
A Test Case Generation Algorithm for Real-Time Systems

Anders Hessel and Paul Pettersson
Department of Information Technology

Uppsala University, P.O. Box 337
SE-751 05 Uppsala, Sweden
{hessel,paupet}@it.uu.se

Abstract

In this paper, we describe how the real-time verification
tool UPPAAL has been extended to support automatic gen-
eration of time-optimal test suites for conformance testing.
Such test suites are derived from a network of timed au-
tomata specifying the expected behaviour of the system un-
der test and its environment. To select test cases, we use cov-
erage criteria specifying structural criteria to be fulfilled by
the test suite. The result is optimal in the sense that the set of
test cases in the test suite requires the shortest possible ac-
cumulated time to cover the given coverage criterion.

The main contributions of this paper are:(i) a modi-
fied reachability analysis algorithm in which the coverage
of given criteria is calculated in an on-the-fly manner,(ii) a
technique for efficiently manipulating the sets of covered el-
ements that arise during the analysis, and(iii) an exten-
sion to the requirement specification language used inUP-
PAAL, making it possible to express a variety of coverage
criteria.

1. Introduction

In [7], we have presented a technique for generating
time-optimal test suites from timed automata specifications
using UPPAAL [9]. The technique describes how to anno-
tate models with auxiliary variables so that test sequences
from manually formulated test purposes or coverage crite-
ria can be derived by reachability analysis. The result of
the analysis is a diagnostic trace described as an alternating
sequence of input actions and delays, which can be trans-
formed into a (set of) test sequence(s) describing how to
stimulate the system to fulfill the test criterion.

The tool presented in this paper, is a prototype version of
theUPPAAL tool based on the same technique but with the
following extensions:

• a modified reachability analysis algorithm in which the
coverage of a given criterion is collected during the

reachability analysis performed byUPPAAL, making
manual model annotation superfluous.

• an implementation for efficiently representing the sets
of covered elements that arises during the analysis.
With the knowledge that such sets are always mono-
tonically increasing along any trace of an automaton,
it is safe to perform some pruning in the reachability
analysis normally not possible in model-checking (e.g.
in case ordinary data-variables are used to annotate the
model).

• a set of keywords representing coverage criteria ex-
tending the requirement specification language ofUP-
PAAL.

The rest of this paper is organized as follow: in the next
section, we describe the modeling language timed automata
and the toolUPPAAL. In Section 3 we describe the algo-
rithm implemented in the tool, in Section 4 we present the
tool itself, and in Section 5 experiments are presented. Sec-
tion 6 concludes the paper.

2. Preleminaries

We will use a restricted type of timed automata [1], ex-
tended with finite domain variables, called DIEOU-TA [7]
to specify the system under test (SUT). The environment
of the SUT is specified in the same way but without the
DIEOU-TA restriction.

2.1. Timed Automata

A timed automaton is a finite state automaton extended
with real-valued clocks. LetX be a set of non-negative
real-valuedclocks, andAct = I ∪ O ∪ {τ} a set of in-
put actionsI (denoteda?) and output-actionsO (denoted
a!), and a distinct non-synchronizing (internal) actionτ .
Let G(X) denote the set ofguardson clocks being con-
junctions of simple constraints of the formx ./ c, and let
U(X) denote the set ofupdatesof clocks corresponding to

sequences of statements of the formx := c, wherex ∈ X,
c ∈ N, and./ ∈ {≤, <, =,≥}1. A timed automaton(TA)
over(Act,X) is a tuple(L, `0, I, E), whereL is a set of lo-
cations,`0 ∈ L is an initial location,I : L → G(X) as-
signs invariants to locations, andE is a set of edges such
that E ⊆ L × G(X) × Act × U(X) × L. We shall write
`

g,α,u−−−−→ `′ iff (`, g, α, u, `′) ∈ E.
The semantics of a TA is defined in terms of a timed tran-

sition system over states of the formp = (`, σ), wherè is a
location andσ ∈ RX

≥0 is a clock valuation satisfying the in-
variant of`. Intuitively, there are two kinds of transitions:
delay transitions and discrete transitions. In delay transi-

tions, (`, σ) d−→ (`, σ + d), the values of all clocks of the
automaton are incremented with the amount of the delay,d.
Discrete transitions(`, σ) α−→ (`′, σ′) correspond to execu-
tion of edges(`, g, α, u, `′) for which the guardg is satisfied
by σ. The clock valuationσ′ of the target state is obtained
by modifyingσ according to updatesu. We writep

γ−→ as a
short for∃p′. p

γ−→ p′, γ ∈ Act∪R≥0. A timed trace is a se-
quence of alternating time delays and actions inAct.

A network of TAA1 ‖ · · · ‖ An over (Act,X) is de-
fined as the parallel composition ofn TA over (Act,X).
Semantically, a network again describes a timed transition
system obtained from those of the components by requiring
synchrony on delay transitions and requiring discrete tran-
sitions to synchronize on complementary actions (i.e.a? is
complementary toa!).

2.2. Deterministic, Input Enabled and Output Ur-
gent TA

To ensure testability in the context of time, we require
the following set of (sufficient) semantic restrictions on the
SUT model. Following similar restrictions as in [11], we
define the notion of deterministic, input enabled and out-
put urgent TA, DIEOU-TA [7], by restricting the underly-
ing timed transition system defined by the TA as follows:

1. Determinism.For every semantic statep = (`, σ) and
action γ ∈ Act ∪ {R≥0}, wheneverp

γ−→ p′ and

p
γ−→ p′′ thenp′ = p′′.

2. (Weak) input enabled.Wheneverp
d−→ for some delay

d ∈ R≥0 then∀a ∈ I. p
a−→ .

3. Isolated Outputs. ∀α ∈ O ∪ {τ}. ∀β ∈ O ∪ I ∪ {τ}
wheneverp

α−→ andp
β−→ thenα = β.

4. Output urgency.Wheneverp
α−→, α ∈ O ∪ {τ} then

p 6 d−→, d ∈ R≥0.

1 To simplify the presentation in the rest of the paper, we restrict to
guards with non-strict lower bounds on clocks.

2.3. UPPAAL and Testing

UPPAAL [9] is a tool for modeling and analysis of
real-time systems2. Given a network of timed automata,
extended with finite domain data variables,UPPAAL can
check if a given (symbolic) state is reachable from the ini-
tial state or not. If the state is reachable, the tool produces
a diagnostic trace with action- and delay-transitions show-
ing how the state can be reached.

It has been shown in [7] how to obtain a test sequence
from a diagnostic trace of a DIEOU-TA. Given a network
of timed automata consisting of a part modelling the sys-
tem under test (SUT) and a part modeling the environment
(ENV). The idea is to project the diagnostic trace to the vis-
ible actions between the SUT and the ENV part, and to sum
up the delay transitions in between visible actions. The re-
sulting test sequence can be converted to a test case which
signalsfail whenever the SUT does not behave according
to the SUT model, i.e. produces unexpected output, or cor-
rect output at the wrong time-point.

The technique presented in [7] shows how to transform
a given test purposes or coverage criteria to annotations of
the SUT and ENV models. For example, it shows the anno-
tations and auxiliary variables needed so that definition-use
pair coverage [6] be formulated as a reachability problem.
The result is a diagnostic trace from which a set of test cases
(a test suite) can be extracted which satisfies the definition-
use pair coverage criteria in minimal time.

Whereas this is a viable technique, it is tedious and er-
ror prone in practice. The extra auxiliary variables also in-
crease the size of the state space and thus the time and space
required to perform the analysis. Since the extra variables
do not influence the behaviour of the model, they should
be treated differently. In the next section, we show how to
move the auxiliary variables from the model into data struc-
tures in the analysis algorithm, and how they can be han-
dled more efficiently.

3. Test Generation Algorithm

The reachability algorithm inUPPAAL is essentially a
forward on-the-fly reachability algorithm that generates and
explores the symbolic state space of a timed automata net-
work. In the following we describe how the algorithm has
been modified to check if a given coverage criteria is satis-
fied in a timed automata model.

3.1. Test Sequence Generation

The algorithm modified for generating test sequences is
illustrated in Figure 1. The algorithm explores symbolic

2 See the web sitehttp://www.uppaal.com/ for more details
about theUPPAAL tool.

PASS:= ∅
WAIT := {((l0, D0), C0)}
while WAIT 6= ∅ do

select((l,D), C) from WAIT

if ((l, D), C) |= ϕC then return “YES”
if for all ((l,D′), C ′) in PASS: D 6⊆D′ ∨ C5 C ′ then

add((l, D), C) to PASS

for all ((ls, Ds), Cs)
such that((l, D), C) ;c ((ls, Ds), Cs):
add((ls, Ds), Cs) to WAIT

return “NO”

Figure 1. An abstract algorithm for symbolic
reachability analysis with coverage.

states of the form(l, D), whereD is a zone (or DBM [5])
representing a convex set of clock valuations, extended with
a coverage setC representing the elements covered when
the state is reached. We use(l, D) ; (l′, D′) to denote a
transition in the symbolic state space (see e.g. [3, 10] for a
description of the symbolic semantics implemented inUP-
PAAL). The algorithm terminates when the propertyϕC is
satisfied by a reached state. It is then possible to compute a
diagnostic trace starting in the inital state and showing how
to reach a state satisfyingϕC (see e.g. [8]).

The algorithm in Figure 1 is similar to the ordinary
reachability algorithm used inUPPAAL. The most signif-
icant modification is the addition of a coverage setC to
the symbolic states. The particular representation of a cov-
erage set depends on the coverage criteria mentioned in
ϕC . The current implementation allows for conjunctions of
atomic coverage criteriaof the form|Al| ∼ c, |Ae| ∼ c, or
|xdu| ∼ c, wherec ∈ N, ∼ ∈ {>,≥}, and|Al| and |Ae|
denotes the number of covered locations and edges in au-
tomatonA respectively, and|xdu| the number of covered
definition-use pairs of data variablex.

In the algorithm, the coverage sets are initiated toC0

(line 2), checked for inclusion (“E” on line 6), and then
successors are generated (line 9). We define((l,D), C) ;c

((ls, Ds), Cs) iff (l,D) ; (ls, Ds) andC is updated toCs

as follows:

• location coverage (in caseϕc contains an atomic cov-
erage criterion of the form|Al| ∼ c): Cs = C ∪ { ls}.
In this caseC0 = {l0} andC E C ′ iff C ⊆ C ′.

• edge coverage (in caseϕc contains an atomic coverage
criterion of the form|Ae| ∼ c): Cs = C ∪ {e}, where
e ∈ E is the edge from which the transition(l, D) ;

(ls, Ds) is derived. In this caseC0 = {} andC E C ′

iff C ⊆ C ′.

• definition-use pair coverage on variablex (in case
ϕc contains an atomic coverage criterion of the

form |xdu| ∼ c): In this caseC = 〈F, U〉, where
F ∈ E∪{⊥}, andU is a coverage set of definition-use
pairs of the form〈ei, ej〉, whereei, ej ∈ E. We de-
fineCs = 〈Fs, Us〉:

Fs =
{

e if x is defined one
F otherwise

Us =
{

U ∪ 〈F, e〉 if F 6=⊥ andx is used one
U otherwise

wheree ∈ E is the edge from which the transition
(l,D) ; (ls, Ds) is derived. InitiallyC0 = 〈⊥, {}〉
and〈F, U〉 E 〈F ′, U ′〉 iff (F = F ′ ∧ U ⊆ U ′).

Thus, to check for location coverage the coverage setC is
simply storing the set of locations that are visited when a
symbolic state is reached. In a network of timed automata,
the update ofC can easily be modified to check for cov-
erage of a subset of the automata in the network. The case
for edge coverage is similar. Definition-use pair coverage is
checked by keeping track of active definitions in setF and
covered DU-pairs in the setU .

Note how the coverage sets are checked for inclusion. In-
tuitively, the (symbolic) state((l,D), C) does not need to
be further examined if another state((l, D′), C ′) is reached
that contains all time-assignments, i.e.D ⊆ D′, and cov-
ers the same or more elements, i.e.C E C ′. This means
that states with smaller coverage will not be further ex-
plored which is the reason for allowing only checks of lower
bounds of the size of the coverage sets. The advantage is of
course that the number of explored states becomes smaller,
leading to faster termination of the algorithm (see Section 5
for more details).

To check((l, D), C) |= ϕC in the algorithm is straight-
forward. The value of|Al| or |Ae| is simply the number of
elements inC. For definition-use pair coverage, whereC is
a pair of the form〈F,U〉 the value of|xdu| is the number of
elements in the setU .

3.2. Test Suite Generation

In [7] we describe a technique for generating test suites
(set of test sequences) covering a given test criterion. The
idea is to annotate the model with edges allowing the model
to reset to its initial state (an updating the auxiliary variables
accordingly). We now describe how the algorithm shown in
Figure 1 (and Figure 2 below) can be modified in a simi-
lar way.

Assume a predicateR ⊆ L × {0, 1} which is true for
all automaton locations that can be reset. In the algorithm,
it suffices to insert the line

if R(l) then add((l0, D0), C) to WAIT

between line 8 and 9 of the algorithm of Figure 1. The
case of definition-use pair coverage is the same except that

COST:=∞
PASS:= ∅
WAIT := {((l0, D0), C0)}
while WAIT 6= ∅ do

select((l,D), C) from WAIT

if ((l, D), C) |= ϕC and min(D) < COST

then COST := min(D)
if for all ((l,D′), C ′) in PASS: D′6vD ∨ C5C ′ then

add((l, D), C) to PASS

for all ((ls, Ds), Cs)
such that((l, D), C) ;c ((ls, Ds), Cs):
add((ls, Ds), Cs) to WAIT

return COST

Figure 2. An abstract algorithm for symbolic
time-optimal reachability analysis with cover-
age.

F = {} to indicate that no active definitions have yet been
reached from the initial location.

It should be obvious that the effect of adding the line cor-
responds to allowing the system to reset to its initial sym-
bolic state(l0, D0) but with the coverage collected before
the reset. WhenUPPAAL returns a diagnostic trace the out-
put is interpreted as a set of traces separated by the reset op-
erations (which can be made visible in the diagnostic trace).

3.3. Time Optimal Test Suites

The standard reachability analysis algorithm imple-
mented inUPPAAL has been extended to compute the trace
with minimum time-delay satisfying a given reachability
property [3]. In the same way as described above, the algo-
rithm for time-optimal reachability can be extended to com-
pute time-optimal test sequences. The resulting abstract al-
gorithm is shown in Figure 2. It should be noticed that the
DBMs D used in the algorithm for time-optimal reachabil-
ity is different from the one in ordinary symbolic reachabil-
ity. For time-optimal reachability an extra clock is used that
is never reset. The minimum value of this clock is the min-
imum time it takes to reach the state. We will not discuss
this in detail here, but refer the reader to [3] for more de-
tails.

In [3], it is also shown how the algorithm can be extended
with a set of techniques inspired by branch and bound al-
gorithms [2]. Some of these extensions can also be applied
when generating time-optimal test sequences, but it remains
to be investigated in detail.

4. Implementation

In the algorithm(s) described in the previous section,
the symbolic states contain a component representing the
items covered in the path reaching the state. In the case of
definition-use pair coverage, it also contains more informa-
tion like theF set. In this section we will describe how the
coverage sets have been implemented as bitvectors (in C++)
in the algorithm.

We use bitvectorsv ∈ {0, 1}n to implement a setC of
n items, and associate a natural numberi to each item to be
covered. Thenv[i] = 1 if item i is in the set. This is ex-
actly the standard bitvector representation of sets. In order
to improve efficiency, we use dynamic bitvectors and num-
ber the items as they are explored. For example, in the case
of location coverage the locations are numbered in the or-
der they are explored by the algorithm, and the length of the
bitvector grows as new locations are explored.

4.1. Overview

An overview of the implemented coverage module is
shown in Figure 3. The functionality of the module is to
calculate (bitvector representation of)Cs in a transition like
((l, D), C) ;c ((ls, Ds), Cs). The input to the module is
the coverage setC, a symbolic transition, and the new sym-
bolic state, i.e.; (ls, Ds). The example shown in the Fig-
ure 3 calculatesCs for location coverage of an automaton
P1.

The module consists of three layers: the combined layer,
the atomic layer, and the mapping table layer. The combined
layer combines the coverage from the atomic terms and up-
dates the setC to Cs. The atomic layer use the mapping
tables to convert the coverage items found in the step to a
bitvector. The layers in the architecture are fixed, but the
configuration of the atomic layer differs, depending on the
atomic coverage criteria used in the analysed propertyϕc.

4.2. Layers

In general, theAllCoverage module consults one ob-
jects in the atomic layer for each atomic coverage term
found in ϕc. In the illustrated example, there is only one
atomic coverage — location coverage in automatonP1.
When an object in the atomic layer is consulted it is given a
symbolic transition and a new state of the form; (ls, Ds)
and produces a bitvectorδi with the bits set that corre-
spond to items covered by the given transition and state.
The successor setCs is created bybitwise-orof the old set
C andδi for all atomic objects. Thus, in the general case
Cs = C ∪ (

⋃
i δi).

An object in the atomic layer is created for each atomic
coverage described by the search propertyϕc. In case of

Bit := 2
..

?

6

6

?

n atomic coverages

ls, P1

δ1 := 10
..

AllCoverage

Combined layer

Atomic layer

Mapping table

Location

Location table

1

; (ls, Ds)

CoverageP1

- -Cs := C ∪ δ1 ∪ · · · ∪ δnC, ; (ls, Ds)

Figure 3. Architecture of the coverage mod-
ule. Location coverage example instantia-
tion.

location or edge coverage it is instantiated with the corre-
sponding typelocation or edge, and an automatonA. In
case of definition-use pair, the object is instantiated with
the typedefinition-useand a variable name.

4.3. Dynamic Size of Bitvectors

The setsC are saved with the symbolic state(l, D) as a
bitvector that dynamically increases in size when new items
are explored. Since long bitvectors are more expensive to
manipulate we avoid to associate bits with items that have
not yet been (or never will be) used. That is, the coverage
items are numbered when they are first generated.

In the mapping table layer each coverage type has a ta-
ble that associates the items with a unique bitnumber. To
make the bitnumbers unique a global counter is used. The
counter is incremented whenever a new item is found. In
the example in Figure 3, the location is associated with the
(bit)number 2 and thus the bitvector “10” is generated.

5. Experiments

In order to evaluate the efficiency of the algorithm pre-
sented in this paper, we apply it to generate test suites
from a model of protocol by Philips [4]. The protocol sends
Manchester encoded bitstreams over a bus link, and detects
collisions if two senders try to send that the same time-
point. We use the model presented by Bengtsson et.al. in
[4]. The model consists of seven timed automata. Four of
the automata model the components of the protocol: two
sender automata (SAandSB) , a receiver automatonR, and
a wire automatonwire. Three of the automata model the en-

Original Pruned

Coverage criteria Exec- Mem Exec- Mem
time MB time MB

|Re| ∧ |SAe| 8.91 18.5 4.43 13.0
|Re| ∧ |SAe| ∧ |SBe| 14.61 25.5 6.06 16.5

Table 4. Measurements on Philips audio-
control protocol with bus-collision.

vironment of the protocol: two message automata providing
the senders with messages (messageAandmessageB), and
an automaton checking the correctness of the received mes-
sages (check).

Table 4 shows the time and space required to gener-
ate time-optimal test suites with an coverage extended
prototype version ofUPPAAL implementing the algo-
rithm described in Sections 3 and 4. The experiments have
been performed on a Sun UltraSPARC-II 450MHz. Col-
umn “Pruned” gives the data when using the algorithm pre-
sented in this paper. Column “Original” gives the data
when using bitvectors but not the extra pruning possi-
ble due to the monotonicity of the coverage sets (i.e. the
effect of E). For both versions, we have used edge cover-
age criterion on two or three automata. We note that the
reduction is 50 to 58% in time and 30 to 35% in mem-
ory consumption for this example.

6. Conclusion

In this paper, we have described how the real-time veri-
fication toolUPPAAL has been extended for test-case gen-
eration. In particular, we have extended the symbolic reach-
ability analysis algorithm of the tool to generate traces sat-
isfying simple coverage criteria, which can be used as test
sequences or suites to test real-time systems.

The presented algorithm uses monotonically growing
sets represented at bit-vectors to collect information about
covered items. The monotonicity of these sets and the type
of reachability properties checked for, allows for some
pruning that normally can not be done. In our initial ex-
periments, we have found the gained reduction in time and
space consumed by the algorithm to be 50 to 58% and 30 to
35% respectively.

The current language for describing coverage criteria is
very limited. As future work we will develop a more generic
language which is not limited to a predefined set of crite-
ria. Another possible future direction of work is to intro-
duce monotonic variables in the modelling language ofUP-
PAAL. Such variables might be useful in specifications of

other problem areas such as e.g. scheduling and other plan-
ing problems.

References

[1] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[2] D. Applegate and W. Cook. A Computational Study of the
Job-Shop Scheduling Problem.OSRA Journal on Comput-
ing 3, pages 149–156, 1991.

[3] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G.
Larsen, Paul Pettersson, and Judi Romijn. Efficient Guid-
ing Towards Cost-Optimality inUPPAAL. In T. Margaria and
W. Yi, editors,Proceedings of the 7th International Confer-
ence on Tools and Algorithms for the Construction and Anal-
ysis of Systems, number 2031 in Lecture Notes in Computer
Science, pages 174–188. Springer–Verlag, 2001.

[4] Johan Bengtsson, W.O. David Griffioen, Kare J. Kristof-
fersen, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. Verification of an Audio Protocol with Bus Col-
lision UsingUPPAAL. In Rajeev Alur and Thomas A. Hen-
zinger, editors,Proc. of the 8th Int. Conf. on Computer Aided
Verification, number 1102 in Lecture Notes in Computer Sci-
ence, pages 244–256. Springer–Verlag, July 1996.

[5] David Dill. Timing Assumptions and Verification of Finite-
State Concurrent Systems. In J. Sifakis, editor,Proc. of Auto-
matic Verification Methods for Finite State Systems, number
407 in Lecture Notes in Computer Science, pages 197–212.
Springer–Verlag, 1989.

[6] P. G. Frankl and E. J. Weyuker. An applicable family of data
flow testing criteria.IEEE Trans. Softw. Eng., 14(10):1483–
1498, 1988.

[7] Anders Hessel, Kim G. Larsen, Brian Nielsen, Paul Petters-
son, and Arne Skou. Time-Optimal Real-Time Test Case
Generation usingUPPAAL. In Alexandre Petrenko and
Andreas Ulrich, editors,Proc. of 3rd International Work-
shop on Formal Approaches to Testing of Software, number
2931 in Lecture Notes in Computer Science, pages 136–151.
Springer–Verlag, 2003.

[8] Kim G. Larsen, Paul Pettersson, and Wang Yi. Diagnostic
Model-Checking for Real-Time Systems. InProc. of Work-
shop on Verification and Control of Hybrid Systems III, num-
ber 1066 in Lecture Notes in Computer Science, pages 575–
586. Springer–Verlag, October 1995.

[9] Kim G. Larsen, Paul Pettersson, and Wang Yi.UPPAAL in
a Nutshell. Int. Journal on Software Tools for Technology
Transfer, 1(1–2):134–152, October 1997.

[10] Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang
Yi. Efficient Verification of Real-Time Systems: Compact
Data Structures and State-Space Reduction. InProc. of the
18th IEEE Real-Time Systems Symposium, pages 14–24.
IEEE Computer Society Press, December 1997.

[11] J. Springintveld, F. Vaandrager, and P.R. D’Argenio. Test-
ing Timed Automata.Theoretical Computer Science, 254(1-
2):225–257, March 2001.

