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Abstract. The Architecture Analysis and Design Language (AADL) is
a popular language for architectural modeling and analysis of software
intensive systems in application domains such as automotive, avionics,
railway and medical systems. These systems often have stringent real-
time requirements. This paper presents an extension to AADL’s behavior
model using time annotations in order to improve the evaluation of tim-
ing properties in AADL. The translational semantics of this extension
is based on mappings to the Timed Abstract State Machines (TASM)
language. As a result, timing analysis with timed simulation or timed
model checking is possible. The translation is supported by an Eclipse-
based plug-in and the approach is validated with a case study of an
industrial production cell system.
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1 Introduction

Time-critical embedded systems play a vital role in, e.g. aerospace, automotive,
air traffic control, railway, and medical applications. Designing such systems is
challenging, because the fulfillment of real-time requirements and resource con-
straints has to be proven in the development process. The architecture design
phase is of specific practical interest, as the timing behavior and resource con-
sumption of systems depend heavily on the architecture chosen for these systems.
Furthermore, architectural mistakes that cause a system not to fulfill certain
real-time requirements are hard to correct in later development phases. As a
result, a development process for time-critical embedded systems should include
verification techniques in the architecture design phase to provide evidence that
a system architecture has the potential to fulfill its real-time requirements [1–3].

In this paper, timed simulations are used for evaluating real-time require-
ments. The Architecture Analysis and Design Language (AADL) [4] has been



chosen, due to the sound specification language and its industrial use for the de-
velopment of embedded systems in the automotive and avionic area. To allow for
a specification of timing behavior in AADL, we have extended AADL’s behavior
annex [5] with time annotations that provide a minimum and maximum time for
each behavioral transition in the model. To provide a formal semantics of these
extensions, Timed Abstract State Machines (TASMs) [6] are used as the formal
foundation. In detail, this paper describes a translational semantic that maps
the extended behavior specifications of AADL into a network of timed abstract
state machines. As a result, existing evaluation and verification techniques, such
as timed simulations [7] and timed model checking [3] defined for the TASM
specification formalism could also be applied to extended AADL specifications.
The translation of time-extended AADL specifications into TASM is supported
by a tool called AADLtoTASM and the overall approach is validated with a case
study of an industrial production cell.

The rest of this paper is organized as follows: Section 2 introduces the run-
ning example of a production cell system and gives an overview of the used
specification formalisms: AADL with its behavior annex as well as TASM. Sec-
tion 3 presents the time extension of AADL’s behavior annex. Furthermore, the
translational semantics and tool support are also presented in this section. The
results of timed simulations of the case study are presented in Section 4. Finally,
in Section 5 the approach is compared with related work and Section 6 concludes
the paper and gives an outlook to future work.

2 Background

2.1 The Production Cell - a Running Example

In order to explain and validate the approach of this paper, a running example of
a production cell system is used. This case study is based on an automated manu-
facturing system which models an industrial plant in Karlsruhe (Germany). The
industrial production cell system was first described by Lewerentz and Lindner
in [8]. Ouimet et al. defined it in TASM in [9] as depicted in Figure 1.

The overall purpose of the system is to attach two bolts to a metal block.
The system is not controlled by a central unit. Instead, the production cell
components communicate with each other through ports and bus connections.
The components work concurrently; when a component is ready to accept a new
block it notifies the preceding component, which in turn acknowledges that is has
loaded the block. There is also a signal acknowledging that the loading location
of the production cell component is free.

The system is composed of the robot arms Loader, BeltToPress (Arm A), and
PressToBelt (Arm B), the conveyer belts FeedBelt and DepositBelt as well as
the Press. The system input are sets of blocks arriving in crates and the output
are the same blocks with bolts attached to them. Once a block has been loaded,
it is ”dragged” through the system. See Figure 2 for a schematic description.

To describe the behavior of the production cell components let us look at
the loader. While waiting, it is parked at the crate with the magnet turned off.



 
Fig. 1. The Production Cell System as presented in [9].

When it receives a signal from the feed belt that it is ready to receive a new
block, the loader turns the magnet on, moves the arm onto the beginning of the
feed belt, turns the magnet off, and signals the feed belt that it has loaded a
block. The rest of the production cell components work in similar fashions.

2.2 The Architecture Analysis and Design Language

AADL (aadl.info) is a language intended for the design of system hardware and
software. It is a Society of Automotive Engineers (www.sae.org) standard based
on MetaH [10] and UML 2.0 [11, 12].

The AADL standard [4] includes runtime semantics for mechanisms of ex-
change and control of data, including message passing, event passing, synchro-
nized access to shared data, thread scheduling protocols, and timing require-
ments.

AADL can be used to model and analyze systems already in use as well
as to design new systems. AADL can also be used in the analysis of partially
defined architectural patterns. Moreover, AADL supports the early prediction
and analysis of critical system qualities, such as performance, schedulability, and
reliability.

In AADL, a model consists of syntactical elements. There are three categories
of elements. The first category is the application software:

– Thread. A thread can execute concurrently and be organized into thread
groups.

– Thread Group. A thread group is a component abstraction for logically
organizing threads or thread groups within a process.

– Process. A process is a protected address space whose boundaries are en-
forced at runtime.

– Data. A data component models types as well as static data.
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Fig. 2. Schematic Description of the Production Cell System.

– Subprogram. A subprogram models a callable block of source code.

The second category is the execution platform (the hardware):

– Processor. A processor schedules and executes threads.
– Memory. A memory component is used to store code and data.
– Device. A device represents sensors and actuators that interface with the

external environment.
– Bus. A bus interconnects processors, memory, and devices.

The third category contains only one element: the system components. Sys-
tem components can consist of software and hardware components as well as
other systems.

Component definitions are divided into types holding the public (visible to
other components) features, and implementations that define the non-public
parts of the component.

The components interact through defined interfaces, which consist of direc-
tional flows through event and data ports. It is possible to define physical port-
to-port connections as well as logical flows through chains of ports.

Listing 1 shows the AADL ProductionCell system of section 2.1 (in AADL,
two hyphens introduce a comment).

2.3 The Timed Abstract State Machines

TASM is specification language for reactive real-time systems. It has been devel-
oped at the Embedded Systems Laboratory (esl.mit.edu) at the Massachusetts
Institute of Technology as a part of the Hi-Five project [13].



Listing 1 The ProductionCell System.

system Product ionCe l l
end Product ionCel l ;

system implementation Product ionCel l . impl
subcomponents

l oade r : system Loader ;
f e edBe l t : system FeedBelt ;
robot : system Robot ;
p r e s s : system Press ;
d epo s i tBe l t : system Depos i tBe l t ;

connections
event port f e edBe l t . FeedBeltReady −> l oade r . FeedBeltReady ;
event port l oade r . BlockDropped −> f e edBe l t . BlockDropped ;
event port f e edBe l t . BlockPicked −> l oade r . BlockPicked ;
−− . . .

end Product ionCel l . impl ;

Formally, a TASM specification is a pair < E, ASM > [14] where E is the
environment, which is a pair E =< EV, TU > where EV denotes the environ-
ment variables (a set of typed variables) and TU is the type universe, a set of
types that includes real numbers, integer, boolean constants, and user-defined
types.

ASM is the machine, which is a triple < MV,CV, R > where MV is the
set of read-only monitored variables, CV is the set of controlled variables (both
MC and CV are subsets of EV ) and R is the set of rules (n, r) where n is a
name and r is a rule of the form ”if C then A” where C is an expression that
evaluates to an element in BV U and A is an action. It is also possible to attach
an else rule on the form ”else A”.

Technically, a TASM specification is made up of machines. A specification
must hold at least one main machine with its set of rules. Beside main machines,
it is also possible to define sub machines and function machines. A sub machine
accesses1 the variables of the model and work as a procedure in a programming
language, with the difference that it does not accept parameters. A function
machine is equivalent to a function in a programming language; it accepts pa-
rameters and returns a value. However, it cannot access the global variables of
the model.

A transition between two states in a TASM machine can be annotated by a
time interval defining the minimal and maximal time to perform the transition.

The TASM Toolset [14] is an integrated development environment, composed
of a project manager, an editor, an interpreter, and a simulator. The specification
machines can be simulated in the Toolset.

1 The term access is a comprehensive term for inspect and modifiy.



3 Time Extension of the AADL Behavior Annex

3.1 The AADL Behavior Annex Extension

In order to increase the expressiveness of AADL, it is possible to add annexes.
One of them is the Behavior Annex [15] that models an abstract state machine
[16].

Each component of the model describes its logic by defining a behavior model,
which consists of three parts [5]:

– States. The states of the machine, one of them is the initial state.
– Transitions. The condition for a transition from one state to another (or

the same state) is determined by a guard: an expression that evaluates to
true or false. It is also possible to attach a set of actions to be executed
when the transition is performed.

– State Variables with Initializations. The variables are similar to vari-
ables in programming languages. They can be initialized, inspected, and
assigned.

In this paper, we add the concept of time to the transitions. In addition
to the guard, each transition also has a time interval defining the minimal and
maximal time for the transition performance. The grammar of the extended
behavior model is given in Table 3, with the extensions underlined. The time
annotations can be an interval, a single integer value representing both the lower
and upper limit of an interval, or the word null, representing the absence of a
time annotation.

Listing 2 defines the behavior model of the ProductionCell system that has
been described earlier in Listing 1. The model is extended in relation to the
standard in two ways:

– Channel Initialization. When the model starts to execute, a trigger mes-
sage is sent to the OutBlockReady channel.

– Time. When the transitions occur, a time period is recorded. It is one time
unit in all four transitions of Listing 2.

3.2 Translation Semantics

The translation to TASM has two phases: analysis and generation. The analysis
phase follows the syntax of Table 3 to achieve a full coverage of the language.
The aim of this phase is to translate an extended AADL specification into a tuple
consisting of a state variable map, a state variable set, a set of state variables
to become initialized, the state set, the initial state (it can only be one), and
the transaction set. The generation phase takes the tuple defined in the analysis
phase as an input and returns for each transition (if present) a time specification
and an if-statement testing the current state together with the guard expression
and updating the new state value as well as the action list. See Tables 1 and



Listing 2 The Behavior Model of the ProductionCell System.

annex Product ionCel l {∗∗
state variables

LoadedBlocks : i n t e g e r ;
StoredBlocks : i n t e g e r ;

i n i t i a l
OutBlockReady ! ;
LoadedBlocks := 0 ;
StoredBlocks := 0 ;

states
Waiting : i n i t i a l state ;
Sending , Rece iv ing : state ;

transitions
Waiting −[( LoadedBlocks < 10) and InBlockReady ? , 1]−> Sending

{ InBlockLoaded ! ; }
Sending −[ InBlockPicked ? , 1]−> Waiting

{LoadedBlocks := LoadedBlocks + 1;}
Waiting −[OutBlockLoaded ? , 1]−> Rece iv ing

{OutBlockPicked ! ; }
Rece iv ing −[true , 1]−> Waiting

{OutBlockReady ! ; StoredBlocks := StoredBlocks + 1;}
∗∗} ;

2 for pseudo code samples describing the analysis of an AADL behavior model
and the generation of the corresponding TASM main machine, respectively.

In plain English the translation steps can be described as follows:

– For each model, its states are translated into an enumeration type that has
the states as its possible values. Moreover, for each model, its states are also
translated into a global variable of the enumeration type above. The variable
is initialized with the enumeration value corresponding to the model’s initial
state. For the production cell system of Section 2.1, the generated types
and variables is shown in Listing 3 (ProductionCellStateSet is the type and
ProductionCellState is the variable).

Listing 3 The AADL behavior annex states of Listing 2 translated into TASM
global type and variable.

Product ionCe l lS ta teSet := {Waiting , Sending , Rece iv ing } ;
Product ionCe l lS ta teSet Product ionCe l lS tate := Waiting ;

– Each state variable (please note the difference between state variables and
states as described above) is translated to a global variable with the instance
name attached to the variable name in order to avoid name clashes. The vari-
ables are initialized with the values given in the initial part of the model.
Since a variable must be initialized in TASM, it must also be initialized in
the model. Even though TASM supports the possibility to add variables lo-
cal to a single machine, we do not use that option due to the fact that global
variables are visible during simulation, local variables are not, consequently



it would become more difficult to simulate the model with local variables.
In the production cell system of Section 2.1, the behavior annex of the Pro-
ductionCell system has two state variables LoadedBlocks and StoredBlocks,
see Listing 2. They are translated into global TASM variables as shown in
Listing 4.

Listing 4 The AADL behavior annex state variables of Listing 2 translated into
TASM global variables.

Integer Product ionCel l LoadedBlocks := 0 ;
Integer Product ionCe l l S toredBlocks := 0 ;

– For each connection between two subcomponent instance ports, a boolean
variable representing the connection between the ports is defined. When a
signal is sent through the output port, the boolean variable is set to true.
The reception of the signal occurs when the boolean variable is read. After it
is read, the variable is set to false, so that a new signal can be sent again. In
the production cell system of Section 2.1, the behavior annex of the Produc-
tionCell system has several connections, see Listing 2. They are translated
into global boolean TASM variables as shown in Listing 5 (in TASM, two
slashes introduce a comment). The first boolean variable is initialized to true
since the signal is trigged in Listing 2.

Listing 5 The AADL connections of Listing 1 translated into TASM boolean
global variables.

Boolean Loader InBlockReady to InBlockReady := true ;
Boolean InBlockLoaded to Loader InBlockLoaded := fa l se ;
Boolean Loader InBlockPicked to InBlockPicked := fa l se ;
// . . .

– For each subcomponent in the AADL system, a main machine with the sub-
component’s name is created in the TASM environment. Since the machines
are generated from subcomponent instances, one component can be trans-
lated into several machines. Then the rules regarding time annotation are
applied:
• The timed feature of the transition is translated into the assignment of

the predefined TASM variable t.
• Each transition of the behavior models is translated into a TASM rule

in its main machine. The rule is translated into an if-statement with
an expression that is a logical conjunction between two subexpressions.
The first subexpression tests whether the machine is in the source state,
and the second expression is the guard of the transition (omitted if it



consists solely of the value true). The actions of the rule is the action list
connected to the transition. However, the first action is the assignment
of the state variable to the target state. Moreover, if port signals are
received in the guard, their matching boolean variables are set to false
at the end of the action list.

• A machine in TASM is active as long as one of its rule is satisfied,
otherwise it becomes terminated. In order to keep the machine active
even though no rule is satisfied, an else-rule in accordance with Section
2.3 is added.

In the production cell system of Section 2.1, the behavior annex of the Pro-
ductionCell system has several transitions, see Listing 2. They are translated
into TASM rules as shown in Listing 6. The if-statement transacts the ma-
chine state from Waiting to Sending if the number of loaded blocks is less
than ten and it receives the InBlockReady signal (see Figure 2. Note that
the signal is set to false, so that is can be received again in the future.

Listing 6 The AADL behavior model of the ProductionCell of Listing 2 trans-
lated into TASM rules.

R1 :
{

t := 1 ;
i f ( Product ionCe l lS tate = Waiting ) and

( ( Product ionCel l LoadedBlocks < 10) and
Loader InBlockReady to InBlockReady ) then

Product ionCe l lS tate := Sending ;
InBlockLoaded to Loader InBlockLoaded := true ;
Loader InBlockReady to InBlockReady := fa l se ;

}

// . . .

R5 :
{

t := next ;
else then

skip ;
}

The main translation rule is that each AADL subcomponent is translated
into a TASM instance. However, there is an additional rule. In many cases, when
the subcomponents are translated into TASM machines, it required to establish
an environment. Therefore, if a component has subcomponents and a behavior
model of its own, it is assumed to hold the system’s environment and initializa-
tion information, and an instance of the model is translated into a TASM main
machine. The two rules fulfill different purposes. The main rule generates the
components of the system, and the additional generates its initialization.



Table 1. AnalyseModelParts: Input ⇒ Map × Set × Set × State × Set.

/* Empty */ ⇒ return (emptyMap, emptySet, emptySet, null, transSet);
featureList name : type ; ⇒

(varMap, initSet, stateSet, initState, transSet) = AnalyseModelParts(featureList);
return (varMap ∪ (name, type), initSet, stateSet, initState, transSet);

featureList name ! ; ⇒
(varMap, initSet, stateSet, initState, transSet) = AnalyseModelParts(features);
return (varMap, initSet ∪ (name, send), stateSet, initState, transSet);

featureList name : state ; ⇒
(varMap, initSet, stateSet, initState, transSet) = AnalyseModelParts(features);
return (varMap, initSet, stateSet ∪ name, initState, transSet);

featureList name : initial state ; ⇒
(varMap, initSet, stateSet, , transSet) = AnalyseModelParts(features);
return (varMap, initSet, stateSet ∪ name, name, transSet);

featureList source -[ guard, time, ]→ target { actionList } ⇒
(varMap, initSet, stateSet, initState, transSet) = AnalyseModelParts(features);
return (varMap, initSet, stateSet, initState, transSet ∪ (source, guard, time, target, action-

List);

Table 2. GenerateModelParts: Set ⇒ Output.

/* Empty */ ⇒ generate(””);
transitionSet transition ⇒
GenerateModelParts(transitionSet);

(if tr.time != null then generate(”t := ” + tr.time + ”;”);
(generate(”if (” + modelName + ”State = ” + tr.source + ”) and (” + tr.guard + ”) then”);
(generate(” ” + modelName + ”State := ” + tr.target + ”;”);
(generate(” ” + tr.actionList”);
(generate(” ” + extractPorts(tr.guard));

3.3 Tool Support

There is a number of tools developed for AADL. One of them is the Open Source
AADL Tool Environment (OSATE, aadl.info), which is a plug-in for the Eclipse
environment (www.eclipse.org).

AADLtoTASM2, a contribution of this paper, is an OSATE plug-in that
analyzes an AADL model and generates the equivalent TASM specification. It
reads the subsystems, ports, and connections of each component as well as its
behavior model. The model is parsed in accordance with the grammar of Table
3 with the extension of Section 3.1. Moreover, due to the fact that uninitialized
variables are not allowed in TASM, all state variables in the AADL behavior
model have to be initialized. In order to properly initialize the TASM variables
representing the AADL behavior model states, each model must have exactly
one initial state.

AADLtoTASM translates an AADL model extended with time annotations
into a TASM model, in order for the model to be simulated in the TASM Toolset
Simulation environment. However, the tool does not perform any analysis in
addition to the translation.

2 The tool is available for download, please contact one of the authors



Table 3. The Extended Behavior Annex Grammar.

annex specification ⇒ optional state variables optional initialization
optional states optional transitions

optional state variables ⇒ state variables variable declaration list | /* Empty. */
variable declaration list ⇒ variable declaration | variable declaration list variable declaration
variable declaration ⇒ identifier list : variable type ;
identifier list ⇒ identifier | identifier list , identifier
variable type ⇒ { identifier list } | integer | boolean
optional initialization ⇒ initial initial list | /* Empty. */
initial list ⇒ send ; | assignment ; | initial list send ; | initial list assignment ;
send ⇒ identifier ! ;
assignment ⇒ identifier := expression
interval ⇒ [ integer constant , integer constant ]

optional states ⇒ states state list | /* Empty. */
state list ⇒ state | state list state
state ⇒ identifier list : optional initial state ;
optional initial ⇒ initial | /* Empty. */
optional transitions ⇒ transitions transition list | /* Empty. */
transition list ⇒ transition | transition list transition
transition ⇒ identifier - [ expression , time ] →

identifier optional action list
time ⇒ null | integer constant | interval
optional action list ⇒ ; | {} | { action list }
action list ⇒ expression ; | action list expression ;
expression ⇒ expression binary operator expression | not expression

| ( expression ) | constant | assignment | send
| identifier | identifier ?

binary operator ⇒ or and + - * / = != < <= > >=
constant ⇒ integer constant | boolean constant | real constant

| character constant | string constant

4 Simulation

As the ProductionCell system of Section 2.1 has the subcomponents Loader,
FeedBelt, BeltToPress, Press, PressToBelt, and DepositBelt, TASM main ma-
chines with the same names are generated for each of the subcomponents. Due
to the additional rule of Section 3.2, an instance of the ProductionCell is trans-
lated into an TASM main machine with the same name. See Listing 3 for the
definition of the states and state variables of the production cell system behavior
model.

Furthermore, see Listing 2 for the behavior model of the ProductionCell.
Extracts of the translated TASM machines are shown in Listings 3, 4, 5, and
6. The system that we want to investigate loads three (the number three is
just chosen as an example) blocks into the system and picks three processed
blocks from the system. Note, that the signals of input ports are received with
the question mark (?) operator and the output ports signals are sent with the
exclamation mark (!) operator. Even though it is possible to send data through
the ports, only trigger signals are used in this case study. Each transition has a
guard as well as a time interval.

In order to evaluate an architecture and find its minimal and maximal time,
the production cell system was translated from AADL to TASM by the tool
as described above. The minimal and maximal time for each production cell
component of the system are defined in Table 4.



Furthermore, the process was simulated one hundred times with random time
intervals. Figure 3 describes the results of this simulations. It is also possible to
analyze the best and worst case performance by setting the simulator to use the
minimum or maximum time, respectively, of each interval. With this method, we
could conclude that the minimum time to put three blocks through the system
was 72 units and the maximum time was 131 units.

The TASM Toolset does also have the capability to perform a number of
different kinds of analysis, such as average time consumption and minimal and
maximal time consumption regarding a specific rule. However, due to limited
space, we do not describe them in detail in this paper. For further timing analysis
of TASM we refer to [14].

Table 4. Transition Time.

System Transition Minimum Maximum
Time Time

ProductionCell Sending 1 1
Receiving 1 1
Waiting 1 1

Loader Magnet On 1 1
BeltToPress Rotating Arm Forwards 3 6
PressToBelt Magnet Off 1 1

Rotating Arm Backward 3 6
FeedBelt Receiving Block 1 1
DepositBelt Moving Block 4 8

Leaving Block 1 1
Press Move Block to Press Position 1 2

Pressing 5 10
Move Block from Press Position 1 2

0

2

4

6

8

10

12

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9
1
0
0
1
0
1
1
0
2
1
0
3
1
0
4
1
0
5
1
0
6
1
0
7
1
0
8
1
0
9
1
1
0
1
1
1
1
1
2
1
1
3
1
1
4
1
1
5
1
1
7
1
1
8
1
1
9
1
2
0
1
2
1
1
2
2
1
2
3
1
2
4
1
2
5
1
2
6
1
2
7
1
2
8
1
2
9
1
3
0

Time Units

#
S

im
u

la
ti

o
n

s

Fig. 3. Simulation of the Generated TASM Model.

The simulation of the case study shows based on the AADL behavior annex
extension and the translator AADLtoTASM automatic reasoning about timing



behavior of AADL models is possible. As the simulation of the machines are
executed in parallel, it would be difficult to perform such simulations manu-
ally. Another benefit is that the TASM model can be further translated into a
UPPAAL [17] model, where timed model checking can be performed.

5 Related Work

Due to the importance of real-time systems, a considerable number of languages
have been formally extended to tackle the problem of verifying real-time require-
ments and properties. Consequently, in the following we would like to compare
the specific contributions of this paper, namely (a) the extension of the AADL
notation and its behavior model with timing annotation and (b) the transition
of timed AADL models into timed abstract state machines to allow for tool
automated simulation of the model with related approaches.

A majority of the related approaches focuses on timed extensions of visual
specification formalisms. Known examples are timed Automata [18, 19], Timed
Petri Nets [20] and Timed Behavior Trees [21–23]. Timed specification for-
malisms come with a variety of tools and methods to correctly specify a system
and to verify its timing requirements and properties. An example of approaches
that help with the correct specification is based on the recently proposed timed
patterns [24]. The verification focuses on timed model checking [1] with tools
like UPPAAL [17] and KRONOS [25].

Since the use of these model checking tools is also possible for the timed
AADL extension as TASM has been chosen as the underlying formal specification
formalism in the presented approach. In [26], a formal transition from TASM to
timed automata, especially UPPAAL automata, is introduced.

There are also textual notations that have timed extensions, e.g. timed CSP
[27], and timed versions of Object-Z [28, 29]. However, the specification of a
system in these languages requires expert knowledge in formal methods and
practitioners are often discouraged by the strict mathematical formalism. In
contrast, the foundation for the approach presented in this paper is with AADL,
a well accepted specification language [4]. Furthermore, we argue that the intro-
duced concepts and syntax elements are easy to understand and do not require
a massive amount of training for the practitioners that are already familiar with
AADL and its behavior model.

Beside the timed extension described in this paper and the use of timed simu-
lations of the underlying TASM model, AADL currently also supports scheduling
analysis [30, 31] as a second type of real-time analysis. This scheduling analysis
assumes different scheduling strategies (e.g. rate monotonic scheduling) and al-
lows verifying schedulability and end-to-end deadlines. The approach described
in this papers is based on a fully concurrent implementation of the architectural
elements. Consequently, both approaches are complementary, but we believe that
an integration of the two approaches is an interesting topic for future research.



6 Conclusions and Further Work

The main contribution of this paper is an extension of AADL’s behavior model
to allow for the specification of timed behavior. This extension if based on the
formal language of timed abstract state machines (TASM) and consequently
techniques like time simulations could be performed to check if an architecture
specification meets its real-time requirements and resource constraints.

This paper has furthermore presented a novel tool called AADLtoTASM for
transition from AADL with its behavior annex to TASM. OSATE is an Eclipse
plug-in and the tool is an OSATE plug-in that reads an AADL file (including
its behavior models) and generates the corresponding TASM file.

To evaluate the approach, the production cell case study has been translated
from AADL into TASM. This shows that the tool works and that it seems to be
valuable when reasoning about AADL models.

There are some features that can be changed in the future. One of them is the
stopping criteria for the simulation could be improved. One possible approach
could be confidence intervals.

One possible extension of this work is to further translate the TASM model
into UPPAAL [17] in order to perform timed model checking. In that case, it
would be possible to, in detail, formally define best-case and worst-case time
behavior of the AADL model.

Furthermore, an extension to specify probabilistic behavior in AADL’s be-
havior annex, jointly with the specification of the AADL Error Annex [32], would
be interesting. As a result also the probabilistic behavior (e.g. probabilistic safety
properties [33]) could be analyzed. As an example, Monte Carlo simulation could
be performed on these models.
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