
Mälardalen University Press Dissertations

No. 95

LEAN THINKING APPLIED TO SYSTEM
ARCHITECTING

Håkan Gustavsson

2011

School of Innovation, Design and Engineering

Copyright © Håkan Gustavsson, 2011
ISBN 978-91-7485-003-1
ISSN 1651-4238
Printed by Mälardalen University, Västerås, Sweden

Abstract

Software-intensive systems are increasingly part of new products, which
leads to significant business impact. This is especially true for the
automotive industry where a majority of new innovations are realized
through the use of software. The architecture of the software-intensive
system will enable value creation when working properly or, in the worst
case, prevent value creation.

Lean Thinking is about focusing on the increase of customer value and on
the people who add value. This thesis investigates how system architecting is
performed in industry and how it can be improved through the use of Lean
Thinking. The architecting process does not create immediate value to the
end customer, but instead creates the architecture on which value, in terms of
product features and functionality, can be developed. A Lean tool used to
improve the value creation within a process is Value Stream Mapping
(VSM). We present a method based on VSM which is adapted to enable
analysis of the architecting process in order to identify improvements.

A study of architecting at two companies shows what effect differences such
as a strong line organization or a strong project organization have on the
architecting process. It also shows the consequences technical choices and
business strategy have on the architecting process. In order to improve the
understanding of how architecting is performed, a study was carried out,
including interviewing architects at six different well-known international
companies. The study presents the practices that were found to be most
successful. The context of the different companies as well as the architecting
practices are compared and analyzed.

The early design decisions made when developing software-intensive
systems are crucial to the outcome of development projects. In order to
improve the decision-making process a method based on Real Options was
developed. The method improves the customer focus of critical design
decisions by taking the value of flexibility into account.

This thesis provides a toolbox of knowledge on how Lean Thinking can be
applied to system architecting and also presents how architecting is
performed in industry today.

ii

iii

Acknowledgements

Going through the process of getting a PhD is a long and winding road,
similar to raising a baby. At first, even before the baby is born, the parents
think a lot about what becoming a family will be like. This is very similar to
before starting work for a PhD. You think you know exactly what it will be
like and what you will do, but in the end it is like nothing you could
imagine.
As an industrial PhD student I sometimes miss the academic atmosphere
found at the university. When visiting Mälardalen University I have always
found support and inspiration from the members of the BESS research
group. It has been wonderful to make this PhD journey together with Peter
Wallin and Stefan Cedergren.
This work has been supported by the Knowledge Foundation, the Swedish
Agency for Innovation Systems (VINNOVA) and Scania CV AB, for which
I am grateful. I also owe my thanks to many people at Scania who have
given me support and interesting discussions. I am grateful to my former
manager, Nils-Gunnar Vågstedt, and current manager, Tony Sandberg, for
always giving me time to discuss my research and taking care of the
project’s administration.
My steering committee has done a great job in keeping me on track and on
time. My former industrial supervisor and co-author Jan Sterner was great
support at the beginning of the journey. During the latter part I was lucky to
have a great partnership with my co-author, Ulrik Eklund. My assistant
supervisors, Joakim Fröberg and Christer Norström, have provided great
support throughout my journey. Discussions with Christer Nordström early
in the project were particularly good inspiration and motivation. This
journey would not have started if it were not for my supervisor Jakob
Axelsson. He was one of the main reasons I started this journey and has
guided me to the end, always challenging, supporting and continuously
improving my skills. You have been amazing!
I would like to thank my parents for giving me the courage to accept the
challenge of pursuing this journey, but recently the biggest fan of my
research has been Ebba. When I explain my recent findings to her she
sometimes screams with happiness. Her enthusiasm is always there, and
even when I discuss research methodology she waves her arms in joy.

iv

Needless to say, Ebba is my newborn daughter who has been the best
motivation to finish on time. Lastly, this work would not have been possible
without the love and support of my fiancée Cecilia, and I am looking
forward to continuing our journey together. You are the light of my life.

Håkan Gustavsson
Huddinge, February 2011.

v

List of Included Papers

Paper A
Improving the system architecting process through the use of Lean
tools. Håkan Gustavsson and Jakob Axelsson, In Proceedings of
Portland International Conference on Management of Engineering
and Technology, ISBN: 978-1-4244-8203-0, Thailand, 2010.

The case study at Scania and Volvo Cars was conducted in co-
operation with Ulrik Eklund. The paper was written by the author
with support from Jakob Axelsson.

Paper B
Architecting Automotive Product Lines: Industrial Practice. Håkan
Gustavsson and Ulrik Eklund, In Proceedings of the 14th
International Software Product Line Conference, ISBN: 978-3-
642-15578-9, Lecture Notes in Computer Science, Vol. 6287,
South Korea, 2010, pp. 92-105.

The design of the study was made by the author. The remaining
work was done in close co-operation with co-author Ulrik Eklund.

Paper C

A Comparative Case Study of Architecting Practices in the
Embedded Software Industry. Håkan Gustavsson and Jakob
Axelsson, To be published in Proceedings of 18th IEEE
International Conference and Workshops on Engineering of
Computer-Based Systems, IEEE, Las Vegas, April, 2011.

The case study was conducted by the author and the paper was
written with support from Jakob Axelsson.

vi

Paper D

Evaluation of Design Options in Embedded Automotive Product
Lines. Håkan Gustavsson and Jakob Axelsson, in Applied Software
Product Line Engineering, Editors K. C. Kang, V. Sugumaran, and
S. Park, ISBN: 9781420068412, Auerbach Publication, 2009, pp.
478-495.

The development of the method was conducted by the author and
the book chapter was written with support from Jakob Axelsson.

vii

Additional publications

Theses
• Economical valuation of architectural decisions within automotive

electronics. Håkan Gustavsson, Licentiate thesis, Mälardalen
University Press, October, 2008.

Journal
• Architecting Automotive Product Lines: Industrial Practice. Håkan

Gustavsson and Ulrik Eklund, Invited and submitted to Journal of
Science of Computer Programming, Elsevier, 2011.

Conference papers
• Architecting Complex Embedded Systems: An Industrial Case

Study. Håkan Gustavsson and Jakob Axelsson, To be published in
Proceedings of IEEE International Systems Conference, Montreal,
Canada, April, 2011.

• Implementing Value Stream Mapping: VSM in a R&D
organization. Johan Tingström, Håkan Gustavsson and Peter Palmér,
In Proceedings of the 8th Biannual Conference Norddesign 2010,
ISBN 978-91-633-7064-9, Gothenburg, August, 2010

• Analyzing the System Architecting Value Stream. Håkan
Gustavsson, Jakob Axelsson and Stefan Cedergren, In Proceedings
of the 7th European Conference on Systems Engineering, Stockholm,
May, 2010.

• A Framework for the Evaluation of Resource Efficiency in
Automotive Embedded Systems. Håkan Gustavsson and Erik
Persson, In Proceedings of the ASME 2008 International Design
Engineering Technical Conferences & Computers and Information
in Engineering Conference, ASME, ISBN 0-7918-3831-5, New
York, August, 2008.

• Evaluating Flexibility in Embedded Automotive Product Lines
Using Real Options. Håkan Gustavsson and Jakob Axelsson, In
Proceedings of the 12th International Software Product Line
Conference, IEEE, ISBN 978-0-7695-3303-2, Limerick, September,
2008.

viii

• An Industrial Case Study of Design Methodology and Decision
Making for Automotive Electronics. Håkan Gustavsson and Jan
Sterner, In Proceedings of the ASME 2008 International Design
Engineering Technical Conferences & Computers and Information
in Engineering Conference, ASME, ISBN 0-7918-3831-5, New
York, August, 2008.

• Using Real Options In Embedded Automotive System Design.
Håkan Gustavsson and Jakob Axelsson, In Proceedings of the
Conference on Systems Engineering Research, INCOSE, Redondo
Beach, April, 2008.

Workshops
• Coping with Variability in Automotive Product line Architectures

Using Real Options. Håkan Gustavsson and Jakob Axelsson, In
Proceedings of the 11th International Conference of Software
Product Line Conference, workshop on Managing Variability for
Software Product Lines, Kyoto, Japan, September, 2007.

ix

Preface

I have taken this opportunity to present myself and the background to this
work. I have worked with vehicle electronic systems integration and
architecture at Scania in Södertälje since 2002. At Scania, each truck and bus
produced is customer ordered and unique, but is based on the same
architecture. In order to reduce complexity, the interfaces need to be simple
and flexible and this often requires a trade-off. When I started working as an
architect, I thought decisions were made solely on the basis of technical and
financial aspects. It soon became clear that the technical issues are often the
easy part of the job. The organizational issues, such as where competence is
allocated or how responsibilities are shared, are often much more complex.
As my only experience of architecting comes from working at Scania, I
thought I needed to learn more in order to improve our way of working. This
idea led to the start of my research journey. Working at Scania, it is hard not
to be affected by the company’s core values, which are very influenced by
Lean. Scania has applied Lean to its production for 20 years, and for more
than 10 years in research and development. This background resulted in the
question of how we can improve our work further by applying Lean
Thinking to system architecting.
I hope this work will provide academia with knowledge of how architecting
is performed in industry and how Lean can be applied to architecting. I
believe that the methods found can be used in industry for comparison and
inspiration regarding process improvements.

x

xi

 Table of Contents

Chapter 1. Introduction ...1
1.1 Background ..2
1.2 Research scope ...9
1.3 Thesis outline ...12

Chapter 2. Related work ..13
2.1 The architecture ..14
2.2 Business domain...16
2.3 People and organization ...17
2.4 Architecting support ...19
2.5 Lean development ..26

Chapter 3. Research methodology ..31
3.1 Research design..32
3.2 Validity...34

Chapter 4. Research results ...37
4.1 Paper A: Improving the system architecting process through the use

of Lean tools ..38
4.2 Paper B: Architecting automotive product lines: industrial practice..
 ..38
4.3 Paper C: A comparative case study of architecting practices in the

embedded software industry ..39
4.4 Paper D: Evaluation of design options in embedded automotive

product lines...40
Chapter 5. Discussion ...41

5.1 Lean architecting ..41
5.2 Identifying best practice ...42
5.3 Industrial impact...43

Chapter 6. Conclusions and future work..45
6.1 Summary of results...45
6.2 Future work ..46

References..49

xii

Paper A ..57

Paper B...73

Paper C ..91

Paper D ..107

Chapter 1. Introduction

Product development involving software-intensive systems is becoming
more and more complex, both organizationally and technically. Most large
companies are offering their products to a global market and development is
often conducted in different countries. Global presence leads to an increased
number of variants and more competitive market. A global product
development organization is challenged by geographical distance, cultural
differences and, more practically, different time zones. To stay competitive
models are launched more frequently, leading to a demand for shorter
development cycles and a shorter time-to-market. The development cycle
can be shortened by improving the process – making more with fewer
resources. The development cycle can also be shortened by increased reuse
of technology and components– making more variants with fewer parts. Or
as stated by a Japanese development manager:
“No-change development is the best development”.
Software-intensive systems are often cross functional, which leads to more
and closer cooperation with suppliers and between different organizational
units. The increased complexity of the products through a larger number of
variants and models places high demands on the interfaces between the
different parts of the system. The architecture of those systems is therefore
important in order to handle the complexity and to cope with market
demand. In 1951, the architect of the DC3 aircraft series highlighted some of
the essentials of successful aircraft development. One of the fundamental
elements is argued to be the adaptiveness of the development process:
“The ability to cope with the unexpected. Since no amount of planning or
technique can bring all factors under control, there must be an ability to
capitalize on good luck or minimize the effects of hard luck.”
Today, it is even more important to reduce risk in the early phases of
development in order to prevent projects running over time and budget. This
thesis aims at improving how system architecting is performed by the
analysis of industrial practice and through the development of new methods.

2 Introduction

1.1 Background
Architectural changes to distributed embedded systems are either
evolutionary or revolutionary [40]. The main purpose of this research project
is to understand the evolutionary architecting process and its contribution to
lean values. The lean philosophy is basically common sense that is packaged
so it can be applied to different domains. The project will thereby provide an
understanding of the process and the value of the deliverables coming out of
the architecting process.

1.1.1 System architecting
The context of architecting includes many disciplines, ranging from human
science to computer science [64]. Even the architecture of software-intensive
systems is a very large concept. The level of architecture studied in this work
is focused on a complete system level. The architects at this level are
responsible for the overall system, rather than just one sub-system. The main
industrial users of the results from this project are systems architects and
their managers, but the results will also be highly relevant to developers of
software-intensive systems. The academic reader is probably conducting
research in the field of software engineering or technology management.
In order to approach the field of system architecture scientifically, it is
necessary to define the terminology as precisely as possible, and we will
therefore now introduce definitions of some key concepts.
System is defined by Rechtin and Maier [61] as a set of different elements so
connected as to perform a unique function not performable by the elements
alone.

Figure 1 Examples of software-intensive systems.

Introduction 3

Software-intensive system [1]: Any system where software contributes
essential influences on the design, construction, deployment, and evolution
of the system as a whole. Examples of such software-intensive systems are
industrial robots and vehicles (Figure 1).
Architecture [1]: The fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment, and
the principles guiding its design and evolution.
Architecting is the process (Figure 2) of shaping the architecture to meet
customer demand by balancing requirements, guiding principles and product
vision.
One architect interviewed in this project replied as follows to the question:
How do you know if the architecting process is working well?
“When new functionality can be absorbed by the architecture without the
need for large changes.”
A similar view is given by Coplien and Bjørnvig [23] when explaining how
architecture adds value to the end-user. Good architecture shortens the time
between understanding user needs and delivering a solution by eliminating
rework [23].
According to Maier and Rechtin [61] one of the most widely applicable
heuristics in systems architecting is: “Simplify. Simplify. Simplify.” Another
is “Build in and maintain options as long as possible in the design and
implementation of complex systems. You will need them.”

System
Architecting

Customer demand
Revised architectureLegacy architecture

Vision

Knowledge
Customer value

Resources

Principles

Requirements

Figure 2 Attributes that affect the architecting process.

4 Introduction

Similar heuristics was found in a case study at Scania [39]. A development
team illustrated how alternatives are evaluated on the basis of three
architectural principles:

• Simple is best.
• Smallest number of variants.
• Minimal interface between modules.

1.1.2 Automotive embedded systems
Today, most innovations made within the automotive domain are driven by
electronics. In 2006, Volvo Cars [28] estimated the value of electronics in a
high-end car to be 30%. The increased use of electronics also means that the
organization involved in the development of embedded systems is growing.
Figure 3 shows the increase in employees within embedded systems at
Scania as well as the stagnating effect of the automotive crisis in 2008-2009.
According to a study by Hoch et al. [44] the total value of electronics in
automobiles was expected to rise from 25% in 2006 to 40% in 2010.
Automotive customers demand new functionality with every new product
release and the time-to-market is constantly shortened. One example of new
functions is Advanced Driver Assistance Systems that help the customer to
drive the vehicle safety. Those systems typically use information about the
surroundings to increase road safety.

100%

120%

140%

160%

180%

200%

220%

2003 2004 2005 2006 2007 2008 2009 2010

Year

Figure 3 The accumulated increase in employees within embedded
systems at Scania relative to 2003.

Introduction 5

This is done by using sensors to identify nearby objects or communication
with other vehicles or infrastructure to obtain more information. The
increased interaction between various components and the wider boundaries
of the system increases its complexity and demands flexibility for easy
integration.
The building blocks of an automotive electrical and electronic (E/E) system
consist of electronic control units (ECUs) executing the software modules
that implement the functionality. ECUs are connected to communication
networks. As shown in Figure 4, the communication networks are usually
divided into sub networks and the communication between those is done
through gateway ECUs connected to a backbone. Different sensors and
actuators are connected to the ECUs, depending on how functions are
allocated to the ECU.
When designing an automotive E/E system, there are many different
attributes to consider, such as functional requirements, energy management
and the wiring harness [37].

Figure 4 A typical vehicle communication network.

6 Introduction

1.1.3 Lean
The concept of Lean derives from the production methods developed by
Toyota in the 1950s. Since then, Lean philosophy has been applied to
diverse areas of operation. The ideas originating from Toyota are also used
in the Six Sigma quality system [41]. Lean development is a way of thinking
and a system of management used to create customer value [91]. The value
creation starts at the suppliers and goes through factories into product
features and out to customers. The concept of Lean production has today
moved from manufacturing into various sectors, such as maintenance,
purchasing, logistics, and on to product development, which is the topic of
this thesis. In a comparison of the product development process made by
Morgan [62] it was found that Toyota outperformed its US competitors in
both quality and time-to-market.
Software development has also been inspired by Lean, resulting in Scrum,
Agile [82] and Lean Software Development [70]. In this thesis, Agile is used
to refer to the software development practices of the Agile Manifesto1.
Mapping the practices to the different functions (Figure 5) of a company that
produces software-intensive systems shows how Lean is a much larger
concept than Agile, for example. Agile is applied only to the development of
software and Scrum is used mainly within R&D. Six Sigma can be used to
improve processes in most parts of the company, but does not discuss
cultural issues [41]. The Lean philosophy is not just a set of tools; instead it
affects all parts of the company, from human resources to marketing. This is
also the reason why Lean applies so well to architecting, because
architecting is a cross-functional activity.
It is important to note that none of the seminal work in Lean Product
Development was carried out by people working inside Toyota or by native
Japanese people. This means that the available knowledge should be
considered more as a western interpretation of the Toyota Way, though the
success of the Lean philosophy is undeniable.
Lean development focuses on creating re-useable knowledge - knowledge
that contributes to the profitability of future operational value cycles and that
can ideally be used for many projects [91].

1 http://www.agilemanifesto.org/principles.html

Introduction 7

Baines et al. [7] present the result of a systematic literature review of what is
meant by the term Lean in product development. One finding is that the
definition of Lean is drifting and moving from waste reduction towards
value creation. Another result is that value is added in product development
when useful information is produced, but value needs to be defined
precisely.

R
&

D

A
dm

inistration

Sales &
 Service

Production

Lean

Agile

Scrum

Six Sigma

Figure 5 Implementation of development practices in the organizational

parts of a company.

1.1.4 Personal experience - Lean in Japan
During a study trip to Japan I visited a number of companies and personally
experienced the culture that gave birth to the Lean philosophy.
Within Japanese culture there is great dedication to following rules and
avoiding errors. Lean literature often mentions how work should be
standardized in order to ensure quality. My experience is that it is easy to
make a standard, but very hard to get everybody to follow it. Visiting a
Toyota factory, I noticed how everybody at the plant indicated with their
hands that they are looking right and left before crossing a street. Finally
they pointed straight ahead before crossing. During the entire two hour stay
at the factory I did not see anyone breaking this standardized way of
crossing. Independent of the number of people crossing, everybody did it
according to the standard. This practice is called pointing-checking (yubi-

8 Introduction

sashi-kakunin) and is a common Japanese practice for dealing with safety
checks.
In development, other methods are used to ensure quality. The main method
I experienced during different company visits was the extensive use of
checklists. Checklists are used during all different steps of the development
process. The checklists reflect the engineering knowledge accumulated over
time. When a failure is found during test activities the relevant checklist is
updated. In this way, checklists are used to ensure that errors never will be
repeated, as well as to transfer knowledge. When visiting one company they
explained that they not only test to the specification, but also to twice the
limit of the component.
Japanese companies invest a great deal in training new employees. New
students are therefore educated during their first years at the company [63].
One company mentioned that 70-90% of the time was spent on education
during the first year and 50% during the second year, another company
mentioned that even math was taught. One possible explanation as to why
companies invest so much in their employees is the Japanese concept of
lifetime employment. If engineers move, they usually move from original
equipment manufacturer (OEM) to supplier; it is rare to move from supplier
to OEM. Unlike in the west, a salary decreases on changing employment
[36].
Lean literature argues that companies should establish long term
relationships with a small number of suppliers, so you can really know them,
and they rely on you for business [91]. Studies made by Fujimoto and Clark
[18] shows that Japanese OEMs involve suppliers to a much higher degree
than in the US and Europe.
The companies we visited also seemed to be working closer to the supplier
than western companies. This is supported by a study of patent applications
[57] made by Japanese automotive OEMs and their suppliers. It shows that
the ratio of shared patents applications made by Toyota is twice as high as its
Japanese competitors. This study indicates that Toyota works very closely
with its suppliers in the early phases of development. It also shows that
Toyota, in this regard, is different from its Japanese competitors. Research
and Development in Japanese companies are often geographically separated
(Figure 6). Corporate research seems to include what is commonly defined
as research and advanced engineering. The manufacturing we visited
includes development and production. Development is located by the
production site in order to support production.

Introduction 9

Development ProductionResearch
Advanced
Engineering

Corporate Research Manufacturing

Figure 6 Organizationally and geographically separated functions in the
R&D organization.

During my visits, two explanations were given as to why research is
separated:

• To attract top students they need to be close to the top universities.
• To keep research disconnected from production and development.

Having a separated organization could entail complications for the
architecture of the system. During our study trip the companies we visited
showed a great deal of interest in how to achieve reuse and product
modularization, although there was no hard evidence found to show that the
level of reuse is low.

1.2 Research scope
The purpose of this research is to improve how systems architecting is
performed within software-intensive systems. A more specific purpose is to
find the success factors for different methods used within the industry.
The overall goal of the project is to investigate how system architecting is
performed in the automotive industry and how it can be improved by the use
of Lean Thinking. To achieve this goal, architecting will be studied in
various industrial settings in order to find a successful use of methods and
areas for improvement. Lean Thinking will be studied to find how it can be
applied within the architecting of software-intensive systems. New methods
that can improve decision making when developing software-intensive
systems will be developed and evaluated. The results of this research are
increased knowledge in this field. Case studies of the system architecting
process at the different companies will result in an increased understanding
of the system architecting process. The analysis of the processes will provide
the companies with inspiration for improvements and ease future academic

10 Introduction

studies within the field. Four research questions (RQ) are stated in the
following sections and their relationships to business, architecture, process
or organization [90] are mapped in Figure 7.

Busin
es

s

Organization

Process

Architecture
RQ1 RQ2

RQ3

RQ4

Figure 7 The relationships between the research questions (RQ).

1.2.1 Research question 1
Lean Thinking aims to improve the development process by creating a
cadenced flow. Understanding the process and the methods that are used and
available is important in order to improve the processes. The architecting
process described in the documentation is generally not the same as the real
process. The real process needs to be mapped to find what artefacts are
produced and for what customer. If unnecessary iterations and artefacts can
be eliminated, the process will be faster and more efficient. One hypothesis
to be tested is whether Value Stream Mapping is a suitable method.
How can an architecting process be mapped in order to identify
improvements?

1.2.2 Research question 2
To be able to compare different practices, one needs to understand the
context of the specific architecture under observation. The context might be
influenced by lifecycle, procurement strategy, organization, volume, and
guiding principles. Different methods can help you find the best solution, but
some will be more effective than others. To better understand how solutions
are reached one needs to study how engineering tools are really used, for

Introduction 11

example, and how tasks are performed. Depending on the context, different
methods will be more suitable than others and also affect what tasks that
needs to be done. When you know what tasks are needed you can start
improve in order to create an efficient flow through the architecting process.
What tasks are performed in the process of architecting automotive
embedded systems?

1.2.3 Research question 3
Just because a method is used it does not mean it will be successful. How
roles are distributed throughout the organization and how information is
communicated is probably important. According to Cedergren [17] product
development is to be considered successful if its products not only satisfy the
needs of its customers, but also creates value to its stakeholders at large. The
methods used within the architecting process should then be considered
successful if the results are valuable to its stakeholders and the architecture
fulfills the needs of the customer Success might also depend on issues such
as what authority and responsibility is given to the involved stakeholders.
The answer to this question can be used as a guideline for when to use
different methods.
In what context are the methods used within the architecting process
found successful?

1.2.4 Research question 4
Embedded systems are evolving and changes are continuously being
introduced. A Lean architecture needs to be flexible in order to reduce the
number of variants [63]. To cope with those changes, the system needs to be
designed with the right amount of flexibility. A product that has an
architecture that can absorb new functionality will be able to react quickly to
new customer demands and thereby provide customer value. RQ 4 aims at
developing methods that will aid the architect when making architectural
decisions.
How can one value the flexibility needed to withstand an uncertain
future in automotive embedded systems?

12 Introduction

1.2.5 Contribution
The main contribution of this thesis is to present how Lean Thinking can be
applied to system architecting. The contribution is presented in paper A, B,
C and D:

• In Paper A, Value Stream Mapping is adapted to be suitable for
identifying potential improvements to the architecting process. A
case study presents, in general terms, what types of waste and
improvements could be found.

• The different tasks performed when architecting automotive
embedded systems are presented in Paper B. To understand how
different methods are suitable in different contexts, a case study is
conducted.

• The contexts of the different companies, as well as the architecting
practices, are compared and analyzed in Paper C.

• To improve how decisions are made in the early phases of
development, a method and process is presented in Paper D. The
method shows how flexibility can be valued.

1.3 Thesis outline
The thesis contains an introductory part and a collection of the articles
metioned previously. The introductory part is divided into seven chapters.
Related work is presented in the next chapter. This is followed by the
research methods used to study each of the questions presented in Chapter 1.
The research results and their relation to the appended papers are described
in Chapter 4. The appended papers are summarized in Chapter 5. Finally, the
results are discussed in Chapter 6 and conclusions and future work is
proposed in Chapter 7.

Chapter 2. Related work

This section describes research in the field covered by this thesis and
provides a frame of reference for the concepts used. The architecture reflects
the business goals of a company. Product development involves many
stakeholders that have an interest in the system during its entire life-cycle.
The development process will include stakeholders from departments such
as purchasing, aftermarket and sales. How those stakeholders are organized
within the organization will affect what solutions are chosen and also the
system architecture. Changes in the concerns architecture (Section 2.1),
business (Section 2.2), process or organization will, according to van der
Linden et al [90], have an impact on other concerns. The competence and
skills of the individual people working in the organization will influence
how the work is performed (Section 2.3).
Architecting is affected by various support functions surrounding the
development activities. Computer aided tools are necessary to handle the
large amount of information needed to make the right decisions and to
preserve knowledge of previous decisions. Processes are needed to aid the
architecting activities and the process can be improved using different
approaches, as discussed in Section 2.4.1. There are many different methods
available; the methods most suitable for architecting are presented in Section
2.4.2.

People

BusinessOrganization

SupportArchitecture

Lean Architecting

Figure 8 The context of Lean Architecting.

14 Related work

2.1 The architecture
Architectural trends in the automotive domain are currently changing, but
there has been a philosophy of “one function – one ECU”. There have been
various attempts to resolve these issues. Academic projects like DECOS [69]
have proposed standardized system architectures. The EAST-EE project [27]
proposed an architecture description language to support component-based
development. In 2003, a number of automotive OEMs and suppliers
launched the Automotive Open Systems Architecture (AUTOSAR) with the
aim of creating an industry de-facto standard for automotive software. The
main motivations behind AUTOSAR are very similar to those addressed by
Ommering and Bosch [24], where the basic arguments for software product
lines are listed; size, complexity, quality, diversity and lead time reduction. It
is also pointed out that it is hard to succeed in combining components from
different companies without a common global architecture. To address those
topics, AUTOSAR both defines an architectural framework and a supporting
component framework to achieve an instantiation between the basic
hardware and the application software. Large parts of the automotive
industry are now adapting to this standard [42] and AUTOSAR will change
how software is integrated into embedded systems within the automotive
industry [3]. The transition from a proprietary architecture to AUTOSAR
involves many stakeholders, ranging from developers and testers to
purchasing.
Most automotive software is now bought at a fixed price associated with a
specific hardware. AUTOSAR will enable sales of pure software
components; it will therefore change the acquisition process and the terms on
which software is priced. The supplier structure of the automotive domain is
in this case both a driver and a challenge.
Architectural changes in distributed embedded systems are either
evolutionary or revolutionary [4]. Evolutionary changes to the system are
continuous improvements and increasing functionality. Revolutionary
changes are made when large fundamental changes are needed. A common
scenario occurs when the technical debt [25] of the system has increased so
much that the cost of evolutionary changes become too expensive. Due to
the technical debt in terms of “spaghetti code” or undocumented system
architecture, the cost of changes is increasing. Revolutionary changes could
also be caused by market changes or when adapting to a new standard, as is
the case with AUTOSAR.
One way to capture the knowledge stored in existing architectures and the
vision of future needs is a concept known as Reference Architecture [20]. A

Related work 15

Reference Architecture is a standard or template based on the previous best
practice of the domain. The evolution of an automotive Reference
Architecture is described by Eklund et al. [30].
Another way to manage the architecture is through the use of Software
Product Lines. The term Software Product Lines is defined by Clements and
Northrop [19] as:
“A software product line is a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from a common
set of core assets in a prescribed way.”
The practice of Software Product Lines involves long-term strategy and the
management of the core assets in order to increase reuse and decrease time to
market. Industrial uses of Reference Architectures [20] are in some cases
very similar to the use of Product Line Architectures [9].
The use of Software Product Lines has a great deal in common with the
traditional manufacturing of mass-produced products and, in this way, is
nothing new. What differentiates Software Product Lines from component-
based development is the larger scope, involving both business and
management aspects.
Blackenfelt [10] discusses why modularization should be applied to product
development. He concludes that the freezing of interfaces should be the last
step in the modularization project. Similarly to software product lines
engineering, it is argued that the product will benefit from the investment
after the introduction of a few family members or variants (Figure 9).

Number of family members or variants

Cost
Traditional

Product Line Engineering
or modularisation

Figure 9 Total product cost in relation to the number of variants [93].

16 Related work

2.2 Business domain
The business domain of a company has a large impact on the architecture.
Factors such as the type of customers, sales volume and the lifecycle of the
product will influence the architecture. A company that builds a small
number of variants of one system with low complexity and few developers is
not likely to invest anything in developing the architecture. Companies who
develop software-intensive systems have the common challenge of managing
the complexity of mechatronic systems. The systems addressed in this work
often have a lifecycle of 20-30 years and long term service contracts.
The strategy of using one common architecture for all variants seems to be a
viable solution in order to keep cost and complexity at a low level, but this is
not always the case. In the case of Bosch [81, 84] it was found that they
needed to implement a low-end and a high-end architecture in order to stay
competitive in different market segments.
The long term strategy of the company has great implications for the
architecture. If the strategy is to lead technology development in one field,
they need to keep the knowledge in-house or perform co-development with
strategic partners. A component developed in-house or in close co-operation
is much more likely to fit into the existing architecture than a purchased
component. The procurement strategy of make or buy has great implications
for architecture and the project’s success [35]. The complexity of the
component in comparison to customer value is one way to make the trade-
off. Figure 10 illustrates a common strategy of keeping components with
high complexity and high customer value in-house to guard the expertise.
Simpler components with low customer value are found to be more
beneficial to outsource because they are not viewed as core competence and
are easier to specify.
Commercial vehicles and passenger cars are part of the automotive domain
and similar in many ways, but even within one industrial domain there are
many differences. The main purpose of commercial vehicles is transportation
of goods, but the transport task differs with each customer and market. The
customer requirements on the vehicles are very different. A commercial
vehicle must manage to run 300,000 km per year; breakdowns do not just
influence the driver, but also the delivery time of the goods being carried.
Commercial vehicles have a lot in common with passenger cars, much of the
functionality is found in both segments [100]. The differences in business
aspects affect the architectural requirements.

Related work 17

Complexity

Customer value

In-house
development

Outsource
development

Figure 10 Procurement strategy - make or buy.

2.3 People and organization
In 1951, Arthur Raymond, architect of the DC3 aircraft, stated that in order
to be successful the design area should be close to both testing and
prototyping [72]. In 1968, the origin of what later would be known as
Conway’s Law [21] was presented: “Any organization that designs a system
will inevitably produce a design whose structure is a copy of the
organization's communication structure.”
More recently, Coplien [23] addressed this issue in software development
with the following technique: “Be attentive to domain partitioning. In
particular do not split a domain across geographic locations or architectural
units.” This technique is often seen implemented in the automotive domain
where development is divided into the architectural units of the vehicle,
although this was done long before the introduction of software.
The architects carry knowledge across different functions. The geographic
and organizational location of the architects is therefore important.
Knowledge sharing between architects is affected, whether they are
colocated or separated. The organizational structure of a company often
mirrors the product architecture of the products it produces. Henderson and
Clark [43] explain how this tie between product and organization causes
difficulties when the architecture need to be changed. One example of how
the performance of the organization is affected by the architecture is given
by Reinertsen. He argues that developers will be more effective if they are
organized around the modular structure of the product [74]. Unphon and
Dittrich [86] conclude that one must consider the organization and business
domain when adopting a product line architecture. In a study of eight
different software development organizations [87], it was found that the

18 Related work

architecture is maintained and evolved through face-to-face communication
rather than documents. Coplien and Bjørnvig argue that developers and
testers should be friends and there should be ongoing testing support during
development [23].
The size of the R&D organization, as well as the size of the system
development organization, will also affect the role of the architect. In a small
organization everyone will be an architect. Eventually, when it is not
practical for everybody to talk to each other someone will take on the role of
an architect. Or, as stated by Rechtin; “architecting is a consequence of
system complexity” [73]. As the number of architects grows they will also
need coordination. Coplien and Harrison [22] have developed organizational
patterns suitable for software development. Three of them are presented
below:
Engage customers. This stresses the importance of the development
organization ensuring and maintaining customer satisfaction. This can be
achieved by encouraging communication between customers and the
different roles in the development organization.
Function owner and component owner. To ensure responsibility, every
function and component should have a dedicated owner.
Developer controls the process. The developer should be at the centre of
the process and also be able to change the process.
The type of organization will affect how communication is carried out and
how decisions are made. The power centers of an organization also affect
how work with the architecture is done. Nedstam [66] presents the great
differences between how work is done in an organization with strong line
management and in an organization with strong projects. This has also been
found to be true at the companies studied in Paper B of this thesis.
Kruchten [58] suggests that the productive time spent by architects can be
sorted into three categories: internal (architecture design), inwards (input
from outside world) and outwards (providing information) communication
and that they should roughly have the ratio of 50% internal, 25% inwards,
25% outwards. In order to work effectively as an architect it is important to
understand the organization and to know who is the right person to answer
the current question. Different companies have different cultures and the
culture varies depending on the geographic location.
In a survey of 279 IT architects in the Netherlands, Farenhorst et al. [32]
conclude that architects are lone decision makers; not very willing to share
architectural knowledge, but eager to consume. A study of decision-making

Related work 19

in Swedish and German teams [65] concludes that Sweden has flatter
organizational hierarchies and that the decision-making process is less
formal. This is well-known to people working across those borders, but
could cause unnecessary tension if forgotten. Rechtin [61] highlights the
importance of architects understanding the cultural characteristics of the
organization in order to be successful.

2.4 Architecting support
The architecting process needs to fit into an overall product development
process and the work should be supported by methods and sub-processes.
Tools will be used to document and analyze the architecture. Those tools
will mostly provide support, but often also constrain and limit the way
architecting is done. The architect will need to make choices and sometimes,
more importantly, communicate the pros and cons of different solutions.
Visualizing different possible solutions (Figure 11) is therefore important
even for the solutions that are not chosen.

Cost

Customer value

Challenge

Introduce

Insanity

Possible

Figure 11 One way to visualize different possible solutions.

Different architectural frameworks exist in order to effectively describe and
communicate architectures. Architectural frameworks are often used to
describe the details of architecture. Greefhorst et al. [38] have performed a
comparison of many of the existing frameworks. They found that there are
many differences between the existing frameworks and conclude that the
differences partly depend on different original goals and context. Describing
an architecture is also standardized in IEEE 1471 [49]. The frameworks used
by the defense industry, for instance, are shaped by a long systems
engineering tradition and driven by requirements.

20 Related work

2.4.1 Process and process improvement
The importance of embedded systems, together with a growing organization
developing a system that is becoming more complex every day, makes the
performance of the development process crucial. High performance is the
result of efficiency and effectiveness in each activity [16]. Effectiveness is
defined as doing the right thing and efficiency as doing the thing right. The
architecting process involves many stakeholders who all produce knowledge
needed to develop the architecture. Liang et al. [60] present a process based
on architectural knowledge for software architecting. Architecting of
software systems are described in many pieces of literature; Eeles [29]
presents the process of software architecting of IT system [29]. Most
available architecting processes are software oriented, though the
architecting method CAFCR [64] is one exception. This has a focus on what
the internal and external customer wants on a system level of embedded
systems. Through comparison of available processes, Hofmeister et al. [45]
have developed a generic process (Figure 12) for creating and maintaining
an architecture. Inspired by Scrum [82], the process emphasizes the need for
a backlog to keep track of issues found in the architecture.

Different methods can be used to assess the process and to find
improvements. Quality systems such as the Integrated Capability Maturity

Candidate
Architectural

Solutions

Architecturally
Significant

Requirements

Architecturally
Significant

Requirements

Architectural
Concerns

Architectural
Backlog

Architectural
Synthesis

Architectural
Analysis

Architectural
Evaluation

Architectural
Refinements

Architectural
Validation

Updated
Architectural

Documentation
Validated

Architecture

Figure 12 A generic process for creating and maintaining an
architecture, derived from [45].

Related work 21

Model (CMMI) and SPICE can be used to perform process assessment. The
results of a systematic literature review show that there is a great variety of
maturity models and that the trend is towards more specialization in the
models for specific domains [97]. In the European automotive domain,
automotive SPICE is the most common model. Axelsson [5] presents a
maturity model for architecting embedded system product lines based on
CMMI.
Process improvements (Figure 13) can be made through radical (Kaikaku)
and continuous (Kaizen) improvements. Continuous improvements are often
based on a broad effort involving everyone in the organization, while radical
improvements are top-down initiatives with the goal of dramatic results [98].
As with all large changes, the risk involved increases when making radical
improvements. The same analogy can be made with the information batches
flowing through the organization, large batches increase the risk. Small
batch sizes reduce the variability of flow, reduce risk and accelerate
feedback, which increases motivation [75]. This is very similar to the key
drivers of SCRUM [82], which are to increase the speed of development and
to add energy and focus.

Time

Performance

Kaizen

Kaikaku

Figure 13 Making radical (Kaikaku) and continuous improvements

(Kaizen) to improve performance.
It is hard to differentiate between Lean and Agile. The two practices share
the same values; they both empower people to achieve results and are keen
to adapt and improve the processes to fit current needs. One difference
between the two is the scope of implementation. Lean is applied to all the
different parts of a developing organization and Agile is focused on software
development. Differences between implementations of Lean software
development are more likely to occur because of cultural or organizational
factors, compared to Agile software development. A common criticism of
Agile is that architecting is insufficiently emphasized and that the
architecture emerges during development [56]. However, a literature review

22 Related work

[12] of architecting within Agile development concludes that there is no
empirical research to support or contradict this assumption.
A systematic review of agile software development methods [26] found that
most empirical research studies focused on extreme programming. Very few
studies were found on Lean software development or Scrum. Kettunen has
performed a comparative study of manufacturing methods and Agile
software product development. He concludes that the there are not many
profoundly new ideas compared to earlier manufacturing methods [56].
Coplien [23] makes a comparison of Lean and Agile and claims that Agile is
about doing and Lean about thinking and doing. He also claims that Lean
focuses on process and Agile focuses on people, although seminal work [62,
79] on Lean says otherwise.
In the literature, there is little work on how Lean can be applied to the
process of developing software-intensive systems. Recently, Lean has been
applied to the overall systems engineering process of INCOSE [67].
Poppendieck and Poppendieck [70] present how Lean can be applied to the
software development process. In their work, typical wastes to be found are
hand-offs between individuals, switching between tasks and adding extra
features.
Browning et al. [14] discuss how process modelling of a product
development process is conducted and present a simple framework.
Furthermore, they argue that process modelling should be tailored to that
environment.
In [80] a model for evaluating the degree of leanness of manufacturing firms
is presented. This model was based on the initial research done by Karlsson
and Åhlström [51] who developed a method for measuring the change
progress in production.
Value Stream Mapping is presented as a way to find waste. There are many
different techniques available for process modeling, but Value Stream
Mapping (VSM) is different to other process modeling tools due to its focus
on value creation [14]. Value Stream Mapping (VSM) was initially a tool for
improving the manufacturing process [77] and has been shown to be
effective within manufacturing [48]. The method is now also used within
many other disciplines. This method is explained in detail and adapted to the
architecting process in Paper A of this thesis.

Related work 23

2.4.2 Analysis methods
In order to make an adequate design decision, one must consider numerous
factors. There are obvious aspects such as size, cost and performance, yet
other less tangible factors are very important; factors such as customer
preferences, development cost, production volume and time to market. All
these factors – and many more – influence the final decision.
Architectural decisions are made when selecting components and allocating
them to subsystems that then are combined into a system. These decisions
can be made on different levels with various impacts and predictability [33].
This section explores the available architecting methods.
SWOT analysis (Figure 14) is one common way [15] of evaluating design
alternatives and enables a clear visual view of the trade-off. Trade-off curves
(Figure 15) are used [39] to visualize the design space and enable efficient
communication of knowledge. A practical example could be to compare the
accuracy versus the cost of different sensors in order to make the best choice.
An extension of trade-off curves using Data Envelopment Analysis [68]
presents how resource utilization of different user functions can be
evaluated. An example of one of the more commonly used [2, 50, 78] formal
evaluation methods is Pugh's evaluation matrix, which was developed by
Stuart Pugh in the 1980s [71].

Strengths
•
•
•

Weakness
•
•
•

Opportunities
•
•
•

Threats
•
•
•

Figure 14 SWOT analysis.

Performance 1

Pe
rf

or
m

an
ce

 2

Figure 15 Trade-off curve.

The Design Structured Matrix (DSM) [13, 89] has been used to evaluate
architectures in various cases. Larses [59] uses the balanced scorecard to
balance the important perspectives in system design for the complete E/E
system, in combination with a cluster analysis using DSM. He found that the
combination of quantitative and qualitative data can provide good decision

24 Related work

support. Problems that were found were the lack of input data and the need
to consider procurement and change aspects when reusing the architecture.
The Architecture Trade-off Analysis Method (ATAM) is a method for
evaluating different architectural approaches and was developed by the
Carnegie Mellon Software Engineering Institute [54].
The goal of ATAM is to assess the consequences of architectural decisions
in the light of quality attribute requirements and to perform an analysis in a
repeatable manner. Each stakeholder has different quality attributes that they
consider to be the most important ones. The top level attributes are typically
attributes like safety, performance, maintenance and maintainability but the
number of attributes can vary from case to case.
A utility tree is created with input from all stakeholders. The utility tree is
only constructed by the architects and the project leader and will therefore
only show the architects’ view of what is important to the system. The next
step is to perform a brainstorming for scenarios. The scenarios are made up
by all stakeholders. The scenarios are comparable to the leaves of the utility
tree.
Each stakeholder is given a number of votes, typically 30% of the total
number of scenarios, and then votes for what each stakeholder considers to
be the most important one. The result of the vote is then compared with the
result from the utility tree. If the result is the same, it is quite certain that the
most important attributes are being considered in the architectural decision.
If not, the view of the most crucial attributes for a successful architecture
differs between system architects and other stakeholders. In this case, some
kind of reasoning is necessary between the system architects and other
stakeholders in order to conclude which are the most important parts.
ATAM is a structured method that is tailored for analyzing architectures,
which ensures that the right questions are asked. The main result of ATAM
is an identification of the potential architectural risks. The greatest benefit of
the method is that it can provide a common understanding of the importance
of different quality attributes.
ATAM does not provide any support for evaluating different design
alternatives. An extension of ATAM made by Wallin et al. [88] provides
support for evaluating different design alternatives with the use of paired
comparison of scenarios.
The Cost Benefit Analysis Method (CBAM) is an extension of the ATAM
and was also developed by the Carnegie Mellon Software Engineering
Institute [53]. It uses the quality attributes derived from the ATAM, but also

Related work 25

considers cost when reasoning around the most suitable architecture. A
second iteration of CBAM also takes the uncertainty of the used figures into
account, but it does not consider flexibility and architectural evolution.
Using options theory is one approach to dealing with the high level of
uncertainty when making design decisions in the early phases. The theory
derives from finance, where an option is the right but not the obligation to
exercise a feature of a contract at a future date [46]. Real Options are
discussed in detail in Paper D.
The benefits of using a structured method are widely accepted in academia,
but various studies [2, 39, 78] indicate a very low industrial usage. The
proposed solution is to present success stories and to further investigate the
needs of the industry [78]. An article published in the Journal of Engineering
Design attempts to answer the question of why industry ignores design
science [34]. The article claims that industry solves problems by using the
knowledge of experienced engineers, which is often faster than using a
structured method. One of the answers presented is that many structured
methods require information which is often not present or very resource
consuming to generate. Ken Hurst [47] presents the following reasons for
why a structured method should be used:

• Time wasted in pursuing wrong alternatives to the detailed design
stage is avoided.

• Causing visible decision-making helps to ensure the process is
repeatable.

• The ability to evaluate the thought processes of others is developed.
• The designer can defend decisions made in discussions with

managers or clients.
• A designer with no previous experience can carry out a sensible

evaluation of alternative concepts.
• The process of concept selection stimulates new concepts or

encourages a combination of concepts.
Ulrich and Eppinger [85] present a similar list of benefits and emphasize that
the use of a structured method provides customer focus and a more
competitive design.

26 Related work

2.5 Lean development
Lean development focuses on creating re-useable knowledge - knowledge
that contributes to the profitability of future operational value cycles and that
can ideally be used for many projects [91]. The concept of Lean production
was defined in the literature by Womack et al. [96], but derives from the
working methods developed by Toyota in the 1950s.
Lean methods focus on increasing customer value and on the people who
add value. A Lean-based company encourages its employees to perform
continuous improvement and to learn. This is done by cross-functional and
parallel work and a high degree of standardization in order to improve and to
share knowledge across the organization. Lean production is achieved by the
careful planning of a production line in order to optimize the production
flow to meet customer needs. Each assembly station is arranged to minimize
unnecessary motion and material transportation. Each assembly station is
assigned defined tasks to be finalized at a specific time in order to achieve a
balanced flow throughout the production line. A balanced flow means that
the results are delivered on time without waiting or over-production.
An important starting point for lean product development is to view product
development as a process, and like any other process there are repeated
cycles of activity [63]. From a process perspective, there are many activities
that are shared between different development projects. An increased flow is
achieved by eliminating the waste in a process, thus new products can be
brought to the market at a higher pace.
There are two main differences between manufacturing and the early phases
of product development. Firstly, in product development the flow does not
consist of materials, but more often of information and knowledge in
different forms. The different organizational and geographical locations of
the stakeholders influence how this knowledge is shared. Secondly, the
product development process does not consist of one flow, but instead
iterations are frequent and different concepts are developed in parallel. For
coping with the rapid changes made in product development, Ward [92]
makes an analogy to surfing: in order to be in control you need to constantly
adjust, changing direction and shifting from wave to wave instead of trying
to control the waves. Creating a cadenced flow of information is one way to
be able to react to the changes. One practical example is how short meetings
are used at Scania to quickly distribute information to the organization
(Figure 16).

Related work 27

Kennedy et al. argue that Toyota standardizes their knowledge into
checklists and reviews all their design against these standards. Those
checklists are updated after every project. Product development consists of
two value streams (Figure 17) [55]:

• The product value stream is unique to each project. Project X is not
started until the alternative designs have been evaluated and decided
upon. When the project starts, the risk should be very low.
Knowledge acquired during and after the project is fed back into the
knowledge value stream.

• The knowledge value stream consists of knowledge generalized for
visual flow across projects and organizations. Checklists and A3
documentation are used to carry this knowledge. Architectural
knowledge such as patterns and guidelines should be part of the
knowledge value stream.

Figure 16 Short weekly stand-up meetings at Scania.

28 Related work

Figure 17 The two value streams of product development [55]

Allen Ward [92] claims that 20% of the time spent in product development is
value adding time. Nonvalue-creating time such as administration work
occupies 20% and the remaining time is waste. This fact would suggest that
optimization is possible if we identify the wasteful activities. It is common to
define seven types of waste [63] and value stream mapping is one method to
identify the waste within any process.
According to Allen Ward [92], the most frequent waste in development is
waste of knowledge. He divides knowledge waste into three categories:
scatter, hand-off, and wishful thinking. Scatter is described as actions that
disrupt the flow of knowledge. This disruption can be due to communication
barriers and the use of inappropriate tools. An example of knowledge waste
created by hand-offs is to functionally move people around rather than
assigning them to one task from beginning to end. Waste due to wishful
thinking is, for instance, testing according to specification rather than testing
to learn about the limits of the product. An example of waste in terms of
discarded knowledge is testing to specifications (rather than testing to
failure), which throws away the opportunity to find out when and how the
design actually fails [91]. Knowledge from testing would then be fed back to
the knowledge value stream (Figure 17) as A3 documentation and
engineering checklists. Liker [63] points out the difficulty of transferring
tacit knowledge compared to explicit knowledge. Explicit knowledge, such
as mathematical equations and historical facts, is often easier to store. Tacit
knowledge is often more diffuse, similar to what is taught through

 29

apprenticeship. Toyota creates their learning network through activities such
as technology demonstrations, checklists, know-how databases, mentoring
and lessons learned [62].

Seven wastes Examples
Overproducing more or earlier than
the next process needs

Batching, unsynchronized
concurrent tasks

Waiting for materials, information,
or decisions

Waiting for decisions, information
distribution

Conveyance - Moving material or
information, or decisions

Waiting for decisions, information
distribution

Processing - Doing unnecessary
processing on a task or an
unnecessary task

Stop-and-go tasks, redundant
tasks, reinvention, process
variation-lack of standardization

Inventory - A build up of material
or information that is not being used

Batching, system over utilization,
arrival variation

Motion - Excess motion or activity
during task execution

Long travel distances, redundant
meetings, superficial reviews

Correction - Inspections to catch
quality problems or fixing an error
already made

External quality enforcement,
correction and rework

Table 1 Applying the seven wastes within product development [63].

Chapter 3. Research methodology

In this research project the system architecting process of several large
companies has been studied. Traditional research is often done through the
use of quantitative methods. In natural science, experiments are used to
validate a model through measuring a series of samples in a controlled
environment. Experiments are also applied to software engineering and are
used to investigate the qualities of different programming languages or code
inspection techniques [94]. However, experiments on real industrial
processes are difficult because of the large number of dependent variables.
The variables are often very hard to control and to measure. The cost of
performing an experiment that captures the complexity found in an industrial
setting would be very high. The methods considered in this research are
surveys and case studies.
The typical feature of a survey is, according to Robson [76], the collection of
a small amount of standardized data from a relatively large number of
individuals in a known population. Disadvantages of surveys sent to
different organizations include the risk of misunderstanding and the risk of
the respondents not taking the exercise seriously [76]. Different companies
perform architecting in various ways and there are many different factors
that have an influence. Many of those factors are thought to be soft factors
[31] that are hard to find through a survey.
System architecting is, as previously described, a cross functional activity,
which makes it very difficult to measure or control the process. According to
Yin [99], case studies are especially suitable when the boundaries and
context are not clearly evident, and case studies can be both quantitative and
qualitative [94]. System architecting has boundaries to many other processes
and is influenced by its context. Case studies are often used to investigate
real industrial processes and therefore suitable for this research. Evidence
can be collected from different sources in a case study. Documentation or
archival records can be used if they are retrievable [99], but access to
architectural information in industrial settings is often found to be limited.
This is primarily because of commercial issues, but also due to the limitation
of available documentation. Another source of case study evidence can be

32 Research methodology

retrieved through either direct observation or participant observation [99].
The strength of observation is that the process can be studied in its context
and in real time, though this is often time-consuming. Industrial projects are
not always on time. Observing real projects would add uncertainty to the
research plan. Interviews are the main case study methodology chosen for
this research and are discussed in detail in the following section.

3.1 Research design
Case studies have been used to answer all research questions, but the method
has been applied somewhat differently for different questions. This section
describes the methods used and how different threats to validity have been
treated. “Case study is a strategy for doing research which involves an
empirical investigation of a particular contemporary phenomenon within its
real life context using multiple sources of evidence.” [99] Semi-structured
interviews have been used to answer RQ 1, 2 and 3. A semi-structured
interview has predetermined questions, but the order can be modified based
upon the interviewer’s perception of what seems most appropriate. Question
wording can be changed and explanations given [76].
To answer RQ 4, a case study was developed to investigate the usage of the
developed method.

3.1.1 Method used for research questions 1 and 2
The data used to answer RQ 1 and 2 were obtained through analysis of semi-
structured interviews at Volvo Cars and Scania. In total, 11 interviews were
performed by the two authors who are native to Scania and Volvo Cars
respectively (see [11] for the definition of “native” in this context).

1. The questions were developed and tested on people with similar
roles at both companies, who were not included in the study.

2. All the architects who were available and willing to participate were
interviewed, which resulted in more than half of the architects at
each company participating, 4 at Scania and 5 at Volvo Cars. In
addition to this, the managers for the architecture groups were
interviewed at both companies, bringing the number of interviews to
11.

3. The interview was led by one person while the other took notes.

Research methodology 33

4. Each respondent had the possibility to read and comment on the
notes from their interview in order to correct any misunderstandings,
errors or other mistakes in the transcriptions.

5. The results were gathered in a database and analyzed.
6. The final results were reviewed by the manager at each participating

company. The results of the study were presented for a broader
audience at both companies.

3.1.2 Method used for research question 3
In order to answer RQ 3, the previous study was extended to include four
additional companies. The same set of questions was used but a slightly
different procedure was used:

1. The same set of questions was used.
2. The companies were selected through established contacts. All

companies have significant development of software-intensive
systems, but are different in size and production volume.

3. The architects were identified in collaboration with the contact
person.

4. At least two interviews were held with architects at each company.
With the respondents’ permission the interview was audio recorded.

5. The results of the study were presented to a broader audience at each
company. During the presentation the situation at the visited
company was also discussed.

6. Questions about the characteristics of each company were answered
by the contact person.

7. The results were gathered in a database and analyzed.
8. The results were reviewed by the contact person at each participating

company.

3.1.3 Method used for research question 4
A methodology has been developed to value the flexibility of design
alternatives. To analyze the developed methodology and its industrial worth,
the methodology has been applied to a real case in the automotive industry.
Information about a current architecting case was acquired through
discussion with the responsible architect. All available written information
regarding the case was obtained and reviewed. The real case was then used
to test the developed methodology and to evaluate the actual case. The result

34 Research methodology

from the case study was presented to the architect in order to be able to
discuss its usefulness.

3.2 Validity
There are different types of threats to validity that need to be considered
when conducting research. The different threats to validity are presented
below, including the countermeasures made to improve validity.

3.2.1 Construct validity
Construct validity ensures that the studied artifacts can be applied to analyze
this exact problem. To avoid bias in the respondents, a minimum of two
people were interviewed at each company. All the written documentation of
the interviews conducted in this research has been reviewed by the
respondents. In the study used to answer RQ 3, the interviews were
conducted by the author alone. Those interviews were recorded with the
respondents’ permission and were therefore not reviewed. The final papers
have also been reviewed by representatives of the companies in order to limit
the risk of misunderstanding. The results of both studies have been presented
for a broader audience at the participating companies, including a larger
number of architects and managers. The presentations were another way of
limiting the risk of misunderstanding. The working experience of the author
will also help to ensure construct validity.

3.2.2 Internal validity
Internal validity ensures that the conclusions we draw from a study are the
only ones possible and have not been affected by another possible cause.
Internal validity is ensured by doing pilot interviews with informants similar
to the ones questioned in the study. The questions can thereby be altered to
ensure internal validity. The working experience of the author as an architect
limits the risk of misunderstanding when talking to other architects. The
analysis of the interview data used for RQ 1 and 2 was performed by the
author, who is native to Scania, and another researcher, who is native to
Volvo Cars. The analysis of the interview data used for RQ 3 was performed
by the author, but using the method developed in the previous study.

Research methodology 35

3.2.3 External validity
External validity is the degree to which the conclusions in the study would
hold for other organizations and at other times. Scania is used as a case-
company in all parts of this research. The major threat to external validity is
the degree to which the conclusions would hold for other companies
developing software-intensive systems outside the automotive industry;
therefore five other companies are included in the study of RQ 3. The
companies studied are all developing long-lived software-intensive systems,
but in different domains, and are of different size. All the companies have a
very long history in Sweden, which is a disadvantage for external validity.
This weakness is somewhat compensated by the fact that three of the
companies have development outside of Sweden and all of them offer their
products on a global market. Related work from other areas will also serve to
support the validity of our studies.

3.2.4 Reliability
Increasing reliability is about minimizing faults and biases in a study and
making the results repeatable. Reliability is ensured by well documented and
planned case studies and interviews. Interview data has been stored in a
database that has been used to analyze the data. Only a few questions used in
the interviews have been published due to page limitations. The interview
questions are to be made available online in the submitted journal paper. The
study would be repeatable if it was repeated under the same circumstances.
Unfortunately, circumstances do change; new people are employed, projects
are dealing with different current issues, company strategies are changed and
organizations are restructured. So for the part of the research that studies
processes this might be difficult, because industrial processes are and should
be continuously evolving. The results are therefore momentary views of a
specific organization. The knowledge gained can still be transferred to
another organization. The method and analysis would be repeatable and
could therefore be used at another time for a longitudinal study.

Chapter 4. Research results

This section summarizes the main contribution made by the thesis. The
system development process at Scania was studied in prior work [39], to
identify current practice within the automotive industry. The contribution of
the thesis is based on the four publications. Figure 18 shows how the
contributions relate to four dimensions of software engineering [90]. Paper A
answers RQ 1, presenting how the architecting process can be improved by
the use of Value Stream Mapping, and it thus mainly relates architecting to
the process dimension. The different tasks found in an architecting process
are presented in Paper B in order to answer RQ 2, and apart from the process
dimension there is also a connection with organizational issues. To answer
RQ 3, the successes of different methods related to the context in which they
are used are discussed in Paper C, and this broad study relates to all four
dimensions. RQ 4 is answered in Paper D, which presents how flexibility
can be economically valued, thereby relating to the business dimension.

Busin
es

s

Organization

Process

Architecture
Paper A Paper B

Paper C

Paper D

Figure 18 Relationships between the appended papers.

38 Research results

4.1 Paper A: Improving the system architecting
process through the use of Lean tools
Value Stream Mapping (VSM) is a Lean tool used to improve value creation
within a process. Using VSM on a manufacturing process has been promoted
in the literature [63] and also evaluated [48]. Using VSM on a development
process has also been promoted [70], but has to our knowledge not been
evaluated within systems development.
RQ 1: How can an architecting process be mapped in order to identify
improvements?
This paper is based on a case study at Scania and Volvo Cars and presents
how Value Stream Mapping can be used to analyze the architecting process.
Furthermore, it presents in general terms what types of wastes and
improvements could be found. Waste could, for example, be due to handoffs,
task switching, technology debt or delays. One result of this paper is to show
how waste can be eliminated and maximize the value creation of the process
through the use of Value Stream Mapping. An adapted version of Value
Stream Mapping is found to be a suitable method for identifying
improvement in the architecting process.

4.2 Paper B: Architecting automotive product
lines: industrial practice
This paper aims at answering RQ 2 and presents an in-depth view of how
architects work with maintaining product line architectures in the automotive
industry. The study has been performed at Scania and Volvo Cars.
RQ 2: What tasks are performed in the process of architecting
automotive embedded systems?
The striking conclusion and the answer to RQ 2 is the similarity between the
two companies in the tasks performed when maintaining and changing
architecture. The tasks mentioned by the architects at both companies are
virtually identical; need impact analysis solution decision
validation. The tasks do not seem to be different for architecture
maintenance compared to developing a new architecture. Likewise, they
seem to be the same whether it is updating a product line architecture or
updating the architecture of a single-shot system. The study indicates what
effect differences, such as a strong line organization or a strong project

Research results 39

organization, have on the architecting process. It also shows what
consequence technical choices and business strategy have on the architecting
process.

4.3 Paper C: A comparative case study of
architecting practices in the embedded software
industry

In Paper C, the methods used to solve the tasks within the architecting
process are mapped to the context used in the industry. The results from
Paper B are generalized by performing semi-structured interviews at four
additional companies. One hypothesis was that in order to understand
different architecting processes one must first understand the surrounding
circumstances, the context. The attributes that should be gathered in order to
understand the context were derived from the literature.
RQ 3: In what context are the methods used within the architecting
process found successful?
To answer RQ 3, the paper studies the current state of architecting practices
in three different industrial segments that are characterized by being
software-intensive. An analysis of the case study indicates how different
methods are more suitable to different environments. The context of the
different companies, as well as the architecting practices, are compared and
analyzed. Many of the successful practices found in the study can be
explained by the context of the different companies. The use of global
architects with their own budget in one company is a solution for initiating
long-term architectural projects without having a customer order. The high
degree of documented reasoning in the studied defense company is caused
by the high degree of customer-specific demands and large orders of very
similar products. This forces the architects to make branches of the
architecture to fulfill customer demand, and the reasoning is then used to
ensure quality. The defined architecting process found at one of the
automotive companies and the use of visualization tools to track progress is
explained by the strong influence of Lean Thinking. Other examples of
practices, such as divided architectural teams and the lack of formal
architects, are more difficult to explain.

40 Research results

4.4 Paper D: Evaluation of design options in
embedded automotive product lines
Decision-making under uncertainty is influenced by a number of factors
 [52], and some of them lead to less rational decisions. The use of structured
methods (design reviews, checklists, and expert support) is one way to
improve decision-making.
RQ 4: How can one value the flexibility needed to withstand an
uncertain future in automotive embedded systems?
A method and process is developed to answer this question. The developed
method evaluates flexibility, using a concept called Real Options. The
method is motivated and described by using an example from automotive
embedded systems. To improve the usability of the method, a structured
evaluation process is defined to aid practitioners such as developers and
architects. The evaluation process provides a way of valuing system designs
and enables the practitioner to think about the future in a systematic manner.
Our literature survey has found three research contributions [6, 8, 13] that
involve the usage of real options in system design involving software or
hardware. None of them explicitly addresses embedded systems or the
automotive domain.

Chapter 5. Discussion

In this chapter I take the opportunity to be less formal and give my view on
some topics related to this research. I believe this chapter can be an input in
the current discussion and perhaps provide ideas for future research. In the
first section I try to explain what Lean architecting would be. The following
section presents the difficulties of researching industrial processes. Finally
the industrial impact of the research results is discussed.

5.1 Lean architecting
So what is Lean architecting? There is no right or wrong answer to that
question, based on reasoning about the effect of context on how work is
done. Based on the knowledge gained during this research I will still give
my opinion on what Lean architecting of software-intensive systems would
look like. A Lean product development process is frontloaded; much work is
done early in the project in order to lower the risk later when the cost is
much higher. Early design decisions often have a greater impact on the
overall system than the developer alone can foresee. Architecting efforts
should therefore be started early and in close collaboration with the
development team. In the early phases, it is important to keep the design
flexible without investing too much in architecture, bearing in mind the
uncertainty.
Challenges in different development projects are very different, as is the
necessary architecting. The process should therefore not be fixed, although
each task can be described in detail to ensure nothing is forgotten. In this
way, every architecting effort will be tailored to fit the needs of the specific
case. Each task will be repeated regularly and checked for improvements
after each use.
Reusable architectural knowledge such as heuristics, principles and patterns
should be transferred through lightweight documentation, education and
mentoring. By empowering people and giving them the necessary tools, but

42 Discussion

without being obsessed by tools, quality will be designed into the system.
The resulting artefacts should be challenged regularly to identify what
documentation the internal customer needs. In an evolving complex system
there will always be an increasing technical debt. Changes to the system will
be more and more difficult to realize, therefore the technical debt must be
monitored to plan for radical changes. Last but not least: in order to get a full
return on the investment in Lean, the whole organization must apply Lean
Thinking.

5.2 Identifying best practice
In an industrial setting, it is very difficult to produce empirical evidence to
support that one method is better than another. In order to show anything,
you need to measure the performance of the process before and after the
change. If this is done you will get an indication of whether the change
improved the process or not. If the tasks performed are comparable and
made by the same group of people you will be more confident of the results.
In order to study whether one improvement is better than another you would
need to evaluate the alternatives. People or organizations that promote one
practice often show how the performance of the development process has
been radically improved by introducing a toolbox i.e. Six Sigma, Agile or
Lean (Figure 19). The problem is that companies do not tend to fix
something that is not broken. A development organization that is sinking in
mud is very likely to accept a helping hand. The performance improvements
will probably be very positive, but that does not mean that it was the best
possible solution. Almost any toolbox handed to them would have helped
them out of the mud and improved performance! Based on this reasoning,
this research does not claim that the practices found are best practices. They
are found suitable in a specific context and should be critically reviewed
before being used in other contexts.

Discussion 43

Agile

Lean

Six
Sigma

Six
Sigma

Figure 19 A drowning organization will happily extend its hand to any

type of tools and methods.

5.3 Industrial impact
Some time has elapsed since some of the studies included in the research
project were finalized. Below is my understanding of the changes that have
been made since the studies were presented.
In a case study included in the licentiate thesis [39], the system development
process at Scania was studied to identify current practice. The result of the
study was presented at Scania in different groups and forums. The following
three improvements were suggested and prioritized:

1. Strengthen the role of the technical career path
2. Improve knowledge transfer by documenting design know-how
3. Educate engineers in the use of structured methods

Three years later, a great deal of work has been done to strengthen the role
of the technical career path. There are now more specialists within system
development and appointments are highlighted to the rest of the
organization. Different activities have been carried out to improve
knowledge transfer. Design guidelines are more frequently updated and Wiki
solutions and A3 documents are becoming a more common way of sharing
knowledge. Of course, this is a never-ending story, but there have been a few
steps in the right direction. To my knowledge very little has been done to
improve the usage of structured methods.
Paper A presented how Value Stream Mapping could be used to improve the
architecting process. Since that time there have been various efforts to use
Value Stream Mapping for different processes within system development.

44 Discussion

A paper [83] co-authored by me shows how Value Stream Mapping can be
implemented in practice at Scania.
One and a half years after the case study leading to Paper B was finalized
and presented at the two companies, some interesting changes have taken
place. The architecting group at Scania has grown, both in the number of
architects and their experience. Tool support for the architects has been
significantly improved. The two separated architecting groups at Volvo Cars
have merged into one, resulting in only one single architectural description.
The group responsible for testing and validation at Volvo Cars is now part of
the same section as the architecting group.
I do not believe the changes were made because of the results presented from
those two studies, even if I hope the ideas presented due to the studies
inspired the change. It does however indicate the correctness of the results or
at least indicate that the results correspond to industrial reasoning.
An evaluation process using Real Options was presented and tested in Paper
D. The evaluation process provides a way of valuing system designs. I
believe that the method is correct and will provide improved decisions
support. The problem, as with many other methods, is that the information
needed is rarely available in industry. When presenting the evaluation
process, I have often been given a positive response to the thoughts behind
the method. Architects and people responsible for parts of the system like the
idea that the increased cost of a flexible design could be argued using
financial measures. To be used in industry it would need to be even more
lightweight and used to guide discussion, rather than the decision itself. The
greatest contribution to industry is probably a structured way of reasoning
about design alternatives as options that can be valued.

Chapter 6. Conclusions and future work

The overall goal of this research has been to investigate how system
architecting is performed in the automotive industry and how it can be
improved by the use of Lean Thinking. This chapter presents conclusions
and future work.

6.1 Summary of results
An adapted Value Stream Mapping was tested on a case study at two
different companies. A comparison between the two companies shows that
there are a number of value-adding methods that could be borrowed from
one company to the other. It also highlighted how no formal evaluation step
of architectural alternatives were made; evaluation was only mentioned as
occurring in rare cases. The results of the case study have been presented at
the two companies, which found them interesting but most of all inspiring
for their future process improvement. The indicator that best shows that the
mapping was valuable to the companies is that the presentation was
requested to be held twice.
One of the case studies reveals that the studied architects see themselves as
interacting much more with other stakeholders than architects in general.
The results indicate how the company’s different core values influence the
architects when defining and maintaining the architectures over time. It also
indicates the consequences that technical choices and business strategy entail
for the architecting process.
This work provides a current view of the architecting process for software-
intensive systems. Many of the architecting practices found in the study can
be explained in the context of the different companies. A list of practices is
provided for the industry reader and can be used as an inspiration or as a
benchmark for improving current architecting practice.
A method has been developed to improve decision-making when making
architectural changes in early phases within the automotive industry. The

46 Conclusions and future work

developed method uses real options to provide guidance when making
system design decisions and, more importantly, also shows that it can be
used and accepted by system engineers.
It is important to stress that success is not achieved through the use of
specific tools or methods. Using the right tools and methods will often
simplify or enhance the process, but having the right people with the right
mindset aligned toward a common goal is much more important; developing
the employees and creating an organization that never stops improving is far
more important.

6.2 Future work
During this research we have seen how the balance of power between line
and project has a strong influence on how work is done. This relationship
would be of interest for a future study. The connection between business
strategy for Cost, Quality and Time-to-Market and architecting could also be
further analyzed.
Value Stream Mapping is a frequently used tool for identifying
improvements in a process, but there are few industrial examples of when it
has been applied to parts of the development process.
The thesis has shown that communication is a large part of architecting
activities and, in order to be Lean, the communication must be effective.
Kruchten [58] suggests that the productive time spent by architects can be
classified into three categories of communication: internal (architecture
design), inwards (input from outside world) and outwards (providing
information). He argues that they should roughly have the ratio 50%
internal, 25% inwards, and 25% outwards. It is very hard to measure this in
practice and we have not done so in this study, but communication patterns
can still be observed. Even if no extreme variation can be seen, the
understanding from this study is that there is a clear difference between the
companies. The architects tend to be more satisfied when the inward and
outward communication is distributed evenly and where the internal work is
of significant size. Future research on how communication patterns vary
depending on different contexts could improve the process, aid cross-
cultural-teams and enable Lean architecting.
The use of Open Innovation is growing in many different domains. The
software industry is moving more and more towards different types of open
solutions. Open source software enables end users to add features to the

Conclusions and future work 47

product and user involvement, such as Wikipedia, is very common, although
few or no attempts are made within the automotive industry. One exception
is the App-My-Ride contest arranged by Volkswagen [95]. A future research
question is therefore how open innovation will enter the automotive domain
and what new challenges the industry will face. The architecture would need
to be adapted to accept new features being added in the aftermarket while
keeping the same quality.
Working as an industrial Ph.D. student means that I have been employed as a
researcher in industry and enrolled as a Ph.D. student in academia. This
position means that I have experienced how industry and academia demand
very different outputs from architecting research. The industry asks for best
practice or success stories, while academia looks for practices proven in
general. This difference could be further discussed and enable more effective
knowledge transfers from academia to industry.

References

[1] "Applying the IEEE 1471-2000 Recommended Practice to a
Software Integration Project."

[2] C. S. Araujo, "The utilization of product development methods- A
survey of UK industry," Journal of Engineering Design, vol. 7, pp.
265-277, 1996.

[3] AUTOSAR,AUTOSAR specification, http://www.autosar.org/,
Accessed: 2010-12-08.

[4] J. Axelsson, "Evolutionary Architecting of Embedded Automotive
Product Lines: An Industrial Case Study," in Joint Working
IEEE/IFIP Conference on Software Architecture (WICSA) &
European Conference on Software Architecture (ECSA, 2009, pp.
101-110.

[5] J. Axelsson, "Towards a process maturity model for evolutionary
architecting of embedded system product lines," in Proceedings of
the Fourth European Conference on Software Architecture
Copenhagen: ACM, 2010, pp. 36-42.

[6] R. Bahsoon and W. Emmerich, "ArchOptions- A Real Options-
Based Model for Predicting the Stability of Software Architectures,"
2003, pp. 38-43.

[7] T. Baines, H. Lightfoot, G. Williams, and R. Greenough, "State-of-
the-art in lean design engineering: a literature review on white collar
lean," Proceedings of the Institution of Mechanical Engineers, Part
B: Journal of Engineering Manufacture, vol. 220, pp. 1539-1547,
2006.

[8] P. Banerjee, Describing, assessing and embedding flexibility in
system architectures with application to wireless terrestrial
networks and handset processors: Master Thesis, Massachusetts
Institute of Technology, System Design and Management Program,
June 2004, 2004.

[9] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, 2nd ed.: Pearson Education Inc, 2003.

50 References

[10] M. Blackenfelt, Managing complexity by product modularisation:

balancing the aspects of technology and business during the design
process vol. Doctoral Thesis. Stockholm: Royal Institute of
Technology, 2001.

[11] T. Brannick and D. Coghlan, "In defense of being “native”: the case
for insider academic research," Organizational Research Methods,
vol. 10, p. 59, 2007.

[12] H. Breivold, D. Sundmark, P. Wallin, and S. Larsson, "What Does
Research Say About Agile and Architecture?," in Proceedings of
The Fifth International Conference on Software Engineering
Advances Nice, France, 2010.

[13] T. R. Browning and A. Engel, Designing Systems for Adaptability by
Means of Architecture Options. Orlando, USA: 16th Annual
International Symposium Proceedings, INCOSE 2006, 2006.

[14] T. R. Browning, E. Fricke, and H. Negele, "Key concepts in
modeling product development processes," Systems Engineering,
vol. 9, pp. 104-128, 2006.

[15] L. Buchanan and A. O Connell, "A brief history of decision
making," Harvard Business Review, vol. 84, pp. 32-41, 2006.

[16] S. Cedergren, Evaluating Performance in Product Development -
The Case of Complex Products: Mälardalen University, School of
Innovation, Design and Engineering, 2010.

[17] S. Cedergren, "Performance in Product Development - The Case of
Complex Products," Västerås: Mälardalen University, 2011, p. 231.

[18] K. Clark and T. Fujimoto, Product development performance:
Strategy, organization, and management in the world auto industry:
Harvard Business Press, 1991.

[19] P. Clements and L. Northrop, Software product lines : practices and
patterns. Boston, Mass.: Addison-Wesley, 2001.

[20] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole, and M.
Bone, "The Concept of Reference Architectures," Systems
Engineering, vol. 13, pp. 14-27, 2010.

[21] M. Conway, "How do committees invent," Datamation, vol. 14, pp.
28-31, 1968.

[22] J. Coplien and N. Harrison, Organizational Patterns of Agile
Software Development: Prentice Hall PTR, 2004.

[23] J. Coplien and G. Bjørnvig, Lean architecture: for agile software
development. New York: Wiley, 2010.

[24] I. Crnkovic and M. Larsson, "Building reliable component-based
software systems," Artech House Publishers, 2002.

References 51

[25] W. Cunningham, "The WyCash portfolio management system," in

Proceedings of Conference on Object Oriented Programming
Systems Languages and Applications New York, 1992, pp. 29-30.

[26] T. Dyba and T. Dingsoyr, "Empirical studies of agile software
development: A systematic review," Information and Software
Technology, vol. 50, pp. 833-859, 2008.

[27] EAST-EEA,Definition of lanuage for automotive embedded
electronic architecture, http://www.east-eea.net/start.asp, Accessed:
2007-03-29.

[28] A. Edström, "Urban på Volvo hyllar säkerheten," in
Elektroniktidningen, 2006.

[29] P. Eeles and P. Cripps, The process of software architecting. Upper
Saddle River, NJ: Addison-Wesley, 2010.

[30] U. Eklund, Ö. Askerdal, J. Granholm, A. Alminger, and J. Axelsson,
"Experience of introducing reference architectures in the
development of automotive electronic systems," in Proceedings of
the second international workshop on Software engineering for
automotive systems, 2005, pp. 1-6.

[31] R. Farenhorst and R. C. d. Boer, Architectural knowledge
management : supporting architects and auditors. [S.l.: s.n.], 2009.

[32] R. Farenhorst, J. Hoorn, P. Lago, and H. v. Vliet, "The lonesome
architect," in Joint Working IEEE/IFIP Conference on Software
Architecture (WICSA) & European Conference on Software
Architecture (ECSA): IEEE, 2009, pp. 61-70.

[33] B. Florentz and M. Huhn, "Architecture Potential Analysis:A Closer
Look inside Architecture Evaluation," Journal of Software, vol. 2,
pp. 43-56, October 2007.

[34] R. B. Frost, "Why Does Industry Ignore Design Science?," Journal
of Engineering Design, vol. 10, pp. 301-304, 1999.

[35] J. Fröberg, M. Åkerholm, K. Sandström, and C. Norström, "Key
factors for achieving project success in integration of automotive
mechatronics," Innovations in Systems and Software Engineering,
vol. 3, pp. 141-155, 2007.

[36] T. Fujimoto, The evolution of a manufacturing system at Toyota:
Oxford University Press, USA, 1999.

[37] R. Gemmerich, S. Semmelrodt, C. Reckord, A. Zündorf, J.Leohold,
L. Brabetz, U. Schrey, and H.-G. Weil, "Ein ganzheitlicher Ansatz
zur Generierung und Optimierung von Fahrzeugbordnetzen," in 12.
Internationaler VDI-Kongress Elektronik im Kraftfahrzeug, Baden-
Baden, 2005.

52 References

[38] D. Greefhorst, H. Koning, and H. V. Vliet, "The many faces of

architectural descriptions," Information Systems Frontiers, vol. 8,
pp. 103-113, 2006.

[39] H. Gustavsson and J. Sterner, "An Industrial Case Study of Design
Methodology and Decision Making for Automotive Electronics," in
Proceedings of the ASME International Design Engineering
Technical Conferences & Computers and Information in
Engineering Conference New York, 2008.

[40] H. Gustavsson and J. Axelsson, "Evaluation of Design Options in
Embedded Automotive Product Lines," in Applied Software Product
Line Engineering, K. C. Kang, V. Sugumaran, and S. Park, Eds.:
Auerbach Publication, 2009, pp. 478-495.

[41] C. Hallam, J. Muesel, and W. Flannery, "Analysis of the Toyota
Production System and the Genesis of Six Sigma Programs: An
Imperative for Understanding Failures in Technology Management
Culture Transformation in Traditional Manufacturing Companies,"
in Proceedings of Portland International Conference on
Management of Engineering and Technology, 2010.

[42] H. Heinecke, K. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J.
Leflour, J. Maté, K. Nishikawa, and T. Scharnhorst, "Automotive
open system architecture-an industry-wide initiative to manage the
complexity of emerging automotive e/e architectures," in SAE
Convergence, 2004.

[43] R. Henderson and K. Clark, "Architectural Innovation: The
Reconfiguration of Existing Product Technologies and the Failure of
Established Firms," Administrative Science Quarterly, vol. 35, pp. 9-
30, 1990.

[44] D. Hoch, W. Huhn, U. Naher, and A. Zielke, The race to master
automotive embedded systems development. Germany: McKinsey
Company, Automotive and assembly sector business technology
office, 2006.

[45] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and P.
America, "Generalizing a Model of Software Architecture Design
from Five Industrial Approaches," in Proceedings of the 5th
Working IEEE/IFIP Conference on Software Architecture: IEEE
Computer Society, 2005, pp. 77-88.

[46] J. C. Hull, Options, Futures, and other derivative securities 2nd
edition. New Jersy, USA: Prentice Hall International Editions, 1993.

[47] K. Hurst, Engineering Design Principles: Elsevier Science &
Technology Elsevier Science & Technology Books, 1999.

References 53

[48] C. O. L. Ibon Serrano Lasa, Rodolfo de Castro Vila, "An evaluation

of the value stream mapping tool," Business Process Management
Journal, vol. 14, pp. 39 - 52, 2008.

[49] IEEE-1471, "IEEE Recommended practice for architectural
description of software-intensive systems," IEEE Std 1471-2000,
2000.

[50] J. Janhager, S. Persson, and A. Warell, "Survey on Product
Development Methods, Design Competencies, and Communication
in Swedish Industry," Wuhan, China, 2002.

[51] C. Karlsson and P. Åhlström, "Assessing changes towards lean
production," International Journal of Operations & Production
Management, vol. 16, pp. 24 - 41, 1996.

[52] J. Karlsson, "Marknadsdriven Produktledning-Frn kundbehov och
Krav till Lönsamma Produkter," VI report, Focal Point AB, 2003.

[53] R. Kazman, J. Asundi, and M. Klein, Making Architecture Design
Decisions: An Economic Approach: Carnegie Mellon Software
Engineering Institute, 2002.

[54] R. Kazman, M. Klein, and P. Clements, "ATAM: Method for
Architecture Evaluation," 2002.

[55] M. Kennedy, K. Harmon, and E. Minnock, Ready, Set, Dominate:
Implement Toyota's Set-Based Learning for Developing Products
and Nobody Can Catch You: Oaklea Press, 2008.

[56] P. Kettunen, "Adopting key lessons from agile manufacturing to
agile software product development--A comparative study,"
Technovation, vol. 29, pp. 408-422, 2009.

[57] Y. Konno, "Enhancement of the advanced R&D cooperation
between automakers and suppliers in the Japanese automobile
industry," Annals of Business Administrative Science, vol. 6, pp. 15-
34, 2008.

[58] P. Kruchten, "What do software architects really do?," Journal of
Systems and Software, vol. 81, pp. 2413-2416, 2008.

[59] O. Larses, Architecting and modeling automotive embedded systems.
Stockholm: Doctoral Dissertation, Royal Institute of Technology,
2005.

[60] P. Liang, A. Jansen, and P. Avgeriou, "Collaborative software
architecting through knowledge sharing," in Collaborative Software
Engineering, I. e. a. Mistrik, Ed.: Springer-Verlag, 2010.

[61] M. W. Maier and E. Rechtin, The art of systems architecting. Boca
Raton: CRC Press, 2002.

54 References

[62] J. M. Morgan, High performance product development: a systems

approach to a lean product development process. Ph.D. dissertation:
University of Michigan, 2002.

[63] J. M. Morgan and J. K. Liker, The Toyota product development
system : integrating people, process, and technology. New York:
Productivity Press, 2006.

[64] G. Muller, "CAFCR: A Multi-view Method for Embedded Systems
Architecting; Balancing Genericity and Specificity," in Technology,
Policy and Management vol. PhD thesis: Technische Universiteit
Delft, 2004.

[65] R. Muller, K. Spang, and S. Ozcan, "Cultural differences in decision
making in project teams," International Journal of Managing
Projects in Business, vol. 2, pp. 70 - 93 2009.

[66] J. Nedstam, Strategies for management of architectural change and
evolution. Lund: Lund University, Department of Communication
Systems, Faculty of Engineering, 2005.

[67] B. W. Oppenheim, E. M. Murman, and D. A. Secor, "Lean enablers
for systems engineering," Systems Engineering, vol. February, 2010.

[68] E. Persson and H. Gustavsson, "A Framework for the Evaluation of
Resource Efficiency in Automotive Embedded Systems," in
International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, New York,
USA, 2008, pp. 87-96.

[69] P. Peti, R. Obermaisser, F. Tagliabo, A. Marino, and S. Cerchio, "An
Integrated Architecture for Future Car Generations," Proceedings of
the Eighth IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC'05)-Volume 00, pp. 2-13,
2005.

[70] M. Poppendieck and T. Poppendieck, Implementing lean software
development : from concept to cash. Upper Saddle River, N.J.:
Addison-Wesley, 2007.

[71] S. Pugh, Total design : integrated methods for successful product
engineering. Wokingham: Addison-Wesley, 1990.

[72] A. E. Raymond, "The well-tempered aircraft," Journal of Royal
Aeronautical Society, October 1951.

[73] E. Rechtin, Systems architecting : creating and building complex
systems. Englewood Cliffs, N.J.: Prentice Hall, 1991.

[74] D. Reinertsen, Managing the Design Factory: A Product Developers
Tool Kit: Simon & Schuster Ltd, 1998.

References 55

[75] D. Reinertsen, The Principles of Product Development Flow:

Second Generation Lean Product Development: Celeritas
Publishing, 2009.

[76] C. Robson, Real World Research-Second edition: Blackwell
Publishers Ltd., Oxford, UK, 2002.

[77] M. Rother and J. Shook, Learning to see : value stream mapping to
create value and eliminate muda. Brookline, MA: Lean Enterprise
Institute, 2003.

[78] M. Salonen and M. Perttula, Utilization of concept selection methods
– a survey of finnish industry. Helsinki, Finland: Helsinki University
of Technology, 2005.

[79] I. Sobek, Durward Kenneth, "Principles that shape product
development systems : a Toyota-Chrysler comparison." vol. Ph.D.
dissertation: University of Michigan, 1997.

[80] H. Soriano-Meier and P. L. Forrester, "A model for evaluating the
degree of leanness of manufacturing firms," Integrated
Manufacturing Systems, vol. 13, pp. 104 - 109, 2002.

[81] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz, and
S. Ferber, "Introducing PLA at Bosch Gasoline Systems:
Experiences and Practices," in Software Product Lines, 2004, pp.
34-50.

[82] J. Sutherland and K. Schwaber, "The Scrum Papers: Nuts, Bolts, and
Origins of an Agile Process," 2008.

[83] J. Tingström, H. Gustavsson, and P. Palmér, "Implementing Value
Stream Mapping - VSM in a R&D organisation," in Proceedings of
NordDesign2010 - International Conference on Methods and Tools
for Product and Production Development Goteborg, 2010.

[84] C. Tischer, A. Muller, M. Ketterer, and L. Geyer, "Why does it take
that long? Establishing Product Lines in the Automotive Domain,"
in 11th International Software Product Line Conference, Kyoto,
Japan, 2007, pp. 269-274.

[85] K. T. Ulrich and S. D. Eppinger, Product design and development:
McGraw-Hill New York, 1995.

[86] H. Unphon and Y. Dittrich, "Organisation matters: how the
organisation of software development influences the development of
product line architecture," in Proceedings of International
Conference on Software Engineering, Innsbruck, Austria, 2008, pp.
178-183.

56 References

[87] H. Unphon and Y. Dittrich, "Software architecture awareness in

long-term software product evolution," Journal of Systems and
Software, 2010.

[88] P. Wallin, J. Froberg, and J. Axelsson, "Making Decisions in
Integration of Automotive Software and Electronics: A method
based on ATAM and AHP," 2007, p. 5.

[89] T. van Beek, M. Erden, and T. Tomiyama, "Modular design of
mechatronic systems with function modeling," Mechatronics, 2010.

[90] F. van der Linden, J. Bosch, E. Kamsties, K. Känsälä, and H.
Obbink, "Software Product Family Evaluation," in Third
International Software Product Lines Conference. vol. Volume 3154
Boston: Springer Berlin, 2004, pp. 110-129.

[91] A. Ward, The Lean Development Skills Book. Ann Arbor: Ward
Synthesis, 2002.

[92] A. C. Ward, Lean product and process development. Cambridge,
Mass.: Lean Enterprise Institute, 2007.

[93] D. Weiss and C. Lai, Software product-line engineering: a family-
based software development process: Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1999.

[94] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A.
Wesslén, Introduction to Experimentation in Software Engineering:
Kluwer Academic Publishers, 2000.

[95] Volkswagen,App my Ride, www.app-my-ride.com, Accessed: 2010-
12-08.

[96] J. P. Womack, D. T. Jones, and D. Roos, The machine that changed
the world. New York: Rawson Associates, 1990.

[97] C. von Wangenheim, J. Hauck, C. Salviano, and A. von
Wangenheim, "Systematic Literature Review of Software Process
Capability/Maturity Models," in Proceedings of International
Conference on Software Process. Improvement And Capability
dEtermination, 2010.

[98] Y. Yamamoto, Kaikaku in production. Västerås: Mälardalen
University, 2010.

[99] R. Yin, Case Study Research : Design and Methods (Applied Social
Research Methods): SAGE Publications, 2002.

[100] W. Zientz, "Electronic systems for commercial vehicles," in ATZ
AutoTechnology. vol. 5, 2007, pp. 40-43.

Paper A

Improving the system architecting process
through the use of Lean tools

Håkan Gustavsson
Mälardalen University

School of Innovation, Design and
Engineering

Jakob Axelsson
Mälardalen University

School of Innovation, Design and
Engineering

Abstract

The impact of embedded systems within the automotive industry has grown
very rapidly and is today influencing most part of the product development
process. This technological change puts high demands on the development
process in order for the company to stay competitive.
The architecting process is performed during the early phases of the
development process when uncertainty is very high. The architecting process
will not create immediate value to the end customer, but rather create the
architecture on which value in terms of product features can be developed.
The architecture will enable value creation when working properly or, in the
worst case, prevent value creation.
Lean is a product development philosophy that aims at creating value for the
end customer. A Lean tool used to improve the value creation within a
process is Value Stream Mapping (VSM). VSM has in this work been
adapted and evaluated to analyze and identify improvements of the
architecting process within embedded systems development. In this paper we
present practical experiences from using this adapted VSM. The evaluation

58 Paper A

was conducted through interviews at two automotive manufacturers. VSM is
shown to be a valuable tool to identify waste and thereby improve the
architecting process.

I. Introduction
The product development process is often depicted as a straight forward
process starting with an idea and ending with a validated product. The reality
is often not as stringent [3], and iterations and rework is part of most product
development processes. There are methods such as real options [4] available
to evaluate different technical design decisions. To make the right technical
decisions is very important, but to stay competitive this most be done in the
right way. According to Ward [20], 60% of the time invested within product
development is waste.
To stay competitive in the automotive industry vehicle manufacturers are
forced to release new models more often. At the same time the product
portfolio must be further diversified in order to satisfy individual customer
demands. The shorter development cycle and increased number of
concurrent models brings an increased need for transfer of design
knowledge. In this study a car manufacturer (Volvo Cars) is compared with a
manufacture of commercial vehicles (Scania). A commercial vehicle must
manage to run 300 000 km per year and breakdowns do not just influence
the driver, but also the delivery time of the goods it carries. Commercial
vehicles have a lot in common with passenger cars, much of the functionality
are found in both segments. The passenger car industry has traditionally
been adopting new technology earlier. This can be explained by the different
needs of the customer.
Today most innovations made within the automotive domain are driven by
electronics. Future functions that enable vehicles to communicate with not
just other vehicles, but also the infrastructure [2]. Those future demands are
increasing the complexity and the boundaries of the automotive electronic
and electrical (E/E) system. The architecture of the E/E system has a large
impact on how expensive or difficult those changes will be to implement.
The architecture will enable value creation when working properly or, in the
worst case, prevent value creation. The process of architecting the E/E
system is therefore an important process to improve.
In our work, architecting is viewed as the process of shaping the architecture
to meet customer demand by balancing requirements, guiding principles and
product vision. As we see the architecting process is central to and

Paper A 59

dependent on many factors within the organization. In order to improve the
process the involved activities would need examining. With this in mind the
following research question is studied in this paper:
How can the system architecting process be mapped in order to identify
improvements?
A hypothesis to be tested is whether VSM is a suitable method.
The literature review explains the concept of lean and how it relates to
system architecting. VSM is then reviewed in Section III followed by a
description of the adapted method for performing VSM on the system
architecting process. This method is then utilized on a case study described
in Section V. The results of the case study are then discussed followed by a
presentation of future work to be done.

II. Method and Methodology
The literature on Lean and Value Stream Mapping (VSM) has been studied
to understand the concepts. This knowledge has been used in the process of
defining the case study. After the case study was constructed, it was tested
on one person at each company who previously has been employed as
system architect. The chosen format of the interview was semi-structured
and the answers were recorded by a person with deep knowledge of the
architecting process. A semi-structured interview has predetermined
questions, but the order can be modified based upon the interviewer’s
perception of what seems most appropriate. Question wording can be
changed and explanations given [15]. The interviews at both companies
followed the same template and the answers given were then used to
describe the process.

III. Literature review
Lean
Lean is a practice that considers the usage of resources for any goal other
than the creation of value for the end customer to be wasteful, and thus a
target for elimination. Working from the perspective of the customer, who
consumes a product or service, value is defined as any action or process that
an internal or external customer would be willing to pay for. The concept of
Lean production was defined in the literature by Womack et al. [21], but
derives from the working methods developed by Toyota in the 1950s.

60 Paper A

Lean methods focus on increasing customer value and on the people who
add value. A Lean-based company encourages its employees to perform
continuous improvement and to learn. This is done by cross-functional and
parallel work and a high degree of standardization in order to optimize
across organizations. The concept of Lean production has today moved from
manufacturing into various sectors, such as maintenance, purchasing,
logistics, and to product development which is the topic of this paper. Lean
production is achieved by careful planning of a production line in order to
optimize the production flow to meet customer needs. Each assembly station
is arranged to minimize unnecessary motion and transportation of material.
Each assembly station is assigned defined tasks to be finalized on a specific
time in order to achieve a balanced flow throughout the production-line. A
balanced flow means that the results are delivered on-time without waiting
or over-production.
An important starting point of lean product development is to view the
product development as a process, and like any other process there are
repeated cycles of activity [10]. This is important even though the resulting
artifact is per se novel to some degree. From a process perspective, there are
many activities that are shared between different development projects. By
eliminating the waste in a process, an increased flow is achieved, thus new
products can be brought to the market at a higher pace.
There are two main differences between manufacturing and the early phases
of product development. The flow does not consist of materials but more
often information and knowledge in different shapes. Different
organizational and geographical locations of the stakeholders influence how
this knowledge is shared. The process does not consist of one flow, but
instead iterations are often made and different concepts are developed in
parallel.
Allen Ward [20] claims that 20% of the time spent in product development is
value adding time. Nonvalue-creating time such as administration work
occupies 20% and the remaining time is waste. This fact would suggest that
optimization is possible if we identify the wasteful activities. It is common to
define seven types of waste [10] and value stream mapping is one method to
identify the waste within system architecting. According to Allen Ward [20]
the most frequent waste in development is waste of knowledge. He divides
knowledge waste in three categories: scatter, hand-off, and wishful thinking.
Scatter is described as actions that disrupt the flow of knowledge. This
disruption can be due to communication barriers and the use of inappropriate
tools. Example of knowledge waste created by hand-offs is to move people
around rather than assigning them from the beginning to the end. Waste due

Paper A 61

to wishful thinking is for instance to test according to specification rather
than to test to learn about the limits of the product.
In the literature, there is little work on how Lean can be applied to the
process of developing software-intensive systems. Poppendieck and
Poppendieck [13] present how Lean can be applied to the software
development process. In their work, typical wastes to be found are hand-offs
between individuals, switching between tasks and adding extra features.
Value Stream Mapping is presented as one way to find waste.

IV. Value Stream Mapping
There are many different techniques available for process modeling, but
Value Stream Mapping (VSM) differentiates in focusing on value creation.
Value Stream Mapping (VSM) was initially a tool for improving the
manufacturing process [16] and has shown to be effective within
manufacturing [7]. The method is today also used within many other
disciplines. The process includes four steps which are described in the next
sections.
Value Stream Scope
The purpose of scoping is to determine what process (value stream) is to be
improved and to create a common view of the process to be analyzed. This
means understanding what processes are included and where the process
starts and ends. It should also be decided upon who will perform the VSM
and who will support the event, including management. The output of the
scoping is therefore an input-output view (Figure 1) of the process and its
control parameters, but also a working plan [5]. Control parameters could be
a common strategy or business goals. Enablers are resources consumed by
the process such as available people and tools.

Process
OutputsInputs

Controls

Enablers
Figure 1 A input-output view of a process.

62 Paper A

Current State
The aim of this step is to understand how things currently operate. This is
done through a walk-through of the entire process from beginning to end,
usually in a workshop manner. The demands of the internal and external
customers must be identified. The flow of material and information is then
mapped, identifying each process time and lead time.
To illustrate how this is done, a fictive example is presented in Figure 2. The
sub process of updating a communication interface in a document and a
database is mapped with the recommended symbols [8]. Figures of the
process are given through a walkthrough of the process. The process time is
the required time it takes to complete a specific task when working without
interrupts. The task of creating an interface description takes 120 minutes
from start to finish. The number of people and resources normally available
for a task are given after the symbol in the middle. In this example, we find
out that the dedicated employees normally have 30% time available for
creating interface description.
It then normally takes half a day from the handover until the work to update
the database is started, which is indicated below in the IN process box. The
task to update the interface database is then started, taking an average of 30
minutes to perform with one person available at 50%.

Create interface description Update interface database

1 person @ 50%

Process Time: 120minutes

2 shared @ 30%

Process Time: 30minutes

IN

½ day

Figure 2 The subprocess of updating a communication interface in a
document and a database.

Future State
The purpose of this step is to improve the process, i.e., to design a lean flow.
This is done by analyzing the process with regards to the Lean principles.
There are a number of questions that can be asked to find those
improvements [8]. What does the customer really want? Which steps create
value and which steps are waste? How can we design a flow of work with
fewer interruptions? Using this set of question some additional issues will
arise in our example: Are the interface description what the customer really
wants or are some parts not necessary (e.g. waste)? Does the information

Paper A 63

need to be added to two different sources or would the database be enough?
Can the task be done by the same person and thereby reduce the lead time?
With the guidance of those questions a future state of the example can be
drawn. If the document is not needed and the task can be done by the same
person the following future state can be drawn. The lead time is reduced by
half a day and the process time with 30 minutes (Figure 3).

Update interface database

2 shared @ 50%

Process Time: 120minutes
Figure 3 The result of the future state.

Work plan and implementation
This last task is the final goal of the VSM, namely to ensure that the
improvements are implemented. It is done by describing the specific
improvements that are chosen to be implemented from the previous step. A
work plan is made showing what will be done by whom at what time. The
work plan is used to follow-up that the tasks are being performed. The
planned changes must be communicated to everybody involved in the
process. To make the necessary changes it is crucial to have management
attention. Summarizing what is learned in the VSM event is done in order to
ensure that knowledge is carried to the next time (lessons learned).

V. VSM for System Architecting
In this section we will present an adapted VSM for a system architecting
process of a software intensive system. The purpose of creating an adapted
VSM is to enable comparison between different organizations and thereby
improve knowledge transfer. In order to make this adaptation, a literature
review of the architecting process has been carried out. The authors’
previous practical experiences as system architects has also aided the work.
Value Stream Scope
The architecting processes is influenced by many different factors [18]. To
be able to understand different architecting processes one must first
understand the surrounding circumstances. The attributes that are important
to gather in order to understand the context were derived from the literature
[1, 9, 14]. The attributes in table 1 are derived to make a comparison

64 Paper A

possible of the architecting process and grouped according to the BAPO-
model [18].

Table 1 Attributes describing the context of the system architecting

process, with examples given in parenthesis.
Business
Number of products produced per year
Number of product variants
Procurement strategy (make or buy)
Lifetime of the system in number of years
Organization
Geographical distribution of the R&D organization
Number of employees in the R&D organization
Number of employees of the system development organization
Type of organization (matrix, project)
Balance of power (line, project)
Organizational location of architects (co-located, separated)
Number of system architects
Architectural power (line, project, architects)
Process
Development process (Stage-gate)
R&D Organization (national, one location)
Guiding principles
Culture (consensus)
Methods in use
Architecture
Level of SW/HW architecture
Type of architecture (product-line, single product)
Principles or architectural rules
Architectural lifecycle (continuous, revolutionary)
Number of parallel architectures

When those attributes are known and understood a comparison can be made
and the right conclusions can be drawn. The architecting process (Figure 4)
starts when a change request reaches the architecting team and ends when a

Paper A 65

solution is presented and decided upon. The input of a legacy architecture
and customer requirements are transformed into a revised architecture, which
adds customer value and knowledge to the organization. The process is
controlled by business attributes and enabled by the organizational attributes.
A generic input-output view of the system architecting process can be seen
in Figure 4. When the attributes are known the value stream scope is also
clearly defined. In our case study, figures about the different companies were
gathered from financial reports and through a company contact. Less exact
attributes such as “balance of power” were obtained after analyzing the
interview data.

Context
Architecture

M
anagem

ent

To
ol

s
Legacy Architecture

Knowledge

Custumer demands

In
pu

ts

O
ut

pu
ts

Enablers

Knowledge

Customer Value

P
eo

pl
e

M
et

ho
ds

P
rinciples

S
trategy

V
alues

Controls

Architecting process

Figure 4 The attributes affecting the architecting process.

Current State Drawing
Depending on the process maturity of the organization, estimations of lead
and process time will be hard to find, but might be interesting in a second
VSM iteration. Therefore a first VSM is chosen to be made lightweight. The
architecting process is a support process that usually aids an overall
development process. The current state was obtained through semi-
structured interviews at two companies. Through the answers to the
interview questions the system architecting process of the two organizations
were analyzed. The differences in the two organizations ways of working
were then mapped to a reference process (Figure 5) derived from the best
practice according to the literature [6, 9, 11, 14]. Waste and deviations from
the reference process were then documented. Available performance
measurements such as throughput, customer satisfaction or first pass yield
were also taken into account. The output of this step is an image of the
created value stream map.

66 Paper A

Candidate
Architectural

Solutions

Architecturally
Significant

Requirements

Architecturally
Significant

Requirements

Architectural
Concerns

Architectural
Backlog

Architectural
Synthesis

Architectural
Analysis

Architectural
Evaluation

Architectural
Refinements Architectural

Validation

Updated
Architectural

Documentation

Validated
Architecture

Inputs

C
ontrols

En
ab

le
rs

Outputs

Figure 5 Reference architecting process.

A special difficulty when analyzing the system architecting process is that
much of the value created, and waste removed, is actually seen in other
subprocesses of the product development process. The architecture organizes
the work of many activities, and a good architecture provides clear and
simple interfaces between subsystems, making the system development for
these parts more efficient. Finding the best balance between the amount of
architecting vs. system development is one of the most difficult parts in
product development management.
Future State Drawing
Most of the customers of the architecting process are internal and the
customer value is difficult to calculate. The questions applied in a traditional
VSM (section IV) might therefore be hard to answer but will none the less
be important. To make the results comparable the different categories of
waste found should be documented. The architecting process is supportive
and inputs are given at various times, which make rework hard to avoid.
Waiting until all inputs are available could stall the overall development
process. The difficult task in this step is therefore how to cope with this
uncertainty and maximize the value creating activities.
The future state of the process is achieved in two steps. The first is to find
countermeasures to remove non-value-adding activities found in previous
step. Those can be as simple as to stop producing a document that is not
used, but in most cases it will be more complicated i.e. changing the way
architects interact with other stakeholders. The second step is to benchmark
the current state, in our case the other company. For future users of the
method the two case-companies documented in this paper can be used as
comparison. The output of this step is an improved process.

Paper A 67

Work plan and implementation
A work plan is made showing what improvements could be done. To ensure
success of the work the suggested improvements should be prioritized. It is
important not to overload the organization with changes. Improvements
leading to fast return on invested time are a way to encourage further work
on improvements.

VI. Case study
The case study was conducted at two different automotive OEMs using semi
structured interviews. In the study the researchers interviewed all architects
available and willing to participate, which resulted in more than half of the
persons working as architects at each company were interviewed, 4 at Scania
and 5 at Volvo Cars. In addition to this the managers for the architecting
group were interviewed at both companies, totalling the number of
interviews to 11. Of the 11 respondents 2 were women. The interview started
with some introductory questions to get some background about the
respondent followed by a set of predefined questions. To ensure
participation the length of the interview were kept to one hour.
Scope
The two companies are similar in both being automotive OEMs in the
premium segment and both being located in Sweden, but different in aspects
concerning organization, business and architecture. A clear difference is the
types of products being produced, cars and commercial vehicles.
The main differences in business attributes are the production volume and
procurement strategy. Volvo Cars buys a much larger part of the EE system
and is also producing a much higher number of vehicles per year. Even if
both cost and quality are important for both companies, Volvo Cars has a
stronger focus on cost and quality is found more important at Scania.
Scania has chosen to have one common architecture which is continuous
evolving and Volvo Cars has several parallel architectures. The two matrix
organizations are very similar in size and their R&D department is both
located in one single location. The biggest difference is found in the balance
of power between the line and project. At Volvo Cars the main power is in
the project organization and at Scania the line organization has the main
power.
The process is managed differently, Volvo Cars uses traditional methods for
communication and process follow-up and Scania uses visual planning and

68 Paper A

Obeya rooms [10]. An Obeya room is a place where cross functional
knowledge is visualized and is used to show progress and to get a overall
view. Respondents at both companies think that the decision making is slow.
The architects at Volvo Cars and Scania have similar experience within the
field, but the architects at Volvo Cars have been within the company
significantly longer.
The inputs to the process were different in how changes affecting the
architecture were entering the process. Scania has a well defined process into
which all changes are entered. Volvo Cars has a similar process, but the
process is not as settled and changes are therefore sometimes stumbled upon.
Current state
Both companies mapped easily to the reference process, with one exception.
No formal evaluation step was made; evaluation was only mentioned to be
made in rare cases. It is important to note that the process is not as sequential
as it might appear in Figure 5, iterations are made between all steps and
especially between the analysis and the synthesis. Those iterations lead to
waste in terms of waiting for information, which delays the process in both
companies.
The tools used for documenting the architecture at Scania are not integrated
which leads to waste when the same information needs to be entered more
than once. Definitions of important concepts such as architecture are not
defined at Scania, and this is waste caused by a communication barrier. The
shorter employment time of the architects at Scania could also cause waste
because of lack of company knowledge. The architects at Volvo Cars are
assigned to a single architecture and knowledge sharing between them is
therefore limited.
Future state
The decision making process in Sweden is known to be based on consensus
decisions which leads to more meetings and communication [12] than areas
with other culture. More meetings are not necessarily waste as long as
knowledge is shared and the right people are attending well prepared
meetings. It is important though to ensure the meetings to be effective. The
frequent iterations are often due to loss of information in previous
development steps. This waste could probably be eliminated through
improved knowledge transfer of design rationale. Both Volvo Cars and
Scania could document design rationale using the A3-technique [17]. A3 is a
practical knowledge sharing mechanism using one single page to report e.g.
decision-making or problem-solving.

Paper A 69

A comparison between the two companies shows that there are a number of
value-adding methods that could be borrowed. Scania is today using
workshops as a method during the synthesis, and this could be one way to
improve knowledge sharing at Volvo Cars. A similar tool chain as the one
used at Volvo Cars could eliminate the waste caused by multiple entries of
data at Scania. Scania uses visual planning [10] to keep track of the
progression of tasks and workload of the architects, and this could improve
how the backlog is handled at Volvo Cars. Working in pairs and in different
areas increases knowledge sharing at Scania, this could also be tested at
Volvo Cars. This type of knowledge sharing also provides a more flexible
staff that can help out and reduce workload of other architects. Common
understanding of different important concepts in the architecture should be
improved at Scania to make the knowledge sharing more effective. Design
reviews are made regularly at both companies and provide value as a
knowledge sharing activity. Scania also uses feedback from the test
department to validate the architecture; this can be improved at Volvo Cars.
Work plan and implementation
The suggested work plan was to first of all present the result for the two
companies and to let them prioritize the suggested improvements. As this
case study was made on a real process with real people it will take some time
before a possible change take place. This is therefore not included in this
work.

VII. Discussion and future work
In this paper the theory of Lean and VSM has been explained and a adapted
VSM has been presented. The adapted VSM was then tested on a case study
through 11 interviews at two different companies. The result of the case
study has been presented at the two companies, who found them interesting,
but most of all inspiring for their future process improvement. The indicator
best showing that the mapping was valuable to the companies is that the
presentation was asked to be held twice.
During the interviews it was important to ask and understand the previous
experience of the respondents. Depending on their background respondents
will have different perspectives. The answers of the respondents at each
company were surprisingly similar. The author’s knowledge of the field was
found important to make the interviews effective and to understand the
acronyms and technical terms used. Improvements before a future case study

70 Paper A

will be to reduce the number of questions in the interview template that were
found redundant.
In future work the interviews will be further explained and the case study
expanded to include more companies. This will provide academia with
knowledge of how architecting is performed. The industry can use the
methods found for comparison and inspiration of process improvements.
Acknowledgment
We would like to thank the architects and managers at the two companies for
their interest and cooperation. This work has been financially supported by
the Knowledge Foundation and the Swedish Agency for Innovation Systems
(VINNOVA) as part of the FFI program.

References
[1] J. Axelsson, J. Fröberg, H. Hansson, C. Norström, K. Sandström,

and B. Villing, "A Comparative Case Study of Distributed Network
Architectures for Different Automotive Applications," in The
Industrial Information Technology Handbook, R. Zurawski, Ed.
Boca Raton, USA: CRC Press, 2005, pp. 57-1 to 57-20.

[2] M. Broy, I. H. Kruger, A. Pretschner, and C. Salzmann,
"Engineering Automotive Software," Proceedings of the IEEE, vol.
95, pp. 356-373, 2007.

[3] H. Gustavsson and J. Sterner, "An Industrial Case Study of Design
Methodology and Decision Making for Automotive Electronics," in
Proceedings of the ASME International Design Engineering
Technical Conferences & Computers and Information in
Engineering Conference New York, 2008.

[4] H. Gustavsson and J. Axelsson, "Evaluation of Design Options in
Embedded Automotive Product Lines," in Applied Software Product
Line Engineering, K. C. Kang, V. Sugumaran, and S. Park, Eds.:
Auerbach Publication, 2009, pp. 478-495.

[5] C. Haskins, "Systems engineering handbook," 3rd ed Seattle:
INCOSE, 2007.

[6] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and P.
America, "Generalizing a Model of Software Architecture Design
from Five Industrial Approaches," in Proceedings of the 5th
Working IEEE/IFIP Conference on Software Architecture: IEEE
Computer Society, 2005, pp. 77-88.

Paper A 71

[7] C. O. L. Ibon Serrano Lasa, Rodolfo de Castro Vila, "An evaluation

of the value stream mapping tool," Business Process Management
Journal, vol. 14, pp. 39 - 52, 2008.

[8] D. Locher, Value Stream Mapping for Lean Development: A How-
To Guide for Streamlining Time to Market Taylor & Francis 2008.

[9] M. W. Maier and E. Rechtin, The art of systems architecting. Boca
Raton: CRC Press, 2002.

[10] J. M. Morgan and J. K. Liker, The Toyota product development
system : integrating people, process, and technology. New York:
Productivity Press, 2006.

[11] G. Muller, "CAFCR: A Multi-view Method for Embedded Systems
Architecting; Balancing Genericity and Specificity," in Technology,
Policy and Management vol. PhD thesis: Technische Universiteit
Delft, 2004.

[12] R. Muller, K. Spang, and S. Ozcan, "Cultural differences in decision
making in project teams," International Journal of Managing
Projects in Business, vol. 2, pp. 70 - 93 2009.

[13] M. Poppendieck and T. Poppendieck, Implementing lean software
development : from concept to cash. Upper Saddle River, N.J.:
Addison-Wesley, 2007.

[14] E. Rechtin, Systems architecting : creating and building complex
systems. Englewood Cliffs, N.J.: Prentice Hall, 1991.

[15] C. Robson, Real World Research-Second edition: Blackwell
Publishers Ltd., Oxford, UK, 2002.

[16] M. Rother and J. Shook, Learning to see : value stream mapping to
create value and eliminate muda. Brookline, MA: Lean Enterprise
Institute, 2003.

[17] D. K. Sobek and A. Smalley, Understanding A3 Thinking. New
York: Taylor & Francis, 2008.

[18] F. van der Linden, J. Bosch, E. Kamsties, K. Känsälä, and H.
Obbink, "Software Product Family Evaluation," in Third
International Software Product Lines Conference. vol. Volume 3154
Boston: Springer Berlin, 2004, pp. 110-129.

[19] A. Ward, The Lean Development Skills Book. Ann Arbor: Ward
Synthesis, 2002.

72 Paper A

[20] A. C. Ward, Lean product and process development. Cambridge,

Mass.: Lean Enterprise Institute, 2007.
[21] J. P. Womack, D. T. Jones, and D. Roos, The machine that changed

the world. New York: Rawson Associates, 1990.

Paper B

Architecting Automotive Product Lines:
Industrial Practice

Håkan Gustavsson

Scania
Södertälje, Sweden

Ulrik Eklund
Volvo Car Corporation

Göteborg, Sweden

Abstract

This paper presents an in-depth view of how architects work with
maintaining product line architectures in the automotive industry. The study
has been performed at two internationally well-known companies, one car
manufacture and one commercial vehicle manufacture. The results are based
on 12 interviews with architects performed at the two companies. The study
shows what effect differences such as a strong line organization or a strong
project organization has on the architecting process. It also shows what
consequence technical choices and business strategy have on the architecting
process. Despite the differences the results are surprisingly similar with
respect to the process of managing architectural changes as well as the
information the architects maintain and update, especially in the light that
the companies have had no direct cooperation.
Keywords: Architecting, Process, Case study, Automotive industry

1 Introduction
Software and electronics are today an important part in the development of
automotive products. Experts [1] estimate that 80 percent of all future
automotive innovations will be driven by electronics. Scania [2] claims that
electronics in trucks and buses makes up 10-15 percent of the value and is

74 Paper B

increasing. Volvo Cars [3] estimates the value of electronics of a high-end
car to 30 percent.
Architectural changes of distributed embedded systems are either
evolutionary or revolutionary [4], and the architecture plays a vital role to
the success of the product line. The main purpose of this paper is to
understand how architecting is performed to keep up with evolutionary
changes. This is summarized in the research question to be answered: What
tasks are performed in the process of architecting automotive embedded
systems?
Decisions in the development process [5] and within the architecting process
[6] has been previously studied. Dobrica and Niemela [7] makes a
comparison of eight different available software architecture analysis
methods. Experience reports of introducing product lines in the automotive
domain for the first time has been done previously [8] as well as showing the
benefits of the introduction [9]. In a survey of 279 IT architects in the
Netherlands Farenhorst et al. [10] concludes that architects are lonesome
decision makers; not very willing to share architectural knowledge, but eager
to consume.
This paper presents a comparison of how architects at two different
companies work with maintaining existing product lines. The case study has
been performed at two automotive companies, the truck and bus
manufacturer Scania and the car manufacture Volvo Cars. In the next section
a brief presentation is given of a general automotive electrical system. In
Sec. 3 the method used in the study is presented. An outline of the case study
is given in Sec. 4 followed by the results in Sec. 5. Finally we discuss the
findings from our work.

2 Background
2.1 The Systems and Their Architecture
The electrical system in both cars and trucks/buses are an embedded
software system consisting of 30-70 different Electronic Control Units
(ECUs), each with a microprocessor executing in the order of 1 MByte
compiled code2. These ECUs control the behavior of virtually all electrical

2 A few safety-critical ECUs have two microprocessors for redundancy or internal

monitoring.

Paper B 75

functions, from power windows to valve timing of the engine. The in-vehicle
software share a number of characteristics common to the automotive
domain (see e.g. [11], [12] and [13] for further elaboration):

• A large number of vehicle models with varying feature content and
configurations which must be supported by the software

• Highly distributed real-time system
• Distributed development at vehicle manufacturers and suppliers
• Low product cost margins
• Stringent dependability requirements

This combination of characteristics, together with a steady growth of
features realized by electronics and software, makes the electrical system in
a vehicle a highly complex software system.
Almost all ECUs have a number of sensors and actuators connected to them
depending on purpose and location, and these can be shared among
distributed functions. Most ECUs are reprogrammable, i.e. has flash memory
and not ROM, which allows programming both in the manufacturing plant
as well as at dealers and workshops after delivery to the end-user. The layout
of which ECUs are connected to which bus and what ECUs are acting as
communication gateways between the buses is the network topology of a
vehicle, of which Fig. 1 is a representative example.

 Fig. 1 The network topology of a Volvo XC90. The ECUs connected to
CAN and MOST and the main multiplexed networks are seen in their
approximate physical location. See [16] for a more in-depth description
of the network topology of both Scania and Volvo vehicles.

76 Paper B

The interface between the software application on each ECU is in a Scania
vehicle defined by the J1939 standard [14], which is very detailed in what
information is. Volvo Cars uses a proprietary solution for the multiplexed
communication which allows a high degree of flexibility in defining and
maintaining interfaces on the buses [15]. Much of the activities regarding the
logical architecture at both companies are focused on these interfaces.
2.2 Related Work
Almost all of the cases we found regarding product lines focused either on
the prerequisites for a successful product line approach or the change
management of an organization adapting a product line where it previous not
had one. Some examples from the automotive industry are [17], [8] and [18].
Buhrdorf et al. [19] reports about the transition Salion did to a product line
with a reactive approach where the necessary variations was not explored
when introducing the product line, but rather handled in what they call the
“steady state”. The architecting work in this paper is also reactive with the
same definition, since it is about updating the systems and their architectures
to comply with prerequisites not known when the architecture was first
designed.

3 Methodology
The data used in this study is based on interviews with the persons most
involved in the activities of maintaining architectures, i.e. the architects
themselves. Neither Scania nor Volvo makes a distinction of the roles for
system and software architects. All architects available and willing to
participate were interviewed, which resulted in more than half of the
architects at each company participating, 4 at Scania and 5 at Volvo Cars. In
addition to this the managers for the architecture groups were interviewed at
both companies, totaling the number of interviews to 11. Of the 11
respondents 2 were women.
The interviews were performed by the two authors, which are native to
Scania and Volvo Cars respectively (see [20] for the definition of “native” in
this context). One lead the interview while the other took extensive notes,
which was later edited for spelling and grammar. The respondents had the
possibility to read and comment the notes from their respective interview to
correct any misunderstandings, purse errors or other mistakes in the
recordings. This was done before the analysis took place.

Paper B 77

The interviews were semi-structured with open-ended questions. The
researchers paid special attention to not use any terminology that had special
or different meanings at the two companies to avoid the respondents
perceive the same question differently depending in which company they
were working. After the interview was constructed, it was tested on one
person at each company who had worked as a system architect to evaluate
the relevance.
The interview questions were defined in English and then translated to the
native language of the interviewers and respondents, Swedish, for a more
natural and fluent setting. Whenever a quote from the interviews is presented
in the article the translation to English was done post mortem.
The interview started with some introductory questions to get some
background about the respondent, like education, professional experience of
embedded systems, time employed and a general idea of how they would
define architecture. The majority of each interview was based on a set of
questions directed at exploring the respondent’s view of their work with the
architecture. The set of questions were aimed to cover all stages of an
architecting process from [21] to make sure no vital information was missed.
All 11 interviews progressed in essentially the same order.
3.1 Analysis Procedure
The analysis was made by the two researchers jointly looking for common
themes based on the interview questions. Also answers relating to these
themes given in other questions were including in this analysis. The themes
were also analyzed if they showed a close similarity between the two
companies or significant differences. The two authors used their insider
knowledge about respective organization and products in making the
analysis and to enrich the conclusions made.

4 The Case Study
The main objective of this study was to get the richest insight possible into
how architects maintain an existing architecture in practice. The selection of
the two automotive companies was made for three reasons. The first is that
the authors already had inside access to the subjects and the support of
middle management to perform this and similar studies. Second the two
companies are similar enough for a comparison to be manageable, such as
each company having a product line architecture approach, but still different
enough for the interviews not to be a duplicate. The third, and not least,
reason is the possibility for the authors to use their knowledge as insiders to

78 Paper B

augment the analysis of the data to provide an even richer insight into the
two cases.
4.1 Context
Both companies studied are situated in Sweden and share characteristics
common among Swedish engineering industries such as; solid knowledge
about the product among the developers, putting value on personal networks,
and similar educational and demographic background in the development
departments. The overall product development process at both companies
follows a traditional stage-gate model. An important difference is the
balance of power; Scania has a stronger line organization [22] while at
Volvo Cars the project organization is stronger.
All participants had a similar educational background with an engineering
master degree from a Swedish university. They had worked with embedded
systems between 5 and 25 years. They also had similar experience working
as architects, with a majority being an architect for 4-6 years. The main
difference was that the architects at Volvo Cars had on average worked twice
as long in the company, compared to Scania.
Scania is one of the world's leading manufactures of heavy commercial
vehicles selling on a global market with a solid reputation of designing and
producing vehicles with the core values of “Customer first”, “Respect for the
individual” and “Quality”. During 20083 Scania produced 66,516 trucks and
7,277 buses. Scania is a public company with Volkswagen AG as the largest
stockholder. The development of all critical parts of the product, such as
engine, transmission, cabs and chassis are centralized to the research and
development centre in Södertälje, Sweden.
Volvo Car Corporation is a manufacturer of premium cars with core
values4 of “safety”, “environment” and “quality”. Volvo Cars produced
374,297 vehicles in 20085. Volvo Cars is a subsidiary company to Ford
Motor Company (as of 2010 February 23), sharing technical solutions with
other brands within FMC.

3 http://www.scania.com/scania-group/scania-in-brief/key-figures/
4 http://www.volvocars.com/intl/top/about/values/pages/default.aspx
5http://www.volvocars.com/SiteCollectionDocuments/TopNavigation/About/Corporate/Volv

Sustainability/VolvoCars_report_2008_ENG.pdf

Paper B 79

4.2 The Scania Product Line
Scania has a tradition of working with a modular product design since the
early 1960's. The modular system has claimed to be the main reason why the
company stayed profitable every year since 1934 [23]. The internal training
program teaches the three basic corporate principles of modular thinking
[24]:

1. Standardized interfaces between components
2. Well-adjusted interval steps between performance classes
3. Same customer-need pattern = same solution

These principles are today also applied on the electrical and electronic
system, besides the traditional mechanical parts. Scania does all design work
towards the product line, there is no work done towards a specific product
model. A project at Scania is an addition or update to one or more modules
towards a specific time when it goes into production, and there is no
difference if the update is purely mechanical or includes software as well,
the product line approach is identical [24]. The Scania product line uses the
same architecture, as well as components, for all of its three product
categories; trucks, buses and engines, seen in Fig. 2. Every sold product is
customer ordered and unique which is made possible through the modular
system.
The software adaptation of each product is made during production. This is
done by extracting a configuration file from the manufacturing product
specification, which is then downloaded onto the unique product.

Long-haulage Construction Distribution City IndustrialIntercity Marine

Trucks Buses Engines

Scania
Product Line

Fig. 2 The product line at Scania and the different products built on it.

4.3 The Volvo Cars Product Lines
Presently Volvo Cars maintains 3 electrical architectures for the 3 platforms
in production. All vehicles in a platform are said to share the same
architecture, which includes the software as well as the hardware it is
executing on.

80 Paper B

Volvo does most engineering work towards a new vehicle model, or model
year, but with the intention that a solution should later be used for other
vehicles on the same platform. In contrast to Scania, Volvo defines the
product requirements for the individual car models and not the product line
as a whole. The development of the architecture and sub-system solutions
are shared between the platform and the individual products, an approach
driven by the developers at the Electrical and Electronic Systems
Engineering department themselves rather than a company-wide business
strategy.
All vehicles produced are made to order. With the possibility for the
customer to select optional features and packages the theoretical number of
possible software configurations surpasses the actual number built by orders
of magnitudes.
4.4 Comparison of the Product Lines
Both companies can be said to have a product line, including both hardware
and software, and how they develop and maintain architectures. The
electrical system share a common set of features aimed at a particular market
segment, e.g. premium cars or heavy commercial vehicles, and is developed
from a common set of assets (e.g. a common architecture and shared systems
between vehicle models). The architectures prescribe how these shared
systems interact. Since these criteria are fulfilled the software are a software
product line according to [9].
The two approaches to product lines were not driven by a business decision
but by the development organizations adapting to their environment. Both
companies were also early adopters of the practice of building several
different vehicles on the same manufacturing line, implemented years before
the introduction of complex electrical systems.
Supporting factors for establishing a product line of the electrical system
were in Volvo's case having a rather narrow spread in vehicle models
together with an explicit single options marketing strategy (versus fixed
packages). This lead to a system with a high degree of configurability. In
Scania's case the supporting factors were the organization wanting to
develop vehicles tailored to their customers, maximizing customer value
without having to redo similar development work over and over again.
Both companies handle variability in very similar way. The architecture is
predominantly implemented with two mechanisms according the taxonomy
by Svahnberg et al [25]: Binary replacement—physical, where different
binaries can be downloaded to the flash memory of all ECUs depending on

Paper B 81

the configuration of customer-chosen optional features such as adaptive
cruise control. This can be done in the manufacturing plant using the plant's
product data system with separate article numbers for software as well as
hardware (including nuts and bolts) and in the aftermarket using proprietary
systems. At Volvo this is accomplished by the Product Information
Exchange system for software [26].
The most common variability mechanism is Condition on variable where all
ECUs get information from a central on-board file defining the configuration
of that vehicle. This file is generated automatically in the manufacturing
plant and flashed as a separate binary to a central ECU. Some ECUs also
store local variables similarly used in a separate binary file with its own
article number as well.

5 Results
The interviews yielded results mostly regarding the process for managing an
architectural change.
5.1 The Process
The process for managing changes to the architecture is very similar at the
two organizations with five distinct activities:

1. need
2. impact analysis
3. solution
4. decision
5. validation

This is a fairly general process, easily mapped to a generic process for
architecture work seen in Fig. 3, based on [21].

82 Paper B

Candidate
Architectural

Solutions

Architecturally
Significant

Requirements

Architecturally
Significant

Requirements

Architectural
Concerns

Architectural
Backlog

Architectural
Synthesis

Architectural
Analysis

Architectural
Evaluation

Architectural
Refinements

Architectural
Validation

Updated
Architectural

Documentation
Validated

Architecture
Fig. 3 A generic process for creating and maintaining an architecture,

adapted from [21].
At Volvo Cars there is a greater emphasis on “why” the architecture needs to
be changed, as described by one of the architects on what is done first:

“Do a need analysis on what is driving the change. What isn't good enough?
What change is needed?”
At Scania the architects' focus is on “how”, i.e. the impact of an architectural
change. One possible conclusion is that the “why” is seen as a strategic
responsibility of the senior architect at Scania, and the other architects are
more concerned with “how”. Another possible reason is that the Scania
architecting group has chosen to be more supportive than controlling.
5.2 Needs to Change the Architecture
Architects at both companies mention functional changes and functional
growth as common reasons to update the architecture. This is not surprising
since most new features are realized by electronics and software, and that the
number of features grows almost exponentially [13].
At Volvo Cars all architects mention cost or cost reduction as a common
reason to change the architecture, this is not surprising since the cost margins
are very small and if an opportunity presents itself it is considered. At Scania
cost was only mentioned by the manager, and then only in the context of
how much the architectural change would cost. The most common reason to
change the architecture mentioned by the architects at Scania was to adapt it

Paper B 83

to hardware changes, as described by one Scania architect: “Control units
become too old; there is no room for development”.
5.3 Architecture Impact Analysis
The architects at Scania clearly seek to identify who is concerned by a
change and what parts of the system are impacted by a proposed change. At
Volvo Cars the architects request information about non-functional
requirements or quality attributes and use cases when analyzing the impact,
as described by one architect:
“I need a good description of what the customer should expect form the
system. If it concerns a ready solution or if it is something we should
develop internally, it could be a supplier offering something which we
should integrate in the system. If there is a system solution which should be
integrated I want to see that as well, if there are variants and if it is to be sold
as option or standard. . . “
A possible explanation to this could be that the architects at Scania are
involved earlier in the development of new features or systems, while at
Volvo Cars the architects are more often given a proposed technical solution,
for example by a supplier. The managers at both Scania and Volvo Cars
mentioned the motive for the change as important information for
understanding the change, but no other architects mentioned this. We have
no explanation why this is so...
The time it takes to understand the impact on the architecture from a change
seems to be similar between the two companies, a few weeks to a month
calendar time. It seems to depend more on finding the right stakeholders and
set up appointments with them than the actual effort in man hours from the
architects. Some architects at Volvo Cars also say some architectural
changes takes only minutes to evaluate the impact. This could be explained
by fact that such a question would not require a official Change Request at
Scania and therefore the respondents have not included these issues in their
answers, or that the architects at Volvo Cars usually have a more final
solution to evaluate.
5.4 Design Alternatives
Not very surprising, but notable no architecture analysis methods [7] were
used or mentioned. Evaluation was in rare cases made using methods very
similar to Pugh evaluation matrix [27]. Volvo architects seem to more
evaluate how well different design alternatives fit into the present
architecture, as mentioned by one of the architects:

84 Paper B

“Put some different alternatives against each other and evaluate from
different aspects which is best. Cost is one example. Often the need does not
come from the architecture, but from different sub-systems, from the outside.
When you know what needs to be done the implementation phase begins. I
follow long into the project and follow up that verification is done.”
In comparison to this the Scania architects are more involved in developing
different alternatives in the modelling activity. The architects see themselves
as having a supporting role to function and sub-system developers. This is
exemplified by
“Requirements on new functionality are often what we start with. We then
balance that against the present architecture, layout of electronics and the
electrical system and weigh it against our (architectural) principles. How can
we enable the functionality? Sometimes it is easy to fit in and sometimes we
realize we don't have the necessary hardware and that requires a bigger effort
and we go through a number of steps.”
This difference in how involved the architects are in the development of
subsystems is probably driven by Volvo Cars having a much larger
percentage of purchased sub-systems than Scania.
5.5 Deciding on the Architectures
Architects at both companies stated that most (all?) decisions when updating
the architecture were driven by non-functional requirements, quality
attributes or constraints. However the attributes differed between the two
companies even though the products are fairly similar, trucks/buses versus
cars. The attributes deciding what update to make to the architecture could in
most cases be derived from the core values for each company, for Scania
Customer First, Respect for the Individual and Quality, and for Volvo Cars
Safety, Environment and Quality. The attributes mentioned by Scania
architects were time (to implementation), personnel resources, system
utilization, including network bus load, safety, evolvability, usability,
robustness, maintainability and commercial effectiveness (of which cost is a
factor).
The architects at Volvo Cars unanimously mention cost as the most
important factor when deciding between architectural alternatives. Other
factors they mention are if the solution can realize the desired functionality,
time and resources for implementation, environment friendliness exemplified
by current consumption, weight, network bus load, including timing aspects,
driveability, comfort and safety requirements. Risk, or minimizing the risk of
a change, was also mentioned as a constraint by Volvo architects. The risk of

Paper B 85

change was not mentioned at Scania, possibly due to being obvious to think
about.
A common constraint, which was mentioned by architects at both
companies, was a clear wish of minimizing the effect of any architectural
changes to any already existing sub-systems. The architects usually made a
point of considering how a change would affect all sub-systems and not only
the one proposing the change. There was a common architectural concern to
have as small changes as possible, to quote one architect from Volvo Cars:
“. . . if we need to compromise so much it hurts we have not done a good
job. If we don't need to compromise so much it is good.”
5.6 Validation
The most interesting result found was that none of the architects at the two
companies validated the result of the implemented change themselves. Many
of the architects at Scania had a clear idea of which stakeholder they would
get feedback from, the integration test group. The architects at Volvo Cars
were more vague when expressing how they follow up an architectural
change:
“If it isn't a good solution we get to know there is a problem which we
correct. Normally we assume that testing finds (anything).”
Common between the two companies was that the architects mentioned
review of specifications on how a change in the architecture is followed up,
but it is unclear exactly what documents the architects are reviewing.
5.7 The Resulting Artefacts from the Architects' Work
The resulting artefacts from the architects’ work on the changes to the
architecture are very similar between Scania and Volvo Cars. It is the
responsibility of the architects to update the network topology if a requested
change affects how and where an ECU is connected to a network. At Volvo
Cars the view of the topology is part of the officially released Architecture
Description, one for each platform or product line, which is edited by the
architect for the platform. At Scania the view of the topology is a separate
document which is updated at every new release.
At both companies there will be a model describing the logical architecture
captured in an UML tool. At Scania this model grows when a change
concerns an area or function not previously modelled. Volvo Cars already
has a more comprehensive model covering the complete existing system, so
if the feature is not completely new it is more of a question of updating the
existing model. Another artefact that gets updated is the signal database

86 Paper B

mentioned above. At Scania the architects defines message sequence charts
(MSC) defining the interaction between ECUs, something that is not done at
all by the architects at Volvo Cars.
The general conclusion is that the architects at both companies work with
essentially the same type of information, but packaged slightly differently.
Meetings are more emphasized at Scania, as stated from one of the
architects;
“…there is more eye-to-eye communication than document communication
compared to other companies I have worked at.”
5.8 The Timing
The timing of when a change is introduced in the architecture varies and is
driven by different factors at the two companies. At Scania the most
important factor mentioned is when all concerned developer stakeholders are
able to update their design. All concerned developers synchronize the
changes of their assets in the product line towards a common start-of-
production (SOP). These change projects are tracked on visual planning
boards [28].
The timing of architectural changes at Volvo Cars is usually driven by the
project timing for launching new car models (also called start-of-production
at Volvo Cars), or updating a new year model of an existing car. The
architects respond to these change requests if they are technically possible to
do within that time frame. However, in the interviews two architects
expressed hesitation when claiming that it was only the project that
determined the timing. To summarize: At Scania the timing of a change of
the architecture is determined by the contingence of the line organization
while at Volvo Cars it is determined by the need of the vehicle model
project.
5.9 Other Observations
The architects at Volvo Cars had on average worked twice as long in the
company, while all architects at Scania except one had worked 4 years or
less at the company. The conclusion is that at Volvo Cars the architects were
recruited internally form other roles while at Scania the architects were
employed specifically into that role. One noticeable difference to this is the
senior architect at Scania with 21 years in the company; he is also the only
one of the 11 interviewees with an official recognition as senior or expert in
the two organizations.
The difference in work tasks between Scania and Volvo Cars is that at
Scania the architects usually works with a specific domain, e.g. HMI or

Paper B 87

chassis systems, while at Volvo the architects were responsible for a
platform and the entire system on it, e.g. the large platform (S80, V70,
XC60, . . .).

6 Discussion
The striking conclusion and the answer to the stated research question is the
similarity between the two companies in the tasks performed when
maintaining and changing architecture. The tasks mentioned by the
architects at both companies are virtually identical; need impact analysis

 solution decision validation.
The tasks do not seem to be different for architecture maintenance compared
to developing a new architecture. Likewise they seem to be the same
whether it is updating a product line architecture or updating the architecture
of a single-shot system. Also the types of information the architects work
with, one could say the viewpoints, is almost identical between the two
companies. The difference being sequence charts are only used at one
company but there the architects say they maintain them as a service to other
stakeholders and they are not architecturally relevant. The description of the
architects as lonesome decision makers made by Farenhorst et al. [10] could
not be seen in this study. One possible reason for this could be the cultural
differences between Sweden and the Netherlands.
The similarity in process and information is surprising since the present
processes of the two companies have evolved almost independently at
respective company. The similarities could be explained by the systems in
cars and commercial vehicles are similar and that the companies are not too
different in the demographics of their architects in terms of experience,
education etc. One reason could be that the processes found can easily be
mapped to a general process for architecture work, as found in [21].
As shown by Nedstam [6] there is large difference of how work is done in an
organization with strong line management and a organization with strong
projects. Several of the observed differences between the two companies
could have affected how they work with architectural change, such as the
differences in their product line approaches, the focus on project versus line
organization and differences in quality attributes.
The fact that Volvo Cars has a higher degree of tool support while Scania are
more conscious with respect to processes was also expected to affect the
work of the architects more than was found in this study.

88 Paper B

Acknowledgments. We would like to thank the architects and managers at
the two companies for their interest and cooperation.
This work has been financially supported by the Knowledge Foundation and
the Swedish Agency for Innovation Systems (VINNOVA) as part of the FFI
program.

References
1. Grimm, K.: Software Technology in an Automotive Company -

Major Challenges. International Conference on Software
Engineering (2003) 498--503

2. Edström, A.: Hasse vill ha mer processorkraft. Elektroniktidningen
(2008) 26-29

3. Edström, A.: Urban på Volvo hyllar säkerheten. Elektroniktidningen
(2006)

4. Axelsson, J.: Evolutionary Architecting of Embedded Automotive
Product Lines: An Industrial Case Study. In: Rick Kazman, F.O.,
Eltjo Poort and Judith Stafford (ed.): Joint Working IEEE/IFIP
Conference on Software Architecture (WICSA) & European
Conference on Software Architecture (ECSA (2009) 101-110

5. Gustavsson, H., Sterner, J.: An Industrial Case Study of Design
Methodology and Decision Making for Automotive Electronics.
Proceedings of the ASME International Design Engineering
Technical Conferences & Computers and Information in
Engineering Conference, New York (2008)

6. Nedstam, J.: Strategies for management of architectural change and
evolution. Lund University, Department of Communication
Systems, Faculty of Engineering, Lund (2005)

7. Dobrica, L., Niemela, E.: A Survey on Software Architecture
Analysis Methods. IEEE Transactions on software engineering 28
(2002) 638-653

8. Steger, M., Tischer, C., Boss, B., Müller, A., Pertler, O., Stolz, W.,
Ferber, S.: Introducing PLA at Bosch Gasoline Systems:
Experiences and Practices. Software Product Lines (2004) 34-50

9. Clements, P., Northrop, L.: Software product lines : practices and
patterns. Addison-Wesley, Boston, Mass. (2001)

Paper B 89

10. Farenhorst, R., Hoorn, J., Lago, P., Vliet, H.v.: The lonesome

architect. Joint Working IEEE/IFIP Conference on Software
Architecture (WICSA) & European Conference on Software
Architecture (ECSA). IEEE (2009) 61-70

11. Schulte-Coerne, V., Thums, A., Quante, J.: Challenges in
Reengineering Automotive Software. IEEE Computer Society,
Kaiserslautern, Germany (2009) 315-316

12. Pretschner, A., Broy, M., Kruger, I.H., Stauner, T.: Software
Engineering for Automotive Systems: A Roadmap. International
Conference on Software Engineering (2007) 55-71

13. Broy, M.: Challenges in automotive software engineering.
Proceedings of the 28th international conference on Software
engineering. ACM, Shanghai, China (2006) 55-71

14. SAE: Standard J1939 - Recommended Practice for a Serial Control
and Communications Vehicle Network. Society of Automotive
Engineers (2009)

15. Casparsson, L., Rajnak, A., Tindell, K., Malmberg, P.: Volcano-a
revolution in on-board communications. Volvo Technology Report,
Vol. 1 (1998) 9-19

16. IEEE-1471: IEEE Recommended practice for architectural
description of software-intensive systems. IEEE Std 1471-2000
(2000)

17. Voget, S., Becker, M.: Establishing a software product line in an
immature domain. Software Product Lines, Vol. 2379. Springer
(2002) 121-168

18. Tischer, C., Muller, A., Ketterer, M., Geyer, L.: Why does it take
that long? Establishing Product Lines in the Automotive Domain.
11th International Software Product Line Conference, Kyoto, Japan
(2007) 269-274

19. Buhrdorf, R., Churchett, D., Krueger, C.: Salion’s Experience with a
Reactive Software Product Line Approach. Software Product-Family
Engineering (2004) 317-322

20. Brannick, T., Coghlan, D.: In Defense of Being" Native": The Case
for Insider Academic Research. Organizational Research Methods
10 (2007) 59

21. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A.,
America, P.: Generalizing a Model of Software Architecture Design

90 Paper B

from Five Industrial Approaches. Proceedings of the 5th Working
IEEE/IFIP Conference on Software Architecture. IEEE Computer
Society (2005) 77-88

22. Bergsjö, D., Almefelt, L.: Supporting requirements management in
embedded systems development in a lean influenced Proceedings of
International Conference on Engineering Design, Dubrovnik,
Croatia (2010)

23. Johnson, H.T., Senge, P.M., Bröms, A.: Profit beyond measure :
extraordinary results through attention to work and people. Nicholas
Brealey, London (2000)

24. Kratochvíl, M., Carson, C.: Growing modular : mass customization
of complex products, services and software. Springer, Berlin ;
(2005)

25. Svahnberg, M., Van Gurp, J., Bosch, J.: A taxonomy of variability
realization techniques. Software: Practice and Experience 35 (2005)
705-754

26. Melin, K.: Volvo S80: Electrical system of the future. Volvo
Technology Report, Vol. 1 (1998) 3-7

27. Pugh, S.: Total design : integrated methods for successful product
engineering. Addison-Wesley, Wokingham (1990)

28. Morgan, J.M., Liker, J.K.: The Toyota product development system
: integrating people, process, and technology. Productivity Press,
New York (2006)

Paper C

A Comparative Case Study of Architecting
Practices in the Embedded Software Industry

Håkan Gustavsson

Mälardalen University
School of Innovation, Design and

Engineering

Jakob Axelsson
Mälardalen University

School of Innovation, Design and
Engineering

Abstract

The goal of this study is to improve the understanding of how architecting is
performed within the field of software-intensive systems. Architects at six
different internationally well-known companies have been interviewed to
understand their way of working. This paper presents the practices that are
found most successful. The context of the different companies as well as the
architecting practices are compared and analyzed. Many of the architecting
practices found in the study can be explained by the context of the different
companies. The study shows that architects at all companies mention a
general lack of understanding of software-intensive systems within
industries that used to be mechanical. The architects’ view of their work is
very similar independently of where they work. Also the way architecting is
performed is very similar, but surprisingly only one company has a defined
process for architecting.

I. Introduction
Many traditionally mechanical companies in industries such as automotive,
telecommunication, process automation, and defense are becoming more
software intensive. The rapid increase of new functionality implemented
through software enhances the burden of the system architecture to enable

92 Paper C

future growth of the system. The architecture of those software-intensive
systems describes its building blocks and their relationships to each other
and to the environment [10].
Architecting is defined by Maier and Rechtin [16] as the process of creating
and building architectures. In our work, architecting is viewed as the process
of shaping the architecture to meet customer demand by balancing
requirements, guiding principles and product vision. As we see it, the
architecting process is central to, and dependent on, many factors within the
organization. The architects are constantly forced to make decisions on
opposing factors such as continuous evolution versus product stability [20].
To stay competitive, companies need to adapt their processes to include the
new discipline of software engineering.
In order to understand how different external factors affects the architecting
process and to look for successful practices, the following research question
is stated:
In what contexts are the methods used within the architecting process
successful?
This paper presents a comparison of how architecting is performed at
different companies. In the following section, related work is presented.
System architecting is further defined in Section 3. In Section 4 the
methodology of the case study is presented. The characteristics of the case
companies are presented in Section 5. Analysis of each company in the study
is then presented in Section 6 followed by general case study findings in
Section 7. The results are discussed in Section 8, and the final section
summarizes the conclusions and give some indications of future work.

II. Related work
There are many methods and tools available to aid the architects in their
work. Examples of structured methods mentioned in industry surveys [1] are
Pugh evaluation matrix [19] and the analytical hierarchy process (AHP) [22].
Dobrica and Niemela [4] make a comparison of eight different available
software architecture analysis methods. The study found the Architecture
Trade-off Analysis Method (ATAM) [12] to be the most suitable. The Cost
Benefit Analysis Method (CBAM) [11] is an extension of ATAM and uses
the quality attributes from ATAM but also considers cost when reasoning
around the most suitable architecture. In a study of 46 companies in Finland
[23] it was shown that the most common (76%) used concept selection

Paper C 93

method was concept review meetings, and similar results where shown in
[8].
There are very few publications on how architecting of software-intensive
systems are done in practice. Decisions in the development process [8] and
within the architecting process [18] have been previously studied. Axelsson
et al. [2] compare network architectures of three different automotive
manufacturers and concludes that business and product characteristics have a
large impact on the network architecture. Unphon and Dittrich [24]
concludes that one must consider the organization and business domain
when adopting a product line architecture. In a study of eight different
software development organizations [25] it was found that the architecture is
maintained and evolved through face-to-face communication rather than
documents.
 In a survey of 279 IT architects in the Netherlands, Farenhorst et al. [6]
conclude that architects are lonesome decision makers, not very willing to
share architectural knowledge, but eager to learn from others. A study made
by Wallin and Axelsson [24] on architecture development at a car
manufacturer presents a number of issues found within the process.
A generic process for creating and maintaining an architecture is presented
by Hofmeister et al. [9]. That process is based on a comparison of five
different software architecture design methods.

Candidate
Architectural

Solutions

Architecturally
Significant

Requirements

Architecturally
Significant

Requirements

Architectural
Concerns

Architectural
Backlog

Architectural
Synthesis

Architectural
Analysis

Architectural
Evaluation

Architectural
Refinements

Architectural
Validation

Updated
Architectural

Documentation
Validated

Architecture
Figure 1 A generic process for creating and maintaining an architecture,
adapted from [9].

94 Paper C

III. System architecting
This paper will study how architecting is performed in different companies.
The study was made on companies developing embedded systems including
both hardware and software. These systems are mechatronic which adds
complexity since many issues cross several engineering disciplines. The
systems are resource constrained and trade-offs between the system behavior
and the resources required are of great importance. Both hardware and
software are mixtures of in-house development and deliverables from
external suppliers. The systems are distributed on different hardware
platforms and are sold in a large number of variants.
Architects will make different types of decisions depending on the
companies’ definition of their role. Decisions will range from choosing
quality attributes to mapping communication [7]. The impact of the decision
will also vary depending on how decoupled software is from hardware.

IV. Method
Different companies perform architecting in various ways and there are
many different factors that influence. Many of those factors are thought to be
soft factors [5] that are hard to find through, for example, a questionnaire. In
order to understand the context in which different methods are being used,
personal interviews was found to be the most appropriate method.
The case study was performed in seven steps:

1. The questions were developed and tested on people with similar
roles, who were not included in the study.

2. Companies were chosen and a connection was established through a
contact person. In collaboration with the contact person the
architects were identified.

3. At least two interviews were held with architects at each company.
4. The current results of the study were presented to a broader audience

at each company visited. During the presentation the situation at the
visited company was also discussed.

5. Questions about the characteristics of each company were answered
by the contact person.

6. The results were gathered in a database and analyzed.
7. The results were also reviewed by the contact person at each

participating company.

Paper C 95

The professional network of the authors was in many cases used to establish
connections with the right persons and at one company the respondents were
previously known to the interviewer.
The chosen format of the interview was semi-structured and the answers
were audio recorded. A semi-structured interview has predetermined
questions, but the order can be modified based upon the interviewer’s
perception of what seems most appropriate. Question wording can be
changed and explanations given [21]. The interviews at all companies
followed the same template and the answers given were then used to
compare the companies.
To be able to compare the companies, a number of metrics were used that are
presented in Table I. Every company and organization is different in many
ways, and they may use different definitions of these metrics. We choose to
use each company’s own definition, rather than to enforce a common
definition, since this increased the likelihood of getting good responses. The
values have been given by asking, for instance, how many employees are
working within the company’s R&D organization. The answers will not be
exactly comparable since R&D is not the same in all companies, e.g.
supporting units are sometimes included or not. Even if the organizations
would be the same, different companies count people differently, e.g. with or
without consultants. The goal of the metrics is to give an overall picture of
the different companies and that goal is thought to be fulfilled even if the
definitions of the metrics are not exact.

V. Case companies
The companies were chosen on three criteria:

• They do significant development of software-intensive systems.
• They are different in size and production volume.
• Together, they represent a mixture of different types of products and

customers.
These criteria were chosen to give a broad spectrum of differences in
business and organization, with the hypothesis that this should reflect
differences in process and architecture [15, 25].
The studied companies are common in many ways. They are all financially
successful and all have a very long Swedish history. They are also
internationally well-known and considered premium brands within their
business segments. The products are all software-intensive with a long life-

96 Paper C

cycle (15-30 years) that may include multiple owners. In the following
subsections, the characteristics of each company will be presented. The
comparison is summarized in Table I and some clarifications of the measures
are given below:
Table 1 A comparison of the characteristics of the studied companies
(all values are approximations).

 Company
Automotive Automotive Automotive Defense

Industrial
Automation

Industrial
Automation

 Context 1 2 3 1 1 2
Size of R&D organization Large Very large Large Medium Small Small
Relative size of the embedded
systems organization in
comparison to total R&D

20% 13% 8% 18% 67% 24%

Number of architects 6 10 4 3+6 3+4 0-5
Management levels between
architects and CEO 5 6 4 4 2 and 4 3

The power center of the
organization Line Project Project Line Project/Line Project

Geographical locations of R&D
organization 1 1 ~10 1 2 3

Product variants Very high High Very high Low Medium Medium
In-house system development 50% 10% 80% 50% 95% 90%

Business Private Business Government Business Business
(small/large) (small/large) (large) (small/large)

Magnitude of the investment for
the customer Medium/High Very high Medium/High Small Small Medium/High

Main customer

The size of the R&D organizations and the number of product variants is
relative in comparison to the other case companies.

• The relative size of the embedded systems organization is in
comparison to the total number of employees within R&D.

• The measure “number of architects” shows how many architects that
are working on a complete system level.

• The power centre of the organization describes if the architects
consider the organizations to be project-oriented or line-oriented.

• The magnitude of the investment for the customer indicates the size
of investment relative to the economy of the most common
customer.

A. Automotive 1 (A-1)
This company produces commercial vehicles. The customers of the vehicles
are both small and large companies. The product can be configured in a very
high number of product variants. This is done using a common product line
architecture that supports all different variants. The company has its R&D
centralized to one location and has for a long time applied the thoughts of
Lean [17] onto its development.

Paper C 97

B. Automotive 2 (A-2)
This company is a car producer. The customers of the vehicles are mostly
individuals and in some cases companies. This makes the magnitude of the
investment for the customer often very high. The company has the largest
R&D organization of the companies included in the study and its R&D
centralized to one location. The relative size of the electronic and electric
system development organization is 13 percent, which is explained by a low
degree of in-house development. The architecting is divided into two groups
responsible of traditional electrical systems and software-intensive systems.
C. Automotive 3 (A-3)
This is another producer of commercial vehicles. The company has R&D
located at more than 10 different locations worldwide. As with A-1 the
product can be configured in a very high number of product variants. The
different product lines use the same software and hardware architecture on
most in-house developed subsystems, but the interface between subsystems
are not standardized between the different product lines.
D. Defense 1 (D-1)
As with most companies in the defense industry, the main customers are
governments in different countries. The product variants are in comparison
low. Customers usually purchase a unique variant of an existing product.
The customer requirements are often detailed and may include demands on
using a specific supplier of subsystems. The company has its R&D
centralized to one location. There are three architects working on the
complete system and six who work only with embedded systems.
E. Industrial Automation 1 (I-1)
The customer is mostly large companies. The development is mainly in
Sweden, but some development is also done in Asia. The relative size of the
electronic and electric system development organization is 67 percent, which
is explained by a high degree of in-house development. The system is often
integrated into a larger system. There are three architects working on the
complete system and four who work only with embedded systems.
F. Industrial Automation 2 (I-2)
The customer of the systems is both small and large companies. As with I-1
the development is mainly in Sweden, but some development is also done in
Asia and the US. The system is usually a major investment for the customer.
The electronic and electric system development organization is the smallest
of the companies included in the study.

98 Paper C

VI. Analysis
The key architecting practices that differentiate from how work is done in
the compared companies are presented below.
Company A-1 has a defined documented process for architecting. The
progress of each task is visualized and controlled during a weekly follow-up
meeting. Knowledge sharing is performed through lessons learned sessions
after each large release. The high acceptance of processes makes architecting
easier at A-1. The threats lie instead in the lack of tool support.
Company A-2 has separated the roles of modelling and architecting. The
architects are not responsible for updating the architectural model. This is
done by a group of people specialized in modelling. The architectural task is
discussed at a weekly follow-up meeting. Company A-2 is also the only
company in the study having a complete and updated model of the entire
system. The division of the architecting into two groups does not seem to
have any positive effects. Instead it causes friction and prevents the flow of
information between the architects.
Company A-3 has been using a common software and hardware platform for
a long time. This enables easy change of software components. The different
product organizations are making decisions which affect the overall
architecture without consulting the architects. The reason for this might be
the relatively small amount of available architects.
The defense company D-1 was, not surprisingly, a master of requirement
management. Requirement management is performed in the other
companies, but not at the same detailed level. The requirement management
system is also used to document reasoning of the design decisions. That
knowledge is then used when changes are made to the design. The company
manages to balance a strong system engineering practice with the agility of a
medium size company. As with all the companies in the study this is
historically a mechanical company, but the management’s understanding of
software-intensive system seems to be lower in D-1.
Company I-1 has two different types of architects: system architects and
global architects. The global architect is the connection between strategy and
business goals. The global architect has a budget and is thereby in a position
to make larger architectural changes without being part of a project.
Company I-1 uses roadmaps to communicate and create a common vision.
This work is also a task performed by the global architect.
Company I-2 does not have the formal role of an architect, but is currently
reviewing their way of working with electronic and electric system

Paper C 99

development. The need of some kind of coordinating role is very obvious
and they are very aware of this fact. The different product lines have been
developed more or less independently from each other and there has been
little reuse of components. The company is very agile and innovative. In a
future transformation those abilities must be given attention in order to keep
that positive climate.

VII. Case study findings
Architects at all companies mention a general lack of understanding of
software-intensive systems within industries that used to be mechanical. The
issue exists both at management level as found in [24] and with other
stakeholders.
A. The Role of the Architect
The architects’ view of their work is very similar independently of where
they work. The architects primarily view themselves as facilitators,
involving the right stakeholders in the architectural decisions or problem
solving. They also consider themselves as coordinators and communicators
of changes influencing the overall architecture.
B. Defining Architecture
When asked to explain what architecture means to them, most architects
mention structure and form, some mention the building blocks and its
interfaces. The user of the system is not often mentioned, only 40 percent.
Only two architects mention business aspects and those two are both very
senior:
The architecture is what connects the technology with the business model
and culture of the company.
The architecture is the way we put the parts together to achieve our goal, but
it also includes the organization and business.
C. Architectural Analysis and Synthesis
The most common methods used are design review meetings and safety
analysis. Simulation of network utilization is also performed. One company
has a predefined form for describing alternatives, but it is very rarely used.
Alternative solutions are rarely documented or, as stated from one
respondent:
Alternative solutions are often documented on a whiteboard or in some cases
in an email.

100 Paper C

D. Architectural Evaluation and Validation
There are no formal evaluation methods used as the ones mentioned in
Section 2. Only one company mentioned feedback from test as a way of
validating the architecture:
If it isn't a good solution we get to know there is a problem which we
correct.
E. Process Improvement
The processes at all companies are very similar to the one described in
Figure 1, with one big exception: there is no structured synthesis available at
any company. It is also interesting that only company A-1 has a defined
process for architecting. When asked what they would like to change in their
way of working in order to improve, most mentioned how architectural
knowledge [13] is managed.
The following answers to the question “How do you know if the architecting
process is working well?” presents the architects’ view of a healthy
architecting process:
We do not really know, but the number of changes that are flowing the right
way through the change review meeting is an indication.
When new functionality can be absorbed by the architecture without the
need of large changes.
When the architecture is clearly communicated and there is no discussion
about small issues.
F. Organization
As seen in Table I, the architectural teams are located on approximately the
same hierarchical level relative to the size of the organization. The number
of architects in A-1 and A-3 is significantly lower than A-2. This is
mentioned as a problem by the architects at both companies. The two global
architects at I-1 is the only case where architects have a clear responsibility
for coordinating roadmaps.
A-3 is the only company with a large distributed development organization
including sites worldwide. They experience difficulties in getting feedback
on architectural changes. In the case of I-1 and I-2 the development made on
other sites is very capsulated and they did not experience any large
difficulties. I-2 had representatives from the other development sites on the
main site. This made the cultural barrier less of a problem.

Paper C 101

VIII. Discussion
The findings presented in the previous chapter are facts found analyzing the
answers in the interviews. During the visits to the companies the authors
have also built their own understanding of what the differences in how
architecting is done depend upon. Those thoughts are presented below.
We see a clear correlation between the perceived maturity level [3] of the
different organizations and how knowledge is shared. All companies have a
very high degree of informal communication, but architects at the companies
that have recurrent meetings are more pleased with the information
available.
The different types of customer of the final products create different
architectural concerns. The magnitude of the investment for the customer of
products delivered by companies D-1 and I-1 are mostly small (Table I).
This might be the reason why cost seems to be of lower priority at those
companies. In contrast, at A-2 where the magnitude of the investment for the
customer of the product is very high (Table I), cost is mentioned very often.
Kruchten [14] suggests that the productive time spent by architects can be
classified into three categories of communication: internal (architecture
design), inwards (input from outside world) and outwards (providing
information). He argues that they should be roughly in the ratio 50%
internal, 25% inwards, and 25% outwards. It is very hard to measure this in
practice and we have not done so in this study, but communication patterns
can still be observed. Even if no extreme variation can be seen, the
understanding from this study is that there is a clear difference between the
companies. The architects tend to be more satisfied when the inward and
outward communication is distributed evenly and where the internal work is
of significant size. Company A-3 and I-2 are examples of where the low
number of architects supporting a large organization makes the time
available for architecting too short. This results in architecting being
performed by the developing groups without taking into account the overall
system.
The power centers of an organization also affect how the work with the
architecture is done. Nedstam [18] shows that there is a large difference in
how work is done in an organization with strong line management and an
organization with strong projects. This is found to be true also in this study.
In the companies with a strong line organization, the line controls the
architecting process, while in the companies with a strong project
organization the process is controlled by the project. At company A-2 the
power of development lies in the projects (Table I). The pressure from the

102 Paper C

projects might be the reason why the end customer is sometimes neglected.
This could be the reason of the over-the-wall tendency, meaning that the
deliveries of the documents are more important than the knowledge within.

IX. Conclusions and future work
This paper has presented the current state of architecting practices in three
different industrial segments characterized by being software-intensive. For
academia it presents a current view of how architecting is performed. The
industrial reader is given a list of practices that can be used as an inspiration
to improve the current architecting practice.
Many of the differentiating practices found in the study can be explained by
the context of the different companies. The use of global architects with their
own budget in I-1 is a solution to initiate long term architectural projects
without having a customer order. The high degree of documented reasoning
in D-1 is caused by the high degree of customer specific demands and large
orders of very similar products. This forces the architects to make branches
of the architecture to fulfill the customer demands and the reasoning is then
used to ensure quality. The defined architecting process found at A-1 and the
use of visualization tools to track progress is explained by influences of
Lean. Other practices such as the divided architectural teams in A-2 and the
lack of formal architects in I-2 are more difficult to explain.
During the study it has been seen how the balance of power between line and
project strongly affects how work is done. This relation would be of interest
in a future study. The connection on how business strategy concerning Cost,
Quality and Time-to-Market affects architecting could also be further
analyzed.
The description of the architects as lonesome decision makers made by
Farenhorst et al. [6] could not be seen in this study. One possible reason for
this could be the cultural differences between Sweden and the Netherlands.
Future work could therefore include studying companies in other countries.
The methodology used was found to work very well. The presentation after
the interviews at the visited company was found to be much appreciated. It
was also an efficient way to validate the understanding given through the
interviews.

Paper C 103

Acknowledgement
We would like to thank all of the interviewees for contributing with all their
experience and knowledge. Special thanks go to the contact persons at the
different companies for coordinating the visits and reviewing the final result.
This work has been financially supported by the Knowledge Foundation and
the Swedish Agency for Innovation Systems (VINNOVA).

References
[1] C. S. Araujo, "The utilization of product development methods- A

survey of UK industry," Journal of Engineering Design, vol. 7, pp.
265-277, 1996.

[2] J. Axelsson, J. Fröberg, H. Hansson, C. Norström, K. Sandström,
and B. Villing, "A Comparative Case Study of Distributed Network
Architectures for Different Automotive Applications," in The
Industrial Information Technology Handbook, R. Zurawski, Ed.
Boca Raton, USA: CRC Press, 2005, pp. 57-1 to 57-20.

[3] J. Axelsson, "Towards a process maturity model for evolutionary
architecting of embedded system product lines," in Proceedings of
the Fourth European Conference on Software Architecture
Copenhagen: ACM, 2010, pp. 36-42.

[4] L. Dobrica and E. Niemela, "A Survey on Software Architecture
Analysis Methods," IEEE Transactions on software engineering, vol.
28, pp. 638-653, 2002.

[5] R. Farenhorst and R. C. d. Boer, Architectural knowledge
management : supporting architects and auditors. [S.l.: s.n.], 2009.

[6] R. Farenhorst, J. Hoorn, P. Lago, and H. v. Vliet, "The lonesome
architect," in Joint Working IEEE/IFIP Conference on Software
Architecture (WICSA) & European Conference on Software
Architecture (ECSA): IEEE, 2009, pp. 61-70.

[7] B. Florentz, Software and System Architecture Evaluation and
Analysis in the Automotive Domain. Braunschweig: Technische
Universität, 2008.

[8] H. Gustavsson and J. Sterner, "An Industrial Case Study of Design
Methodology and Decision Making for Automotive Electronics," in
Proceedings of the ASME International Design Engineering

104 Paper C

Technical Conferences & Computers and Information in
Engineering Conference New York, 2008.

[9] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and P.
America, "Generalizing a Model of Software Architecture Design
from Five Industrial Approaches," in Proceedings of the 5th
Working IEEE/IFIP Conference on Software Architecture: IEEE
Computer Society, 2005, pp. 77-88.

[10] IEEE-1471, "IEEE Recommended practice for architectural
description of software-intensive systems," IEEE Std 1471-2000,
2000.

[11] R. Kazman, J. Asundi, and M. Klein, Making Architecture Design
Decisions: An Economic Approach: Carnegie Mellon Software
Engineering Institute, 2002.

[12] R. Kazman, M. Klein, and P. Clements, "ATAM: Method for
Architecture Evaluation," 2002.

[13] P. Kruchten, P. Lago, and H. van Vliet, "Building up and reasoning
about architectural knowledge," Quality of Software Architectures,
pp. 43-58, 2006.

[14] P. Kruchten, "What do software architects really do?," Journal of
Systems and Software, vol. 81, pp. 2413-2416, 2008.

[15] S. Larsson, A. Wall, and P. Wallin, "Assessing the influence on
processes when evolving the software architecture," in Ninth
international workshop on Principles of software evolution: in
conjunction with the 6th ESEC/FSE joint meeting Dubrovnik:
ACM, 2007, pp. 59-66.

[16] M. W. Maier and E. Rechtin, The art of systems architecting. Boca
Raton: CRC Press, 2002.

[17] J. M. Morgan and J. K. Liker, The Toyota product development
system : integrating people, process, and technology. New York:
Productivity Press, 2006.

[18] J. Nedstam, Strategies for management of architectural change and
evolution. Lund: Lund University, Department of Communication
Systems, Faculty of Engineering, 2005.

[19] S. Pugh, Total design : integrated methods for successful product
engineering. Wokingham: Addison-Wesley, 1990.

[20] E. Rechtin, Systems architecting : creating and building complex
systems. Englewood Cliffs, N.J.: Prentice Hall, 1991.

Paper C 105

[21] C. Robson, Real World Research-Second edition: Blackwell

Publishers Ltd., Oxford, UK, 2002.
[22] T. L. Saaty, "How to make decisions: The analytic Hierarchy

Process," Journal of Operational Research, vol. 48, pp. 9-26, 1990.
[23] M. Salonen and M. Perttula, Utilization of concept selection

methods – a survey of finnish industry. Helsinki, Finland: Helsinki
University of Technology, 2005.

[24] H. Unphon and Y. Dittrich, "Organisation matters: how the
organisation of software development influences the development of
product line architecture," in Proceedings of International
Conference on Software Engineering, Innsbruck, Austria, 2008, pp.
178-183.

[25] H. Unphon and Y. Dittrich, "Software architecture awareness in
long-term software product evolution," Journal of Systems and
Software, 2010.

[26] P. Wallin and J. Axelsson, "A case study of issues related to
automotive E/E system architecture development," in 15th IEEE
International Conference on Engineering of Computer Based
Systems (ECBS) Belfast: IEEE, 2008, pp. 87-95.

[27] F. van der Linden, J. Bosch, E. Kamsties, K. Känsälä, and H.
Obbink, "Software Product Family Evaluation," in Third
International Software Product Lines Conference. vol. Volume 3154
Boston: Springer Berlin, 2004, pp. 110-129.

Paper D

Evaluation of Design Options in Embedded
Automotive Product Lines

Håkan Gustavsson

Mälardalen University
School of Innovation, Design and

Engineering

Jakob Axelsson
Mälardalen University

School of Innovation, Design and
Engineering

Introduction
In many industries, complex embedded product lines are designed. In theory,
this follows a structured and well-organized process, where a set of given
requirements are step-by-step transformed into an optimal product. However,
in reality the complexity of the products and markets often lead to much less
stringent ways of working. Let us consider a fictive, but not atypical,
scenario.
Improvements of the existing product are debated during coffee breaks and
in the hallways. Ideas are discussed and eventually a new function is
developed. The new function is not part of any project and no budget exists.
Instead it is the creation of highly motivated developers and their ambition
to improve the product.
To implement this new functionality they need management support which is
created through prototype demonstrations. From this point in time
everything moves very rapidly. Customers are invited to workshops and it
turns out that they are willing to pay for the functionality, but it will
probably only be sold in low volumes to a high end segment. The decision is
made to introduce the function as fast as possible based on very uncertain
information. The function that has been demonstrated is developed using
components made for an experimental environment. That does not fit to the

Paper D 108

current system architecture and is not suitable for production. Management
stresses that time-to-market is important and it is assured that the quality of
the product will not be affected if implemented as is. Therefore the decision
is made to integrate the function rapidly even if the chosen solution does not
follow the common design rationale and removes many degrees of freedom
for the future evolution of the system.
This was system development as a short fictive story. It is hopefully not too
common in practice, but it still includes many of the issues that most system
developers have experienced in different projects. The solution solves the
problem today, but could cause difficulties in the future (a situation referred
to as "technical debt" by Cunningham (1992)).
The developers did not have the methods available to evaluate and show the
economical value of a longer term solution. Such methods would be very
useful early in the design process when uncertainty is high. Functions
developed in this fashion are likely to be innovative and meeting the
demands of the customer but could severely impact the future flexibility and
adaptability of the system. A valuation of the resources early in the design
process could remedy this problem and reduce the lifecycle cost of the
system. If the designs are made in a structured manner, the design decision
will be traceable and continuous improvements are more likely to occur.
This chapter discusses how to deal with scenarios like this by putting a value
on flexibility in the system solution. Thereby, it becomes clearer when to
focus on short term solutions and when to keep the long term evolution of a
product line in mind. The approach taken is to evaluate flexibility using a
concept called Real Options. The method is motivated and described by
using as example an industrial area where very complex product lines occur,
namely automotive embedded systems. To improve the usability of the
method a structured evaluation process is defined to aid practitioners such as
developers and architects. The evaluation process provides a way of valuing
system designs and enables the practitioner to think about the future in a
systematic manor. The value of a flexible design can thereby be quantified
and the proposed process shows how it can be accepted by practitioners
within the automotive industry.
In the next section, an overview of automotive electronics and software is
given. Then the concept of Real Options is introduced, followed by a
discussion on how it can be used in embedded system design. The following
two sections present a step-by-step approach to evaluating flexibility in
embedded systems, first as a theoretical process and then applied to a case

109 Paper D

from automotive electronics. The final two sections discuss related work and
summarize the conclusions of the chapter.

Automotive embedded systems
Today most innovations made within the automotive domain are driven by
electronics. According to a study made by Hoch et al. (2006) the total value
of electronics in automobiles is expected to rise from the current 25% to
40% in 2010. The automotive customers demand new functionality with
every new product release and the time-to-market is constantly shortened.
An example of new functions is Advanced Driver Assistance Systems
(ADAS) that help the customer to drive the vehicle safety. Those systems
typically use information about the surrounding to increase road safety. This
is done by using sensors to identify nearby objects or communication with
other vehicles or infrastructure to attain more information. The increased
interaction between various components and the wider boundaries of the
system increases the complexity and demand flexibility to be easily
integrated.
There are many other new functions that are about to be introduced or are
already introduced that have a large impact on the electrical system of
automotive vehicles. To cope with this continuous change the system needs
to be designed with the right amount of flexibility. It is crucial that each of
those functions can be implemented without causing large system-wide
changes.
Further complexity is added by the fact that the vehicle developers strive to
use a product line approach, where the same embedded system is used in a
wide range of vehicles. The base system thus needs to be able to evolve over
a long time and be adaptable to very different surroundings.
System architecture
The building blocks of an automotive electrical and electronic (E/E) system
consist of electronic control units (ECUs) executing the software modules
that implement the functionality. ECUs are connected to communication
networks. As shown in Figure 1 the communication networks are usually
divided into sub networks and the communication between those are made
through gateway ECUs connected to a backbone. Different sensors and
actuators are connected to the ECUs depending on the function allocated to
the ECU.

Paper D 110

Figure 1 A typical vehicle communication network.
Most design decisions of automotive E/E architectures are done during the
early phases. Often, the E/E architecture needs to support a full product line
of vehicles or vehicle variants that are released over a number of years. They
must allow a large degree of variability to cope with the demands of
different customers. The long life-cycle of automotive products demand that
changes to the product can be made with as little impact to the different
components as possible.
To be able to satisfy the growing demand on functionality the Original
Equipment Manufacturer (OEM) needs to develop architectures that can
evolve throughout its lifetime without forcing premature architectural
changes. Similar products in some other industries solve this problem by
simply adding extra resources to cope with future demands. The cost
sensitive automotive industry has to optimize the use of the system's limited
resources, but in the meantime also be flexible. The design decisions are
usually based on many factors that pull in different directions such as
maintenance, portability, usability etc. The complexity of the system and the
many uncertain factors create a need to define methods which can provide
guidance in the design process.

111 Paper D

Decision levels
Architectural decisions are made when selecting components and allocating
them to subsystems, which then are combined into a system. The decisions
can be made on different levels which have various impacts and
predictability. Florentz et al. (2007) group the decisions into three levels;
top-level, high-level and low-level (Figure 2). Top-level decisions concern
the quality and function attributes and have the largest impact. Choosing
architectural patterns and technologies are found to be high-level decisions.
The most predictable decisions are those concerning the hardware
architecture and function mapping. The impact of the decision will vary
depending on how decoupled software is from hardware. This work has been
focused on the low-level decisions concerning function and communication
mapping.

Top-level decisions
- quality attributes
- function architecture

High-level decisions
- architectural patterns
- technologies to apply

Low-level decisions
- hardware architecture
- function mapping
- communication mapping

Figure 2 Decisions made during the development of the architecture will
have different impact and the outcome will be more or less predictable

(Florentz and Huhn. 2007).

Introducing real options
In this section, the concept and background of options in general and Real
Options in particular is introduced.
Financial options
Using options theory is one approach to deal with the high level of
uncertainty when making design decisions in the early phases. The theory

Paper D 112

derives from finance where an option is the right but not the obligation to
exercise a feature of a contract at a future date (Hull 1993). A typical
example is a stock option which gives the right but not the obligation to buy
a certain stock at a given price on a predefined date. An option has a value
because it gives its owner the possibility to decide in the future whether or
not to pay the strike price for an asset whose future value is not known
today. An option therefore provides a right to make the costly decision after
receiving more information.
There are two different types of options, American and European. A
European option may only be exercised on the predefined exercise day
whereas an American option can be exercised any time until the exercise
date.
Real options
Since the 1990s options theory has started to be utilized within the field of
engineering. It is then called Real Options and was developed to manage the
risk of uncertain design decisions. Real Options could be seen as an
extension of financial option theory to options on real (nonfinancial) assets.
Copeland and Antikarov (2001) defines a real option as:”the right, but not
the obligation, to take an action (e.g. deferring, expanding, contracting, or
abandoning) at a predetermined cost called the exercise price, for a
predetermined period of time - the life of the option.”
In 2001 de Neufville coined the expressions Real Options "in" and "on"
projects. Real Options "on" projects treat the enabling technology as a black
box while Real Options "in" projects are options created by changing the
actual design of the technical system. Real Options on projects provide a
more accurate value of the project and Real Options in projects support the
decision on what amount of flexibility to add. ”Real Options on projects are
mostly concerned with an accurate value to assist sound investment
decisions, while Real Options in projects are mostly concerned with go or no
go decisions and an exact value is less important.” (de Neufville 2001)
Social considerations
Real Options do not only provide a way of valuing system designs, but it
also forces the developer to think about the future in a systematic manor. By
giving future flexibility a value it assists the developing organization in
making decisions and also enables a way of predicting the growth of the
complete system (Larses 2005). Leslie and Michaels (1997) concludes the
article ”The real power of Real Options” with ”The final, and perhaps
greatest, benefit of Real Option thinking is precisely that - thinking”. The

113 Paper D

possibility of changing the way people think might also be the hardest part in
bringing acceptance to new methods such as using Real Options. The new
method must not only be better than the one it is replacing, it should also be
triable, observable and have low complexity (Copeland and Antikarov
2001).
Valuing real options
One of the advantages with Real Options compared to many other
architecture evaluation methods is the possibility to value different system
designs and thereby finding the most economically sound investment. This is
probably the most complicated part of using Real Options, and over the
years several approaches to calculating its value have been proposed. They
all have various assumptions and we will in this section evaluate the most
appropriate for our case. Amram and Kulatilaka (1999) propose three
general solution methods:

• Black-Scholes-Merton model. This method calculates the option
value by solving a partial differential equation including the value of
a replicating portfolio.

• Binomial model. The dynamic programming approach lays out the
possible future outcomes and folds back the value of an optimal
future strategy.

• Monte Carlo simulation. The simulation approach averages the
value of the optimal strategy at the decision date for thousands of
possible outcomes.

We will now present the first two models in more detail, whereas the third
model is beyond the scope of this study. (It should be pointed out that the
method described later in this paper does not require the practicing engineer
to understand, or even be aware of, the calculation method.)
Black-Scholes-Merton model
The Black-Scholes-Merton (BSM) model, for which they later received the
Nobel price, was created by Black and Scholes 1973 and is widely used on
financial options. The BSM model makes two major assumptions that
concern our case: it demands a replicating portfolio and it only supports
European type options.
A replicating portfolio contains assets with a value matching those of the
target asset. The replicating portfolio of financial options can easily be found
on the stock exchange as the stock value, but when looking at Real Options
that are not traded it can be very difficult to find.

Paper D 114

Considering our case it seems very unlikely that the assets needed are
exercised at a predefined time. Sullivan et al. (1999) discuss the assumptions
made and write:”They will not hold for some, perhaps many, software
design decisions.” More recently (Copeland and Antikarov 2001) argue:
”There are valuation methodologies that effectively capture the complexities
and the iterative nature of managerial decisions, and the Black-Scholes-
Merton model is not the only, or even the most appropriate, way to value
Real Options.” Also Amram and Kulatilaka (1999), who provide a four step
solution using BSM, state: ”The Black-Scholes solution is appropriate for
fewer Real Options applications, but when appropriate it provides a simple
solution and a quick answer.” The conclusion is that the BSM model is
suitable for financial options, but hard to use in our case.
Binomial model
The binomial model does not need a replicating portfolio (Banerjee 2004)
and also supports American type options. The initial value, A, changes with
each time interval and either goes up with the probability p to Au or down to
Ad until its final date (Amram and Kulatilaka 1999). The value of the asset
(A) at each decision point is given through Equation (1) with r being the risk
free interest rate and σ the volatility and the time period Δt.

tr
du eAppAA Δ−−+=))1(((1)

Assuming that the underlying asset has a symmetric up and down movement
u = 1 / d, then the up and down factors are given through:

 teu Δ= σ (2)

 ted Δ−= σ (3)
The probability of an up movement is then:

du

dep
tr

−
−

=
Δ

 (4)

Looking back at our case the value of the flexibility option would change
during the development stages (see Figure 3).

Real options in embedded system design
There are as many Real Options in embedded system design projects as in
any other engineering project. Those systems contain a large amount of
design variables and parameters that can be valued as Real Options in
projects.

115 Paper D

Suitability of real options
To find out if Real Options would be a support in embedded system design
one needs to clarify the characteristics of this domain. As stated earlier
(Hoch et al 2006) the large volume and cost of the product makes errors in
the design very expensive. Also, conflicting requirements found late in the
development phase cause a high cost. At the same time there is a very high
level of uncertainty during this design phase and important decisions are
made by a small group of engineers (Axelsson 2006). The automotive
embedded systems are characterized by being mechatronic systems which
adds complexity. The systems are often resource constrained and trade-offs
between the system behavior and the resources required are of great
importance (Larses 2005).
When to use Real Options is explained by many authors. Copeland and
Antikarov (2001) state that ”It is making the tough decisions - those where
the Net Present Value is close to zero - that the additional value of flexibility
makes a big difference.” This is in our case true when developing a new
functionality where the market demand is very uncertain. If the design would
include a real option to abandon or change course the risk taken could be
minimized. Under these conditions, the difference between real option
valuation and other decision tools is substantial.
Real options in automotive systems
There are many new functions that are about to be introduced or are already
introduced that have a large impact on the electrical system of automotive
vehicles. Using Real Options as a method to evaluate alternative solutions
gives the possibility to value the flexibility of the technical solution. A
solution that is more likely to withstand change due to future demands has
therefore a higher value when evaluated using real options compared to
traditional evaluation methods. To enable the possibilities of future reuse the
system needs to be designed with interfaces between components (both SW
and HW) that are prepared for future needs.

Paper D 116

Figure 3 The decisions made narrow the initial design space.

The design will be different depending on how long the system is planned to
withstand future change. To evaluate what level of flexibility is appropriate
one must therefore first provide the rough requirements of future needs.
Given the estimated value of the future functionality a Real Options analysis
will then show what amount of flexibility should be added to make the
investment adequate. Current and future technical demands of the system
together with economical and organizational demands call for a systematic
evaluation process.

Evaluation process
To improve the usability we have defined an evaluation process that can aid
practitioners such as developers and architects of embedded automotive
systems. Practitioners working with embedded systems are often not used to
value design alternatives with economic valuation methods. To make the

117 Paper D

practitioners utilize and trust the method it is important to present a step-by-
step process how to carry out the valuation. During the evaluation process
the different stakeholders will have to specify their gut-feeling in figures and
consider if flexibility has an added value. The evaluation process presented
in Figure 4 below consists of eight steps with a description and some
concrete advices. (In the next section, the steps will be exemplified in a
small case study.)

1. Describe
the design
alternatives

2. Perform
traditional
valuation

3. Find
sources of
flexibility 4. Estimate

value of
flexibility

5. Estimate
the cost of
utilizing
flexibility

6. Perform
valuation
using Real
Options

7. Compare
alternatives

8. Make
decision

Other
Considerations

Only performed
when Flexibility existsFuture Functionality

No Flexibility

Embedded
Flexibility

Figure 4 The eight step evaluation process.

Step 1 - Describe the design alternatives
Each valid design alternative is described to identify what resources are
used. This can be simplified by reusing patterns from previous designs.
Step 2 - Perform traditional valuation
The traditional method to derive the value of an investment is by calculating
its Net Present Value (NPV) taking into account the value today of cash
received or paid in the future. To calculate NPV a discount rate is used, often
corresponding to the current interest rate.
Step 3 - Find sources of flexibility
It would not be wise to analyze all the real options available. When
designing a function distributed over a communication network there are
some assets that are generic and can easily be used by other functions. Those
represent the source of flexibility or Real Options. Commonly they are
hardware assets such as inputs, outputs or communication capacity. If there
is such an asset, the difference in NPV could be due to the cost of designing
for flexibility. If there is no source of flexibility the result given through the
valuation in Step 2 is true, and the evaluation is completed.

Paper D 118

Step 4 - Estimate value of flexibility
Each resource is analyzed to distinguish if it has a future value. When
available it provides an increased amount of flexibility or available design
space and thereby an added value.
The value will often be due to the revenue of future functions which
represent the underlying asset (S) and can be calculated through a simplified
model (5). The product cost is the estimated costs during the system
lifecycle.
S= volume × (customer price - product cost) (5)
Of course, a more elaborate model can also be used, if more detailed
information is available.
Step 5 - Estimate the cost of utilizing flexibility
Utilizing the flexibility is usually a question of implementing a future
function or extension of an existing function. The price to be paid is
therefore the added cost of implementing this future functionality. Figure 5
illustrates how the added cost (the exercise price of the real option) will be
paid later in the lifecycle of the system when the flexibility is utilized.

Exercise price, X,
Cost at t ime t of of uti l izing
flexibility
(implementing function)

Option price (P),
Cost of designing flexibility
(prepare for function)

t

Cost

Phase outRe-designDesign
Figure 5 The price and exercise price of the option.

119 Paper D

Step 6 - Perform valuation using Real option
The value of the flexibility can be calculated using real option valuation. The
quantitative data needed, shown in Table 1, to perform a real option
valuation should be extracted for the design concepts as follows:

• The planned lifetime of the platform needs to be estimated. If the
function has not been implemented before the expiration date the
value of the real option is considered to be lost.

• The current value of implementing flexibility is the result from Step
4.

• The cost of utilizing the flexibility is given from Step 5.
• The volatility is a measure of the annual up or down movement of

the option value and often represents the uncertainty of future
customer demands. This can be estimated through historical data or
expert assessment.

By using the binomial model the value of the option premium can be
calculated.

Table 1 Factors affecting the value of an option.

Option value (V) The value of designing flexibility
Option price (C) Cost of designing for flexibility

Exercise price (X) Cost of utilizing flexibility
Underlying asset value (S) Current value of implementing flexibility

Volatility (σ) Uncertainty of costumer demand
Time to exercise (t) Time when the option is exercised

Time to expiration (T) Lifetime of the current system

Option on stock Real option in embedded systems

Step 7 - Compare the alternatives
Real option theory provides an extension to the traditional NPV valuation by
adding the value of flexibility. The so called expanded NPV is the sum of the
static NPV and the value of the option premium (Trigeorgis 1988):
Expanded NPV = Static NPV + Option premium (6)
The best investment is therefore to choose the design alternative with the
highest Expanded NPV.

Paper D 120

Step 8 - Make decision
Real Options provide the opportunity to analyze the cost of designing for
future growth of a platform, based on the estimated value of the future
functionality. It is important to stress that decision are often based on factors
that are not valued using the presented evaluation process. Other factors that
influence the decision are the choice of supplier, time-to-market, project
priority or organization. The last step is therefore to make the decision based
on the trade-off between all influencing factors.

Case study: Network usage
To analyze the process and its usefulness it is applied on a real case taken
from the automotive industry. The problem is how to integrate a new feature
implemented in software into an existing E/E architecture. A key element of
the problem is in which ECU the new functionality should be implemented.
Step 1 - Describe the design alternatives
A pre-study has found two alternative ways to provide this feature (Figure
6). Design alternative 1 provides this feature by connecting the external
communication link directly to the current cabin gateway ECU through an
existing but unused bus interface, and the advantage is a low development
cost.

ECU XNew ECU

Design alternative 2Design alternative 1

Cabin
gateway

External
communication

External
communication

Available
resourceCabin

gateway

Figure 6 Two design alternatives that differ in their use of

communication links to provide the demanded feature.
Design alternative 2 uses a new ECU to create the external communication.
The new ECU connects to the cabin gateway using an already implemented
internal network. Alternative 2 is more expensive in development cost and
component cost, but does not utilize the last available communication link in
the cabin gateway.

121 Paper D

Step 2 - Perform traditional valuation
The development activities needed for Alternative 1 are very few because an
existing ECU is being used. The development cost of Alternative 1 is
therefore considered to be zero. For Alternative 2 a new ECU needs to be
developed. Using data from previous similar projects the development cost is
estimated to be SEK 5 million (Swedish krona) for Alternative 2. The cash
flow of alternative 1 is higher due to its low component cost. The results of
the calculation are shown in Table 2. The difference in NPV between the
two alternatives is SEK 6.9 million given the annual discount rate of 11%.
The analysis of the valuation tells us to choose Alternative 1, but this does
not take the value of flexibility into account.

Table 2 The calculated NPV of the two design alternatives in million
SEK.

Alternative 1 Alternative 2
Development cost: 0 -5

Cashflow 1st year 15,5 15
2nd year 15,5 15
3rd year 15,5 15
4th year 15,5 15
5th year 15,5 15

NPV 57,3 50,4

Difference: 6,9

Step 3 - Find sources of flexibility
The communication link is a limited resource which can be of interest to a
large number of functionalities, but those functionalities cannot be safely
mixed with an external device. Alternative 2 thus gives a higher flexibility
for future functionality than Alternative 1.
Step 4 - Estimate value of flexibility
Network communication is a limited resource within the automotive
industry. Each network has a predefined maximum capacity and the
utilization is also dependent on the physical location of the network cable.
There is a growing market demand to monitor and control different vehicle

Paper D 122

functions through the use of external devices. To meet this requirement one
must provide a way to connect external communication devices to the
vehicle.
The expected value of the future function (underlying asset, S) is estimated
to be SEK 10 million using the simplified model (5).

Step 5 - Estimate the price of flexibility
The exercise price SEK 2.9 million of finally implementing the function is
an average of the potential functions found in the product portfolio. The
exercise price includes the cost of ECU, sensors, cables, and developing
application software.
Step 6 - Perform valuation using Real option
The communication link provides flexibility to the system and its value can
be calculated using Real Options valuation. The product portfolio gives us a
set of functionalities which could require the use of the communication link.
The data needed is provided through an internal pre-study. The planned
lifetime of the platform is 5 years.
The minimum goal of the investment in the alternative is to exceed the
interest gained from the companies risk free interest rate (5%). The volatility
is predicted to be 25% mainly due to the uncertainty of future demand. The
up and down factors are given using Equation 2 and 3.

 28.125.0 == eu

 78.025.0 == −ed
The risk-neutral probability can then be calculated using Equation 4.

 542.0
5.0

78.005.0
=

−
=

ep

Given the underlying asset value (SEK 10 million) from the previous step
the values can be calculated as shown in Figure 3. Inserting the values into
Equation 1 calculates the current value of the option to SEK 7.7 million (see
Figure 7).

 7.7)4.5)1(4.10(05.0 =⋅−+⋅= −eppA

Step 7- Compare the alternatives
Alternative 2 would be a sound investment if the value of the option
premium is higher than the calculated difference (SEK 6.9 million) in Table

123 Paper D

1. The option premium was calculated to SEK 7.7 million, which means that
adding the flexibility is a good investment compared to the alternative
without flexibility.

Figure 7 The future option value increases with the number of

requirements implemented.
Step 8 - Make decision
The results show that the future option value increases with the number of
requirements implemented (Figure 7). If only a low number of requirements
will be demanded the value of the option will be lost. It also shows how the
risk changes with the probability. This risk could be eliminated by not
implementing the possibility to support a certain requirement. This would
lead to a limited design space where an improved functionality cannot be
implemented without a redesign of the system.
Discussion
The results show that investing in a flexible design would most likely be a
sound investment if a large part of the future requirements were
implemented during the system life cycle. The diversity of the proposed

Paper D 124

functionality makes it very uncertain what functionality will be
implemented, which also is the reason why flexibility has a value. The
prediction of the volatility and the value of the underlying asset are crucial to
the results. One of the strengths when using real option valuation is that the
uncertainty is taken into account and not left out of the calculation. It also
provides a valuation method that can be used to analyze different future
scenarios. Similar analyses can be done to estimate the value of future
functions by iteration of sales volumes, customer price, etc.

Related work
Real Options is far from being the only method developed for valuing
architectures. There are however only few methods that make an economic
consideration, CBAM (Kazman et al. 2002) being an exception. Real
Options is unique by also considering the flexibility and the architectural
evolution over time (Bahsoon and Emmerich 2005). Our literature survey
has found three research contributions that involve the usage of real options
in system design involving software or hardware. None of them addresses
embedded systems or the automotive domain explicitly.
Browning and Engel (2006) extend Real Options ”in” projects to
architecture options and present a theoretical example where stakeholder
overall value increases with 15% by designing the system for the right
amount of adaptability. The framework presented shows a way to implement
the optimal degree of flexibility. The initial research proposes using the
model of Black and Scholes to calculate the value of the Real Options, but
does not present a case. Browning and Engel show that architecture options
provide the information to better predict the need for system upgrades and
thereby increasing the lifetime value of the system.
Bahsoon and Emmerich (2003) use the concept of ArchOptions to value the
stability and scalability of software architectures. ArchOptions are valued
using the model of Black and Scholes and a replicating portfolio is therefore
needed. The portfolio is valued by the requirements it supports during the
operation of the software system.
Banerjee (2004) argues the need for flexibility and presents the solution of
flexibility options compared to a fixed design. The value of the flexibility
option is calculated using the binomial model that does not need a
replicating portfolio and also supports American type options. The work
done by Banerjee (2004) seems to be what best meets our prior stated
problem definition.

125 Paper D

Conclusions
This chapter has presented an evaluation process for practitioners using Real
Options theory that enables analysis of both economic and engineering
factors. It presents a possibility to put an economic value on system
adaptability and could therefore support the design decisions in the early
phases. Real Options provide the opportunity to analyze the cost of
designing for future growth of a platform, based on the estimated value of
the future functionality.
When developing an embedded system using Real Options each function
would first buy the right but not the obligation to use the asset at a future
date. The real option approach could, when fully developed, provide not
only evaluation but also prediction of future needs.

References
Amram, M., and N. Kulatilaka. 1999. Real options. Boston, MA: Harvard
Business School Press.
Axelsson, J. 2006. Cost models with explicit uncertainties for electronic
architecture trade-off and risk analysis. In Proceedings of the 16th
international symposium of the international council on systems
engineering, Orlando, Florida, July.
Bahsoon, R. 2003. Evaluating software architectures for stability: A real
options approach. In Proceedings of the doctoral symposium of the 25th
international conference on software engineering, Portland, Oregon.
Bahsoon, R., and W. Emmerich. 2003. ArchOptions: A real options-based
model for predicting the stability of software architecture. In Proceedings of
the 5th ICSE workshop on economics-driven software engineering research
(EDSER 5), Orlando, Florida.
Bahsoon, R., W. Emmerich, and J. Macke. 2005. Using ArchOptions to
select stable middleware-induced architectures. In IEE Proceedings on
Software, IEE Press 152 (4): 176–186.
Banerjee, P. 2004. Describing, assessing and embedding flexibility in system
architectures with application to wireless terrestrial networks and handset
processors. M.Sc. thesis, Massachusetts Institute of Technology, System
Design and Management Program.
Browning, T. R., and A. Engel. 2006. Designing systems for adaptability by
means of architecture options. In Proceedings of the 16th international

Paper D 126

symposium of the international council on systems engineering, Orlando,
Florida.
Copeland, T., and V. Antikarov. 2001. Real options: A practitioner’s guide.
New York: TEXERE Publishing Ltd.
Cunningham, W. 1992. The WyCash portfolio management system. In
Proceedings of the conference on object oriented programming systems
languages and applications, 29–30. New York: ACM Press.
Florentz, B., and M. Huhn. 2007. Architecture potential analysis: A closer
look inside architecture evaluation. Journal of Software 2 (4): 43–56.
Hoch, D., W. Huhn, U. Naher, and A. Zielke. 2006. The race to master
automotive embedded systems development. McKinsey Company,
Germany, Automotive and assembly sector business technology office.
Hull, J. C. 1993. Options, futures, and other derivative securities, 2nd ed.
Englewood Cliffs, NJ: Prentice Hall International Editions.
Kazman, R., J. Asundi, and M. Klein. 2002. Making architecture design
decisions: An economic approach. Technical report CMU/SEI-2002-TR-
035. Software Engineering Institute, Carnegie Mellon University, Pittsburgh.
Larses, O. 2005. Architecting and modeling automotive embedded systems.
PhD thesis, Dept. of Machine Design, KTH, Stockholm.
Leslie, K. J., and M. P. Michaels. 1997. The real power of real options. The
McKinsey Quarterly, no. 3:4–22 (McKinsey & Company Inc.).
de Neufville, R. 2001. Real options: Dealing with uncertainty in systems
planning and design. Paper presented at the 5th international conference on
technology policy and innovation, Technical University of Delft,
Netherlands.
Sullivan, K. J., P. Chalasani, S. Jha, and V. Sazawal. 1999. Software design
as an investment activity: A real options perspective. In Real options and
business strategy: Applications to decision making, ed. L. Trigeorgis.
London: Risk Books.
Trigeorgis, L. 1988. A conceptual options framework for capital budgeting.
Advances in Futures and Options Research 3:145–167.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

