
DEVELOPMENT AND VERIFICATION OF PARALLEL

ALGORITHMS IN THE DATA FIELD MODEL

�

BJ

�

ORN LISPER

y

AND JONAS HOLMERIN

z

Abstract. Data �elds are partial functions provided with explicit domain information. They

provide a very general, formal model for collections of data. Algorithms computing data collections

can be described in this formalism at various levels of abstraction: in particular, explicit data dis-

tributions are easy to model. Parallel versions of algorithms can then be formally veri�ed against

algorithm speci�cations in the model. Functions computing data �elds can be directly programmed

in the language Data Field Haskell. In this paper we give a brief introduction to the data �eld model.

We then describe Data Field Haskell and make a small case study of how an algorithm and a parallel

version of it both can be speci�ed in the language. We then verify the correctness of the parallel

version in the data �eld model.

1. Introduction. Many computing applications require indexed data structures.

In many applications the indexing capability provides an important part of the model.

On the other hand, the memory space of a parallel computer architecture is also in-

dexed. Thus, indexed structures can describe data close to both the problem domain

and architectural domain.

The canonical indexed data structure is the array. However, in particular when

dealing with sparse, distributed applications, other, more dynamic indexed data struc-

tures are needed. Their low-level representations can be intricate. Thus, it is hard to

design algorithms using them from scratch, in particular since the algorithms them-

selves may be complex, and to port algorithms to di�erent architectures. Therefore,

it is desirable to develop such algorithms on a high level �rst, where implementation

details are hidden.

The data �eld model

1

is a formal model where indexed data structures are mod-

eled as partial functions supplied with explicit information about their domains. A

small formal language can be used to de�ne data �elds mathematically, and known

proof techniques can be used to prove properties about data �elds de�ned within the

language. In particular, it is interesting to prove correspondences between di�erent

data �elds, since this can be used to prove the correctness of re�nement steps taken in

a design process where abstract speci�cations are successively re�ned into distributed

implementations.

However, it is also helpful to validate such steps experimentally, in particular since

they sometimes are only approximately correct and can yield, for instance, di�erent

numerical properties. The language Data Field Haskell can be used for this. It

provides an instance of data �elds, which is general and
exible enough to specify

data �elds both on a very high level of abstraction and on a level with explicitly

parallel data distributions.

The rest of this paper is organized as follows. Sect. 2 gives a brief description of

the underlying data �eld model. Sect. 3 describes Data Field Haskell. Sect. 4 provides

�

This work was in part supported by The Swedish Research Council for Engineering Sciences

(TFR), grant no. 98-653.

y

Dept. of Computer Engineering, M�alardalen University, P.O. Box 883, SE-721 23 V�aster�as,

SWEDEN, bjorn.lisper@mdh.se

z

Department of Numerical Analysis and Computing Science, Royal Institute of Technology, SE-

100 44 Stockholm, SWEDEN, joho@nada.kth.se

1

\Field" should be understood as in physics, as an entity that is a function of space and possibly

time.

1

an example of how a parallel program can be developed from a speci�cation in Data

Field Haskell. In Sect. 5 we verify formally that the parallel program indeed is correct

w.r.t. the original speci�cation. Sect. 6 provides an account for related work. In

Sect. 7, �nally, the story is wrapped up. The limited space does not allow a complete

description of Data Field Haskell here { see [10] for the details.

Various versions of the data �eld model have been described elsewhere [7, 12, 13,

14]. The contribution of this paper is a description of a concrete implementation, an

example of how it can be used in parallel program design, and a demonstration how

the model can be used for formal veri�cation of parallel programs.

2. The Data Field Model.

2.1. Partial Functions. The concept of data �elds is based on the more ab-

stract model of indexed data structures as functions with �nite domain [7, 12]. An

array with range [1..n], for instance, can be seen as a function from f1; : : : ; ng, but

we could also model \irregular" indexed structures as functions with non-contiguous,

possibly non-numerical domains. Calls to a function outside its domain return an

error value \�", with algebraic properties similar to the divergent element ?.

We de�ne partial functions in a variation of the metalanguage for continuous func-

tions in [23], extended with the constant �. Within this language, we can now de�ne

most types of collection-oriented operations [20] as higher order functions operating

on partial functions [7, 14]. The language, however, lacks operations that extract the

domain of a function or any information pertaining to it, like the size (\information op-

erations" as de�ned in [20]). The lack of domain information makes it impossible to de-

�ne collective operations such as reduction, since they need to know which elements to

include. A partial function f over an enumerable cpo models a data structure that con-

tains elements f(x) exactly for those fully de�ned

2

x where f(x) 6= �. We thus de�ne,

for all partial functions f , its domain dom(f) = fx j f(x) 6= � and x fully de�ned g.

dom(f) is not computable in general, but we can still use it in abstract algorithm

speci�cations.

Now assume, for any enumerable cpo C under consideration and any �nite C

0

� C,

with fully de�ned elements only, a bijection i

C

0

: f0; : : : ; jC

0

j�1g ! C

0

. Equipped with

these functions, and the set operation j � j (cardinality), we de�ne:

size(f) = jdom(f)j

enum

f

= i

dom(f)

We can now de�ne reduction over nonempty, partial functions with �nite size w.r.t.

a binary operation �:

red(�; f) = red

0

(�; f; size(f)� 1)

where

red

0

(�; f; 0) = f(enum

f

(0))

red

0

(�; f; n+ 1) = red

0

(�; f; n)� f(enum

f

(n+ 1))

If � has an identity element e, then we de�ne red(�; �x:�) = e for the empty par-

tial function �x:�. Note the analogy with reduction over lists in the Bird-Meertens

2

x is fully de�ned, or maximal, in the cpo hC;vi if 8y:x v y =) x = y. Unless the data

structure has a lazy lookup function, a lookup is successful only if the index is fully de�ned.

2

formalism [1]: we indeed have

red(�; f) = �=[f(enum

f

(0)); : : : ; f(enum

f

(size(f)� 1))]

We will develop this analogy further in Sect. 5, where we will use the partial function

model to verify the correctness of a parallelised algorithm.

2.2. Data Fields. The partial function model is simple and powerful, but in

order to actually implement it explicit information about the function domains is

needed. Thus we consider entities (f; b) { the data �elds { where f is a function and b

is a bound, a set representation that bounds the domain of the corresponding function.

We require that the following operations are de�ned for bounds:

� For each bound b an interpretation [[b]] as a predicate (which in turn de�nes

a set ffbgg = fx j [[b]](x) = true and x fully de�ned g).

� A predicate classifying each bound as either �nite or in�nite, depending on

whether its set is surely �nite or possibly in�nite.

� For every bound b de�ning a �nite set, size(b) that yields the size of the set

and enum(b) that is a function enumerating its elements.

� Binary operations u, t on bounds (\intersection", \union").

� Bounds representing the universal and empty set, respectively.

These operations are chosen to support the operations on partial functions that require

the domain of the functions. They must ful�l certain properties, see [14]. We de�ne

data �eld application (\lookup") viz.:

(f; b) ! x = if ([[b]](x); f(x); �) x fully de�ned

(f; b) ! x = ? oherwise

Every data �eld d = (f; b), where f :� ! �, then de�nes a partial function [[d]]

�!�

through [[d]]

�!�

(x) = d ! x for all x. It immediately follows that dom([[(f; b)]]

�!�

) �

ffbgg. Thus, the bound of a data �eld always bounds the domain of its function. The

bound does not have to be tight { we can have (f; b) ! x = � even for some x 2 ffbgg.

The theory of data �elds also de�nes '-abstraction, a syntax for convenient de�ni-

tion of data �elds that parallels �-abstraction for functions. The idea is that [['x:t]]

�!�

should be the same function as �x:t, except possibly for some pathological cases. Dif-

ferent de�nitions of 'x:t ful�lling this are possible: some are given in [14]. For these

de�nitions it is possible to prove the following result, which is stated more precisely

in [14]:

Theorem 2.1. If the bound of 'x:t is fully de�ned, then 'x:t ! y = �x:t y for all

fully de�ned y.

Theorem 2.1 holds under the condition that ? and � are identi�ed. Even if not,

it still holds for total functions (i.e., which return a fully de�ned result given fully

de�ned arguments). For data �elds that de�ne total functions, the result thus means

that formal reasoning about data �elds can be carried out in the more abstract model

of partial functions. We will use this in Sect. 5.

3. Data Field Haskell. Data Field Haskell is a Haskell dialect where the arrays

have been replaced by an instance of data �elds, a variation of the sparse/dense

arrays of [13, 14]. Our implementation of Data Field Haskell is based on the NHC

compiler [18] for Haskell v. 1.3. The implementation is sequential and we have not

implemented any advanced optimizations. In the following the reader is assumed to

have a working knowledge of Haskell.

3

datafield de�nes data �eld from function and bound

! data �eld indexing

<:> forms dense bound from pair of index tuples

sparse forms �nite sparse bound from list

predicate forms predicate bound from predicate

<*> forms product bound from two bounds

prod_n forms n-dimensional product bound

inBounds checks if an element belongs to the set de�ned by a bound

finite tests bound for �niteness

size the number of elements in a �nite bound

enumerate list of elements of the set de�ned by a �nite bound in given order

join, meet t and u on bounds

lowerBound �rst enumerated element in �nite bound

upperBound last enumerated element in �nite bound

<\> explicit restriction of data �eld with bound

foldlDf folds (reduces) �nite data �eld w.r.t. binary operation

hstrictTab evaluates all elements in �nite data �eld fully

outofBounds the out-of-bounds error value �

isoutofBounds test for outofBounds

(bx1 <*> by1) `op` (bx2 <*> by2) = (bx1 `op` bx2) <*> (by1 `op` by2)

universe `meet` x = x `meet` universe = x

empty `join` x = x `join` empty = x

universe `join` x = universe

x `join` universe = universe, x fully de�ned

empty `meet` x = empty

x `meet` empty = empty, x fully de�ned

bounds (datafield f b) = b

(datafield f b1) <\> b2 = datafield f (b2 `meet` b1)

meet E U S D P �

E E E E E E E

U U S D P �

S S S S S

D D S �

P P P

� �

join E U S D P �

E E U S D P �

U U U U U U

S S S P S=P

D D P �

P P P

� �

Table 3.1

Selected operations on data �elds and bounds, some algebraic laws, and tables for result \types"

of join and meet as a function of the argument \types". \op" is any of join, meet. E = empty,

U = universe, S = sparse, D = dense, P = predicate, � = product bound. \S=P" in the table

for join means that the result is sparse if the product bound is �nite, and a predicate otherwise.

(Backquotes around binary functions, like in `meet`, turn them into in�x operators in Haskell.)

4

Fig. 3.1. Some two-dimensional bounds: two product bounds, and a sparse two-dimensional

bound.

Data Field Haskell has data types Datafield a b for data�elds and Bounds a for

the corresponding bounds. There are basic functions to form data �elds and di�erent

kinds of bounds, and the required operations on bounds in Sect. 2.2 are available.

There are also some useful derived operations. Table 3.1 lists the most important

functions, and gives some algebraic laws for them. It also lists the kind of bound

computed by join and meet for di�erent kinds of argument bounds.

Data Field Haskell has a rich variety of �nite and in�nite bounds: dense bounds,

i.e., traditional array bounds, sparse �nite bounds, which represent general �nite sets,

predicate bounds, which are classi�ed as in�nite, universe, which represents the uni-

versal set, and empty, which represents the empty set. Product bounds represent Carte-

sian products and generalise multidimensional array bounds. Some two-dimensional

bounds are illustrated in Fig. 3.1.

3.1. Forall-abstraction. Data Field Haskell provides '-abstraction, with the

following syntax (described in the metasyntax of the Haskell report [17]):

forall apat

1

: : : apat

n

-> exp

Thus, the syntax is analogous to �-abstraction in Haskell. The semantics is, with

some minor deviations, the same as for '-abstraction in [14]. forall x -> t can be

thought of as an implicitly parallel, functional forall statement where �rst its bound

b is computed and then, if needed, \x -> t is computed for all x in b in any (possibly

parallel) order. The rules for computing b generalise existing array language principles

for computing implicitly given bounds in the following cases: elementwise applied

operations, selection of row/column from multidimensional array, and translation with

constant o�set. The exact rules are given in [10]: some representative examples are

shown in Table 3.2. (The reader is encouraged to compare the bounds of the forall-

abstractions with the domains of the partial functions de�ned by the corresponding

�-abstractions.)

4. An Example. We now give a simple example how a prototype for parallel

code, which could be taken as a starting point for a real implementation, can be

stepwise derived in Data Field Haskell from a speci�cation. Our example is Jacobi's

algorithm, which is a classical, iterative method to solve linear systems of equations.

Iterative methods of this kind are interesting to apply in particular to very large sparse

systems, where direct methods can be prohibitively expensive. Thus, interesting issues

in the development of parallel algorithms for Jacobi's metod are the ability to handle

5

bounds (forall x -> 17) = universe

bounds (forall x -> outofBounds) = empty

bounds (forall x -> a!x + b!x) =

(bounds a) `meet` (bounds b)

bounds (forall (x,y) -> a!x + b!y) =

(bounds a) <*> (bounds b)

bounds (forall x -> if a!x then b!x else c!x) =

(bounds a) `meet` ((bounds b) `join` (bounds c))

bounds (forall x -> a!(1,x)) = b2

bounds (forall x -> a!(x,x)) = b1 `meet` b2

bounds (forall (x,y) -> a!(y,x)) = b2 <*> b1

bounds (forall x -> (datafield f (1 <:> 5))!(x+1)) = 0 <:> 4

Table 3.2

Some examples of bounds for forall-abstraction. Here, bounds a = b1 <*> b2.

sumDf = foldlDf (+) 0

iter f x conv =

let xnew = f x

in if (conv xnew x) then xnew else iter f xnew conv

jacobi a b eps x = iter (jacobi_iter a b) x (conv eps)

jacobi_iter a b x =

forall i -> ((b!i) - sumDf ((forall j -> a!(i,j)*(x!j))

<\> predicate (\j -> j /= i)))/a!(i,i)

conv eps x y = maxnorm (forall i -> (x!i - y!i)) < eps

maxnorm x = foldl1Df max (forall i -> abs (x!i))

Fig. 4.1. Data Field Haskell speci�cation of Jacobi's algorithm.

sparse structures at a suitable level of abstraction, and also how to develop methods

for load balancing that are both reasonably e�cient and give a reasonably good result.

Notably, it should be possible to easily plug in di�erent methods for load balancing

since it is common to have matrices with a certain structure, for which specialised

methods for load balancing may exist.

Jacobi's method solves the equation Ax = b, where A is an n� n-matrix and x,

b are n-vectors, by computing iterates x

(k)

according to

x

(k+1)

i

=

b

i

�

P

n

j=1;j 6=i

a

ij

x

(k)

j

a

ii

; i = 1; : : : ; n(4.1)

until two successive iterates satisfy some convergence criterion, for instance that

kx

(k+1)

� x

(k)

k < �. Here, k � k is a vector norm: in this example, we use the

maximum norm kyk = max

n

i=1

jy

i

j.

A speci�cation in Data Field Haskell of Jacobi's algorithm, according to (4.1), is

given in Fig. 4.1. Here, sumDf sums all the elements in a �nite data �eld (foldlDf

6

proc 1

proc 2

proc 3

proc 4

i

j

(p = 1)

(p = 2)

(p = 3)

(p = 4)

bd ad xdxdnew

Fig. 4.2. Distribution of data in the parallel Jacobi algorithm.

is analogous to the Haskell function foldl on lists), and iter is a tail-recursive

skeleton for general iterative algorithms with a convergence check. jacobi iterates

jacobi_iter repeatedly until convergence according to conv is reached. Note the

close resemblance of the de�nition of jacobi_iter and (4.1) { this exempli�es the

ability to program with forall-abstraction in a style very close to mathematical

notation. conv, �nally, uses foldl1Df, which is analogous to foldl1 over lists.

Note that the bounds of a do not show up explicitly in the code: especially,

the sums over forall j -> a!(i,j)*(x!j) have their limits given implicitly by the

bounds of this data �eld expression, for the di�erent values of i. These bounds

are the meet of the bounds for forall j -> a!(i,j) and x. If bounds a equals

(1,1)<:>(n,n) (representing a dense n � n-matrix) and if bounds x = 1<:>n (a

dense n-vector) then the meet is 1<:>n, and the sum will thus be performed over all

j 2 f1; : : : ; ng. If, however, a has a sparse bound, then forall j -> a!(i,j) will

have a sparse bound as well

3

and the meet will also be sparse: thus, only the de�ned

elements will be summed. The algorithm speci�cation in Fig. 4.1 therefore de�nes

both a dense and a sparse algorithm depending on the kind of data �eld!

We now manually re�ne this speci�cation into a parallel algorithm. The idea

is to distribute the rows of a and the elements of b according to a partitioning of

the interval f1; : : : ; ng as indicated in Fig. 4.2. The inner products can then be

kept local, which keeps the communication down, and this design decision leads to a

parallel algorithm where each processor computes a segment of xnew. These are then

assembled and broadcast for the new parallel iteration. The convergence test can be

performed as a parallel reduction. If a is sparse, then it can pay o� to perform a

nontrivial load balancing, which however can be made statically since the structure

of a does not change during the course of the algorithm. Our algorithm takes a static

load balancing as a parameter.

The distributed program is shown in Fig. 4.3. It makes heavy use of nested data

�elds, where the outermost data �elds have indices (p in Fig. 4.3) that can be seen as

3

In the current implementation of Data Field Haskell this bound becomes wider than necessary.

We expect to rectify this in later releases.

7

p_jacobi ad bd eps xd = iter (p_jacobi_iter ad bd) xd (p_conv eps)

p_jacobi_iter ad bd xd =

forall p -> jacobi_iter (ad!p) (bd!p) (prUnion xd)

p_conv eps xd yd =

maxnorm (forall p ->

maxnorm ((forall i -> ((xd!p)!i - (yd!p)!i))

<\>(bounds (xd!p) `meet` bounds (yd!p))))

< eps

prunion d1 d2 =

forall x -> if (inBounds x (bounds d1)) then d1!x else d2!x

emptyfield = datafield (\x -> outofBounds) empty

prUnion = foldlDf prunion emptyfield

Fig. 4.3. Data Field Haskell program for parallelised simulation.

d1

d2 d1 ‘prunion‘ d2

Fig. 4.4. prunion.

processor addresses. p_jacobi uses the same basic iteration pattern as the original

speci�cation, but now the entities are distributed: ad is a nested data�eld of two-

dimensional data �elds, and bd and xd are nested one-dimensional data �elds. Each

iteration step is performed by p_jacobi_iter: it assembles a global array from the

distributed array xd, which is then used by all processors for computing local updates

of its segments of xd using its parts of ad and bd. p_conv, �nally, computes the

maximum norm of xd in parallel, by �rst computing local maximal di�erences for

each segment of old and new xd, and then computing a global maximum of these.

The global array is assembled through prUnion, which \
attens" a distributed

one-dimensional data �eld of one-dimensional data �elds. It is a reduction over the

binary operation prunion on data �elds. This operation computes the \union" of two

data �elds giving priority to its �rst argument, see Fig. 4.4. If the data �elds have

disjoint bounds, then the operation acts somewhat like concatenation of lists. This

similarity is not a mere coincidence, see Sect. 5.

The parallel algorithm above works on distributed data �elds. The functions in

Fig. 4.5 compute distributions. divide a k lo hi computes a data �eld of bounds

that represents a k-partitioning of the interval flo; : : : ; hig. It partitions the rows of

a as to make the numbers of elements of a in each partition as equal as possible, thus

obtaining a static load balancing of the work. It is a divide-and-conquer algorithm,

which itself is parallel. In each step, a point midpoint is selected between lo and hi

such that the number of elements in rows lo : : : midpoint is as close to the number

of elements in rows midpoint + 1 : : :hi as possible. The same procedure is then

recursively applied until k intervals have been formed.

8

divide a 1 lo hi = datafield (\i -> (lo<:>hi)) (1<:>1)

divide a k lo hi =

let mid = midsearch a lo hi

in (divide a (k `div` 2) lo mid) `concat`

(divide a (k - (k `div` 2)) (mid+1) hi)

midsearch a lo hi =

midsearch_loc a lo hi lo hi (midpoint lo hi)

where

midsearch_loc a lo hi loloc hiloc mid

| mid == hiloc || mid == loloc = adjust a lo hi mid

| slice_size a lo mid > slice_size a (mid+1) hi

= midsearch_loc a lo hi loloc mid (midpoint loloc mid)

| otherwise

= midsearch_loc a lo hi mid hiloc (midpoint mid hiloc)

midpoint m n = m + ((n-m) `div` 2)

h_slice a b = a <\> (b<*>universe)

slice_size a lo hi = size (bounds (h_slice a (lo<:>hi)))

adjust a lo hi mid =

if abs ((slice_size a lo (mid+1))-(slice_size a (mid+2) hi)) <

abs ((slice_size a lo mid)-(slice_size a (mid+1) hi))

then mid+1 else mid

concat d1 d2 = prunion d1 (forall x -> d2!(x-upperBound (bounds d1)))

run_p_jacobi a b eps x no_procs =

let b_ac = bounds (matrix_curry a)

dst = divide a no_procs (lowerBound b_ac) (upperBound b_ac)

in p_jacobi (distr_2 a dst) (distr_1 b dst) eps (distr_1 x dst)

matrix_curry a = forall i -> forall j -> a!(i,j)

distr_1 a b = forall p -> a <\> (b!p)

distr_2 a b = forall p -> h_slice a (b!p)

Fig. 4.5. Code for computing a distribution of data �elds, for distributing initial data, and for

starting the parallel algorithm.

run_p_jacobi uses the computed distribution to distribute initial data and start

the parallel algorithm. It uses the help functions matrix_curry, which turns a two-

dimensional data �eld into a data �eld of data �elds, and distr_1 and distr_2, which

convert one- and two-dimensional data �elds, respectively, into nested, partitioned

data �elds according to a partitioning speci�ed by a data �eld of bounds.

9

5. A Formal Veri�cation of the Correctness of the Distributed Jacobi

Algorithm. We now consider how to verify formally that p_jacobi implements

jacobi correctly. Following Theorem 2.1, we use the more abstract model of par-

tial functions, with ? and � identi�ed, and rather than verifying directly that the

implementation relation holds between the data �elds we will de�ne partial function

versions jacobi and p jacobi of them and prove that p jacobi implements jacobi.

Definition 5.1. f :A ! B is implemented by g:C ! (D ! B) under (�

0

; �

1

)

if 8x 2 A:f(x) = g(�

0

x)(�

1

x).

De�nition 5.1 is tailored for implementations by curried functions, which model

nested data �elds. Now consider the case when f and g are recursively de�ned, say

we have a simultaneous recursive de�nition (f; g) = F (f; g) where F is a continuous

function. The condition on f and g in De�nition 5.1 is an inclusive (or admissible)

predicate, which means we can use Scott's �xed-point induction to prove it [23].

Proposition 5.2. De�ne (f

�

; g

�

) as the least �xed-point of F , and let (f

0

; g

0

) =

(?;?), (f

i

; g

i

) = F (f

i�1

; g

i�1

) for i > 0. Then f

�

is implemented by g

�

under (�

0

; �

1

)

if 8i > 0:(8x:(f

i�1

(x) = g

i�1

(�

0

x)(�

1

x)) =) 8x:(f

i

(x) = g

i

(�

0

x)(�

1

x))).

Proof. Scott's �xed-point induction principle for inclusive predicates P states

that for any nondecreasing chain fd

i

g

1

i=0

, P (

F

1

i=0

d

i

) holds if: P (d

0

) holds, and

8i > 0:P (d

i�1

) =) P (d

i

). In our case, f(f

i

; g

i

)g

1

i=0

is a nondecreasing chain

where (f

0

; g

0

) = (?;?) and

F

1

i=0

(f

i

; g

i

) = (f

�

; g

�

). We trivially have 8x:?(x) =

?(�

0

x)(�

1

x) which means the base case holds. What remains to prove is the induc-

tion step, which is the stated condition in the proposition.

We need some more results in order to prove that p jacobi implements jacobi.

p_jacobi uses data �elds that are partitioned and distributed over processors. At

certain points, they are reassembled from their parts using prUnion. The correctness

of this reassembly depends on whether the distribution really is a true partitioning.

We de�ne partial function versions of prunion and prUnion:

f pr g = �x:if (x 2 dom(f); f(x); g(x))

Pr(f) = red(pr; f)

It is easy to see that pr is associative. Partitioning and distributing a data �eld

corresponds to a particular kind of implementation:

Definition 5.3. g:C ! (A! B) is a partitioning of f :A! B under � if f is

implemented by g under (�; id) and if �(dom(f)) = dom(g).

Proposition 5.4. If g is a partitioning of f under some �, then Pr(g) = f .

Proof. In general, it holds that (Pr(g))(i) = g(p)(i) for some p 2 dom(g). Fur-

thermore, dom(Pr(g)) =

S

p2dom(g)

dom(g(p)). We have g(�(i))(i) = f(i) for all i 2

dom(f), and dom(g(�(i))) = f j j �(j) = �(i) g: thus, f dom(g(�(i))) j i 2 dom(f) g

is a (set) partitioning of dom(Pr(g)). Therefore, (Pr(g))(i) = g(�(i))(i) for all i 2

dom(f), and thus (Pr(g))(i) = f(i). We also have, for all i 2 dom(f), dom(g(�(i))) =

f j j j 2 dom(f) ^ �(j) = �(i) g. Since �(dom(f)) = dom(g) every p 2 dom(g) is an

image of some i 2 dom(f): thus, dom(Pr(g)) =

S

i2dom(f)

dom(g(�(i))) = dom(f).

Pr(g) = f follows.

Second, we need to prove that under certain conditions the result of a nested

reduction, over a distributed, partitioned data �eld, equals a straight reduction over

the original data �eld. The latter result corresponds to the BMF \reduce promotion"

law �=�=l = �=++=l for nested lists l and associative operators � [1]. This law holds

since concatenation of lists imposes a certain ordering on the elements of respective

lists. Pr(f) will behave as ++=l if dom(f(p)) \ dom(f(q)) = ; for p 6= q, and if p

10

f prUnion f

Fig. 5.1. Compatible enumerations.

being enumerated before q by enum

f

implies that each x 2 dom(f(p)) is enumerated

before each y 2 dom(f(q)) by enum

Pr(f)

.

Definition 5.5. f :A! (B ! C) has compatible enumerations if:

� dom(f(x)) \ dom(f(y)) = ; when x 6= y,

� enum

Pr(f)

(n) = enum

f(enum

f

(m(n)))

(n � s(n)), where s(n), m(n) are given

by:

s(n) =

X

i<m(n)

size(f(enum

f

(i)))

s(n) � n

n < s(n) + size(f(enum

f

(m(n))))

See Fig. 5.1. Here, the nth element of Pr(f) belongs to the m(n)th element of f ,

and s(n) is the sum of the sizes of the preceding elements of f . f having compatible

enumerations basically means that the enumerations of each f(i), i 2 dom(f), can be

\concatenated", in the order given by the enumeration of f , to yield the enumeration

of Pr(f). This is similar to concatenating the elements in a list of lists. We can now

state a law for curried partial functions, which corresponds to the BMF law for nested

lists above:

Theorem 5.6. If f has compatible enumerations and � is associative, then

red(�; �x:red(�; f(x))) = red(�;Pr(f)).

Proof. (Sketch.) We �rst prove red(�; f pr g) = red(�; f) � red(�; g) pro-

vided dom(f) \ dom(g) = ;, enum

fprg

(n) = enum

f

(n) when 0 � n < size(f),

and enum

fprg

(n) = enum

g

(n � size(f)) for size(f) � n < size(f pr g). Then the

result is proved by induction over the enumeration of f , using the de�nitions of Pr

and red .

Finally two simple results: the �rst was originally stated in [7], the second follows

directly from the de�nition of red :

Proposition 5.7. If the n-ary function f is total and strict in all arguments,

and if all g

i

are total, 1 � i � n, then dom(�x:f(g

1

(x); : : : ; g

n

(x))) = dom(g

1

)\ � � � \

dom(g

n

).

Proposition 5.8. If f and � are total, then red(�; f) yields a fully de�ned cpo

element.

Fig. 5.2 gives the de�nitions of jacobi and p jacobi: cf. Figs. 4.1 and 4.3. We now

prove that p jacobi does provide a partitioning of jacobi , given that the inputs to the

functions do.

11

f n b = �x:if (b(x); f(x); �) (explicit restriction)

sum(f) = red(+; f)

iter(f; x; conv) = let x

new

= f(x) in if (conv(x

new

; x); x

new

; iter(f; x

new

; conv))

jacobi (a; b; �; x) = iter(�x:jacobi iter(a; b; x); x; ; conv

�

)

jacobi iter(a; b; x) = �i:(b(i)� sum(�j:a(i; j) � x(j)) n �j:j 6= i))=a(i; i)

conv

�

(x; y) = red(max; �i: jx(i)� y(i)j) < �

p jacobi(a

0

; b

0

�; x

0

) = iter(�x

0

:p jacobi iter(a

0

; b

0

; x

0

); x

0

; �; p conv

�

)

p jacobi iter(a

0

; b

0

; x

0

) = �p:jacobi iter(a

0

(p); b

0

(p);Pr(x

0

))

p conv

�

(x

0

; y

0

) = red(max; �p:red(max; �i: jx

0

(p)(i)� y

0

(p)(i)j)) < �

Fig. 5.2. De�nitions of jacobi and p jacobi.

Theorem 5.9. If: a, b, x are total; dom(b) = dom(x) � f1; : : : ; ng; a(i; i) 6= 0; �

for 1 � i � n; a

0

is a partitioning of a under �; b

0

and x

0

are partitionings of b, x,

respectively, under �

0

, where 8j:�(i; j) = �

0

(i); and x

0

has compatible enumerations,

then p jacobi(a

0

; b

0

; �; x

0

) is a partitioning of jacobi (a; b; �; x) under �

0

.

Proof. Since jacobi and p jacobi are nonrecursively de�ned in terms of iter we

can perform the �xed-point induction over iter . We have

iter

n

(f; x; conv) = let x

new

= f(x) in if (conv(x

new

; x); x

new

; iter

n�1

(f; x

new

; conv)

Let x

new

= jacobi iter(a; b; x), x

0

new

= p jacobi iter(a

0

; b

0

; x

0

), and conv = conv

�

.

From the de�nition of iter

n

above and the de�nitions of jacobi and p jacobi, we see

that the result holds if: conv

�

(x

new

; x) = p conv

�

(x

0

new

; x

0

), x

0

new

is a partitioning of

x

new

under �

0

, and iter

n�1

(�x

0

:p jacobi iter(a

0

; b

0

; x

0

); x

0

new

; p conv

�

) is a partitioning

of iter

n�1

(�x:jacobi iter(a; b; x); x

new

; conv

�

) under �

0

. In the calls to iter

n�1

, only

x

new

and x

0

new

have changed. Thus, by the �xed-point induction hypothesis, the

partitioning relation between these calls holds if: x

new

is total, x

0

new

is a partitioning

of x

new

under �

0

, and if x

0

new

has compatible enumerations. Note that this induction

hypothesis is more complex than the one in Proposition 5.2: this is since we also need

to prove the result about conv

�

and p conv

�

, which are reductions. (However, it is

easy to see that the base case still holds, so it su�ces to prove the inductive step.)

We now prove the required conditions in turn:

� x

new

total: we have x

new

= jacobi iter(a; b; x) = �i:(b(i) � sum(�j:a(i; j) �

x(j))n�j:j 6= i))=a(i; i). Since all operations involved are total, and x, a, and

b are total, this function is total.

� x

0

new

a partitioning of x

new

under �

0

: we �rst prove that dom(x

new

) = dom(x)

and dom(x

0

new

) = dom(x

0

), which then implies �

0

(dom(x

new

)) = dom(x

0

new

).

{ dom(x

new

) = dom(x): we have dom(x) = dom(b). We now prove

dom(b) = dom(x

new

) which yields the result. Reconsider the de�nition

12

of x

new

above. We have dom(b) � f1; : : : ; ng, dom(�i:sum(� � �)) = U

(the universal set), and dom(�i:a(i; i)) � f1; : : : ; ng. Since the arith-

metic operations are strict and total (also division when a(i; i) 6= 0),

Proposition 5.7 yields dom(x

new

) = dom(b) \ U \ dom(�i:a(i; i)) =

dom(b).

{ dom(x

0

new

) = dom(x

0

): since both b

0

and x

0

are partitionings of b and x

under �

0

, we have dom(b

0

) = �

0

(dom(b)) = �

0

(dom(x)) = dom(x

0

). Fur-

thermore, x

0

new

= �p:jacobi iter(a

0

(p); b

0

(p);Pr(x

0

)). Similar to above,

we can check that jacobi iter(a

0

(p); b

0

(p);Pr(x

0

)) is de�ned exactly when

b

0

(p) is de�ned, which yields dom(x

0

new

) = dom(b

0

). Thus, dom(x

0

new

) =

dom(x

0

).

It remains to show that x

new

(i) = x

0

new

(�

0

(i))(i) for all i. We have x

0

new

=

�p:jacobi iter(a

0

(p); b

0

(p);Pr(x

0

)). By Proposition 5.4 we have Pr(x

0

) = x,

thus x

0

new

= �p:jacobi iter(a

0

(p); b

0

(p); x). For any i we now have (since

8j:�(i; j) = �

0

(i)):

x

0

new

(�

0

(i))(i) = jacobi iter(a

0

(�(i; j)); b

0

(�

0

(i)); x)(i)

= � � � b

0

(�

0

(i))(i) � � � a

0

(�(i; j))(i; j) � � � x(j) � � � a

0

(�(i; i))(i; i)

= � � � b(i) � � � a(i; j) � � �x(j) � � � a(i; i)

= jacobi iter(a; b; x)(i)

= x

new

(i)

� x

0

new

has compatible enumerations: by the above, it holds that dom(x

0

new

) =

dom(x

0

) and 8p:dom(x

0

new

(p)) = dom(x

0

(p)) (the latter follows from the

fact that x

0

new

partitions x

new

and x

0

partitions x under the same �

0

, with

dom(x

new

) = dom(x)). Since x

0

has compatible enumerations, and compati-

ble enumerations is a property only of the domains, the result follows.

It remains to prove conv

�

(x

new

; x) = p conv

�

(x

0

new

; x

0

). Let y = �i: jx

new

(i)� x(i)j

and y

0

= �p:�i: jx

0

new

(p)(i)� x

0

(p)(i)j. If red(max; �p:red(max; y

0

(p))) = red(max; y),

then the equality holds. It is easy to see (through Proposition 5.7), that y

0

, y

0

(p), and

y have the same domains as x

0

, x

0

(p) and x, respectively. Thus, y

0

has compatible

enumerations, and by Theorem 5.6 red(max; �p:red(max; y

0

(p))) = red(max;Pr(y

0

))

since max is associative. It is also easy to see that y

0

is a partitioning of y under �

0

.

Proposition 5.4 then yields Pr(y

0

) = y which proves the equality.

6. Related Work. An excellent survey of collection-oriented languages up to

around 1990 is found in [20]. The computation of bounds for forall-abstraction

yields the implicit intersection rule of FIDIL [19]. The arrays in FIDIL resemble data

�elds also in other respects, for instance they can have a wider variety of shapes than

traditional array bounds.

Examples of functional data parallel and array languages are Connection Machine

Lisp [22], Id [3], Sisal [4], NESL [2], Data Parallel Haskell [9], and pH [15]. These

languages are intended for direct parallel implementation whereas Data Field Haskell

targets the speci�cation phase. Haskell itself [17] has also been suggested for data

parallel programming [16]. FISh [11] is an imperative array language, which shares

some features with Data Field Haskell such as advanced polymorphism. It is, however

restricted to regular arrays and certain recursion patterns, which enables the gener-

ation of good code but makes it less suitable for speci�cation of sparse or dynamic

algorithms. A survey of the research in parallel functional programming is found

in [8].

13

High-level speci�cation and formal derivation of parallel programs has been con-

sidered in the BSP model [21] and in the Bird-Meertens Formalism [6]. Data Field

Haskell could serve as a
exible format supporting these methods. Transformation

of algorithm speci�cations in ML into programs for SIMD computers was considered

in [5].

7. Conclusions and Further Research. We have presented the data �eld

model and Data Field Haskell, a Haskell dialect that provides an instance of data

�elds. A possible application of Data Field Haskell is as a rapid prototyping tool

for the early speci�cation phase of parallel algorithms. We exempli�ed with the

speci�cation and initial development of a simple iterative linear equation solver, which

could provide a starting point for the development of real production code. The initial

speci�cation was very close to the mathematical formulation, and the parallel version,

once concieved, was straightforward to express with nested data �elds. We made a

formal veri�cation that the parallel algorithm implements the speci�cation through

a partitioning of the data. A formal veri�cation of this kind would probably be very

hard to do for parallel programs written in current production languages.

The current implementation of Data Field Haskell could be improved in many

ways, and it could certainly be given a parallel implementation. An elegant way to

introduce explicit parallelism would be to use the type system of Haskell: \processor

id" types could be introduced, with a 1-1-mapping to a given parallel architecture,

and a parallelising compiler could then directly distribute the computation of data

�elds indexed with such types. An e�cient parallel implementation would, however,

require an e�cient implementation of Haskell itself! Therefore, at least in a short

perspective, we believe more in Data Field Haskell as a vehicle for speci�cation of

successively more re�ned parallel algorithms, which can serve as blueprints for actual

parallel implementations.

We derived an interesting counterpart to a BMF law for reduction over curried

partial functions. This line of investigation could certainly be pursued further, and

also be extended to data �elds. A di�erence is that lists always are ordered, while data

�elds only need to be ordered for certain operations. For instance, it is possible to

formulate a version of Theorem 5.6 where the binary operation also is assumed com-

mutative: then the requirement of compatible enumerations for the partial function

can be dropped. There is clearly a rich variety of laws to explore for the subsequent

use in program transformations and algorithm synthesis. The \added value" of such

a theory over BMF would primarily be a greater ability to work with less ordered

structures than lists, like indexed multidimensional structures. We believe this is

bene�cial for parallel algorithm design in application areas like scienti�c computing,

where indexed structures prevail and the mapping phase to processors is important.

REFERENCES

[1] R. S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of Programming and

Calculi of Discrete Design, volume 36 of NATO ASI Series F, pages 3{42. Springer-Verlag,

Berlin, 1987.

[2] G. E. Blelloch. Programming parallel algorithms. Comm. ACM, 39(3), Mar. 1996.

[3] K. Ekanadham. A perspective on Id. In B. K. Szymanski, editor, Parallel Functional Languages

and Compilers, chapter 6, pages 197{253. Addison-Wesley, 1991.

[4] J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A report on the Sisal language project. J. Parallel

Distrib. Comput., 10:349{366, 1990.

[5] S. Fitzpatrick, T. J. Harmer, A. Stewart, M. Clint, and J. M. Boyle. The automated trans-

14

formation of abstract speci�cations of numerical algorithms into e�cient array processor

implementations. Science of Computer Programming, 28(1):1{41, 1997.

[6] S. Gorlatch. Extracting and implementing list homomorphisms in parallel program develop-

ment. Science of Computer Programming, 33(1):1{27, 1999.

[7] P. Hammarlund and B. Lisper. On the relation between functional and data parallel program-

ming languages. In Proc. Sixth Conference on Functional Programming Languages and

Computer Architecture, pages 210{222. ACM Press, June 1993.

[8] K. Hammond and G. Michaelson, editors. Research Directions in Parallel Functional Program-

ming. Springer-Verlag, 1999.

[9] J. M. D. Hill. Data Parallel Haskell: Mixing old and new glue. Tech. Rep. 611, Queen Mary

and West�eld College, Dec. 1992.

[10] J. Holmerin. Implementing data �elds in Haskell. Technical Report TRITA-IT R 99:04, Dept.

of Teleinformatics, KTH, Stockholm, Nov. 1999.

ftp://ftp.it.kth.se/Reports/paradis/DFH-report.ps.gz.

[11] C. B. Jay and P. A. Steckler. The functional imperative: shape! In C. Hankin, editor, Proc.

7th European Symposium on Programming, volume 1381 of Lecture Notes in Comput. Sci.,

pages 139{53, Lisbon, Portugal, Mar. 1998. Springer-Verlag.

[12] B. Lisper. Data parallelism and functional programming. In G.-R. Perrin and A. Darte, editors,

The Data Parallel Programming Model: Foundations, HPF Realization, and Scienti�c

Applications, Vol. 1132 of Lecture Notes in Comput. Sci., pages 220{251, Les M�enuires,

France, Mar. 1996. Springer-Verlag.

[13] B. Lisper. Data �elds. In Proc. Workshop on Generic Programming, Marstrand, Sweden, June

1998. http://wsinwp01.win.tue.nl:1234/WGPProceedings/.

[14] B. Lisper and P. Hammarlund. The data �eld model. Preliminary version available as Tech.

Rep. TRITA-IT R 99:02, Dept. of Teleinformatics, KTH, Stockholm, 1999.

ftp://ftp.it.kth.se/Reports/TELEINFORMATICS/TRITA-IT-9902.ps.gz.

[15] R. S. Nikhil, Arvind, J. E. Hicks, S. Aditya, L. Augustsson, J.-W. Maessen, and Y. Zhou. pH

language reference manual, version 1.0. Technical Report CSG-Memo-369, Massachussets

Institute of Technology, Laboratory for Computer Science, Jan. 1995.

[16] J. T. O'Donnell. Data parallelism. In Hammond and Michaelson [8], chapter 7, pages 191{206.

[17] J. Peterson, K. Hammond, L. Augustsson, B. Boutel, W. Burton, J. Fasel, A. D. Gordon,

J. Hughes, P. Hudak, T. Johnsson, M. Jones, E. Meijer, S. L. Peyton Jones, A. Reid, and

P. Wadler. Report on the programming language Haskell: A non-strict purely functional

language, version 1.4, Apr. 1997. http://www.haskell.org/definition/.

[18] N. R�ojemo. Garbage Collection, and Memory E�ciency, in Lazy Functional Languages. PhD

thesis, Department of Computing Science, Chalmers University of Technology, Gothenburg,

Sweden, 1995.

[19] L. Semenzato and P. Hil�nger. Arrays in FIDIL. In L. M. R. Mullin, M. Jenkins, G. Hains,

R. Bernecky, and G. Gao, editors, Arrays, Functional Languages, and Parallel Systems,

chapter 10, pages 155{169. Kluwer Academic Publishers, Boston, 1991.

[20] J. M. Sipelstein and G. E. Blelloch. Collection-oriented languages. Proc. IEEE, 79(4):504{523,

Apr. 1991.

[21] D. B. Skillicorn. Building BSP programs using the re�nement calculus. External Techni-

cal Report TR96-400, Dept. of Computing and Information Science, Queen's University,

Kingston, Ontario, Oct. 1996.

[22] G. L. Steele and W. D. Hillis. Connection Machine LISP: Fine grained parallel symbolic

programming. In Proc. 1986 ACM Conference on LISP and Functional Programming,

pages 279{297, Cambridge, MA, 1986. ACM.

[23] G. Winskel. The Formal Semantics of Programming Languages { An Introduction. MIT Press,

1993.

15

