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Abstract reachability analysis performed hyppPAAL, making
manual model annotation superfluous.

In this paper, we describe how the real-time verification
tool UPPAAL has been extended to support automatic gen-
eration of time-optimal test suites for conformance testing.
Such test suites are derived from a network of timed au-
tomata specifying the expected behaviour of the system un-
der test and its environment. To select test cases, we use cov-
erage criteria specifying structural criteria to be fulfilled by
the test suite. The result is optimal in the sense that the set of

e an implementation for efficiently representing the sets
of covered elements that arises during the analysis.
With the knowledge that such sets are always mono-
tonically increasing along any trace of an automaton,
it is safe to perform some pruning in the reachability
analysis normally not possible in model-checking (e.g.
in case ordinary data-variables are used to annotate the

test cases in the test suite requires the shortest possible ac- model).

cumulated time to cover the given coverage criterion. e a set of keywords representing coverage criteria ex-
The main contributions of this paper aréi) a modi- tending the requirement specification languagé ef

fied reachability analysis algorithm in which the coverage PAAL.

of given criteria is calculated in an on-the-fly manngi,) a
technique for efficiently manipulating the sets of covered el-
ements that arise during the analysis, afidi) an exten-
sion to the requirement specification language usedmn
PAAL, making it possible to express a variety of coverage
criteria.

The rest of this paper is organized as follow: in the next
section, we describe the modeling language timed automata
and the toolUPPAAL. In Section 3 we describe the algo-
rithm implemented in the tool, in Section 4 we present the
tool itself, and in Section 5 experiments are presented. Sec-
tion 6 concludes the paper.

) 2. Preleminaries
1. Introduction
_ _ We will use a restricted type of timed automata [1], ex-
~In [7], we have presented a technique for generating tended with finite domain variables, called DIEOU-TA [7]
time-optimal test suites from timed automata specificationsg specify the system under test (SUT). The environment

using UPPAAL [9]. The technique describes how to anno- of the SUT is specified in the same way but without the
tate models with auxiliary variables so that test sequencesH|EOQU-TA restriction.

from manually formulated test purposes or coverage crite-
ria can be derived by reachability analysis. The result of 2 1. Timed Automata
the analysis is a diagnostic trace described as an alternating "™
sequence of input actions and delays, which can be trans-
formed into a (set of) test sequence(s) describing how to
stimulate the system to fulfill the test criterion.

A timed automaton is a finite state automaton extended
with real-valued clocks. LefX be a set of non-negative
oo _ _ real-valuedclocks and Act = Z U O U {r} a set of in-
The tool presented in this paper, is a prqtotype version of put actionsZ (denoteda?) and output-action® (denoted
theUEPAALtooI _based on the same technique but with the a!), and a distinct non-synchronizing (internal) actien
following extensions: Let G(X) denote the set ofuardson clocks being con-
e amodified reachability analysis algorithm in which the junctions of simple constraints of the formi< ¢, and let
coverage of a given criterion is collected during the /(X)) denote the set aipdatesof clocks corresponding to



sequences of statements of the form= ¢, wherex € X, 2.3. UPPAAL and Testing

c € N, and< € {<, <,=,>}1 A timed automatorfTA)

over(Act, X)is atuple(L, ¢y, I, E), whereL is a set of lo- UPPAAL [9] is a tool for modeling and analysis of
cations,/, € L is an initial location,/ : L — G(X) as- real-time systenfs Given a network of timed automata,
signs invariants to locations, arfd is a set of edges such extended with finite domain data variablé$pPAAL can
that E C L x G(X) x Act x U(X) x L. We shall write  check if a given (symbolic) state is reachable from the ini-

g,o,u

/ viff (0, g,a,u, ') € B. tial state or not. If the state is reachable, the tool produces
The semantics of a TA is defined in terms of a timed tran- & diagnostic trace with action- and delay-transitions show-
sition system over states of the fopm= (¢, o), wherefisa N9 how the state can be reached. _
location and> € R is a clock valuation satisfying the in- It has been shown in [7] how to obtain a test sequence
variant of . Intuitively, there are two kinds of transitions: oM & diagnostic trace of a DIEOU-TA. Given a network
delay transitions and discrete transitions. In delay transi-?f tlmeg alitOTaSt?;on&Ztmg oI a p;lrtr mot?]ellmg _the sys-t
. em under tes and a part modeling the environmen
tions, (¢, 0) 4, (¢,0 + d), the values of all clocks of the ( ) P g

t t : ted with th t of the dell (ENV). The idea is to project the diagnostic trace to the vis-
automaton are Incremente W,' , € amount ot the delay, -y, 0 4ctions between the SUT and the ENV part, and to sum
Discrete transitiong/, o) — (¢, ¢’) correspond to execu-

. / : . o up the delay transitions in between visible actions. The re-
tion of edgeg?, g, o, u’? ) f?rWh'Ch the guard IS sat|sf|gd sulting test sequence can be converted to a test case which
by o. The clock valuatiors’ of the target state is obtained

e ) ) ~ signalsfail whenever the SUT does not behave according
by modifyingo sccordmg to updates. We writep —asa 5 the SUT model, i.e. produces unexpected output, or cor-
shortfordp’. p — p',y € ActUR>o. Atimed traceis ase-  rect output at the wrong time-point.

quence of alternating time delays and actionglin. The technique presented in [7] shows how to transform
A network of TA4 || --- || A, over(Act, X) is de- 3 given test purposes or coverage criteria to annotations of
fined as the parallel composition of TA over (Act, X). the SUT and ENV models. For example, it shows the anno-

Semantically, a network again describes a timed transitiontations and auxiliary variables needed so that definition-use
system obtained from those of the components by requiringpair coverage [6] be formulated as a reachability problem.

synchrony on delay transitions and requiring discrete tran-The result is a diagnostic trace from which a set of test cases
sitions to synchronize on complementary actions {%is  (a test suite) can be extracted which satisfies the definition-

complementary ta!). use pair coverage criteria in minimal time.
Whereas this is a viable technique, it is tedious and er-
2.2. Deterministic, Input Enabled and Output Ur- ror prone in practice. The extra auxiliary variables also in-
gent TA crease the size of the state space and thus the time and space

required to perform the analysis. Since the extra variables
To ensure testability in the context of time, we require do not influence the behaviour of the model, they should
the following set of (sufficient) semantic restrictions on the e treated differently. In the next section, we show how to
SUT model. Fonowing similar restrictions as in [11], we move the auXiIiary Variables from the mOde| in'[O data struc-
define the notion of deterministic, input enabled and out- tures in the analysis algorithm, and how they can be han-
put urgent TA, DIEOU-TA [7], by restricting the underly- dled more efficiently.
ing timed transition system defined by the TA as follows:

3. Test Generation Algorithm
1. DeterminismFor every semantic staje= (¢,0) and

actiony € Act U {Rso}, wheneverp — p’ and The reachability algorithm ilJPPAAL is essentially a
p - p’ thenp’ = p’". forward on-the-fly regchability algorithm t_hat generates and
J explores the symbolic state space of a timed automata net-
2. (Weak) input enabledVhenevep — for some delay  work. In the following we describe how the algorithm has
deRx>othenvVa e Z.p — . been modified to check if a given coverage criteria is satis-

3. Isolated Outputsve € O U {7}. V5 € OUZ U {7} fied in a timed automata model.

@ 16 -
whenevep - andp - thena = 3. 3.1. Test Sequence Generation

4. Output urgencyWheneverp —, o € O U {r} then

» 7&) deR The algorithm modified for generating test sequences is
’ 20- illustrated in Figure 1. The algorithm explores symbolic
1 To simplify the presentation in the rest of the paper, we restrict to 2 See the web sitdttp://www.uppaal.com/ for more details

guards with non-strict lower bounds on clocks. about theUppPAAL tool.



Pass=1)
WaIT:={((lo, Do), Co)}
while WAIT## () do
select((l, D), C) from WAIT
if ((I,D),C) = ¢c then return “YES”
if forall ((I, D"),C")inPass: DZ D' v C4 C' then
add((l, D),C) to Pass
forall ((Is, Ds), Cs)
such that(({, D), C) ~. ((ls, Ds), Cs):
add((ls, Ds), Cs) to WAIT
return “NO”

Figure 1. An abstract algorithm for symbolic
reachability analysis with coverage.

states of the fornil, D), whereD is a zone (or DBM [5])

form |z4.| ~ ¢): In this caseC = (F,U), where
F € EU{Ll}, andU is a coverage set of definition-use
pairs of the form(e;, e;), wheree;,e; € E. We de-
fine Cy = (Fs, Us):

e
oLy

U, - {gume)

wheree € FE is the edge from which the transition
(I,D) ~ (ls, Ds) is derived. InitiallyCy = (L, {})
and(F,U) < (F",U")iff (F=F AN UCU).

Thus, to check for location coverage the coverage’sis
simply storing the set of locations that are visited when a
symbolic state is reached. In a network of timed automata,
the update of” can easily be modified to check for cov-

if z is defined ore
otherwise

if ' #£1 andz is used ore
otherwise

representing a convex set of clock valuations, extended Witherage of a subset of the automata in the network. The case
acoverage seC representing the elements covered when ¢, oqge coverage is similar. Definition-use pair coverage is

the state is reached. We u€eD) ~» (I',D’) to denote a

checked by keeping track of active definitions in geand

transition in the symbolic state space (see e.g. [3, 10] for aq\ered DU-pairs in the sét.

description of the symbolic semantics implementetin
PAAL). The algorithm terminates when the propegty is

Note how the coverage sets are checked for inclusion. In-
tuitively, the (symbolic) staté(l, D), C') does not need to

satisfied by a reached state. It is then possible to compute g frther examined if another std(@, D'), C") is reached
diagnostic trace starting in the inital state and showing how 5t contains all time-assignments ’-@'C’ D’. and cov-

to reach a state satisfying- (see e.g. [8]).

The algorithm in Figure 1 is similar to the ordinary
reachability algorithm used ikbPPAAL. The most signif-
icant modification is the addition of a coverage 6&to

ers the same or more elements, (&.< C’. This means
that states with smaller coverage will not be further ex-
plored which is the reason for allowing only checks of lower
bounds of the size of the coverage sets. The advantage is of

the symbolic states. The particular representation of a Cov-¢q e that the number of explored states becomes smaller,

erage set depends on the coverage criteria mentioned ifgaing to faster termination of the algorithm (see Section 5
wc- The current implementation allows for conjunctions of

atomic coverage criteriaf the form|4,| ~ ¢, |A.| ~ ¢, or
|Z4u| ~ ¢, wherec € N, ~ € {>,>}, and|4;| and|A,]|

for more details).
To check((l, D), C) = ¢¢ in the algorithm is straight-
forward. The value ofA4,| or |A.| is simply the number of

denotes the number of covered locations and edges in aUglements irC. For definition-use pair coverage, whefés

tomaton A respectively, andz,,| the number of covered
definition-use pairs of data variable

In the algorithm, the coverage sets are initiated’tp
(line 2), checked for inclusion &” on line 6), and then
successors are generated (line 9). We defiheD), C) ~.
((ls, Ds), Cy) iff (I, D) ~ (ls, Ds) andC is updated ta’
as follows:

e location coverage (in case. contains an atomic cov-
erage criterion of the for4;| ~ ¢): Cs = C U {1;}.
In this caseCy = {lp} andC < C"iff C C C".

e edge coverage (in cage contains an atomic coverage
criterion of the formlA.| ~ ¢): Cs = C' U {e}, where
e € E is the edge from which the transitigh D) ~
(Is, D) is derived. In this cas€, = {} andC < '
iff C C (.

e definition-use pair coverage on variahle(in case

a pair of the form(F, U the value of 24, | is the number of
elements in the séf.

3.2. Test Suite Generation

In [7] we describe a technique for generating test suites
(set of test sequences) covering a given test criterion. The
idea is to annotate the model with edges allowing the model
to reset to its initial state (an updating the auxiliary variables
accordingly). We now describe how the algorithm shown in
Figure 1 (and Figure 2 below) can be modified in a simi-
lar way.

Assume a predicat® C L x {0,1} which is true for
all automaton locations that can be reset. In the algorithm,

it suffices to insert the line
if R(I)thenadd((lo, Do), C) to WAIT

between line 8 and 9 of the algorithm of Figure 1. The

@ contains an atomic coverage criterion of the case of definition-use pair coverage is the same except that



CosT= 0
Pass=1()
WaIT:={((lo, Do), Co) }
while WAIT= () do
select((, D), C) from WAIT
if (I, D),C) E ¢c and min(D) < COST
then COST := min(D)
if for all (({, D), C")in Pass: D'Z D v C4C' then
add((l, D), C) to Pass
forall ((Is, Ds), Cs)

4. Implementation

In the algorithm(s) described in the previous section,
the symbolic states contain a component representing the
items covered in the path reaching the state. In the case of
definition-use pair coverage, it also contains more informa-
tion like the F" set. In this section we will describe how the
coverage sets have been implemented as bitvectors (in C++)
in the algorithm.

We use bitvectors € {0,1}" to implement a se€’ of
n items, and associate a natural numbtereach item to be

SUCh tha((h D)* C) ,\’)C ((lsa DS)7 CS):
add((ls, Ds),Cs) to WAIT
return CoOST

covered. Then[i] = 1 if item ¢ is in the set. This is ex-
actly the standard bitvector representation of sets. In order
to improve efficiency, we use dynamic bitvectors and num-
ber the items as they are explored. For example, in the case
of location coverage the locations are numbered in the or-
der they are explored by the algorithm, and the length of the
bitvector grows as new locations are explored.

Figure 2. An abstract algorithm for symbolic
time-optimal reachability analysis with cover-
age.

4.1. Overview

F = {} toindicate that no active definitions have yet been

reached from the initial location. An overview of the implemented coverage module is

. . ) shown in Figure 3. The functionality of the module is to
It should be obvious that the effect of adding the line cor- 5\0jate (bitvector representation 6f) in a transition like

responds to allowing the system to reset to its initial sym- (1, D),C) ~ ((Is, Dy),Cs). The input to the module is

bolic state(ly, Do) but with the coverage c_ollected before ihe coverage set, a symbolic transition, and the new sym-
the reset. WhetUPPAAL returns a diagnostic trace the out- | 1i- ciate ie-s (15, D). The example shown in the Fig-

putis interpreted as a set of traces separated by the reset ORire 3 calculates’, for location coverage of an automaton
erations (which can be made visible in the diagnostic trace).Pl_ ‘

The module consists of three layers: the combined layer,
the atomic layer, and the mapping table layer. The combined
layer combines the coverage from the atomic terms and up-
dates the sef’ to C;. The atomic layer use the mapping
tables to convert the coverage items found in the step to a

The standard reachability analysis algorithm imple- bitvector. The layers in the architecture are fixed, but the
mented inUPPAAL has been extended to compute the trace configuration of the atomic layer differs, depending on the
with minimum time-delay satisfying a given reachability atomic coverage criteria used in the analysed property
property [3]. In the same way as described above, the algo-
rithm for time-optimal reachability can be extended to com- 4 o Layers
pute time-optimal test sequences. The resulting abstract al-
gorithm is shown in Figure 2. It should be noticed that the |, general, theAllCoverage module consults one ob-
_DB_MS_D used in the algorit_hm fqr time-optimgl reachabi_l' jects in the atomic layer for each atomic coverage term
ity is different from the one in ordinary symbolic reachabil- t5,nd in ©e. In the illustrated example, there is only one
ity. For time-optimal reachability an extra clock is used that giomic coverage — location coverage in automafen

is never reset. The minimum value of this clock is the min- \when an object in the atomic layer is consulted it is given a
imum time it takes to reach the state. We will not discuss symbolic transition and a new state of the form(l,, D)

th?s in detail here, but refer the reader to [3] for more de- 5,4 produces a bitvectai; with the bits set that corre-

tails. spond to items covered by the given transition and state.
In [3], itis also shown how the algorithm can be extended The successor sét; is created byitwise-orof the old set

with a set of techniques inspired by branch and bound al-C andd; for all atomic objects. Thus, in the general case

gorithms [2]. Some of these extensions can also be appliedCs = C U (|, 0;).

when generating time-optimal test sequences, but it remains An object in the atomic layer is created for each atomic

to be investigated in detail. coverage described by the search property In case of

3.3. Time Optimal Test Suites



Combined layer

i 5 5 ] | Original | Pruned |
C2 (s, Ds) | AllCoverage [ Co =CUR Y Uon Coverage criteria Exec- [ Mem [ Exec- | Mem
) time | MB time | MB
__~ (s, Ds) [RJALSA 8.91| 185| 4.43| 13.0
Atomic layer o1:=10 |R.|N|SA. A|SB.| | 1461| 255| 6.06| 165
1 Location n atomic coverages
CoverageP;
- Table 4. Measurements on Philips audio-
ls, P1 control protocol with bus-collision.
Mapping table Bit := 2

Location table

vironment of the protocol: two message automata providing
the senders with messagesgssageandmessagep and

an automaton checking the correctness of the received mes-
sageschech.

Table 4 shows the time and space required to gener-
ate time-optimal test suites with an coverage extended
prototype version ofUPPAAL implementing the algo-
rithm described in Sections 3 and 4. The experiments have
been performed on a Sun UltraSPARC-II 450MHz. Col-
umn “Pruned” gives the data when using the algorithm pre-
sented in this paper. Column “Original” gives the data
when using bitvectors but not the extra pruning possi-
ble due to the monotonicity of the coverage sets (i.e. the
effect of <). For both versions, we have used edge cover-
4.3. Dynamic Size of Bitvectors age criterion on two or three automata. We note that the

) ) _ reduction is 50 to 58% in time and 30 to 35% in mem-
The sets” are saved with the symbolic stae D) asa oy consumption for this example.

bitvector that dynamically increases in size when new items

are explored. Since long bitvectors are more expensive to

manipulate we avoid to associate bits with items that have6. Conclusion

not yet been (or never will be) used. That is, the coverage

items are numbered when they are first generated. In this paper, we have described how the real-time veri-
In the mapping table layer each coverage type has a tafication toolUPPAAL has been extended for test-case gen-

ble that associates the items with a unique bitnumber. Toeration. In particular, we have extended the symbolic reach-

make the bitnumbers unique a global counter is used. Theability analysis algorithm of the tool to generate traces sat-

counter is incremented whenever a new item is found. In jsfying simple coverage criteria, which can be used as test

the example in Figure 3, the location is associated with the sequences or suites to test real-time systems.

Figure 3. Architecture of the coverage mod-
ule. Location coverage example instantia-
tion.

location or edge coverage it is instantiated with the corre-
sponding typdocation or edge and an automatond. In
case of definition-use pair, the object is instantiated with
the typedefinition-useand a variable name.

(bitynumber 2 and thus the bitvectar(” is generated. The presented algorithm uses monotonically growing
sets represented at bit-vectors to collect information about
5. Experiments covered items. The monotonicity of these sets and the type

of reachability properties checked for, allows for some

In order to evaluate the efficiency of the algorithm pre- pruning that normally can not be done. In our initial ex-
sented in this paper, we apply it to generate test suitesperiments, we have found the gained reduction in time and
from a model of protocol by Philips [4]. The protocol sends space consumed by the algorithm to be 50 to 58% and 30 to
Manchester encoded bitstreams over a bus link, and detect§5% respectively.
collisions if two senders try to send that the same time-  The current language for describing coverage criteria is
point. We use the model presented by Bengtsson et.al. invery limited. As future work we will develop a more generic
[4]. The model consists of seven timed automata. Four of language which is not limited to a predefined set of crite-
the automata model the components of the protocol: tworia. Another possible future direction of work is to intro-
sender automat®d@andSB) , a receiver automatadR, and duce monotonic variables in the modelling language f
a wire automatomvire. Three of the automata model the en- PAAL. Such variables might be useful in specifications of



other problem areas such as e.g. scheduling and other plan-
ing problems.
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