.org/technical/standards/AS5506/1.
[7] T. Bureš, J. Carlson, S. Sentilles, and A. Vulgarakis, “A

Component Model Family for Vehicular Embedded Systems,”
in The 3rd International Conference on Software Engineering
Advances. IEEE, October 2008.

[8] AUTOSAR Partnership, “Specification of RTE V2.0.1 R3.0
Rev 0001 ,” 2008, http://www.autosar.org/.

[9] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, OCARINA :
An Environment for AADL Models Analysis and Automatic
Code Generation for High Integrity Applications. Springer
Berlin Heidelberg, 2009, iSBN 978-3-642-01923-4.

[10] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the
prototype to the final embedded system using the ocarina aadl
tool suite,” ACM Trans. Embed. Comput. Syst., vol. 7, no. 4,
pp. 1–25, 2008.

[11] F. Singhoff, J. Legrand, L. Nana, and L. Marc, “Cheddar:
a flexible real time scheduling framework,” Ada Lett., vol.
XXIV, no. 4, pp. 1–8, 2004.

[12] Z. Deng and J. W.-S. Liu, “Scheduling real-time applications
in an open environment,” in "Proc. of IEEE Real-Time Sys-
tems Symposium", December 1997.

[13] Airlines Electronic Engineering, “Avionics Application Soft-
ware Standard Interface. TR, Aeronautical Radio, INC,” 1997.

[14] J. Delange, L. Pautet, A. Plantec, M. Kerboeuf, F. Singhoff,
and F. Kordon, “Validate, simulate, and implement arinc653
systems using the aadl,” Ada Lett., vol. 29, no. 3, pp. 31–44,
2009.

[15] “FreeRTOS web-site,” http://www.freertos.org/.
[16] “ATMEL EVK1100 product page,”

http://www.atmel.com/dyn/Products/tools_card.asp?tool_id=4114.
[17] M. Behnam, T. Nolte, M. Sjödin, and I. Shin, “Overrun meth-

ods and resource holding times for hierarchical scheduling of
semi-independent real-time systems,” IEEE Transactions on
Industrial Informatics, vol. 6, no. 1, February 2010.


