
Funk P.J. and Crnkovic I., Reuse, Validation and Verification of System Development Processes. Proceedings to the
First International Workshop on the Requirements Engineering Process, Florence, Italy, IEEE Computer Society,
September 1999.

5HXVH��9DOLGDWLRQ�DQG�9HULILFDWLRQ�RI
6\VWHP�'HYHORSPHQW�3URFHVVHV

Peter J. Funk and Ivica Crnkovic
Mälardalen University, Computer Science Lab

 Västerås, Sweden, {peter.funk, ivica.crnkovic}@mdh.se

$EVWUDFW

/DUJH� FRPSDQLHV�RIWHQ�XVH� VWDQGDUGL]HG� WHPSODWH� GHYHO�
RSPHQW� SURFHVVHV�� 3URMHFW�VSHFLILF� DGDSWDWLRQ� RI� WHP�
SODWHV� PXVW� DGGUHVV� DVSHFWV� VXFK� DV�� SURMHFW� UHVRXUFHV
�WLPH�� VWDII��� VWDQGDUGV�� UHJXODWLRQV�� HWF�� $GDSWLQJ� WHP�
SODWHV� LV� D� SDUWLFXODUO\� PDQXDO� SURFHVV� UHTXLULQJ� VNLOO
DQG�IRU�ODUJH�FRPSDQLHV�UHSUHVHQWV�D�ODUJH�SURSRUWLRQ�RI
WKH�WRWDO�GHYHORSPHQW�FRVW��,QWHJUDWLQJ�ORFDOO\�JDLQHG�H[�
SHULHQFH� DQG� XSGDWLQJ� WKH� WHPSODWH� SURFHVV� LV� WHGLRXV
ZRUN�DQG�UHVRXUFHV�IRU�VXFK�XSGDWHV�DUH�UDUHO\�DYDLODEOH�
)RUWXQDWHO\��IRUPDO�UHSUHVHQWDWLRQ�RI�SURFHVVHV�DQG�SUR�
FHVV�FRPSRQHQWV�HQDEOHV�UHXVH��DQDO\VLV�DQG�FRPSDULVRQ
RI�SURFHVVHV�DQG�SDUWV�RI�SURFHVVHV��:H�XVH�D�FDVH�EDVHG
UHDVRQLQJ� �&%5�� DSSURDFK� ZKLFK� SHUPLWV� LGHQWLILFDWLRQ
DQG�UHXVH�RI�SURFHVVHV�RU�SDUWV�RI�SURFHVVHV��7KH�IRUPDO
QRWDWLRQ�DOORZV�WKH�XVHU�WR�VNHWFK�QHZ�SURFHVVHV�RU�DGDSW
WHPSODWH�SURFHVVHV��7KHVH�VNHWFKHV��DGDSWDWLRQV�DUH�XVHG
LQ� D� PDWFKLQJ� SURFHVV� ZKLFK� LGHQWLILHV� DQG� VXJJHVW� WKH
UHXVH�RI�VLPLODU�SURFHVVHV�DQG�WDVNV�VWRUHG�LQ�WKH�OLEUDU\�
2QFH� DQ� DGDSWDWLRQ� KDV� EHHQ� VXFFHVVIXOO\� XVHG�� LW� LV
DXWRPDWLFDOO\�DGGHG�WR�WKH�FDVH�OLEUDU\�

���,QWURGXFWLRQ

System development is one of the most complex proc-
esses found in organizations today [1, 2]. Large compa-
nies often use a standard development process as a
framework for all their development projects. Such a best
practice process aims at reflecting the company’s collec-
tive experience, its commitment to quality and minimum
lead time and reflects the category of projects and the
level of skill of those engaged in its projects. An explicit
system development process is rarely used and in small
projects and success or failure is mostly dependent on the
individual skill and experience of the project leader and
the project members. Far to often such skill and experi-
ence is acquired through unsuccessful projects. The ma-
jority of software projects in industry fail [3] and one of

the main reasons for failure is believed to be the inade-
quacy of in software development processes. Many tech-
nology-intensive companies have tens of thousands of
people working in different projects, and the savings
achieved by using a uniform system development process
throughout the company is believed to be considerable
when compared with permitting each project manager to
develop his own process. It enables the company to ensure
that new projects meet internal and external requirements
such as quality standards, control over progress and
checkpoints to identify problems as early as possible etc.
Unfortunately, reality in large companies often requires
extensive local adaptation of template processes to suit
different types of projects and different circumstances in
the environment of the project. If project-specific modifi-
cations and adaptations are made, the resulting process
cannot be warranted to meet the overall demands of the
company and customers and there is a risk that less suit-
able adaptations may be introduced causing subsequent
difficulties in the project. Additionally, it is difficult to
transfer the experience gained from local adaptations back
to the template processes and difficult to spread it within
the company. Collecting the experience from adaptations
performed locally requires skilled staff (often short in
supply) and much time and effort as the overall experi-
ence is distributed over many people, each with a small
part of the total experience. The experience gained from
completed projects is seldom collected. There are strong
indications that the assembly of experience gained from
completed projects to be reused in improving the outcome
of future projects may be one of the means of building
corporate memories [4, 5, 6].

���'HYHORSPHQW�3URFHVVHV

The wide variety of abstract system development method-
ologies available includes the waterfall and V models.
These models are often too generic and need careful ad-
aptation to suit specific types of project, company stan-

dards and the skill level of the employees. Companies
therefore often develop their own detailed system devel-
opment template to meet internal and external require-
ments. These template processes are then adapted to spe-
cific projects. The information concerned is mostly avail-
able in informal manuals with guidelines, quality and
control points and examples. They are difficult to use and
there is commonly no or very little support provided to
assist those engaged in projects in following these docu-
ments and guidelines.
System development processes used are usually repre-
sented informally. Recent technology and tools which
support the production and analysis of system develop-
ment processes are beneficial. Standards such as ISO9001
and models such as CMM (Capability Maturity Model)
can be incorporated in the tools to aid the production of
system development processes which meet these require-
ments. These tools unfortunately rarely aid the transfer
between users of knowledge gained from local adapta-
tions. A case-based reasoning approach is proposed in
which processes are adapted and stored in a case library
for reuse in part or in whole. A matching algorithm identi-
fies similar, but not necessarily exactly identical processes
in the case library.

���&DVH�%DVHG�3URFHVV�7DLORULQJ

The CABS system (Case-Based Specification System, see
section 4 on case-based reasoning) formalizes processes
based on graphical examples and uses a temporal logic for
internal formal representation. The user outlines project
circumstances, and sketches process examples. The
matching algorithm uses the input to identify similar proc-
esses and parts of processes and proposes these for reuse.
The CABS system was originally developed for behav-
ioral requirements specifications [7, 8] such as the be-
havior of telephone features. CABS treats a process defi-
nition task as an experimental development task (see Fig-
ure 1) and arrives quickly at something we can validate
and verify in a variety of ways. These sketches are then
refined, compared with similar process descriptions in the
case library and used to identify parts for reuse or to point
out differences. This will aid the users of CABS to refin-
ing and extending the system development process until
they are convinced that the requirements for the specific
project are met. CABS is currently being modified to fit
more closely the application domain of system develop-
ment processes. The internal representation and matching
algorithm is the same as used in [7]. The formal repre-
sentation is based on predicate logic (transition rules) and
has sufficient expressive power to represent system devel-
opment processes, but is not unnecessarily expressive, “a
formal representation should be as simple as possible, but

no simpler.” [9]. Limiting expressiveness is a major ap-
proach to taming the combinatorial explosion in produc-
tion systems [10]. We do not confront the user with the
formal notation and the notation is concealed behind a
user interface.

Project Manager and Project Members

System Development Process

6NHWFKLQJ�	�5DSLG

3URFHVV�7DLORULQJ�(QYLURQPHQW Requests and ideas on a
suitable system development

process for the project

Based on previous experience
through matching and reuse,

validated, formalized, verified.

Case Library
Previously used development

processes, corporate templates,
standard processes, quality

processes etc.

sketching, concretizing,
reuse, simulation and

verification

Figure 1: From an idea to a formalized process definition.

���&DVH�%DVHG�5HDVRQLQJ

The central concept of case-based reasoning is expressed
by Riesbeck and Schank as: "the essence of how human
reasoning works. People reason from experience. They
use their own experience if they have a relevant one, or
they make use of the experience of others" [11]. Aamodt
and Plaza´s picture, Figure 2, illustrates the main ideas of
case-based reasoning: a problem is presented in the top
left corner, similar cases are retrieved from a case library
and the most suitable case is selected and re-used. It may
be necessary to revise the most suitable case for it to solve
the problem. If the solution is approved, the problem and
its solution are stored in the case library. The next time a
similar problem is encountered, less adaptation of the re-
trieved case may be needed and the process will be sim-
plified if similar problems are often encountered and the
features identifying similar cases are sufficiently recog-
nizable.
The study of a previous case in which a similar problem
has been solved may, in some situations, aid the process
of finding a solution because a case provides a context for
understanding [12]. A case-based system may also adapt
to changing demands, for example, if a new type of prob-
lem not previously encountered is solved (if no similar
cases are available, a solution of the problem is most
likely to be produced manually). The problem solved and

its solution are stored in the case library as a new case,
with the aim of expanding its competence [13]. The next
time the system encounters the same or a similar problem,
the system will have increased its potential to produce a
solution. It is more likely that, in a rule-based system, it
would be necessary to update the rules to include this new
class of problem.

Problem

Case Library

RETRIEVE

R
E

U
S
E

RETAIN

Confirmed
Solution

Proposed
Solution

REVISE

Figure 2: General architecture of a case-based reasoning sys-
tem. Adapted from Aamodt, Plaza [13].

Case-based reasoning may be suitable for problem areas
in which the knowledge of how a solution is created is
poorly understood [14], e.g. the creation and adaptation of
system development processes. In technical domains,
case-based reasoning has been applied to a variety of a
application domains such as: architectural design support
[15]; qualitative reasoning in engineering design [16],
[17], software specification reuse [18], software re-use
[19], fault correction in help desk applications [14],
building regulations [20], business modeling [21], fault
diagnosis and repair of software [22]. There are already
certain CBR systems in commercial use and CBR compo-
nents embedded in other systems.
In summary, case-based reasoning may be applied to ap-
plication domains which are not sufficiently well under-
stood to create a consistent and complete knowledge-base
for solving the problems automatically, provided that:

• problems and their solutions have similarities.

• a case library with past problems and their solutions is
available or can be created.

• solutions can be adapted and re-used for similar problems.

• there are suitable means of identifying relevant cases in
the case library.

We suggest that development processes fit these require-
ments well if a formal notation is used. The user does not
need to know that there is a formal notation involved and
draws the process descriptions in a graphical editor as
usual, the editor translates the diagrams to the formal
textual representation used in matching and analysis. A
matching algorithm which identifies similar behavior is
used [7].

���5HSUHVHQWDWLRQ�RI�'HYHORSPHQW�3URFHVVHV

A system development process is modeled by a set of
tasks (e.g. design subsystem, specify function, test func-
tion, formally verify function, verify system, handle re-
lease, …). Each task is either atomic and cannot be di-
vided into smaller parts or it may be defined by a number
of more specific tasks. The chosen granularity of a devel-
opment process depends on factors such as the magnitude
of the project and the experience level of project mem-
bers. Process components may be sequentialized or con-
current if parallel or incremental development is applied
in the project (verification will identify dependencies
causing problems if performed in parallel, e.g. if one pro-
cess component needs output from the other process com-
ponent). Tasks and their input, output and work descrip-
tion are well defined and may be under CM management
[23]. Examples of input and output (see Figure 3) are:
validated function requirements; function test plan; im-
plementation proposal, tested code; formally verified
code; etc. The ontology for the application domain must
be determined carefully [24] as all cases in the case li-
brary will be based on these and both reuse and identifi-
cation of similar processes and tasks is based on this ter-
minology. How to determine an ontology is beyond the
scope of this paper. System checkpoints may be defined
as a collection of information in a given revision state, for
example "milestone 14 is defined as a set of output being
in the completed or implemented state".
An example of a task with three needed inputs and two
output results is given in Figure 3. The only requirements
for the performance of the task are the input and the satis-
faction of the necessary selection criteria (the availability
of selected tools and skill in using them, manpower
needed for task, etc.). Additional information such as a
work description (how to produce the output given the
input) may be informal text, links to other documents or a
process description or workflow description. Input and
output are given as terms with arguments (predicate logi-

cal formulae used in planning, matching, verification and
simulation) and are either defined with other terms or are
atomic and defined by informal text.

Work descriptionInput
Output

Selection criteria
(project magnitude, members skill
and experience level, cost, time,

formality, etc.)

Task

Figure 3: Example of a task

A report or document in this context can be defined as a
set of tasks and output in a specific revision state (started/
ongoing/ implemented/ internally approved/ customer ap-
proved/ completed/…) in addition to layout information.

���7KH�&$%6�$SSURDFK�WR�5HXVH�DQG�9HULIL�
FDWLRQ

The system is illustrated in Figure 4. In the upper left-
hand corner, the user outlines the project, available re-
sources and perhaps sketches of parts of the development
process. A description of the project include magnitude,
quality requirements, standard requirements, preferred
tools etc. The matching algorithm [7] (the second box
from the upper left corner) uses input sketches to identify
tasks and processes which show similarities with the input
requests. After the matching algorithm has identified a set
of tasks, this result is used to rank the system development
processes stored in the case library. The user is presented
with the ranking result and can study the different propos-
als. When the user selects a proposal, the selected pro-
posal can be validated and verified against the input (the
5HYLVH box in Figure 4). For example there may be re-
quests and project circumstances not well handled in the
proposal and the user may decide to perform certain
modifications of the proposed process.
During verification the proposal or modified proposal
may not meet quality standards and its shortcomings will
be pointed out. If the user rejects the final proposal more
examples are requested (broken line out from 5HYLVH box).
If the solution is accepted (after verification and simula-
tion of its behavior), the new or adapted system develop-
ment process is stored in the case library. Once different
tasks in the process have been completed, their outcome,
problems and advantages may be added to the task in the
library. This gives every task in the case library a track

record which may be valuable for use as reference mate-
rial for future projects in which these tasks are considered
for reuse.

Process/task examples, project
circumstances, requirements

on development process

Prepare input for
matching

Identify similar
tasks and processes

Construct solution

(Formalised
processes)

R
e
t
r
i
e
v
e

R
e
u
s
e

Proposed Solution

R
e
v
i
s
e Simulate dynamic

Confirmed
System

development
process

Solution not
accepted

Adapt to conform

Verify against input

R
e
s
t
o
r
e

Rank processes
and tasks Prove properties

Provide more
requests/features/examples

Case Library

to input

behaviour

Tasks grouped
in processes

Figure 4: Outline of the CABS approach

���&RQFOXVLRQ

Using case-based reasoning in combination with formal-
ized system development processes offers certain advan-
tages over current practice in which system development
processes are mostly informal. The formalization permits
matching and comparison between different development
processes. Differences between a particular development
process and other processes such as a template process (a
high quality process template, a standard medium size
software project template, etc.) can be identified. The
prime advantage is that successfully adapted system de-
velopment processes become available for reuse. Adapted
system development processes which have been success-
fully used in a project are automatically made available
for reuse (less successful tasks and processes may also be
kept in the case library to assist in avoiding similar less
successful processes in future). This enables an organiza-
tion to preserve locally gained experience in terms of im-
proved and adapted system development processes.

The case-based reasoning system (CABS) is currently
being adapted to fit the application domain of develop-
ment processes more closely. In our further work we also
need to formalize a number of realistically sized system
development processes and store them in the case library.
Thereafter we propose an evaluation based on specific
projects for which the user need to develop a system de-
velopment process.

5HIHUHQFHV

[1] Doheny J.G. and Filby I.M. (1996). A framework and
Tool for Modeling and Assessing Software Devel-
opment Processes, The European Software Control
and Metrics Conference, 1996.

[2] Doheny J.G. and Filby I.M. (1996) Modelling Soft-
ware Development Processes and Standards, Techni-
cal Report AIAI-TR-205, University of Edinburgh.

[3] Sommerville I. (1996). Software Engineering, fifth
edition part one & five, Addison Wesley.

[4] Althoff K.-D., Birk A., Gresse von Wangenheim
C.and Tautz C. (1998) CBR for Experimental Soft-
ware Engineering. In Case-Based Reasoning Tech-
nology: From Foundations to Applications. Lenz M.,
Bartsch-Spörl B., Burkhard H.-D., Wess S. (eds).
Springer.

[5] Althoff K.-D., Bomarius F., Tautz C. (1998) Using
Case-Based Reasoning Technology to Build Learning
Software Organizations. In workshop on Building,
Maintaining and Using Organizational Memories.
http://SunSITE.Informatik.RWTH-
Aachen.DE/Publications/CEUR-WS/vol-14/ Abecker
A., et. Al (eds).

[6] Henninger S. (1997). Applying Organizational
Learning Techniques to Software Process Engineer-
ing Environments, in proceedings Automated Soft-
ware Engineering ASE´97.

[7] Funk, P.J. and Robertson D. (1995). Case-Based Se-
lection of Requirements Specifications for Telecom-
munications Systems. Second European Workshop
on Case-Based Reasoning, Proceedings, Keane M.,
Haton J. P., Manago, M. (eds.), Chantilly, France, pp
293-301.

[8] Funk, P.J. and Robertson D. (1998). Graphical Input
Sketches for Producing Formalised Behavioural Re-
quirements. Proceedings of International Workshop
on Visualization Issues for Formal Methods, VIS-
UAL´98. April, Lisbon, Protugal.

[9] Zave P. and Jackson M. (1996). Four Dark Corners
of Requirements Engineering. ACM.

[10] Acharya A. (1994). Scaling up production systems:
Issues approaches and targets. The Knowledge Engi-
neering Review, vol 9:1.

[11] Riesbeck C. and Schank R. (1989). Inside Case-
Based Reasoning, Lawrence Erlbaum Inc. Intelli-
gence, Budapest, Hungary, John Wiley & Sons Ltd,
pp 390-394.

[12] Kolodner J. (1993), &DVH�%DVHG�5HDVRQLQJ. Morgan
Kaufmann.

[13] Aamodt A. and Plaza E (1994), Case-Based Reason-
ing: Foundational Issues, Methodological Variations
and System Approaches. AI Communications, vol 7,
pp 39-59.

[14] Watson I. (1997). Applying Case-Based Reasoning:
Techniques for Enterprise Systems, Morgan Kauf-
mann.

[15] Pearce M., Goel A.K., Kolodner J.L., Simring C.,
Sentosa L. and Billington R. (1992). Case-Based De-
sign Support. IEEE, October, pp 14-20.

[16] Sycara K.P., Navinchandra D., Guttal R., Koning J.
and Narasimhan S. (1992). CADET: A Case-Based
Synthesis Tool for Engineering Design. International
Journal of Expert Systems, vol 4, no. 2, pp 167-188.

[17] Nakatani Y., Tsukiyama M. and Fukuda T. (1992).
Engineering Design Support Framework by Case-
Based Reasoning. ISA Transaction, vol 31, no. 2, pp
235-180.

[18] Maiden N.A.M. and Sutcliffe A.G. (1995). Require-
ments Engineering by Example: an Empirical Study.
Proceedings of IEEE International Symposium on
Requirements Engineering, pp 104-111.

[19] Fouqué G. and Matwin S. (1993). Compositional
Software Reuse with Case-Based Reasoning. Confer-
ence on Artificial Intelligence Applications 1993,
IEEE, Florida.

[20] Yang S.-A., Robertson D. and Lee J. (1995). Use of
Case-Based Reasoning in the Domain of Building
Regulations. Topics in Case-Based Reasoning,
Springer-Verlag, pp 292-306.

[21] Chen-Burger J. and Robertson D. (1998). Formal
Support for an Informal Business Modelling Method.
10th International Conference on Software Engi-
neering and Knowledge Engineering (SEKE'98),
USA.

[22] Hunt J. (1997). Case based diagnosis and repairs of
software faults. Expert Systems, vol 14, no 1, pp 15-
23.

[23] Crnkovic I., Funk P.J. and Larsson M. (1999). Proc-
essing Requirements by Software Configuration
Management. Euromicro 99 Conference, York, June.

[24] Uschold M., (1996). Building Ontologies: Towards a
Unified Methodology, Proceedings of Expert Sys-
tems 1996, Cambridge, UK.

