
Time-optimal Real-Time Test Case Generation usingUPPAAL

Anders Hessel‡, Kim G. Larsen†, Brian Nielsen†, Paul Pettersson‡, and Arne Skou†

†Department of Computer Science ‡Department of Information Technology
Aalborg University Uppsala University
Fredrik Bajersvej 7E P.O. Box 337
DK-9220 Aalborg, Denmark SE-751 05 Uppsala, Sweden
E-mail: {kgl,bnielsen,ask}@cs.auc.dk E-mail:{hessel,paupet}@it.uu.se

Abstract

Testing is the primary software validation technique used by
industry today, but remains ad hoc, error prone, and very ex-
pensive. A promising improvement is to automatically gen-
erate test cases from formal models of the system under test.

We demonstrate how to automatically generate real-time
conformance test cases from timed automata specifications.
Specifically we demonstrate how toefficiently generatereal-
time test cases withoptimalexecution time i.e test cases that
are thefastestpossible to execute. Our technique allows time
optimal test cases to be generated using manually formulated
test purposes or generated automatically from various cov-
erage criteria of the model.

1 Introduction

Testing is the execution of the system under test in a con-
trolled environment following a prescribed procedure with
the goal of measuring one or more quality characteristics of
a product, such as functionality or performance. Testing is
the primary software validation technique used by industry
today. However, despite the importance and the many re-
sources and man-hours invested by industry (about 30% to
50% of development effort), testing remains quite ad hoc and
error prone.

We focus on conformance testing i.e., checking by means
of execution whether the behavior of some black box imple-
mentation conforms to that of its specification, and moreover
doing this within minimum time. A promising approach to
improving the effectiveness of testing is to base test gener-
ation on an abstract formal model of the system under test
(SUT) and use a test generation tool to (automatically or user

guided) generate and execute test cases. Model based test
generation has been under scientific study for some time, and
practically applicable test tools are emerging [4, 16, 18, 10].
However, little is still known in the context of real-time sys-
tems.

An important principal problem in generating real-time test
cases is to computewhento stimulate the system and expect
response, and to compute the associated correct verdict. This
usually requires (symbolic) analysis of the model which in
turn may lead to the state explosion problem. Another prob-
lem is how to selecta very limited set of test cases to be
executed from the extreme large number (usually infinitely
many) of potential ones.

This paper demonstrates how it is possible to generatetime-
optimaltest cases and test suites, i.e. test cases and suites that
are guaranteed to take the least possible time to execute. The
required behavior is specified using a deterministic and out-
put urgent class ofUPPAAL style timed automata. TheUP-
PAAL model checking tool implements a set of efficient data-
structures and algorithms for symbolic reachability analysis
of timed automata. We then use the fastest diagnostic trace
facility of the UPPAAL tool to generate time optimal test se-
quences. Test cases can either be selected through manually
formulated test purposes or automatically from three natural
coverage criteria—such as transition or location coverage–of
the timed automata model.

Time optimal test suites are interesting for several reasons.
First, reducing the total execution time of a test suite allows
more behavior to be tested in the (limited) time allocated to
testing. Second, it is generally desirable that regression test-
ing can be executed as quickly as possible to improve the turn
around time between software revisions. Third, it is essential
for product instance testing that a thorough test can be per-
formed without testing becoming the bottleneck, i.e., the test
suite can be applied to all products coming of an assembly

line. Finally, in the context of testing of real-time systems,
we hypothesize that the fastest test case that drives the SUT
to some state, also has a high likelihood of detecting errors,
because this is a stressful situation for the SUT to handle.

The rest of the paper is organized as follows: Section 2 dis-
cusses related work, and Section 3 introduces our framework
for testing real-time systems based on a testable subclass of
timed automata. Section 4 and 5 describe how to encode test
purposes and test criteria, and report experimental results re-
spectively. Section 6 concludes the paper.

2 Related Work

Relatively few proposals exist that deal explicitly and sys-
tematically with testing real-time properties [11, 9, 6, 17, 8,
5, 7, 14, 15]. In [5, 8, 17] test sequences are generated from
a timed automata (TA) by applying variations of finite state
machine (FSM) checking sequence techniques (see eg. [13])
to a discretization of the state space. Experience shows that
this approach suffers seriously from the state explosion prob-
lem and resulting large number of test sequences. The work
in [9] and [11] also use checking sequences, but is based on
different structures and state verification methods. Both as-
sume determinism, but not output urgency. To distinguish
sequences that can always be executed to completion inde-
pendent on output timing and sequences that may be exe-
cuted to completion, [9] defines may- and must-traceability
of transition sequences in a TA. The unique IO sequence
(UIOv) method is then applied to a FSM derived from the
TA by simply removing the clock conditions on transitions.
The sequences are then checked for their may- and must-
traceability, and the procedure is re-iterated when necessary.
This may result in many iterations and in incomplete test-
suites. The work in [11] assumes a further restricted TA
model where all transitions with the same observable action
resets the same set of clocks. The TA is first translated into
a (larger) alternative automaton where clock constraints are
represented as set-timer and expire-timer events. Based on
this, the generalized Wp method is used to compute check-
ing sequences.

In most FSM based approaches, tests areselectedbased on a
fault-model identifying implementation faults that is desired
to be (or can be) detected during testing. Little or no evidence
is given to support that the real-time fault models correspond
to faults that occur frequently in practice. Another problem
is the required assumptions about the number of states in the
SUT, which in general is difficult to estimate. The coverage
approach guarantees that the test suite is derived systemat-
ically and that it provides a certain level of thoroughness,
which is important in industrial practice. It is important to
stress that this is a practically founded heuristictest selection

technique. Similarly, when time optimal sequences are gen-
erated, this is also a level of test selection, where only the
fastest to execute are selected. Our goal isnot full fault cov-
erage that will in principle guarantee that the SUT is correct
if it passes all generated tests.

A different approach to test generation and selection is [6]
where a manually stated test purpose is used to define the de-
sired sequences to be observed on the SUT. A synchronous
product of the test purpose and TA model is first formed and
used to extract a symbolic test sequence with timing con-
straints that reach a goal state of the test purpose. This sym-
bolic trace can be interpreted at execution time to give a final
verdict. This work does not address test suite optimization or
time optimality, does not address test generation without an
explicit test purpose, and does not appear to be implemented
in a tool. [15] proposes a fully automatic method for genera-
tion of real-time test sequences from a subclass of TA called
event-recording automata which restricts how clocks are re-
set. The technique is based on symbolic analysis and cov-
erage of a coarse equivalence class partitioning of the state
space.

Our work is based on existing efficient and well proven sym-
bolic analysis techniques of TA, and unlike others addresses
time optimal testing. Most other work on optimizing test
suites, e.g [1, 19, 10], focus on minimizing the length of
the test suite which is not directly linked to the execution
time because some events take longer to produce or real-time
constraints are ignored. Others have used (untimed) model-
checking tools to produce test suites for various model cov-
erage criteria e.g., [10].

The main contributions of the paper are 1) application of time
and cost optimal reachability analysis algorithms to the con-
text of time-optimal test case generation, 2) an automatic
technique to generate time optimal covering test suites for
threeimportant coverage criteria, 3) through creative use of
the diagnostic trace facility ofUPPAAL, atest generation tool
exists that is based on efficient and well-proven algorithms,
and finally 4) we provideexperimental evidencein that the
proposed technique has practical merits.

3 Timed Automata and Testing

We will assume that both the system under test (SUT) and
the environment in which it operates are modeled as TA.

3.1 Timed Automata

Let X be a set of non-negative real-valued variables called
clocks, andAct = I ∪ O ∪ {τ} a set of input actionsI
and output-actionsO, (denoteda? and a!), and the non-

synchronizing action (denotedτ). Let G(X) denote the set
of guardson clocks being conjunctions of simple constraints
of the formx ./ c, and letU(X) denote the set ofupdatesof
clocks corresponding to sequences of statements of the form
x := c, wherex ∈ X, c ∈ N, and./ ∈ {≤, <, =,≥}1. A
timed automaton(TA) over (Act,X) is a tuple(L, `0, I, E),
whereL is a set of locations,̀0 ∈ L is an initial location,
I : L → G(X) assigns invariants to locations, andE is a set
of edges such thatE ⊆ L× G(X)× Act× U(X)× L. We
write `

g,α,u−−−−→ `′ iff (`, g, α, u, `′) ∈ E.

The semantics of a TA is defined in terms of a timed tran-
sition system over states of the formp = (`, σ), where` is
a location andσ ∈ RX

≥0 is a clock valuation satisfying the
invariant of`. Intuitively, there are two kinds of transitions:
delay transitions and discrete transitions. In delay transitions,

(`, σ) d−→ (`, σ + d), the values of all clocks of the automa-
ton are incremented with the amount of the delay,d. Dis-
crete transitions(`, σ) α−→ (`′, σ′) correspond to execution of
edges(`, g, α, u, `′) for which the guardg is satisfied byσ.
The clock valuationσ′ of the target state is obtained by mod-
ifying σ according to updatesu. We writep

γ−→ as a short for
∃p′. p

γ−→ p′, γ ∈ Act ∪ R≥0. A timed trace is a sequence of
alternating time delays and actions inAct.

A network of TAA1 ‖ · · · ‖ An over (Act,X) is defined
as the parallel composition ofn TA over (Act,X). Semanti-
cally, a network again describes a timed transition system ob-
tained from those of the components by requiring synchrony
on delay transitions and requiring discrete transitions to syn-
chronize on complementary actions (i.e.a? is complemen-
tary toa!).

3.2 UPPAAL and Time Optimal Reachability Anal-
ysis

UPPAAL is a verification tool for a TA based modeling lan-
guage. Besides dense clocks, the tool supports both simple
and complex data types like bounded integers and arrays as
well as synchronization via shared variables and actions. The
specification language supports safety, liveness, deadlock,
and response properties.

To produce test sequences, we shall make use ofUPPAAL’s
ability to generate diagnostic traces witnessing a submitted
safety property. CurrentlyUPPAAL supports three options
for diagnostic trace generation:some traceleading to the
goal state, theshortest tracewith the minimum number of
transitions, andfastest tracewith the shortest accumulated
time delay. The underlying algorithm used for finding time-
optimal traces is a variation of the A∗-algorithm [2, 12].

1To simplify the presentation in the rest of the paper, we restrict to guards
with non-strict lower bounds on clocks.

Hence, to improve performance it is possible to supply a
heuristic function estimating the remaining cost from any
state to the goal state.

Throughout the paper we useUPPAAL syntax to illustrate
TA, and the figures are direct exports fromUPPAAL. Initial
locations are marked using a double circle. Edges are by con-
vention labeled by the triple: guard, action, and assignment
in that order. The internalτ -action is indicated by an absent
action-label. Committed locations are indicated by a loca-
tion with an encircled “C”. A committed location must be
left immediately as the next transition taken by the system.
Finally, bold-faced clock conditions placed under locations
are location invariants.

3.3 Deterministic, Input Enabled and Output Ur-
gent TA

To ensure time optimal testability, the following semantic re-
strictions turn out to be sufficient. Following similar restric-
tions as in [17], we define the notion of deterministic, input
enabled and output urgent TA, DIEOU-TA, by restricting the
underlying timed transition system defined by the TA as fol-
lows:

1. Determinism.Two transitions with the same label leads
to the same state, i.e., for every semantic statep = (`, σ)
and actionγ ∈ Act ∪ {R≥0}, wheneverp

γ−→ p′ and
p

γ−→ p′′ thenp′ = p′′.

2. (Weak) input enabled.At any time any input action is

enabled, i.e., wheneverp
d−→ for some delayd ∈ R≥0

then∀a ∈ I. p
a−→ .

3. Isolated Outputs. If an output (orτ) is enabled then no
other input or output transition is enabled, i.e.,∀α ∈
O∪{τ}. ∀β ∈ O∪I ∪{τ} wheneverp

α−→ andp
β−→

thenα = β.

4. Output urgency.When an output (orτ) is enabled, it
will occur immediately, i.e., wheneverp

α−→, α ∈ O ∪
{τ} thenp 6 d−→, d ∈ R≥0.

System under
test

Environment

i?

o!

Figure 1. Test Specification

We assume that the test specification is given as a closed net-
work of TA that can be partitioned into one subnetwork mod-
eling the behavior of the SUT, and one modeling the behav-
ior of its environment (ENV), see Figure 1. Often the SUT
operates in specific environments, and it is only necessary
to establish correctness under the (modeled) environment as-
sumptions; otherwise the environment model can be replaced
with a completely unconstrained one that allows all possible
interaction sequences.

We assume that the tester can take the place of the environ-
ment and control the SUT via a distinguished set observable
input and output actions. For the SUT to be testable the sub-
network modeling it should becontrollablein the sense that
it should be possible for an environment to drive the subnet-
work model through all of its syntactical parts (e.g. transi-
tions and locations). We therefore assume that the SUT spec-
ification is a DIEOU-TA, and that the SUT can be modeled
by some unknown DIEOU-TA (this assumption is commonly
refered to as the testing hypothesis). The environment model
need not be a DIEOU-TA.

OFF DIM BRIGHT

x<Tsw
touch?
x:=0

x>=Tsw
touch?
x:=0

x>=Tsw
touch?
x:=0

x<Tsw
touch?
x:=0

x>=Tidle
touch?
x:=0

x:=0

x<Tidle
touch?

off!

bright!

off!

dim!

bright!

dim!

Figure 2. Light Controller

We use the simple light switch controller in Figure 2 to illus-
trate the concepts. The user interacts with the controller by
touching a touch sensitive pad. The light has three intensity
levels:OFF, DIMMED, andBRIGHT. Depending on the tim-
ing between successive touches (recorded by the clockx), the
controller toggles the light levels. For example, in dimmed
state, if a second touch is made quickly (before the switching
timeTsw = 4 time units) after the touch that caused the con-
troller to enter dimmed state (from either off or bright state),
the controller increases the level to bright. Conversely, if the
second touch happens after the switching time, the controller
switches the light off. If the light controller has been in off
state for a long time (longer than or equal toTidle = 20),
it should reactivate upon a touch by going directly to bright
level. We leave it to the reader to verify for herself that the
conditions of DIEOU-TA are met by the model given.

touch!
z:=0

touch!

z>=Treact

z:=0

off?

dim?

bright?

touch!
z:=0,
t:=t+1

z<Tpause,
z>=Treact,
t<2
touch!
z:=0,
t:=t+1

z>=Tpause

touch!
t:=1,
z:=0

off? bright?

dim?

(a) (b)

Figure 3. Two possible environment models for
the simple light switch

The environment model shown in Figure 3(a) models a user
capable of performing any sequence of touch actions. When
the constantTreact is set to zero he is arbitrarily fast. A
more realistic user is only capable of producing touches with
a limited rate; this can be modeled settingTreact to a non-
zero value. Figure 3(b) models a different user able to make
two quick successive touches (counted by integer variablet),
but which then is required to pause for some time (to avoid
cramp), e.g.,Tpause = 5.

3.4 From Diagnostic Traces to Test Cases

Let A be the TA network model of the SUT together with
its intended environment ENV. A diagnostic trace produced
by UPPAAL for a given reachability question onA demon-
strates the sequence of moves to be made by each of the sys-
tem components and the required clock constraints needed
to reach the targeted location. A (concrete) diagnostic trace
will have the form:

(S0, E0)
γ0−→ (S1, E1)

γ1−→ (S2, E2)
γ2−→ · · · (Sn, En)

whereSi, Ei are states of the SUT and ENV, respectively,
and γi are either time-delays or synchronization (or inter-
nal) actions. The latter may be further partitioned into purely
SUT or ENV transitions (hence invisible for the other part)
or synchronizing transitions between the SUT and the ENV
(hence observable for both parties).

For DIEOU-TA a test sequenceis an alternating sequence
of concrete delay actions and observable actions. From the
diagnostic trace above atest sequence, λ, may be obtained
simply by projecting the trace to the ENV-component, while
removing invisible transitions, and summing adjacent delay
actions. Finally, atest caseto be executed on the real SUT
implementation may be obtained fromλ by the addition of
verdicts.

Adding the verdicts require some comments on the chosen
correctness relation between the specification and SUT. In
this paper we require timed trace inclusion, i.e. that the timed

traces of the implementation are included in the specification.
Thus after any input sequence, the implementation is allowed
to produce an output only if the specification is also able to
produce that output. Similarly, the implementation may de-
lay (thereby staying silent) only if the specification also may
delay. The test sequences produced by our techniques are
derived from diagnostic traces, and are thus guaranteed to be
included in the specification.

To clarify the construction we may model the test case itself
as a TAAλ for the test sequenceλ. Locations inAλ are
labeled using two distinguished labels,pass andfail. The
execution of a test case is now formalized as a parallel com-
position of the test case automatonAλ and SUTAS .

S passes Aλ iff Aλ ‖ AS 6Ã fail

Aλ is constructed such that acomplete executionterminates
in a fail state if the SUT cannot performλ and such that it
terminates in apass state if the SUT can execute all actions
of λ. The construction is illustrated in Figure 4.

FAIL
x<=0

FAIL
x<=delay

PASS

FAIL

i_0!
x:=0

x==delay

x:=0
o_0?

o_1?

o_n?

x<delay
o_0?

Figure 4. Test case automaton for the se-
quence i0! · delay · o0?

4 Test Generation

4.1 Single Purpose Test Generation

A common approach to the generation of test cases is to first
manually formulate a set of informal test purposes and then
to formalize these such that the model can be used to generate
one or more test cases for each test purpose. A test purpose
is a specific test objective (or property) that the tester would
like to observe on the SUT.

Because we use the diagnostic trace facility of a model-
checker based on reachability analysis, the test purpose must
be formulated as a property that can be checked by reach-
ability analysis of the combined ENV and SUT model. We

propose different techniques for this. Sometimes the test pur-
pose can be directly transformed into a simple location reach-
ability check. In other cases it may require decoration of the
model with auxiliary flag variables. Another technique is to
replace the environment model with a more restricted one
that matches the behavior of the test purpose only.

TP1: Check that the light can become bright.

TP2: Check that the light switches off after three successive
touches.

TP1 can be formulated as a simple reachability prop-
erty: E<> LightController.bright (i.e. eventually
in some future the lightController automata enters location
bright).

Generating theshortestdiagnostic trace results in the test se-
quence:20·touch!·0·bright?. However, thefastest sequence
satisfying the purpose is0 · touch! · 0 · dim? · 0 · touch! · 0 ·
bright?.

TP2 can be formalized using the restricted environment
model2 in Figure 5 with the propertyE<> tpEnv.goal .

goal

touch!
z:=0

z<Tsw

touch!

z>=Treact,
z<Tsw

z:=0

z>=Treact,
z<Tsw
touch!
z:=0

off?

bright?dim?off? bright?off? dim? bright?dim?

Figure 5. Test Environment for TP2

The fastest test sequence is0 · touch! · 0 · dim? · 0 · touch! ·
0 · bright? · 0 · touch! · 0 · off ?.

4.2 Coverage Based Test Generation

Often the tester is interested in creating a test suite that en-
sures that the specification or implementation is covered in
a certain way. This ensures that a certain level of systemacy
and thoroughness has been achieved in the test generation
process. Here we explain how test sequences with guar-
anteed coverage of the SUT model can be computed using
reachability analysis, effectively giving automated tool sup-
port. In the next subsection, we show how to generalize the
technique to generate sets of test sequences.

2It is possible to useUPPAAL’s committed location feature to compose
the test purpose and environment model in a compositional way. Space
limitations prevents us from elaborating on this approach.

A large suite of coverage criteria have been proposed in the
literature, such as statement, transition, and definition-use
coverage, each with its own merits and application domain.
We explain how to apply some of these to TA models.

Edge Coverage:A test sequence satisfies theedge-coverage
criterion if, when executed on the model, it traverses every
edge of the selected TA-components. Edge coverage can be
formulated as a reachability property in the following way:
add an auxiliary variableei of type boolean (initially false)
for each edge to be covered (typically realized as a bit ar-
ray in UPPAAL), and add to the assignments of each edge
i an assignmentei := true; a test suite can be generated
by formulating a reachability property requiring that allei

variables are true:E<>(e0==true and e1 ==true . . .
en==true) . The auxiliary variables are needed to en-
able formulation of the coverage criterion as a reachability
property using theUPPAAL property specification language
which is a restricted subset of CTL.

The light switch in Figure 2 requires a bit-array of 12 ele-
ments (one per edge). When the environment can touch arbi-
trarily fast the generated fastest edge covering test sequence
has the accumulated execution time 28. The solution (there
might be more traces with the same fastest execution time)
generated byUPPAAL is:
EC: 0·touch!·0·dim?·0·touch!·0·bright?·0·touch!·0·off ?·
20 · touch! ·0 ·bright? ·4 · touch! ·0 ·dim? ·4 · touch! ·0 ·off ?.

Location Coverage: A test sequence satisfies thelocation-
coverage criterionif, when executed on the model, it visits
every location of the selected TA-components. To generate
test sequences with location coverage, we introduce an aux-
iliary variable si of type boolean (initially false for all lo-
cations except the initial) for each location`i to be covered.
For every edge with destination`i: `′

g,a,u−−−−→ `i add to the as-
signmentsu si := true; the reachability property will then
require allsi variables to be true.

Definition-Use Pair Coverage:The definition-use pair cri-
terion is a data-flow coverage technique where the idea is to
cover paths in which a variable isdefined(i.e. appears in the
left-hand side of an assignment) and later isused(i.e. appears
in a guard or the right-hand side of an assignment). Due to
space-limitation, we restrict the presentation to clocks, which
can beusedin guards only.

We use(v, ed, eu) to denote adefinition-use pair(DU-pair)
for variablev if ed is an edge wherev is defined andeu is
an edge wherev is used. A DU-pair(v, ed, eu) is valid if eu

is reachable fromed andv is not redefined in the path from
ed to eu. A test sequence covers(v, ed, eu) iff (at least) once
in the sequence, there is a valid DU-pair(v, ed, eu). A test
sequence satisfies the (all-uses) DU-pair coverage criterion
of v if it covers all valid DU-pairs ofv.

To generate test sequences with definition-use pair cover-

age, we assume that the edges of a model are enumerated,
so thatei is the number of edgei. We introduce an aux-
iliary data-variablevd (initially false) with value domain
{false}∪{1 . . . |E|} to keep track of the edge at which vari-
ablev was last defined, and a two-dimensional boolean array
du of size|E|×|E| (initially false) to store the covered pairs.
For each edgeei at whichv is defined we addvd := ei, and
for each edgeej at whichv is used we add the conditional
assignmentif (vd 6= false)then du[vd, ej] := true. Note
that if v is both used and defined on the same edge, the array
assignment must be made before the assignment ofvd.

The reachability property will then require alldu[i, j] rep-
resenting valid DU-pairs to be true for the (all-uses) DU-
pair criterion. Note that a test sequence satisfying the DU-
pair criterion for several variables can be generated using the
same encoding, but extended with one auxiliary variable and
array for each covered variable.

4.3 Test Suite Generation

Often a single covering test sequence cannot be obtained for
a given test purpose or criterion (e.g. due to dead-ends in the
model). To solve this problem, we allow for the model (and
SUT) to beresetto its initial state, and to continue the test
after the reset to cover the remaining parts. The generated
test will then be interpreted as a test suite consisting of a set
of test sequences separated by resets (assumed to be imple-
mented correctly in the SUT).

To introduce resets in the model, we shall allow the user to
designate some locations as being reset-able. Obviously, per-
forming a reset may take some timeTr that must be taken
into consideration when generating time optimal test se-
quences. Reset-able locations can be encoded into the model
by adding reset transitions leading back to the initial loca-
tion. Let xr be an additional clock used for reset purposes,
and let` be a reset-able location. Two reset-edges and a new
location`′ must then be added from̀to the initial location
`0, i.e.,

`
reset!,xr :=0−−−−−−−−→ `′(xr≤Tr)

xr==Tr,τ,u0−−−−−−−−−→ `0

Hereu0 are the assignment needed to reset clocks and other
variables in the model (excluding auxiliary variables encod-
ing test purpose or coverage criteria3). If more than one
component is present in either the SUT-model or environ-
ment model, the reset-action must be communicated atom-
ically to all of them. This can be done using the commit-
ted location feature ofUPPAAL. Further note that it may be
possible to obtain faster (covering) test suites, if more reset-

3In the encoding of DU-pair coverage, the variablesvd should be set to
false at resets.

able locations are added, obviously depending on the time re-
quired to perform the reset, at the expense of increased model
size.

4.4 Environment Behavior

A potential problem of the techniques presented above is
that the generated test sequences may be non-realizable, in
that they may require the environment of SUT to operate in-
finitely fast. In general, it is only necessary to establish cor-
rectness of SUT under the (modeled) environment assump-
tions. Therefore assumptions about the environment can be
modeled explicitly and will then be taken into account during
test sequence generation. In the following, we demonstrate
how different environment assumptions affect the generated
test sequences.

Consider an environment where the user takes at least 2 time
units between each touch action; such an environment can be
obtained by setting the constantTreact to 2 in Figure 3a. The
fastest test sequences become:

TP1: 0 · touch! · 0 · dim? · 2 · touch! · 0 · bright?

TP2: 0·touch!·0·dim?·2·touch!·0·bright?·2·touch!·0·off ?.

Also reexamine the test suiteEC generated by edge cover-
age, and compare with the one of execution time 32 gener-
ated whenTreact equals 2:

EC’: 0 · touch! · 0 · dim? · 4 · touch! · 0 · off ? · 20 · touch! ·
0 · bright? · 4 · touch! · 0 · dim? · 2 · touch! · 0 · bright? · 2 ·
touch! · 0 · off ?.

When the environment is changed to the pausing user (can
perform 2 successive quick touches after which he is required
to pause for some time: reaction time 2, pausing time 5),
the fastest sequence has execution time 33, and follows a
completely different strategy, that ensures that one of the ad-
ditional waiting timesTpause is overlapped with a position
where the tester needed to wait anyway.

EC”: 0 · touch! ·0 ·dim? ·2 · touch! ·0 ·bright? ·5 · touch! ·0 ·
dim?·4·touch!·0·off ?·20·touch!·0·bright?·2·touch!·0·off ?.

5 Experiments

In the previous section we presented techniques to compute
time optimal covering test suites. In the following we show
empirically that the performance of our technique is suffi-
cient for practically relevant examples, and to indicate how
heuristic search methods can be used to compute optimal or
near optimal test cases from very large models. We are con-
cerned with both theexecution timeof the generated test se-
quence, and the time and memory used togenerateit.

5.1 The Touch Sensitive Switch

x<=epsilon

x<=delta

grasp?

x:=0
release?

release?

touch!

x==epsilon

starthold!
x==delta

release?

endhold!

Figure 6. Interface Automaton

Most of the experiments reported here are based on a model
of a touch sensitive light switch (TSS). It hasMax levels of
brightness (0 corresponds to off). The lamp is operated by
touching its wire, i.e. the wire can be grasped and released.
The behavior of the controller can be expressed as follows:
If the light is on, then a single grasp and release of the wire,
will switch off the light. If the light is off, then a single grasp
and release will switch on the light at the previous brightness
level. Continuous holding of the wire increases the bright-
ness (resp. decreases) if it was previously decreasing (resp.
increasing). Once the maximum (resp. minimum) level is
reached the brightness level decrease (resp. increase).

x<=delay x<=delay
endhold? starthold?

OL:=L,x:=0,on:=1

L<Max,
x==delay

L:=L+1,
x:=0

L>0,
x==delay

L:=L-1,
x:=0

starthold?
L:=OL,
x:=0,
on:=1

endhold?L==Max,
x==delay

L==0,
x==delay

Figure 7. Dimmer Automaton

In reality a user can only perform two actions on the wire:
grasp andrelease , and the time-separation between the
two events is translated into either nothing (if the separation
is very short),touch if it is short, and into astarthold
andendhold pair if the separation is long. In theUPPAAL-
model this translation is done by the interface component,
shown in Figure 6. The dimmer component shown in Fig-
ure 7 reacts tostarthold andendhold actions with a

on==0
touch?

L:=OL,
on:=1

on==1
touch?

OL:=L,
L:=0,
on:=0

z<=Wait

release!
z:=0

grasp!
z:=0

Figure 8. Switch (left) and User (right) Au-
tomata.

Impatient Patient
Coverage Exec- Suite Exec- Suite
Criterion time length time length

LocationDimmer 20 12 20 12
LocationDimmer, Switch, Interface 25 17 25 17
EdgeDimmer 253 176 53 38
EdgeInterface 15 14 15 14
EdgeDimmer, Switch, Interface 263 188 63 50
EdgeInterface+LocationDimmer 25 19 25 19
Def-Useon 40 34 40 34
Def-UseOL 45 34 45 34

Table 9. Optimal execution time and suite
length for various coverage criteria.

dimming effect. When changing the brightness levelL, it
is assumed that some maximum time (Delay) will elapse
between two levels. The switch component shown in Fig-
ure 8(a) reacts totouch events by switching the light on to
the previous light levelOL, or off. The user is modeled in
Figure 8(b).

We vary the model in two ways. First, the user may bepa-
tient or impatient. The impatient user insists on requiring
interaction at least everyWait = 15 time units controlled
by the invariant in user – this makes it harder for the user to
change the intensity because he ”gives up” the hold after just
increasing the light one level. This invariant is removed in
the patient user. Secondly, we vary the number of light levels
from Max = 10 and up.

Table 9 shows the optimal execution times (in time units)
for test suites generated from different coverage criteria of
the TSS, or selected subsets of components thereof, and the
length (number of transitions) of the generated test suite. We
notice that the patient user results in shorter and faster traces
in our experiments.

Impatient Patient
Le- Exec- Gen- Mem Exec- Gen- Mem
vels time time(s) (MB) time time (s) (MB)

10 263 2.06 9.1 63 3.19 10.1
20 493 3.68 11.4 93 12.40 20.1
30 723 5.29 12.6 123 28.17 40.4
50 1183 8.59 17.4 183 78.30 86.9
100 2333 16.76 28.0 333 339.52 314.9
200 4633 34.45 44.3 633 1494.35 1233.8
400 9233 66.03 77.1 N/A >7000 >4180.6

Table 10. Cost of obtaining edge coverage of
the TSS with increasing light levels.

5.2 System Size and Environment Behavior

To see how our technique scales, we increase the number of
light levels in the TSS model. The result, listed in Table 10,
shows that the particular example scales well: execution time
(in time units), generation time, and memory usage for the
impatient user increase essentially linearly with the number
of light-levels. This is not surprising as the system size is
varied by adjusting a counter, and not the number of parallel
components.

It is more interesting to compare the patient and impatient
user. Consider the system with 50 light levels. The op-
timal execution time for the impatient user is high (1183
time units), the reason being that the light level is increased
only by one before he gives up, and starts the hold action
again. Obtaining coverage therefore requires many interac-
tions (trace of length 828). In contrast, the optimal execution
time for the patient user 183 time units (and the trace length
is 130). If we compare the generation time, it can be seen
that it is much cheaper to compute the (very long) optimal
solution for the impatient user than to compute the (short)
optimal solution for the patient user.

Although this is surprising, there is a potential general ex-
planation for this. The patient user environment poses no
restrictions on the solution, and the test generator has com-
plete freedom to find the optimal solution. This means that
test generator has to evaluate all possible behaviors of this
liberal environment. The impatient user is a more restricted
environment, thus containing less possible behaviors. There-
fore, searching the more liberal environment takes longer but
also produces faster solutions.

There are two lessons to be learned. First, the relevance of an
accurate model of the environment assumptions. Secondly,
the use of the environment model to control test generation:
restrict the environment to handle larger systems, but at the
cost of more expensive solutions.

We have also created a DIEOU-TA version of the Philips au-
dio control protocol [3] frequently studied in the context of

Coverage Execution Generation Memory
Criterion time (µs) time (s) usage (KB)

EdgeSender 212350 2.2 9416
EdgeReceiver 18981 1.2 4984
EdgeSender,Bus,Receiver 114227 129.0 331408

Table 11. Results for the Philips audio proto-
col.

model checking. The system consists of a sender and a re-
ceiver communicating over a shared bus. The sender inputs a
sequence of bits to be transmitted, Manchester encodes them,
and transmits them as high and low voltage on the bus. Fur-
ther, it checks for collisions by checking that the bus is in-
deed low when it is itself sending a low signal. The receiver
is triggered by low-to-high transitions on the bus, and de-
codes the bits based on this information.

Table 11 summarizes the results. The first row contains re-
sults for the protocol tested with an environment consisting
of a bus that may spontaneously go high to emulate a col-
lision, and a sender buffer producing any legal input-bit se-
quence. The second row shows results for a receiver tested
in an environment consisting of a bus, and a buffer to hold
the received bits. The third row is the results for the receiver
tested in an environment consisting of a sender component
with sender buffer, a bus, and receiver buffer. Thus the last
row represents a rather large system. In all cases the time
optimal covering test sequence could be computed in rea-
sonable time.

5.3 Search-order and Guiding

UPPAAL allows the state space to be traversed in several dif-
ferent orders with different performance characteristics w.r.t.
execution time of the generated test suite and the size of the
system that can be handled. In particular, theA∗ algorithm
has potential significant impact. We here demonstrate how
it can be employed for test generation to efficiently compute
edge coverage in the TSS model.

The measured numbers are listed in Table 12. BF (DF) de-
notes breadth-first (depth-first) search order. The optimal ex-
ecution time remains identical at 123 time units for all search
orders. We note that using depth-first search during time op-
timal analysis (CDF) UPPAAL produces (many) solutions
quickly, but consumes long time to ultimately find the opti-
mal one. During time optimal reachability analysisUPPAAL

(symbolically) computes for each reached state the timeC
accumulated so far. LetCg be the fastest time to a goal state
found so far. When another state is found during exploration
with an accumulated timeC ≥ Cg further exploration from
that state is unnecessary, and the search can be pruned. Min-

First Sol. Optimal Sol.
Search Exec- Gen- Memory Gen- Mem
order time time (s) (MB) time (MB)

BF 123 27.91 40.8 N/A N/A
DF 791 0.15 4.9 N/A N/A
C BF 123 30.44 42.6 31.31 43.3
C DF 791 0.15 6.5 248.64 127.0
C BF R 123 30.70 42.6 30.87 42.9
C DF R 791 0.15 6.4 21.62 32.1
C MC 123 25.87 39.3 26.19 39.5
C MC R 123 3.23 13.0 3.32 13.1

Table 12. Cost of edge coverage of TSS (Max=
30) using different search orders.

imum accumulated time-first (MC) explores states ordered
by their minimum accumulated time. To increase the ef-
ficiency further, it is possible to provide a safe estimate of
the time that remainsR from a given state to the goal state.
Pruning can then be performed when a state is found with
C + R ≥ Cg. In Table 12 a search order combined with a
remaining estimate is suffixed by an “R”.

It is easy to see in the dimmer component that the most time
consuming edge to reach is the edge with guardL = Max .
As estimate of remaining time, we use(Max − L) × delay
if level Max = L has not been reached, and 0 otherwise.
Intuitively, the remaining time equals at least the number of
light levels fromMax value times the time to increase the
light one level (delay). This formula has the feature that it
can prune searches that turns back to lower light levels.

Compared toC BF minimum accumulated time first search
(C MC) offers slightly improved generation time and mem-
ory usage. However, enabling remaining time estimate com-
bined with this search order (C MC R) has a dramatic posi-
tive effect, and outperforms any of the other evaluated search
orders.

6 Conclusions and Future Work

In this paper, we have presented a new technique for gen-
erating timed test sequences for a restricted class of timed
automata. It is able to generate time optimal test sequences
from either a single test purpose or a coverage criterion using
the time optimal reachability feature ofUPPAAL. Though a
number of examples we have demonstrated how our tech-
nique works and performs. We conclude that it can gener-
ate practically relevant test sequences for practically relevant
sized systems. However, we have also found a number of
areas where our technique can be improved.

The DIEOU-TA model is quite restrictive, and a generaliza-
tion will benefit many real-time systems. Especially, we are
working on loosening the output urgency requirement. It

may also be interesting to formulate coverage criteria that
takes clock constraints into consideration.

Adding the required annotations for various coverage criteria
by hand, and manually formulating the associated reachabil-
ity property is tedious and error prone. We are working on
a tool that performs these tasks automatically. Finally, we
have found that the bit-vector annotations for tracking cov-
erage and remaining time estimates may increase the state
space significantly, and consequently also generation time
and memory. The extra bits does not influence model behav-
ior, and should therefore be treated differently in the verifica-
tion engine. We are working on techniques that ignores these
bits when possible, and that takes advantage of the coverage
bits for pruning states with “less” coverage.

References

[1] Alfred V. Aho, Anton T. Dahbura, David Lee, and M.Ümit
Uyar. An Optimization Technique for Protocol Conformance
Test Generation Based on UIO Sequences and Rural Chi-
nese Postman Tours.IEEE Transactions on Communications,
39(11):1604–1615, 1991.

[2] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G.
Larsen, Paul Pettersson, and Judi Romijn. Efficient Guid-
ing Towards Cost-Optimality inUPPAAL. In T. Margaria and
W. Yi, editors,Proc. of TACAS 2001, number 2031 in Lecture
Notes in Computer Science, pages 174–188. Springer–Verlag,
2001.

[3] D. Bosscher, I. Polak, and F. Vaandrager. Verification of an
Audio-Control Protocol. InProc. of Formal Techniques in
Real-Time and Fault-Tolerant Systems, number 863 in Lecture
Notes in Computer Science, 1994.

[4] Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu,
Claude Jard, Thierry Jéron, Alain Kerbrat, Pierre Morel, and
Laurent Mounier. Verification and Test Generation for the SS-
COP Protocol.Science of Computer Programming, 36(1):27–
52, 2000.

[5] Rachel Cardell-Oliver. Conformance Testing of Real-Time
Systems with Timed Automata.Formal Aspects of Comput-
ing, 12(5):350–371, 2000.

[6] R. Castanet, Ousmane Koné, and Patrice Laurençot. On
The Fly Test Generation for Real-Time Protocols. InInter-
national Conference in Computer Communications and Net-
works, Lafayette, Lousiana, USA, October 12-15 1998. IEEE
Computer Society Press.

[7] Duncan Clarke and Insup Lee. Automatic Test Generation for
the Analysis of a Real-Time System: Case Study. In3rd IEEE
Real-Time Technology and Applications Symposium, 1997.

[8] Abdeslam En-Nouaary, Rachida Dssouli, Ferhat Khendek,
and A. Elqortobi. Timed Test Cases Generation Based on
State Characterization Technique. In19th IEEE Real-Time
Systems Symposium (RTSS’98), pages 220–229, December 2–
4 1998.

[9] Teruo Higashino, Akio Nakata, Kenichi Taniguchi, and
Ana R. Cavalli. Generating Test Cases for a Timed I/O
Automaton Model. In Gyula Csopaki, Sarolta Dibuz, and
Katalin Tarnay, editors,Testing of Communicating Systems:

Method and Applications, IFIP TC6 12th International Work-
shop on Testing Communicating Systems (IWTCS), September
1-3, 1999, Budapest, Hungary, volume 147 ofIFIP Confer-
ence Proceedings, pages 197–214. Kluwer, 1999.

[10] Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Hasan
Ural. A Temporal Logic Based Theory of Test Coverage and
Generation. In J.-P. Katoen and P. Stevens, editors,TACAS
2002, pages 327–341. Kluwer Academic Publishers, April
2002.

[11] Ahmed Khoumsi. A method for testing the conformance
of real-time systems. In Werner Damm and Ernst-Rüdinger
Olderog, editors,IEEE International Symposium on For-
mal Techniques in Real-Time and Fault-Tolerant Systems.
(FTRTFT, volume 2469 ofLNCS. Sprnger-Verlag, september
2002.

[12] Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Ansgar
Fehnker, Thomas Hune, Paul Pettersson, and Judi Romijn.
As cheap as possible: Efficient cost-optimal reachability for
priced timed automat. In G. Berry, H. Comon, and A. Finkel,
editors,Proc. of CAV 2001, number 2102 in Lecture Notes in
Computer Science, pages 493–505. Springer–Verlag, 2001.

[13] David Lee and Mihalis Yannakakis. Principles and Methods
of Testing Finite State Machines—A Survey.Proceedings of
the IEEE, 84(8):1090–1123, august 1996.

[14] Dino Mandrioli, Sandro Morasca, and Angelo Morzenti. Gen-
erating Test Cases for Real-Time Systems from Logic Specifi-
cations.ACM Transactions on Computer Systems, 13(4):365–
398, 1995.

[15] Brian Nielsen and Arne Skou. Automated Test Generation
from Timed Automata. International Journal on Software
Tools for Technology Transfer (STTT), 4, 2002. Digital Ob-
ject Identifier (DOI) 10.1007/s10009-002-0094-1. To Appear.

[16] Jan Peleska. Hardware/Software Integration Testing for the
new Airbus Aircraft Families. In A. Wolis I. Schieferdecker,
H. Knig, editor,Testing of Communicating Systems XIV. Ap-
plication to Internet Technologies and Services, pages 335–
351. Kluwer Academic Publishers, 2002.

[17] J. Springintveld, F. Vaandrager, and P.R. D’Argenio. Test-
ing Timed Automata.Theoretical Computer Science, 254(1-
2):225–257, March 2001.

[18] J. Tretmans and A. Belinfante. Automatic testing with formal
methods. InEuroSTAR’99: 7th European Int. Conference
on Software Testing, Analysis & Review, Barcelona, Spain,
November 8–12, 1999. EuroStar Conferences, Galway, Ire-
land.

[19] M. Ümit Uyar, Marius A. Fecko, Adarsphal S. Sethi, and
Paul D. Amar. Testing Protocols Modeled as FSMs with
Timing Parameters.Computer Networks: The International
Journal of Computer and Telecommunication Networking,
31(18):1967–1998, 1999.

