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Abstract—We present here a model-driven approach for the
generation of low-level control code for the arbiters, to support
application implementation and scheduled execution on a multi-
core segmented bus platform, SegBus. The approach considers
Model-Driven Architecture as a key to model the application at
two different abstraction levels, namely as Packet-Synchronous
Dataflow and Platform Specific Model, using the SegBus plat-
form’s Domain Specific Language. Both models are transformed
into Extensible Markup Language schemes, and then utilized by
an emulator program to generate the “application-dependent”
VHDL code, the so-called “snippets”. The obtained code is
inserted in a specific section of the platform arbiters. We present
an example of a simplified stereo MP3 decoder where the
methodology is employed to generate the control code of arbiters.

I. INTRODUCTION

The decreasing technological figures cause modern day
designers to move towards on-chip multiprocessing technolo-
gies. New architectures are brought into context in order to
utilize the tremendous advances of fabrication technology.
Distributed on-chip architectures or multiprocessor system-on-
chip (MPSoC) paradigm gains increasing support from system
designers. MPSoC is seen as one of the foremost means
through which performance gain are still to be sustained even
after Moore’s law may become decrepit [1].

As the complexity of the application requirements is in-
creasing with time, the designers are facing difficulty while
designing applications targeting MPSoC. However, it has also
been a challenge to fully benefit from the features of MPSoC
platforms. The current design methodologies don’t provide full
automation in every level of the development process, and
sometimes, the communication characteristics of the platforms
and the employed devices also do not match. In order to offer
an optimum match, platform specific characteristics must be
taken into consideration for each application.

The approach we deliver in this paper is based on estab-
lishing a design methodology for MPSoC, in the context of
the SegBus platform [2]. In our previous work [5][6], we have
already introduced a Domain Specific Language (DSL) and an
emulator program for modeling and emulating applications at
Platform Specific Model (PSM)-levels. We deliver here meth-
ods to update the DSL and emulator to make them capable
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for the modeling of application at Packet-Synchronous Data
Flow (PSDF)-level, and introduction of automated methods
within emulator program to generate transaction-level control
code in the form of VHDL snippets, in order to successfully
implement a given application on the distributed platform at
hand. We introduce procedures to transform PSDF and PSM
models into XML schemas with the help of modeling tool [7].
The generated XML of the PSDF and PSM models are then
used by the emulator [6] program to assess the performance
aspects. If we find the performance aspects up to an optimum
level, the current research work addresses issues how we
generate the transaction-level control code from the emulator
program in an automated way.

The generation of control code and their realization is
especially necessary as the platform doesn’t require (or ben-
efit) from an operating system solution. Seceleanu et. al. [§]
provided definition of the SegBus’s arbiters’ control structures.
The definition comes in the form of (manually obtained)
VHDL code snippets that provide the transfer schedule, such
that arbiters organize the execution following the application
specification. In this paper, we continue our efforts towards an
automated design framework.

Related Work. In recent years, MDA has been utilized in
different design areas to provide automation up to some extent.

Vidmantas et al. [9] introduced MDA methods where the
designer can model application as PIM model using UML
together with SysML plugin. They introduced techniques to
transform PIM into PSM model, which is later transformed
into source code specifically for one operating system (OS).
The authors have considered more than one OS where the
modeled application can be run, unlike our case where there
is no consideration of OS is required.

Koudri et al. [10] presented design flow for System-on-
Chip/System-on-Programmable Chip design, based on the use
of UML and dedicated profiles. They supported the use of
the Model-Driven Development for the hardware-software
co-design with an example of Cognitive Radio Application,
implemented on FPGA. The modeling tool they used generated
thousands of lines of code for the modeled example application
but further improvements needs to be done, particularly in the
Model of Computations support.
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II. BACKGROUND
A. Segmented Bus Architecture

A segmented bus is a “collection” of individual buses (seg-
ments), interconnected with the use of FIFO like structures.
Each segment acts as a normal bus between modules that are
connected to it and operates in parallel with other segments.
Neighboring segments can be dynamically connected to each
other to establish a connection between modules located in
different segments. Due to the segmentation of the bus lines,
and their relative isolation, parallel transactions can take place,
thus increasing the performance. A high level block diagram of
the segmented bus system which we consider in the following
sections is illustrated in Fig. 1.
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Fig. 1. Segmented bus structure.

The SegBus communication platform is built of components
that provide the necessary separation of segments - Border
units (BU), arbitration units - the Central Arbiter (CA) and
local, Segment Arbiters (SA). The application then is realized
with the support of (library available) Functional Units (FU).

The SegBus platform has a single CA unit and several SAs,

one for each segment. The SA of each bus segment decides
which device (FU), within the segment, will get access to the
bus in the following transfer burst.
Platform communication. Within a segment, data transfers
follow a “traditional” package based bus protocol, with SAs
arbitrating the access to local resources. The inter-segment
communication, is also a package based, circuit switched
approach, with the CA having the central role. The interface
components between adjacent segments, the BUs, are basically
FIFO elements with some additional logic, controlled by the
CA and the neighboring SAs.

B. DSL for the SegBus Platform

The Domain Specific Language (DSL) for the SegBus
platform is the specification language that is used to model
the SegBus platform at higher-level of abstraction, based on
stereotypes stored in the SegBus UML profile [5]. The DSL
provides ability to model platform elements in the form of
high-level graphical constructs and provide methods to map
partitioned application components on particular segment in a
fast and correct manner.

The DSL comprises of a number of structural constraints
related to the platform, written in Object Constraint Language
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(OCL) [11], to implement the correct component approach to
platform design. These constraints are used to validate our
models. Upon breach of any constraint requirement during the
design process, the tool provides appropriate error message,
so that the designer can take proper action to make the model
correct according to platform requirements.

Before the current work, the DSL was only capable of mod-
eling application at PSM-level. Here, we add capabilities to
model application at PSDF level, too. We introduce three new
stereotypes, that is, InitialNode, ProcessNode and FinalNode,
in the UML profile of DSL. The profile defines the main struc-
tural elements of the platform. The new stereotyped classes
related to PSDF are generalization of the metaclass UML Stan-
dard Profile::UML2MetaModel::Classes::Kernel::Class. We
also introduced their related customization classes and set tags
with suitable values. We skip here further details about tag
values intentionally because of the space limitation.

Once we model the application components as PSDF, model
the platform and map the application components on to the
platform correctly, we apply validation process to get the
correct Platform Specific Model (PSM) of the application. If
there exists some errors in the model, we get error message(s)
and associated model element become highlighted.

Finally, the PSDF and PSM model can be transformed into
XML schema for further analysis of the desired platform
configuration. We employ the generated XML schemas for
emulating the performance aspects of the configured system,
as described in the next section.

C. SegBus Emulator

The SegBus Emulator enables us to evaluate the perfor-
mance aspects of any given application running on a spe-
cific platform configuration, defined during modeling [6]. The
emulator supports the analysis of various SegBus instances
that may answer, better or worse, to specific application
requirements. It helps to decide at early stages of design
process which platform configuration will be most suitable for
any given application before moving towards lower abstraction
levels. The code generation engine, supplied by the Magic-
Draw UML [7] tool transforms PSDF and PSM of the system
into XML schemas. The generated XML schemas are then
employed by the emulator program to estimate the utilization
of platform elements with respect to data transfers and total
execution time. After the analysis of the returned results, the
designer is able to make decision at this stage whether the
emulated configuration will be best/optimal or not, for the
target application, and can change it before moving towards
lower levels of the design process. After getting the desired
platform configuration for a given application, the next step
is to generate the execution schedule in the form of VHDL
snippets, to be later used by the arbiters.

III. DESIGN METHODOLOGY

We employ the MagicDraw UML tool for graphically mod-
eling the application at PSDF and PSM level, and transforming
it into XML schemas. Fig. 3 illustrates the design methodology
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Fig. 2.
employing DSL and emulator. We demonstrate our approach

with the help of a (simplified) stereo MP3 decoder [12]
application.
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Fig. 3. Design process of the SegBus platform using DSL and emulation.

A. The Packet SDF

The specification of the application itself starts with a
Packet SDF (PSDF) model. PSDF is a customized version
of Synchronous Data Flow diagrams [13]. The approach is
intended to facilitate the mapping of the application to the
architecture due to the similarity between the operational
semantics of the PSDF and that of the SegBus architecture,
thus allowing us to cope in a more detailed manner with the
communication characteristics of our platform.

A PSDF comprises mainly two elements: processes and data
flows; data is organized in packets according to package size
during execution. Processes transform input data packets into
output ones, whereas packet flows carry data from one process
to another. A transaction represents the sending of one data
packet by one source process to another, target process, or
towards the system output. A packet flow is a tuple of four
values, P;, D, T and C. The P, value represents the target
process for the given transactions; the D value represents the
number of data items emitted by the same source, towards the
same destination; the 7' value is a relative ordering number
among the (package) flows in one given system; and the C'
value represents the number of clock ticks a process consumed
before sending one package. Thus, a flow is understood as the
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PSDF model of the example application employing DSL.

number of data items (later transformed into packets) issued
by the same process, targeting the same destination, having the
same ordering number and same clock ticks require to process
one individual package.

If s is the package size (number of data items in a
package) in the platform configuration, then the Packet SDF
(PSDF) of a certain system is a sequence of packet flows, <
(P, Pr.1y,Ch),... (P, P T, C) >, where Vi, j,z €
1,22 and T < Ty < ... < T

The non-strictness of the relation between 1" values of the
above definition models the possibility of several flows to
coexist at moments in the execution of the system.

B. Application Modeling

The specification starts with the context diagram of the
application, where the interactions between the application
(depicted as a process) and the external environment are mod-
eled in terms of input/output data-flows. In subsequent steps,
the top-level process is decomposed hierarchically into less
complex processes and the corresponding data-flows between
these processes.

The decomposition process is based on designer’s expe-
rience and ends when the granularity level of the identified
processes maps to existent SegBus library elements or devices
that can be developed by the design team. We employed
SegBus DSL to represent the PSDF. The PSDF model of
the example application is given in Fig. 2, where process PO
represents frame decoding, P1/P8 - scaling on the left/right
channel, P2/P9 - dequantizing left/right channel, etc.

The PSDF model serves as the Platform Independent Model
(PIM) of the application. We consider further a three segments
platform configuration and map the application processes
using the design methods described in [5]. Fig. 4 depicts
the PSM model of the example application. Later on, we
transform the PSDF and PSM models of the application into
XML schemas using M2T transformation supplied by the
tool. The XML schema contains information about platform
elements, application processes in the form of FU and their
relative placement on different segments. The XML consists
of a schema element and a number of sub-elements, in the
form of complexType and element types.

Each complex type represents a platform element (CA,
SA, etc.) or application component (PO, P1, etc.). The name
attribute of each complex type shows the name of the element.
Furthermore, each complex type may contain sub-elements.
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Fig. 4. PSM model of the example application in 3 segments, linear topology configuration.

Following, we show an XML snippet of the PSDF model after
transformation, consisting of process PO, PI and their relative
transfers to other processes.

<xs:complexType name="P0">
<xs:sequence>
<xs:element name="P1l_576_1 250" type="P1"/>
<xs:element name="P8 576 _1 250" type="P8"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="P1">
<xs:sequence>
<xs:element name="P2 540 2 250" type="P2"/>
<xs:element name="P3_36_3_ 250" type="P3"/>
</xs:sequence>
</xs:complexType>

Below is the piece of XML snippet of PSM model af-
ter transformation, representing the SegBus platform instance
(SBP with three segments as child-elements) and “Segment 1”
element with its child-elements.

<xs:complexType name="SBP">

<xs:all>
<xs:element name="segment0" type="Segment0"/>
<xs:element name="segmentl" type="Segmentl"/>
<xs:element name="segment2" type="Segment2"/>
<xs:element name="ca" type="CA"/>
<xs:element name="bul2" type="BU12"/>
<xs:element name="bu23" type="BU23"/>

</xs:all>
</xs:complexType>

<xs:complexType name="Segmentl">
<xs:all>
<xs:element
<xs:element
<xs:element

name="buRight" type="BU23"/>
name="buLeft" type="BUl2"/>
name="p5" type="P5"/>

<xs:element

<xs:element
</xs:all>

</xs:complexType>

name="pl4" type="P1l4"/>
name="arbiter" type="SAl"/>

The communication matrix is the specification of device-
to-device transactions between application components. Each
entity in the communication matrix describe how many data

items need to be transfered from one device to any other
device. The emulator program builds the matrix by extracting
transactions between processes in PSDF model. Based on the
matrix, the PlaceTool application [14] finds the optimal device
allocation solution, given the platform specifics (the number
of segments).

The emulation and control code generation processes are
based on both PSDF and PSM. The PSDF model provides
information about interaction between application processes
with required data items and other useful parameters, while
the PSM model represents the placement of each application
process on different segments of the platform. Hence, the
emulator program parses XML of both models to be later used
for emulation and control code generation. During the parsing
process, the emulator extracts following information from the
PSDF model:

o Number of application processes.

« Data transfers from each process.

e Ordering of transfers.

e Clock ticks to be consumed by each process while
processing one package.

The emulator stores above information in temporary vari-
ables and arrays inside the program. For instance, the
name attribute from one of the element from PO, that is,
“P1 576 1 250” represents a transfer from process PO. The
“ 7 character serves as the separator between the entities. The
first entity “P1” represents the target process of this transfer;
the second entity “576” is the number of data items to be
transferred; the third entity “1” is the sequencing order and
the last entity “250” is the number of clock ticks a process
needs to consumed before sending each package.

Furthermore, the emulator extracts following information
from the PSM model and stores in a number of variables and
arrays inside the emulator, too:
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o Number of segments in the platform.
o Number of border units based on platform geometry.
« Placement of application processes on different segments.

When the parsing process is finished, the emulator iterates
in the previously populated arrays, instantiates the required
FUs and pass them necessary information. This necessary
information contains number of data items to be transferred,
destination processes, relative ordering, clock ticks a process
needs to be consumed before sending a package and placement
in the specific segment.

The contructor method of the FU class analyzes the passed
information to it and instantiates the required number of
objects of masters and slaves, which later run as threads
during emulation. Finally, the values in the temporary variables
and arrays within the emulator application are later used for
extracting the control code of the arbiters. As per emulator
functionalities, we can generate the control code from the
supplied XML schemas without performing the emulation, but
it is always recommeded to emulate the modeled platform
configuration before moving towards the later stages of the
design process.

Without considering details, the control flow of both SAs
and of the CA is represented in Fig. 5.

Fig. 5.

Arbiter control flow.

The SAs and the CA are VHDL defined modules, with
a similar structure. The code implements the operational
flow of Fig. 5, running with multiple parameters as required
by the platform specification. We see the application as a
set of correlated transactions that must be ordered in their
execution by the arbiters. The specification of the schedule
- as supplied by the PSDF representation, is provided by a
snippet introduced in the SA or the CA codes, representing
the projection of the application flow at the respective level
and location. The snippets correspond to the middle block -
“Arbitration specification” in the arbiter structure of Fig. 6.

Module SetUp

Application specification (snippet) | Sequential execution

Arbitration & Supervision

Fig. 6. Arbiter code structure.

The emulator program reads the package size, PSDF and
PSM models in the form of XML schemas and runs the

203

emulation. Upon completion, the tool returns results of the
transactions from each platform element, performed during
execution. At this stage, it’s the job of the designer to evaluate
the emulation results and modify the design, if needed. Later
on, we generate the transaction-level control code (in the form
of synthesizable VHDL snippets) of the arbiters to be used in
the final implementation. Following, we show an excerpt from
the generated control code for the example application.

-- VHDL Snippet for "Segment 0"

program(0) <= (guard => 0, source => 0, dest => 1,
dest_seg => 0, togrant => 0, count=16, enables=13);

program(l) <= (guard => 0, source => 1, dest => 8,
dest_seg => 0, togrant => 1, count=16, enables=2);

program(2) <= (guard => 1, source => 2, dest => 2,
dest_seg => 0, togrant => 2, count=15, enables=3);

program(1l2) <= (guard => 1, source => 8, dest => 11,
dest_seg => 1, togrant => ToR, count=1, enables=0);

Each line in the above control code is an execution line
of the respective arbiter. The program is a multi-dimentional
vector consisting of a number of execution lines with several
further fields. Below is a brief discription of each field of the
execution line.

e program(x). Basically, x can be seen as the Program
Counter, and program(x) represents the x line of arbitration
code.

e guard. When guard = 0, the respective line is enabled, that
is, the arbiter may consider it for selection. When guard > 0,
the line is disabled, that is, it cannot be considered in the
arbitration. The arbiter marks a line as executed whenever
the respective count value reaches 0, by establishing guard
= nrLines, since nrLines is the total number of program lines
in the program vector, associated with the given arbiter.

e source. For SA case, this field contains the address of the
requesting master - the initiator of a transfer request. Devices
on the SegBus platform (masters, slaves) are identified by an
unique number. For the CA, this field contains the address of
the initiating segment.

e dest. The address of the targeted device - the slave.

o dest seg. The target slave’s segment address.

e toGrant. This is the instruction for the arbiter to grant the
requesting master. At this moment the field is preserved for
future developments.

e count. This field identifies the number of packages the master
has to send to the specified slave.

e enables. Whenever a line is marked executed, the SA will
enable the execution line specified by this field, by subtracting
1 from its current guard value. If, for a given line, enables =
nrLines, then the arbiter does not try to enable any other line,
when the current one is marked executed.

In addition, we use the notations: ToR/ToL - the destination
is the BUto the right / left of the current SA); RFL - the request
comes from left.

When the parsing process is done, the emulator creates:

e The accCAArray: a single-dimensional array, where each
element in the array represents an execution line of the CA.

e The accArray: a 2-dimensional array where each column
represents an execution line of a SA, while each row consists



of execution lines associated with any particular SA.

Application

Initialize accArray

True
A 4

Print the accArray
with proper
formatting to get
VHDL snippets

[—VHDL snippets—p>

Counts number of Counts number of
transfers in the | incoming transfers
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Instantiate
matching number
of ArbiterProgram
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Transfer
originating from
current segment
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source=togrant=int++
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Set proper value of
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the basis of past &
current transfer

Add ArbiterProgram
objects to accArray

Fig. 7. Code extraction process for segments in the platform.

Fig. 7 illustrates the general flow of the code generation
process for segments after the parsing of the PSDF model has
been done and the model resides now inside the emulator’s
internal variables and arrays. Firstly, the emulator analyzes
number of originating and incoming transfers in each segment.
On the basis of this information, it creates equal number of
ArbiterProgram objects. Secondly, it sets the dest field with
the target process ID and dest seg field with the segment ID
where the target process is placed. If the transfer is originated
from a master in the current segment, then it sets the source
value of each object with an integer number in increasing order
and togrant = source, otherwise the transfer is considered to
be coming from a different segment via left/right BU. In this
case, the rogrant = ToR/ToL and source = RFL/RFR are set
according to the direction of the transfer. The count contains
number of packages for this transfer (data items divided by the
package size). The program field contains the order number of
the execution line and the sequence field contains the relative
order number of the execution line according to PSDF model.

The guard and enables fields are important to introduce
parallelism in the platform. An execution line is executed by
the respective SA, when its guard signal is zero. The emulator
application sets the values of guard and enables field on the
basis of ordering sequence of transfers. If two or more transfers
occur at the same ordering sequence, it sets appropriate values
to both fields so that parallel transfer can occur. For instance,
the PSDF model of the example application in Fig. 2 contains
two parallel transfers from process PO at sequence order 1.
As per application requirements, both transfers needs to be
completed in parallel before moving towards further transfers.
The execution lines associated with these two transfers are
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given below:

program(0) <= (guard => 0, source => 0, dest => 1,
dest_seg => 0, togrant => 0, count=16, enables=13);

program(l) <= (guard => 0, source => 1, dest => 8,
dest_seg => 0, togrant => 1, count=16, enables=2);

A similar approach is taken with respect to the VHDL code
to be generated for the CA operations.

IV. CONCLUSIONS

We have introduced MDA-based design methods to generate
the transaction-level control code for a distributed platform,
the SegBus. We have described methods to model application
at PSDF and PSM levels by employing SegBus DSL and
run emulation using emulator program to get performance
aspects of the modeled configuration. The emulator program
has further modified to generate the arbiters’ low-level control
code, in the form of VHDL snippets, which are then to
be inserted in a specific block of (segment or central-level)
arbiters as an execution schedule for any given application.
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