
074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E MARCH/APRIL 2011 | IEEE SOFTWARE 75

WHAT WOULD YOU do if you realized
your company owns two similar soft-
ware systems—that is, it holds com-
plete rights and control of two systems
intended to fi ll the same user needs?
You might fi rst ask how the company
came to be in such an awkward posi-
tion.1 But actually, this situation is
typical after a company merger or ac-
quisition or when a large organization
realizes that two or more of its divi-

sions have been independently develop-
ing systems that address the same prob-
lem in different ways.

Your second reaction—or your man-
agement’s—might be to attempt a tight
integration and merge the systems. This
is usually inadvisable. Rather than in-
tegrate the systems at the implementa-
tion level, it’s normally better to reuse
certain experiences and design solu-
tions to evolve one system and retire

the other. Or, this might be an oppor-
tunity to reuse knowledge from the ex-
isting systems and develop a completely
new system, with little or no code re-
use. None of these options is easy or in-
expensive—quite the opposite: they all
require considerable commitment and
bring many nontechnical challenges
related to personnel, cultures, and
organizations.

We present 10 industrial cases in
which such a situation existed. They
demonstrate the delicate balance be-
tween making integration decisions too
early and too late. They also reveal the
challenge of involving the right person-
nel at the right time and of garnering
and maintaining commitment through-
out the organization. Additionally,
some cases are surprising stories of how
independently developed systems might
be quite similar.

Cases
The 10 cases involved seven organiza-
tions in different business sectors (see
Table 1). Our data collection methods
included our participation in projects,
several rounds of interviews with proj-
ect leaders and software architects, and
several rounds of questionnaires with
software architects and project manag-
ers, as well as project and product doc-
umentation.2 Companies we studied
included ABB, Bombardier, Ericsson,
Saab, and Westinghouse. However, we
can’t disclose detailed information or
relate case descriptions to specifi c com-
panies or systems. Our observations
regarding cultural infl uences might be
skewed because all the organizations
involved Sweden and other European
or North American countries.

The Four Strategies
On the basis of the research literature

Oh Dear,
We Bought
Our Competitor:
Integrating Similar
Software Systems

Rikard Land and Ivica Crnković , Mälardalen University

// How do you transition from several functionally

overlapping systems to just one? A look at

10 case studies addresses the technological,

personnel, and organizational challenges. //

FEATURE: SYSTEMS INTEGRATION

76	 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: SYSTEMS INTEGRATION

and the 10 cases, we identified four
strategies: loose integration, merge,
choose one, and start from scratch.
The last two don’t actually integrate
the systems; the business goals of inte-
gration are sometimes better achieved
without integrating existing systems.
In such cases, organizations can re-
use experiences, design solutions, and
so forth without reusing the actual
implementations.

Loose Integration
For data-centric information systems,
the most common type of integration
creates adaptors and synchronization
mechanisms such that data insertions
or updates in one system automatically
propagate to the other.3,4 Standardized
solutions such as middleware facilitate
such loose integration, and commercial
consultancy services and middleware

products are a flourishing business.5

However, loose integration isn’t a
viable option for many other kinds of
software systems, such as those that
are interaction- or operation-oriented,
that require a homogeneous user inter-
face, or that have embedded software
that requires fast response and has
memory constraints.6 So, we investi-
gated situations in which loose integra-
tion isn’t the obvious or appropriate
choice. However, loose integration can
help keep data consistent while keeping
user interfaces separate. Of course, if
the overlap in functionality is too large,
maintaining two systems (plus the
added adaptor) in parallel isn’t feasible
in the long term.

Merge
In theory, reusing the best parts of ex-
isting systems—assembled in a new

system—reduces implementation time
and cost while ensuring proven quality.
In practice, however, this isn’t so easy.

The degree of incompatibility be-
tween the systems’ architectures can
disqualify the merge strategy7 (an in-
sight bought with a high price in case
C; see Table 2). Many potential incom-
patibilities exist; there might never be
an exhaustive taxonomy of them.8 In
our case studies, we saw three main
types of similarities and differences:

•	 data models (similarities in cases D
and F2; differences in B, C, E1, E2,
and F1),

•	 technologies used (similarities in
E2, F2, and F3; differences in A,
E1, F1, and F3), and

•	 architectural structures (similarities
in D, E2, and F2; differences in B,
C, and F1).

TA
B

L
E

 1 The 10 industry cases of systems integration challenges.

Organization Countries Case

A Newly merged
international company

Global—predominantly
Sweden and Germany

Human-machine interfaces of similar safety-critical systems with embedded software,
developed by several previous competitors, were to be integrated and evolved into a platform.

B Daughter companies in
a large corporation

Sweden Two administration systems that were developed in-house to keep track of goods in the
corporation were to be integrated.

C Newly merged
international company

US and Sweden Similar safety-critical products with embedded software, developed by two previous
competitors, were to be integrated.

D Newly merged
international company

US and Sweden Two previous competitors had similar client-server products for offline management of power
distribution systems.

E Collaboration between
a Swedish government
agency and industry

Sweden E1 A new generation of models was needed for certain kinds of simulations. They were
to be based on existing separate but functionally overlapping models.

E2 Three simulation systems with significant functional overlap, built by different units
of a Swedish government agency, were to be integrated.

F Newly merged
international company

US and Sweden F1 Three systems for managing offline simulations, developed and mainly used
internally by two previous competitors, were to be integrated.

F2 The two previous competitors had two systems developed in-house for the same kind
of simulations. The current systems needed improvement, and clear potential existed
for integration.

F3 Three systems for reporting software problems within the company were to be
reduced to one common system.

G Company acquisition Sweden Two similar publishing systems were to be integrated.

	 MARCH/APRIL 2011 | IEEE SOFTWARE � 77

Considering the compatibilities that
existed in the cases, it’s not surpris-
ing that D and F2 successfully chose
the merge strategy or that C failed in
the initial merge attempt (or that the
remaining cases generally avoided a
merge). The sidebar provides an in-
depth study of F2.

Fortunately, our case studies suggest
that two systems needing integration
commonly have similar structures. This
might be surprising and seem counter-
intuitive. However, in exploring fur-
ther, we found three possible explana-
tions for this similarity.

First, a specific domain typically has

one well-known way of building sys-
tems. Similar hardware structures are
often due to the products’ physical na-
ture (for example, A and C). The histor-
ical context in which systems of a par-
ticular type were first created results in
recurring design solutions (D, E2, and
F2). For example, in F2, Fortran was
the natural choice of implementation
language for both systems because this
decision was originally made—indepen-
dently for both systems—in the 1970s.

Second, standards and legislation
exist for systems in the same domain,
and these define part of the solution (A,
C, and F2).

Third, systems often have a common
ancestry—consider, for example, all
the Unix variations. Similarly, earlier
collaborations between organizations
could result in the systems having com-
mon design and (possibly) implementa-
tion features. In D and F2, the systems
to be integrated had a common ances-
tor some 20 years earlier, and the fun-
damental choices regarding technology
(in both cases) and client-server archi-
tecture (in case D) still remained (al-
though much had changed otherwise).

Despite the existence of similar
structures, many stakeholders view
a merge as a suboptimal compromise

TA
B

L
E

 2 The cases’ current status.

Case Result

A After some internal debate and perceived collaboration difficulties between the office sites, the company launched a new development project and
assigned it to one of the sites. This project inherited solutions and knowledge from the previous systems’ design.

B It was imperative that one site perform development and maintenance. So, the corporation chose the larger system, after which it gradually
reimplemented the other system’s functionality within the new system’s framework.

C At first, management decided that for political reasons, equal parts from the two systems had to be reused and merged, within six months.
Architects and developers on both sides felt this was totally unrealistic. After a period of mutual suspicion, no progress, and some contradictory
decisions, management chose the architecture and most of the implementation of one system and adapted some smaller parts of the other system to
fit it.

D The company has chosen one human-machine interface and is retiring the other. A strategy exists to merge the servers in the long term, but this
hadn’t been planned in any detail at the time of the study.

E1 The collaborators all considered the technologies to be out of date and desired to use new technology. So, they launched and successfully executed a
new development project.

E2 No solution seemed optimal: too few resources were allocated to do anything constructive. So, the collaborators chose the most complete system and
discontinued the other, although users thus lost some crucial functionality.

F1 The company made a relatively early decision: because no party would accept a decision requiring abandonment of its own system, all systems
should remain in use, although very loosely integrated. However, the architectures were totally different, and no one perceived any major benefits
of integration. So, no part of the company was committed to the decision, and no site fulfilled its share of the integration part of the decision.

Later, the company decided that the developers should chose one of the systems. However, they couldn’t agree on any solution involving the
retirement of the system with which they were already familiar. At the time of this study, no final decision had been made.

F2 The architectures are very similar, and the company is merging the systems by picking parts of each, together with adaptations and new
development (see the “Case F2: A Merge in Action” sidebar). When this study ended, the integration was progressing steadily, the main challenge
being to align customer-driven delivery projects with the internal goal of a single, integrated system.

F3 Because the company didn’t consider this type of software its core business, it acquired and customized a commercial system. This required aligning
the three acquired organizations’ issue management processes, which was difficult.

G Both systems were considered well designed and successful on the market. Management realized that a decision was necessary and wanted a short
transition. So the company retired the acquired system and offered transition solutions essentially for free to existing customers.

78	 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: SYSTEMS INTEGRATION

(for example, C and F2). In particular,
we’ve seen that architects and develop-
ers aren’t keen on planning a compro-
mise they perceive as inferior to both
existing systems. Even when each sys-

tem’s developers disagree on everything
else, they tend to agree on this. This
lack of enthusiasm to merge systems
leads to personnel and organizational
challenges.

Choose One
By choosing one existing system and
retiring the other, system replacement
is immediate. The chosen system will
likely need further evolution before it

CASE F2: A MERGE IN ACTION
The two simulation systems of case F2 (see Figure A1) have re-
markably similar architectural structures, technology choices, and
data models. They each consist of four
Unix programs run in a batch sequence:
a preprocessor, a 2D simulator, a post-
processor, and a 3D simulator. More-
over, both are written in Fortran and
have surprisingly similar internal struc-
tures. Figure A2 shows the systems’
current status; some parts are new and
some shared.

The systems’ 3D simulators are sub-
ject to a merge. That is, the company
is replacing some of each system’s in-
ternal components with either the other
system’s components or new compo-
nents. The most important aspect is that
the systems use a common data model
(which is central to such systems). Pre-
viously, data in the programs was imple-
mented in Fortran as large, untyped
memory blocks. The company took this
opportunity to improve the data struc-
ture design and implementation, intro-
ducing the ability to perform stronger
type and array boundary checks as well
as data-access control. It’s adapting the
two systems’ simulation engines to use
this data model and data-access com-
ponent. Most likely, the company won’t
merge the 3D simulators completely;
there might be a stronger business case
for maintaining two variants for some-
what different markets and purposes.
Suddenly, this merge has become a
transition to a new product line.1

Reference
	 1.	 F.J. van der Linden, K. Schmid, and E.

Rommes, Software Product Lines in Action:
The Best Industrial Practice in Product Line
Engineering, Springer, 2007.

System 1

(1)

(2)

Preprocessor 2D simulator Postprocessor

3D simulator

X

Z

Y

W

System 2

Preprocessor 2D simulator Postprocessor

3D simulator

X

Z

Y

W

System 1

System 2

2D simulator

3D simulator

X

X Y

Common ancestry Similar internal structures

The preprocesor
is a new

development.

System 1’s 2D
simulator will be

evolved or shared.

The 3D simulators are being merged.
Some components are created from scratch;

others are reused from either of the systems.

The new postprocessor began as an evolution
of the system 2 postprocessor but was

eventually almost completely rewritten.

The common 3D simulator
components are, so far,
new developments.

2D simulator

Preprocessor Postprocessor Z W

Y

FIGURE A. The two simulation systems of case F2 in the main article: (1) Basic structure.

(2) Current status. These systems show remarkably similar architectural structures,

technology choices, and data models.

	 MARCH/APRIL 2011 | IEEE SOFTWARE � 79

can fully replace the retired one. So,
this strategy might be the best if one
system already includes most of the
other’s (required) features. Of course,
organizations looking at this strategy
should also consider such qualities as
the system’s reliability, ease of mainte-
nance, and—not least—user and cus-
tomer satisfaction. In general, choosing
one system requires careful consider-
ation of how to evolve it to compensate
for some lost functionality—and how
to present it as a natural evolution of
the retired system to customers. This
strategy also requires significant effort
in managing issues related to backward
compatibility of, for example, existing
user interfaces, user processes, and file
formats, as well as (for many systems)
issues related to automatic migration of
existing data.

Start from Scratch
Discontinuing existing systems and
implementing a new system means
that the resulting system can utilize the
newest technology and most recent ar-
chitecture and design advances. Start-
ing from scratch might be the most
natural strategy—particularly if the ex-
isting systems are considered obsolete
or are difficult to maintain. However,
the same backward-compatibility or
migration challenges that exist for the
choose-one strategy also exist here. But
with the start-from-scratch strategy,
these challenges exist for more systems.
The crucial factor to consider is what
will happen if the existing systems are
retired; this insight can guide the ne-
gotiations with the existing systems’
stakeholders.

Combined Strategies
Organizations often combine these
strategies. Most notable among our
cases is F2. In F2, the overall merge
strategy meant that developers decom-
posed the system at one level and con-
sidered the same strategies and exclud-
ing factors for each pair of components.

Of course, there’s also the option of
not attempting any integration. Doing
nothing requires no extra effort or re-
sources in the short term. However, this
option won’t solve any long-term prob-
lems or provide any investment return.

Challenges
The personnel and organizational chal-
lenges are as important as the technical
ones. Here we describe them in terms
of the following two phases.

The Strategic Phase
This phase begins as soon as the two
previously separate organizations un-
derstand that there’s an “other” site
and system.

In the studies, managers often were
eager to make a decision about the sys-
tems’ future as soon as possible (for
example, C, D, F1, and G). They felt
that the sooner they made a decision,
the shorter the time of speculation,
the sense of insecurity, and the associ-
ated drop in productivity and creativity
would last. (These psychological fac-
tors are all important—and were par-
ticularly so in A, C, F1, and G.) How-
ever, well-founded decisions take time
to mature. Our studies suggest that or-
ganizations can make a choose-one de-
cision relatively quickly on the basis of
business considerations (as in G). How-
ever, if this option isn’t immediately ap-
pealing, the process will take longer—
whether or not management likes it
(especially in C and F1).

Personnel associated with each sys-
tem must acquire sufficient knowledge
about the other system to fully under-
stand an integration-related decision’s
technical implications. In C and F1,
management launched projects to evalu-
ate the existing systems as objectively as
possible.

This required a significant amount
of time in meetings from each system’s
lead players: architects, expert users,
managers, marketing personnel, and so
forth. It also required that each system’s

lead players spend a significant amount
of time in meetings. These meetings
were important for not only gathering
information but also providing partici-
pants with a more personalized (and
thus friendlier) picture of “the other
side.” Through these meetings, par-
ticipants came to understand the other
side’s mentality, company culture, and
informal development procedures. Sev-
eral interviewees pointed to this as an
important step toward future coopera-
tion—particularly for the merge strat-
egy. Additionally, visiting the other site
and seeing that the other side consists
of ordinary people with their own fears
and problems9 makes integration seem
less of a threat. It also paves the way for
constructive, problem-solving discus-
sions (for example, C, F1, and F3).

Meetings should be frequent enough
that the staff won’t lose strategic focus
in favor of their local tasks. Addition-
ally, by taking turns visiting each other,
staff will perceive the power balance
between sites to be equal (for example,
C, F1, and F2). Management should
be aware of the staff’s motivation and
personal priorities—while building
new organizations, many personnel
still have the old organization in their
minds (and hearts). All these insights
apply to any distributed team.10

After a series of such meetings, per-
sonnel will more likely consider the or-
ganization’s decision realistic and sup-
port it. This phase ends when a plan for
the systems’ future has been devised.
This plan should include a description
of the target system in terms of reuse,
retirement, and new implementation, to-
gether with a time and resource outline.

The Implementation Phase
Formulating and committing to a plan
is an important achievement, but a
long, rocky road lies ahead. Integration
might take years to fully implement—
whether this involves a merge or a com-
pletely new system. During this phase,
it’s important to keep sight of the goal

80	 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: SYSTEMS INTEGRATION
TA

B
L
E

 3

The strategies and their most crucial factors.

Strategy

Loose integration

Before After
Before After Before After Before After

Merge

Before After
Before After Before After Before After

Choose one

Before After
Before After Before After Before After

Start from scratch

Before After
Before After Before After Before After

Ad
va

nt
ag

es
 a

nd
 o

pp
or

tu
ni

tie
s Organization: Low short-term

costs and small impact (“business
as usual”). An established
strategy with standard solutions.

Organization: Long-term
viable results. Involves both
sites and might create a positive
atmosphere.

Organization: Long-term viable
results.

Organization: Long-term viable
results. A positive atmosphere
related to starting a new project.

Customers: No changes. Customers: Existing customers
experience improvements.

Time: Rapid replacement. Architecture: The opportunity
to replace old technologies.

Architecture: The opportunity to
replace old technologies.

Functionality and quality:
The opportunity to improve
the user experience and user
processes.Customers: The opportunity to

replace an inadequate system.

En
ab

lin
g

fa
cto

rs

an
d

in
di

ca
tio

ns
 o

f s
ui

ta
bi

lit
y Architecture: Suitable if the

systems are oriented around
databases.

Architecture: Sufficient
similarity of existing architectures
(structures, data models, and
technologies).

Architecture: Suitable if
one system is more modern
(technologies and structures).

Architecture: Suitable if
both systems are considered
obsolescent or the desire exists
to employ recent technology
advances.

Functionality and quality:
Suitable if data transfer and
synchronization are sufficient.

Functionality and quality:
Suitable if each system brings
unique capabilities.

Functionality and quality:
Suitable if one system covers
(most of) the other’s capabilities
or conceptually supports inclusion
of the other’s lost functionality.

Functionality and quality:
Might be appropriate if no
existing system covers most of
the desired capabilities.

Co
sts Transition: No costs. Transition: Might produce an

indefinite period of two systems
sharing too much (for example,
common components) to make
independent decisions, but too
separate to reap any benefits.
Alignment of local goals with
strategic goals might require
compromises with suboptimal
plans.

Transition: Support and
evolution of two systems.

Transition: Support and
evolution of two systems.

Short term: Building the
adapter.

Short term: Analysis for this
strategy.

Short term: Development of one
system to add functionality and
provide backward compatibility
with the other system. Migration
of data from the other system.

Short term: Development
costs for the new system (which
might not be “short term” in an
absolute sense).Long term: Maintaining

multiple systems and the
adapter.

	 MARCH/APRIL 2011 | IEEE SOFTWARE � 81

TA
B

L
E

 3
 (

c
o

n
t.
)

The strategies and their most crucial factors.

Strategy

Loose integration

Before After
Before After Before After Before After

Merge

Before After
Before After Before After Before After

Choose one

Before After
Before After Before After Before After

Start from scratch

Before After
Before After Before After Before After

Im
po

rta
nt

 p
la

nn
in

g
as

pe
cts Not studied. Architecture and user

experience: How to bridge
existing differences. How to
find a compromise with a high
degree of reuse while achieving
a conceptually integrated
system.11

Architecture and user
experience: How to enable
backward compatibility with the
retired system.

Architecture and user
experience: How to bring
knowledge about existing design
solutions into the new system.
How to provide backward
compatibility with both systems.

Customers: Determining what’s
an acceptable disruption for the
retired system’s existing users
and customers and how to make a
smooth transition for them.

Organization: Determining
which site can best handle the
new development or whether
both sites should cooperate.

Customers: Determining what’s
an acceptable disruption for
the existing systems’ users and
customers and how to make a
smooth transition for them.

Ri
sk

s Not studied. Organization: Requires
tight, long-term, distributed
development and requires
alignment of merge activities
with parallel development of the
existing systems.

Customers: Loss of the retired
system’s customers.

Organization: Requires long-
term commitment and possibly a
distributed development effort.

Customers: Loss of the existing
systems’ customers.

and not focus too much on local and
short-term issues (as in F1; see Table 2).
If possible, integration activities should
align with local development goals and
thus create a sort of inner momentum.
For example, consider F2, in which in-
tegration aligned with local needs (on
both sides), and the participants created
a common, improved data model and
other common components. Follow-
ing such initial efforts, existing systems
will converge, if not automatically, then
at least much more easily.

The cases we studied emphasized
step-by-step deliveries (particularly B,
D, and F2). When aligned with local

improvements, delivering improved sys-
tems to customers and users (who don’t
even need to know that their system has
converged with another one) can pro-
vide short-term returns on a company’s
investment. Internally, a functional de-
livery provides proof of progress and
feasibility and might be necessary to
maintain personnel’s commitment and
motivation. From our case studies, this
approach seems a fundamental prereq-
uisite for the merge strategy to succeed.

During implementation, the staff no
longer needs to meet as often as in the
strategic phase because implementa-
tion is an ordinary development project

with distributed teams (although admit-
tedly still a challenge). The merge strat-
egy, in particular, implies distributed
development. This is illustrated by F2,
which required close collaboration and
involved frequent telephone calls as well
as quarterly intercontinental travel for
many project members. In A and B, an-
ticipated problems with distributed de-
velopment heavily influenced the deci-
sion to involve only one site (and were
one reason to not choose the merge
strategy).

The desired distribution level de-
pends on not only the chosen strat-
egy but also other factors. In E1, an

82 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: SYSTEMS INTEGRATION

important task was to exchange experi-
ences between the partners in order to
learn and build relations. This led to
a division of work in which they col-
laborated more closely than when mo-
tivated from a purely implementation-
effi ciency viewpoint. In F3, the new
system was a support system to be de-
ployed and used at all sites; this required

considerable communication between
implementers and users at each site.

T able 3 summarizes impor-
tant integration considerations
based on these case studies;

it can serve as an actionable check-
list. The advantages it lists should help

your company get
started and decide
where to focus its
investigation. The
remaining con-
siderations listed
should help you
collect the infor-
mation you need
to develop a plan.
To collect this in-
formation, it’s
best to involve ap-
propriate person-
nel (architects, us-
ers, management,
and so forth) and
assign different
groups to investi-
gate the relevant
issues listed in
Table 3 from their

particular viewpoints. This will help
form a well-founded decision and build
the commitment needed for success.

Acknowledgments
We thank all interviewees and their orga-
nizations for sharing their experiences and
letting us publish them. Thanks also to Stig
Larsson and Laurens Blankers for previ-
ous cooperation that led to this article. The
Swedish Foundation for Strategic Research
partially supported this research through the
Progress strategic research center.

References
 1. S.R. Wall, The Morning After: Making Cor-

porate Mergers Work after the Deal Is Sealed,
Basic Books, 2002.

 2. R. Land and I. Crnković , “Software Systems
In-House Integration: Architecture, Process
Practices, and Strategy Selection,” Informa-
tion and Software Technology, vol. 49, no. 5,
2007, pp. 419–444.

 3. B. Gold-Bernstein and W. Ruh, Enterprise In-
tegration: The Essential Guide to Integration
Solutions, Addison-Wesley Professional, 2004.

 4. J. Lee, K. Siau, and S. Hong, “Enterprise In-
tegration with ERP and EAI,” Comm. ACM,
vol. 46, no. 2, 2003, pp. 54–60.

 5. F. Biscotti et al., Forecast: Enterprise Soft-
ware Markets, Worldwide, 2008–2013, 3Q09
Update, Gartner, 2009; www.gartner.com/
DisplayDocument?id=1179913.

 6. M. Stonebraker and J.M. Hellerstein,
“Content Integration for E-Business,” ACM
SIGMOD Record, vol. 30, no. 2, 2001, pp.
552–560.

 7. D. Garlan, R. Allen, and J. Ockerbloom, “Ar -
chitectural Mismatch: Why Reuse Is So Hard,”
IEEE Software, vol. 12, no. 6, 1995, pp. 17–26.

 8. L.A. Davis et al., “Patterns of Confl ict among
Software Components,” J. Systems and Soft-
ware, vol. 79, no. 4, 2006, pp. 537–551.

 9. T. DeMarco and T. Lister, Peopleware: Pro-
ductive Projects and Teams, 2nd ed., Dorset
House, 1999.

 10. E. Carmel, Global Software Teams: Col-
laborating across Borders and Time Zones,
Prentice Hall, 1999.

 11. F.P. Brooks, The Mythical Man-Month:
Essays on Software Engineering, 2nd ed.,
Addison-Wesley Professional, 1995.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

RIKARD LAND is a software specialist at Cross Control. His interests
include software architecture and design, and processes and practices
for embedded and safety-critical software-intensive systems. Land has
a PhD in software engineering from Mälardalen University. Contact him
at rikard.land@crosscontrol.se.

IVICA CRNKOVIĆ is a professor of industrial software engineering at
Mälardalen University. His research interests include component-based
software engineering, software architecture, software confi guration
management, and software development environments and tools.
Crnković has a PhD in computer science from the University of Zagreb.
Contact him at ivica.crnkovic@mdh.se.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

stay connected.stay connected.

TM

| IEEE Computer Society
| Computing Now

| facebook.com/IEEE ComputerSociety
| facebook.com/ComputingNow

| @ComputerSociety
| @ComputingNow

