
Efficient Fault Tolerant Scheduling on Controller Area Network (CAN)∗

Hüseyin Aysan, Abhilash Thekkilakattil, Radu Dobrin, and Sasikumar Punnekkat
Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

huseyin.aysan@mdh.se, atl09001@student.mdh.se, radu.dobrin@mdh.se, sasikumar.punnekkat@mdh.se

Abstract

Dependable communication is becoming a critical fac-
tor due to the pervasive usage of networked embedded sys-
tems that increasingly interact with human lives in many
real-time applications. Controller Area Network (CAN) has
gained wider acceptance as a standard in a large number
of industrial applications, mostly due to its efficient band-
width utilization, ability to provide real-time guarantees, as
well as its fault-tolerant capability. However, the native
CAN fault-tolerant mechanism assumes that all messages
transmitted on the bus are equally critical, which has an
adverse impact on the message latencies, results in the in-
ability to meet user defined reliability requirements, and, in
some cases, even leads to violation of timing requirements.

As the network potentially needs to cater to messages of
multiple criticality levels (and hence varied redundancy re-
quirements), scheduling them in an efficient fault-tolerant
manner becomes an important research issue. We propose
a methodology which enables the provision of appropriate
guarantees in CAN scheduling of messages with mixed criti-
calities. The proposed approach involves definition of fault-
tolerant feasibility windows of execution for critical mes-
sages, and off-line derivation of optimal message priorities
that fulfill the user specified level of fault-tolerance.

1 Introduction

Embedded systems are deployed ubiquitously in appli-

cations that interact and control our lives. These systems

are increasingly interacting with each other and providing

dependable communications is becoming an important re-

search question. CAN is an attractive alternative in the au-

tomotive and automation industries due to its ease in use,

low cost and provided reduction in wiring complexity. The

priority based message scheduling used in CAN has a num-

ber of advantages, some of the most important being the ef-

ficient bandwidth utilization, flexibility, simple implemen-

∗This work was partially supported by the Swedish Foundation for

Strategic Research via the strategic research centre PROGRESS.

tation and small overhead. Moreover, CAN provides for

real-time guarantees as well as fault-tolerance for messages

under errors. However, the native CAN re-transmission

mechanism assumes equally critical messages. Hence, non-

critical messages are being re-transmitted equally often as

critical or semi-critical ones, resulting in inefficient re-

source utilization, inability to provide adequate reliability

for critical messages, as well as unnecessary long message

response times. In this paper, we address how to sched-

ule a set of messages with mixed criticalities in an efficient

fault-tolerant manner to ensure user specified dependable

communication in CAN.

CAN was designed in the 1980s at Robert Bosch GmbH

[12] with a special focus on automotive real-time require-

ments. The most important feature of CAN from the real-

time perspective is its predictable behavior. CAN provides

means for prioritized control of the transmission medium

by using an arbitration mechanism which guarantees that

the highest priority message that enters an arbitration will

be transmitted first. This makes CAN amenable to response

time analysis akin to those performed on fixed priority task

sets. Volcano methodology at Volvo [5] is an example of

the acceptance of such analysis by the industry.

The model underlying the basic CAN analysis assumes

an error free communication bus, i.e. all messages sent are

assumed to be correctly received, which may not always be

true. For instance, in applications such as automobiles, the

systems are often subjected to high degrees of Electro Mag-

netic Interference (EMI) from the operational environment

which can potentially cause transmission errors. The com-

mon causes for such interference include cellular phones

and other radio equipments inside the vehicle and electrical

devices like switches and relays, radio transmissions from

external sources and lightning in the environment. Electro

Magnetic Compatibility (EMC) has been seriously consid-

ered by the automotive industry for more than 40 years, and

several legislations and directives are in effect to tackle the

interference problem [13]. However, even today it has not

been possible to completely eliminate the effects of EMI

since exact characterization of all such interferences defy

comprehension. Though usage of an all-optical network

1



could greatly eliminate EMI problems, it is not favored by

the cost-conscious automotive industry.

These interferences cause errors in the transmitted data,

which could indirectly lead to catastrophic results. To re-

duce the risk due to erroneous transmissions, CAN de-

signers have provided elaborate error checking and error

confinement features in the protocol. Basic philosophy

of these features is to identify an error as fast as possi-

ble and then retransmit the affected message. This implies

that in systems without spatial redundancy of communi-

cation medium/controllers, the fault-tolerance (FT) mech-

anism employed is time redundancy which could have an

adverse impact on the latencies of message sets; poten-

tially leading to violation of timing requirements. More-

over, mixed criticality messages imply different reliability

requirements, e.g., non critical messages do not need to

be retransmitted at all while critical ones require a speci-

fied level of fault-tolerance. Hence, the native message re-

transmission mechanism, that assumes that all messages are

equally critical, can not handle the above scenarios in an ef-

ficient way, and needs to be replaced. This is typically done

by disabling the retransmission feature [15] and giving the

responsibility to the local schedulers/nodes.

In this paper we propose a method to provide selective

FT for messages with various FT requirements scheduled

on CAN. We analyze off-line the set of messages and pro-

vide scheduling attributes that ensures feasible transmission

of messages as well as retransmissions upon error occur-

rences, that satisfy the user specified FT requirements.

2 Controller Area Network (CAN)

CAN is a broadcast bus designed to operate at speeds

of up to 1 Mbps. Data is transmitted in messages contain-

ing between 0 and 8 bytes of data. An 11 bit identifier is

associated with each message. There is also an extended

CAN format with a 29 bit identifier, but since this format

is identical in all other respects, it will not be considered

here. The identifier is required to be unique, in the sense

that two simultaneously active messages originating from

different sources must have distinct identifiers. The identi-

fier serves two purposes: (1) assigning a priority to the mes-

sage, and (2) enabling receivers to filter messages. A station

filters messages by only receiving messages with particu-

lar bit patterns. The use of the identifier as priority is the

most important part of CAN with respect to real-time per-

formance.

CAN is a collision-detect broadcast bus, which uses de-

terministic collision resolution to control access to the bus.

The basis for the access mechanism is the electrical char-

acteristics of CAN bus: if multiple stations are transmitting

concurrently and one station transmits a ‘0’ then all stations

monitoring the bus will see a ‘0’. Conversely, only if all

stations transmit a ‘1’ will all processors monitoring the

bus see a ‘1’. This behavior is used to resolve collisions:

each station waits until the bus is idle. When silence is de-

tected, each station begins to transmit the highest priority

message held in its output queue whilst monitoring the bus.

The identifier is the first part of the message to be transmit-

ted; the identifier is transmitted from the most-significant

to the least-significant bit. If a station transmits a recessive

bit (‘l’), but monitors the bus and sees a dominant bit (‘0’),

then it stops transmitting since it knows that its message is

not the highest priority message currently being transmitted

in the system. Because identifiers are deemed unique within

the system, a station transmitting the last bit of the identi-

fier without detecting a collision must be transmitting the

highest priority queued message, and hence can start trans-

mitting the body of the message.

The CAN message format contains 47 bits of protocol

control information (the identifier, CRC data, acknowledge-

ment and synchronization bits, etc.). The data transmission

uses a bit stuffing protocol which inserts a stuff bit after

five consecutive bits of the same value. The frame format

is specified such that only 34 of the 47 control bits are sub-

ject to bit stuffing. Hence, the maximum number of stuff

bits in a message mi with n bytes of data is � (n∗8+34−1)
4 �

(since the worst case bit pattern is ‘1111100001111...’).

This means that a message is transmitted with between 0

and 24 stuff bits. Hence, the size of a transmitted CAN mes-

sage is in the range 47..135 bits. The transmission time, de-

noted Ci, of message Mi is given by the number of bits to be

transmitted for the message multiplied by the time required

to transmit one bit, denoted τbit. Hence, for a message with

n bytes of data, the transmission time is:

Ci = (n ∗ 8 + 47 + � (n ∗ 8 + 34− 1)
4

�) ∗ τbit (1)

2.1 Response Time Analysis of CAN

Tindell et. al [16] present analysis to calculate the worst-

case latencies of CAN messages. This analysis is based on

the standard fixed priority response time analysis for CPU

scheduling [2], and later refined by Davis et. al. [8]. Cal-

culating the response times requires a bounded worst case

queuing pattern of messages. The standard way of express-

ing this is to assume a set of traffic streams, each generat-

ing messages with a fixed priority. The worst case behavior

of each stream is to periodically queue messages. In anal-

ogy with CPU scheduling, we obtain a model with a set S
of messages (corresponding to CPU tasks). Each message

Mi ∈ S has a priority Pi (defined by the message identi-

fier), a period Ti and a worst case transmission time Ci.

For an ideal CAN controller (the non-ideal case is dis-

cussed in [17]) the worst-case latency Ri of a CAN message



Mi is defined by

Ri = Ji + qi + Ci (2)

where Ji is the queuing jitter of message Mi, inherited from

the sender task which queues the message. We have as-

sumed that the minimum delay from the point in time t,
relative to the time message Mi is queued, is 0 (t is typi-

cally the start of the period). In other cases we need to add

a term Jsmallest
i to equation (1), since jitter is defined as

the difference between the biggest and smallest delay from

t. The worst-case queuing delay qi is given by,

qi = max(Bi, Ci) +
∑

j∈hp(i)

⌈
qi + Jj + τbit

Tj

⌉
Cj (3)

where Bi is the worst-case blocking time of the longest pos-

sible message frame (i.e., the worst-case transmission time

of a CAN message frame with 8 bytes of data and worst-

case bit stuffing), hp(i) is the set of messages with prior-

ity higher than Mi, Jj is the queuing jitter of message Mj ,

and τbit caters for the difference in arbitration start times at

the different nodes, due to propagation delays and protocol

tolerances. The reason for the blocking factor is that trans-

missions are non-preemptive, i.e., after a bus arbitration has

started, the message with highest priority among compet-

ing messages will be transmitted, even if a message with

higher priority is queued before the transmission is com-

pleted. This means that, in the worst case, a message may

have to wait for the transmission of at most an entire low

priority message frame. Hence, Bi is defined by:

Bi = max
∀k∈lp(i)

(Ck) (4)

where lp(i) is the set of messages with priorities lower than

message Mi. Note that the lowest priority message has

blocking factor zero, just as in the case of task scheduling.

However, if there is background traffic with lower prior-

ity than the considered real-time messages, the maximum

background message size should also contribute to Bi.

Punnekkat et al [14] extended the above analysis and pre-

sented an approach to schedule messages in a fault-tolerant

manner using fixed priority scheduling (FPS). Broster [4]

addressed the reliability of message transmission on CAN

assuming probabilistic fault models. Bartolini et. al. [3]

presented an approach to reduce the response time of multi-

frame messages in CAN by using the Priority Inheritance

Protocol.

2.2 Error Handling features in CAN

In CAN, errors may occur due to different sampling

points or switching thresholds in different nodes, or due to

signal dispersion during propagation. To handle these, the

CAN protocol provides elaborate error detection and self-

checking mechanisms [6], specified in the data link layer of

ISO 11898 [11]. The error detection is achieved by means

of transmitter-based-monitoring, bit stuffing, Cyclic Redun-

dancy Check (CRC) and message frame check.

To make sure that all nodes have a consistent view, errors

detected in one node must be globalized. This is achieved

by allowing the detecting node to transmit an error flag con-

taining 6 bits of same polarity. Upon reception of an error

frame, each node will discard the erroneous message, which

then will be automatically re-transmitted by the sender.

Note that, the re-transmitted message could be subjected to

arbitration during re-transmission. This implies that if any

higher priority messages gets queued during the transmis-

sion and error signaling of the current message, then those

messages will be transmitted before the erroneous message

is re-transmitted. In our proposed approach we assume

single-shot transmission, i.e., the automatic re-transmission

mechanism is disabled. This may require the use of con-

trollers that has this particular feature built in, e.g., Atmel

T89C51CCO2, Philips SJA1000 or Microchip MCP2515.

Specification documents of CAN [1] claim that the er-

ror detection mechanisms can detect and globalize all trans-

mitter errors. Bursts are guaranteed to be detected on the

receiver side up to a length of 15 (which is equal to the de-

gree of f(x) in CRC sequence). Most longer error bursts are

also detected. Even though there is a positive probability

for undetected errors, we shall assume that all errors are de-

tected. The probability for undetected errors is negligibly

small, as indicated by the following quote from [1]: ”with

an operating time of eight hours per day on 365 days per

year and an error rate of 0.7 s, one undetected error occurs

every thousand years (statistical average)”. Error signaling

and recovery time is typically between 17 to 31 bit times.

Since we are interested in the worst case behavior, we use

31 bit times in our model.

3 Real-time system model

We assume a distributed real-time architecture consisting

of sensors, actuators and processing nodes communicating

over CAN. The communication is performed via a set of pe-

riodic messages, Γ = {M1, M2, . . .}, with mixed criticality

levels. The criticality of a message indicates the severity

of the consequences caused by its failure and corresponds

to the amount of resources allocated for error recovery in

terms of guaranteed re-transmissions. The basic assump-

tion here is that the effects of a large variety of transient and

intermittent hardware faults can effectively be tolerated by

a simple re-transmission of the affected frames. We assume

that an error can adversely affect only one message frame

at a time and is detected by the nodes in the network. Γc

represents the subset of critical messages out of the original



message set and Γnc represents the subset of non-critical

messages, so that Γ = Γc ∪ Γnc.

A message consists of n frames, n ≥ 1, and the net-

work communication is non-preemptive during the frame

transmissions. However, messages composed of more than

2 frames can preempt each other at frame boundaries. Ad-

ditionally, the non-preemptiveness of message frames may

cause a higher priority message to be blocked by a lower

priority message for at most one frame length, if the high

priority message is released during the transmission of a

lower priority frame. This priority inversion phenomenon

can affect all messages except the lowest priority one, and

only once per message period, before the transmission of

the first message frame [9].

Each CAN message Mi is characterized by a 5-tuple <
P (Mi), T (Mi), D(Mi), N(Mi), r(Mi) >, where P (Mi)
is the priority (defined by the message identifier), T (Mi)
is the period, D(Mi) is the relative deadline, which is as-

sumed to be equal to the period, N(Mi) is the number

of frames that forms this message and r(Mi) is the re-

transmission requirement represented as the percentage of

this message size. The number of frames needs to be guar-

anteed for re-transmission R(Mi) is calculated by

R(Mi) = �N(Mi) ∗ r(Mi)	 (5)

Note that for non-critical messages r(Mi) = 0.

In an error-free scenario, the worst case transmission

time C(Mi) of message Mi is

C(Mi) = N(Mi) ∗ f ∗ τbit (6)

where f is the worst case packet size.

For each message instance M j
i we define an original fea-

sibility window delimited by its original earliest start time

est(M j
i ) and deadline D(M j

i ) relative to the start of the

hyperperiod (LCM).

Obviously, the maximum utilization of the original crit-

ical messages together with the re-transmissions can never

exceed 100%. This will imply that, during error recovery,

transmission of non-critical messages cannot be permitted

as it may result in overload conditions, except in situations

where a non-critical frame is blocking a higher priority criti-

cal message due to priority inversion. We assume that, upon

receiving an error frame, the nodes transmitting non-critical

messages suspend their transmissions until the end of the

failed message’s period. This will require that all nodes

transmitting non-critical messages have knowledge about

critical messages’ periods.

4 Methodology

In this paper we propose an efficient fault-tolerant

scheduling approach for messages with mixed criticalities

in CAN.

4.1 Overview

As the original feasibility windows and original priority

assignment (if any, e.g., in case of a legacy system) may not

express the various FT requirements, our goal is to, first,

derive new feasibility windows for each message instance

M j
i ∈ Γ to reflect the FT requirements. Then, we as-

sign message identifiers (priorities) that ensure the message

transmissions within their new feasibility windows, thus,

fulfilling the FT requirements.

While transmitting non-critical messages using a back-

ground priority band can be a safe and straightforward so-

lution, in our approach we aim to provide non-critical mes-

sages a better service than background scheduling. Hence,

depending on the criticality of the original set of messages,

the new feasibility windows we are looking for differ as:

1. Fault-Tolerant (FT) feasibility windows for critical

messages

2. Fault-Aware (FA) feasibility windows for non-critical

messages

While critical messages need to be entirely transmitted

within their FT feasibility windows to be able to be feasi-

bly retransmitted upon an error, according to the reliability

requirements, the derivation of FA feasibility windows has

two purposes: 1) to prevent non-critical messages from in-

terfering with critical ones, by causing a critical message

to miss its deadline, while 2) enabling the transmission of

the non-critical messages at high priority levels in error free

situations. Since the size of the FA feasibility windows

depends on the size of the FT feasibility windows, in our

approach we first derive FT-feasibility windows and then

FA feasibility windows. Then, we assign message priori-

ties to ensure the message transmissions within their newly

derived feasibility windows.

A high priority message can be blocked by a low pri-

ority message at most one frame at the beginning of its

transmission. Since the derivation of the FT/FA feasibility

windows requires knowledge about the worst-case message

sizes, we need to account for the blocking frame in every

message transmission by adding one additional frame dur-

ing the analysis.

In some cases, however, a fixed priority scheme cannot

express all our assumed FT requirements and error assump-

tions. General FT requirements may require that instances

of a given set of periodic messages needs to be transmitted

in different order on different occasions. Obviously, there

exists no valid fixed priority assignment that can achieve

these different orders. Our approach proposes a priority al-

location scheme based on EDF at message instance level

that efficiently utilizes the resources while minimizing the

priority levels. We use Integer Linear Programming (ILP)



Original
Message Attributes

Fault Model

Message Criticalities
g

Derivation of fault-tolerant
feasibility windows for critical mesasgesfeasibility windows for critical mesasges

Derivation of fault-aware feasiblityy
windows for non-critical messages

Mesage interference analysisMesage interference analysis

Integer Linear Programming (ILP)Integer Linear Programming (ILP)

Frame attributes

Figure 1. Methodology overview

to off-line analyze the interference between the message

frames and to derive the minimum number of fixed prior-

ities that guarantees the message transmissions within their

FT/FA Feasibility Windows. The major steps of the pro-

posed methodology are shown in Figure 1.

4.2 Proposed approach

We describe our proposed approach by using a sim-

ple example. Let our set of messages consist of 2 mes-

sages, A and B, sent from 2 nodes, N1 and N2, where

T (A) = 8, T (B) = 16, N(A) = 3 and N(B) = 6, i.e.,

message A is allocated to 3 frames that need to be trans-

mitted during one period and message B is allocated to 6

frames. Moreover, let us assume B is the only critical mes-

sage and has a re-transmission requirement r(B) = 80%,

i.e., Nmax(B) = 6 + 5 = 11 frames. If the messages

are scheduled on CAN according to Rate Monotonic (RM)

scheduling policy, the transmission scenario is illustrated in

Figure 2). To ease the readability, in this example we have

assumed that the blocking frames have been included in the

size of the messages. The earliest start times and the dead-

lines are represented by up- and down arrows respectively.

To be able to re-transmit 80% of its frames before its

deadline, B must complete before D(B) − R(B). In this

case, B’s new deadline will be 11. One possibility is to

assign B a higher priority than A. However, by doing so,

the first instance of A will always miss its deadline, even in

error-free scenarios (Figure 3). Moreover, this solution is

not useful if a larger number of critical messages need to be

feasibly transmitted on the bus.

0

N1 3
1A

1
1A

2
1A

168

1
2A

2
2A

3
2A

0 16

1
1B

2
1B

3
1B

4
1B

5
1B

6
1BN2

0 16

Figure 2. Original message set

DL�miss!

0 16

3
1A

1
1A

2
1A

8

N1

0 16

1
1B

2
1B

3
1B

4
1B

5
1B

6
1BN2

Figure 3. ’B’ fault-tolerant - ’A’ always misses
its deadline

4.2.1 Derivation of FT- and FA feasibility windows

The first part of our approach is the derivation of FT and

FA feasibility windows for critical and non-critical message

instances respectively. Our approach first derives FT dead-

lines for the critical message instances so that, in case of

an error, the erroneous frames can be re-transmitted before

the original message deadline. Then, FA deadlines for the

non-critical message instances are derived so that the pro-

vided fault-tolerance for the critical ones is not jeopardized.

During these steps the goal is to keep the FT and FA dead-

lines as late as possible in order to maximize the flexibility

for the second part of our approach, which is the priority

assignment using an ILP solver.

Derivation of FT deadlines: The aim of this step is to

reserve sufficient resources for the re-transmission of erro-

neous frames in the schedule. Our goal is to provide guaran-

tees while maximizing the bus utilization. Thus, we choose

the approach proposed by Chetto and Chetto [7] to calcu-

late the latest possible start of re-transmission of the erro-

neous frames. Specifically, we calculate FT-deadlines for

each critical message instance, DFT (M
j
i ), equal to the lat-

est start time of the first re-transmitted frame. In this way

we reserve sufficient resources for each critical message in-

stance alternate, assuming that the cumulative resource uti-

lization of the critical messages and re-transmissions, in-



cluding blockings does not exceed 100% over LCM. In our

example, the FT deadline of B is 11.

Derivation of FA deadlines: We aim to provide FA dead-

lines to non-critical message instances to protect critical

ones from being adversely affected. However, as a part of

recovery action upon errors, the sending node should check

if there is enough time left for the non-critical messages to

be sent before their new deadlines. If not, the message is

not transmitted.

To derive the FA deadlines, we repeat the process as in

FT deadline derivation, on the set of non-critical messages

but in the remaining slack after the critical messages (with-

out re-transmissions) are scheduled to be transmitted as late

as possible. We do so due to two reasons: we want to pre-

vent non-critical messages from delaying the transmission

of critical messages beyond their FT deadlines in case of

critical frame failures, as well as to alow non-critical mes-

sages to be transmitted at high priority levels in error free

scenarios. In our example the derived FT and FA deadlines

are illustrated in Figure 4, where the FA deadlines for the

instances of A are 5 and 16 respectively.

FA�deadlines

0

N1 3
1A

1
1A

2
1A

168

1
2A

2
2A

3
2A

5

FT d dli

0 16

1
1B

2
1B

3
1B

4
1B

5
1B

6
1B

11

N2

FT�deadline

0 1611

Figure 4. FT and FA deadlines

In some cases, we may fail finding valid FA deadlines

for some non-critical messages instances. We say that

a FA deadline, DFA(M
j
i ), is not valid if DFA(M

j
i ) −

est(M j
i ) < C(M j

i ). This scenario could occur since the

messages now may have deadlines less than periods after

the derivation of FT deadlines. In these cases, we keep

the original deadline, and we make sure that the priority as-

signment mechanism will assign the non-critical message a

background priority, i.e., lower than any other critical mes-

sage, and any other non-critical message with a valid FA
deadline.

4.2.2 FPS attribute assignment

We analyze the set of messages with new deadlines and

identify priority relations for each point in time tk at which

at least one message instance (i.e., the first frame of the mes-

sage) is released on the bus. We derive priority inequalities

between messages to ensure their transmission within their

derived FT- and FA feasibility windows. By solving the in-

equalities, our method generates scheduling attributes for

the message set ΓFPS .

Our model consists now of four types of message frames:

critical messages consisting of primary frames Γc and re-

transmitted frames Γ̄c, and non-critical messages, consist-

ing of non-critical frames, with and/or without valid FA

deadlines, Γnc = ΓFA
nc ∪ Γnon FA

nc . Every tk ∈ [0, LCM)
such that tk equals the release time of at least one message

instance, we consider a subset Γtk
⊆ Γ consisting of:

1. {current instances}tk
- instances M j

i of message

Mi, released at the time tk: est(M j
i ) = tk

2. {interfering instances}tk
- instances Mq

s of mes-

sage Ms released before tk but potentially executing

after tk: est(Mq
s ) < tk < D(Mq

s ), where

D(Mq
s ) =

⎧⎪⎪⎨
⎪⎪⎩

DFT (Mq
s ), if Mq

s ∈ Γc

DFT (Mq
s ), if Mq

s ∈ Γ̄c

DFA(Mq
s ), if Mq

s ∈ ΓFA
nc

D(Mq
s ), if Mq

s ∈ Γnon FA
nc

We derive priority relations within each subset Γtk
based

on the derived FT and FA deadlines, i.e., the message with

the shortest relative deadline will get the highest priority in

each inequality:

∀tk,∀M j
i , Mq

s ∈ Γtk
, where i �= s:

1. if M j
i , Mq

s ∈ Γc ∪ ΓFA
nc , or if M j

i , Mq
s ∈ Γnon FA

nc

P (M j
i ) > P (Mq

s ), where D(M j
i ) < D(Mq

s )

2. if M j
i ∈ Γc ∪ ΓFA

nc and Mq
s ∈ Γnon FA

nc

P (M j
i ) > P (Mq

s )

In tie situations, e.g., when the message instances M j
i and

Mq
s have same deadlines, we prioritize the one with the ear-

liest start time. In cases where even the earliest start times

are equal, we derive the priority inequalities consistently.

Our goal is to provide fixed priorities to all messages.

When we solve the derived priority inequalities, however,

it may happen that different instances of the same mes-

sage need to be assigned different priorities, due to the EDF

heuristic used in the approach. These cases cannot be ex-

pressed directly with fixed priorities and are the sources for

priority assignment conflicts.

We solve the issue by splitting the messages with incon-

sistent priority assignments into a number of new periodic

messages with different priorities. The new message in-

stances comprise all instances of the original set of mes-

sages. As a major concern is the number of priorities that



may increase, we use ILP to find the priorities and the splits

that yield the lowest number of messages that satisfy the in-

equalities, and implicitly the lowest number of priority lev-

els. A full description of the ILP problem formulation that

we have adapted to CAN scheduling can be found in [10].

A major difference in CAN scheduling compared to task

scheduling on processors, is that frames are re-transmitted

as soon they are identified as erroneous, rather than after the

transmission of the whole message. Hence, a message con-

sisting of N primary frames and R re-transmitted frames

may need to be transited at a priority level p the first N
frames, and at a priority p′ for the rest R frames. However,

ILP will make sure that, if possible, p = p′.
The final set of messages feasibly scheduled on CAN

is presented in Figure 5. A1 has the highest priority

and A2 the lowest. In Figure 5 maximum number of re-

transmissions are performed upon transmission errors. In

this case, due to the overload, A2 will be either shed by

the scheduler or only partially transmitted, i.e, 2 out of 3

frames, if the message validity is still acceptable.

Prio

0

N1
5

3
1A

1
1A

2
1A

Prio

H

168

N1 1
2A

2
2A

3
2A L

0 1611

N2 1
1B

2
1B

2
1B

3
1B

4
1B

5
1B

5
1B 5

1B
6
1B

6
1B

6
1B M

Figure 5. FT feasible message set

5 Evaluation

In network communications where both critical and non-

critical messages co-exist, missing a single deadline of a

critical message instance can result in more severe conse-

quences than missing several deadlines of non-critical mes-

sage instances. Based on this point of view, in our eval-

uation, we define our primary success criteria as the per-

centage of successfully critical deadlines met (including re-

transmissions). Meeting the deadlines of non-critical mes-

sage instances is assumed to be the secondary success cri-

teria and the amount of deadline misses of such tasks can

be seen as the cost for guaranteeing all critical deadlines

together with their re-transmissions.

In this section we evaluate the performance of our

method upon error occurrences. We first simulated the

worst case error occurrence scenario, that leads to the max-

imum number of re-transmitted frames, according to the re-

liability specifications per each critical message. In the next

series of runs, we simulated the case where every other mes-

sage instance was hit by errors. This shows the improve-

ment on the non-critical message performance in a less than

worst case error scenario.

In all cases, however, the simulation results show that

the all critical message frames are feasibly re-transmitted

before their deadlines, according to their user specified reli-

ability constraints.

1000 message sets were generated, where the total num-

ber of messages in every message set ranges from 5 to 10,

and the number of critical messages ranges from 1 to 5. The

periods vary between 5 to 50 time units, where one unit is

equal to the largest possible frame length. The number of

frames in each message, as well as the maximum number of

frame re-transmissions in critical messages, range from 1 to

5. The maximum number of message instances over LCM

is limited to 1500. Results are grouped with respect to the

total network utilization of the message sets.

Figures 6 (a) and 6 (b) show the percentage of success-

fully deadlines met in the worst case error scenario of max-

imum specified number of re-transmissions for each critical

message instance. The total network utilization ranges are

0.4-0.6 and 0.6-0.8 respectively, and the X-axis shows the

network utilizations by the critical message. Figures 6 (c)

and 6 (d) show the results from the simulation runs where

every other critical message instance is hit by errors and re-

transmitted according to its reliability constraints. However,

as the network utilization increases, it can be seen that the

cost of meeting the critical deadlines increases as well.

6 Conclusions and future work

In this paper we have presented a new approach for

the efficient fault-tolerant scheduling of messages of mixed

criticality in CAN which provides guarantees for variable

levels of redundancy for critical messages. In the worst

case error occurrence scenario, our method guarantees the

user specified level of redundancy, as well as it ensures a

short latency for non-critical messages. The new concepts

that we have introduced are that of a fault-tolerant window

for critical messages, fault-aware windows for non-critical

messages, a variable level of redundancy requirement per

message, and the optimal derivation of message priorities

using ILP. We believe that such a methodology in principle

could be further extended in other contexts of scheduling

paradigms and networks. Our ongoing research includes

formalization of utilization bounds as well as the applicabil-

ity of the proposed approach to other network protocols.



95

100

95

100

85

90

85

90

80

0.0�0.1 0.1�0.2 0.2�0.3 0.3�0.4 0.4�0.5

Critical Deadlines Met Total Deadlines Met

80

0.0�0.1 0.1�0.2 0.2�0.3 0.3�0.4 0.4�0.5

Critical Deadlines Met Total Deadlines Met

(a)�Worst�case�error�scenario�at�total�utilization�0.4�� 0.6 (b)�Worst�case�error�scenario�at�total�utilization�0.6�� 0.8

Critical�Deadlines�Met Total�Deadlines�MetCritical�Deadlines�Met Total�Deadlines�Met

95

100

95

100

90

95

90

95

80

85

0.0�0.1 0.1�0.2 0.2�0.3 0.3�0.4 0.4�0.5

80

85

0.0�0.1 0.1�0.2 0.2�0.3 0.3�0.4 0.4�0.5

(c)�Less�severe�error�scenario�at�total�utilization�0.4�� 0.6 (d)�Less�severe�error�scenario�at�total�utilization�0.6�� 0.8

Critical�Deadlines�Met Total�Deadlines�Met Critical�Deadlines�Met Total�Deadlines�Met

Figure 6. Simulation results

References

[1] CAN in Automation, CAN Specifications. http://www.can-
cia.org.

[2] N. C. Audsley, A. Burns, M. Richardson, K. Tindell, and

A. Wellings. Applying New Scheduling Theory to Static Pri-

ority Pre-emptive Scheduling. Software Engineering Jour-
nal, 8(5):284–292, September 1993.

[3] C. Bartolini, G. Lipari, and L. Almeida. Using priority in-

heritance techniques to override the size limit of CAN mes-

sages. Proceedings of the 7th IFAC International Confer-
ence of Fieldbuses and Networks in Industrial and Embed-
ded Systems (FET), 2007.

[4] I. Broster. Flexibility in Dependable Real-time Communica-
tion. PhD thesis, Department of Computer Science, Univer-

sity of York, 2003.
[5] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Vol-

cano - a revolution in on-board communication. Volvo Tech-
nology Report 98-12-10, 1998.

[6] J. Charzinski. Performance of the Error Detection Mecha-

nisms in CAN. Proceedings of the 1st International CAN
Conference, Mainz, September 1994.

[7] H. Chetto and M.Chetto. Some results of the earliest dead-

line scheduling algorithm. IEEE Transactions on Software
Engineering, 15(10):1261–1269, 1989.

[8] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. Con-

troller area network (can) schedulability analysis: Refuted,

revisited and revised. Real-Time Systems, 35(3):239–272,

2007.
[9] M. Di Natale. Scheduling the CAN bus with earliest dead-

line techniques. In Proceedings of the 21st IEEE Inter-

national Real-Time Systems Symposium (RTSS’00), pages

259–268, Orlando, FL, USA, November 2000.
[10] R. Dobrin, H. Aysan, and S. Punnekkat. Maximizing

the fault tolerance capability of fixed priority schedules.

IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, 2008.

[11] ISO-11898. Road Vehicles - Interchange of digital informa-

tion - Controller area network (CAN) for high speed com-

munication. 1993.
[12] N. Navet. Controller Area Networks: CAN’s use within

Automobiles. IEEE Potentials, pages 12–14, Octo-

ber/November 1998.
[13] I. Noble. EMC and the Automotive Industry. IEE Electron-

ics & Communication Engineering Journal, pages 263–271,

October 1992.
[14] S. Punnekkat, H. Hansson, and C. Norström. Response time

analysis under errors for CAN. In Proceedings of the 6th

IEEE Real-Time Technology and Applications Symposium
(RTAS’00), pages 258–265, Washington DC, USA, May-

June 2000. IEEE Computer Society.
[15] M. Short and M. Pont. Fault-tolerant time-triggered com-

munication using CAN. IEEE Transactions on Industrial
Informatics, 3(2):131–142, 2007.

[16] K. Tindell, A. Burns, and A. Wellings. Calculating con-

troller area network CAN message response times. Control
Engineering Practice, 3:1163–1169, 1995.

[17] K. W. Tindell, A. H. Hansson, and A. J. Wellings. Analysing

Real-Time Communications: Controller Area Network

(CAN). IEEE Real-Time Systems Symposium, pages 259–

265, December 1994.


