
RapidRT: A Tool For Statistical Response-Time Analysis of Complex Industrial
Real-Time Embedded Systems

Yue Lu1,2, Thomas Nolte1, Liliana Cucu-Grosjean2, and Iain Bate3

1Mälardalen Real-Time Research Centre, Västerås, Sweden
2INRIA Nancy-Grand Est, Nancy, France

3Department of Computer Science, University of York, York, United Kingdom
yue.lu@mdh.se

Abstract—RapidRT is a tool for statistical response time
analysis of Complex Industrial Real-Time Embedded Systems
(CIRTES). A key feature of this tool is that it does not
require worst-case execution times of tasks to be known for
the computation of a probabilistic task worst-case response
time estimate. The presented tool is a step towards bridging
the gap between academic research and industrial practice.

I. MOTIVE FOR THE RESEARCH

Nowadays, many existing industrial embedded systems
are very complex, large, flexible, and highly configurable
software systems. Such systems often consist of millions of
lines of code and contain hundreds of tasks, many of which
are with real-time constraints and being triggered by other
tasks in a complex and nested pattern. More importantly,
in such systems, tasks may have intricate dependencies in
their temporal behavior, such as 1) asynchronous message-
passing and globally shared state variables, which may
decide important control-flow conditions with major impact
on task execution time as well as task response time and,
2) runtime changeability of priorities and periods of tasks
and, 3) task offsets. All these dependencies result in very
complicated system timing behavior (i.e., multi-modal task
response time distributions). We refer to systems with such
characteristics as Complex Industrial Real-Time Embedded
Systems (CIRTES).

To maintain, analyze and reuse such CIRTES is very
difficult and expensive, nevertheless, it offers high business
value in response to great concern in industry. For CIRTES,
not only the functional behavior of systems has to be
assured, but also the temporal behavior, i.e., the Worst-Case
Response Time (WCRT) of the adhering tasks in systems has
to be known. However, when static Response-Time Analysis
(RTA) methods [1] are used in timing analysis of CIRTES,
the results are often overly pessimistic, and hence they are
less useful to the practitioner. Additionally, the fundamental
assumption in RTA is that accurate task WCET estimates are
available. For CIRTES, these estimates are difficult and/or
impossible to obtain. This is not only because of underly-
ing modern processor architectures (with features such as
cache, pipelines, branch-prediction, out-of-order execution),
but also because of the intricate temporal and execution

dependencies between tasks as we mentioned previously.
Another interesting issue is protecting intellectual property,
i.e., the non-accessibility issues in the source code and/or
object code of CIRTES, makes it hard to perform or even
prevents the state-of-the-art WCET analysis of tasks in
CIRTES. Going forward, when combined with the fact that
most existing CIRTES tend to be probabilistic in nature,
this advocates moving toward statistical RTA. Such analysis
computes a probabilistic task WCRT estimate according to
a given task reliability requirement, which the system has to
meet after some changes are made.

To solve the above mentioned problems, we have devel-
oped RapidRT [2], a tool for trace-based statistical RTA of
CIRTES which consists of a novel sampling method and a
statistical inference (which processes the achieved sample
with more powerful and valid statistical techniques). Fur-
thermore, our tool comes with a friendly GUI (conforming
to Windows 7 style) and a rich set of tool features that
allow users to better understand tasks timing behavior by
providing some relevant statistical characteristics, as well as
allow users to specify and analyze a wide variety of method
parameters at ease.

II. THEORETICAL FOUNDATION UNDERLYING RAPIDRT

The underlying RapidRT methods mainly consist of two
parts: a proposed sampling method (which achieves qualified
analysis samples) and a statistical inference (which uses
Extreme Value Theory (EVT) [3], other statistical methods
and search algorithms to compute a probabilistic task WCRT
estimate). To be specific, our sampling method is a two-
step procedure, i.e., the collection of representative task
Response Time (RT) samples and the collection of the sample
satisfying the independent and identically distributed (i.i.d.)
assumption (i.e., i.i.d. task RT samples). Furthermore, based
around some statistical rationales given in [4], we also
provide a means to determination of different sample sizes
in algorithm. Next, we decompose the given task reliability
requirement (of which the default value is 10−9 according to
the highest development assurance level in the safety-critical
system domain and used for instance by Airbus) in some
probabilities used by the statistical inference in different



Figure 1. The work flow about RapidRT.

context. Particularly, Figure 1 illustrates the work flow about
RapidRT.

Task Models: RapidRT supports a task model which
contains non-blocking periodic tasks on a single processor.
Typically, each task is comprised of n jobs (where n ∈ N)
and is a tuple τi(Ti, Ji, Oi, Pi, Ci, Di), where Ti is task
period with maximum jitter Ji, constant offset Oi, a priority
Pi, and Ci is the task WCET. It is interesting to note that the
exact knowledge of Ci is not required in RapidRT. Further-
more, since in CIRTES, tasks have their deadlines derived
from their periods as normally defined. Therefore, in this
work, we use implicit task deadline, i.e., the task deadline
Di is equal to the task period Ti. Besides, although the Fixed
Priority Preemptive Scheduling is used as baseline, some
tasks may change their priorities and periods at runtime, in
response to system events.

III. THE DESIGN OF RAPIDRT

The RapidRT implementation consists of two parts, and
its first part, i.e., our sampling method, is implemented in
a relatively straightforward manner, based around Monte
Carlo Simulation (MCS). To be specific, MCS is realized by
providing some generated simulator input data (conforming
to a uniform distribution), of which output is a set of
timing traces. The other part of RapidRT, i.e., the statistical
inference, is implemented as an executable program with a
friendly GUI developed using Microsoft’s C# programming
language. As shown in Figure 2, after loading a number of
timing traces containing task response time data, RapidRT
visualizes the corresponding timing behavior of the task
by presenting some descriptive statistics, such as minimum,
maximum, mean, standard deviation, variance and prob-
ability density function. Moreover, RapidRT provides two
ways of obtaining a probabilistic task WCRT estimate, by
using either some given values of parameters (as default)
or user defined values. In addition, RapidRT supports mul-
tiple threads UI, e.g., the software execution process can
be terminated at runtime if users press the button Stop.
Figure 2 shows an overview of the tool GUI, which is
comprised of four different working views, i.e., SYSTEM
TASK TREE view, DESCRIPTIVE STATISTICS OF TASK
RT POPULATION view, PARAMETERS SETTING view and

Figure 2. RapidRT Graphical User Interface (GUI).

ANALYSIS OUTPUT view.

IV. CONCLUDING REMARKS AND STRATEGIC PLAN

This paper has given an overview of RapidRT, a trace-
based statistical Response Time Analysis (RTA) tool for
complex industrial embedded real-time systems. Particularly,
we presented an overview of the underlying theoretical
foundation, the tool work flow and the corresponding design.
Though RapidRT is currently not an open source software
for free download and use, we are interested in reaching the
following milestones in our strategic plan:
• Method validation by using more case studies in indus-

trial settings.
• Using statistical timing analysis method for multi-core

or multi-processor real-time software in both RTA and
WCET analysis [5].

• The development of a light weight command-line ver-
sion which enables our tool to be integrated with other
existing tool chains.

• Using our proposed analysis framework in some other
research studies, which are not only limited to real-
time operating systems and scheduling, and the possible
commercialization of our developed software.

REFERENCES

[1] Handbook of Real-Time and Embedded Systems. Chapman
and Hall/CRC (July 23, 2007), 2007.

[2] Y. Lu, T. Nolte, J. Kraft, and C. Norström, “A Statistical
Approach to Response-Time Analysis of Complex Embedded
Real-Time Systems,” in Proc. of RTCSA’ 10, August 2010.

[3] E. Gumbel, Statistics of Extremes. Columbia University Press,
1958.

[4] “How to Determine a Sample Size,” exten-
sion.psu.edu/evaluation/pdf/TS60.pdf.

[5] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean, “A trace-based
statistical worst-case execution time analysis of component-
based real-time embedded systems,” in Proc. of ETFA’ 11,
Work-in-Progress session, September 2011.


