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Abstract Testing is the primary software validation technique used by
industry today, but remains ad hoc, error prone, and very expensive.
A promising improvement is to automatically generate test cases from
formal models of the system under test.
We demonstrate how to automatically generate real-time conformance
test cases from timed automata specifications. Specifically we demon-
strate how to efficiently generate real-time test cases with optimal exe-
cution time i.e test cases that are the fastest possible to execute. Our
technique allows time optimal test cases to be generated using manually
formulated test purposes or automatically from various coverage criteria
of the model.

1 Introduction

Testing is the execution of the system under test in a controlled environment
following a prescribed procedure with the goal of measuring one or more quality
characteristics of a product, such as functionality or performance. Testing is the
primary software validation technique used by industry today. However, despite
the importance and the many resources and man-hours invested by industry
(about 30% to 50% of development effort), testing remains quite ad hoc and
error prone.

A promising approach to improving the effectiveness of testing is to base test
generation on an abstract formal model of the system under test (SUT) and use
a test generation tool to (automatically or user guided) generate and execute test
cases. Model based test generation has been under scientific study for some time,
and practically applicable test tools are emerging [6,14,16,10]. However, little is
still known in the context of real-time systems, and few proposals exist that deals
explicitly and systematically with testing real-time properties [15,9,7,8,12,13]. A
principle problem is that a very large number of test cases (generally infinitely
many) can be generated from even the simplest models. The addition of real-
time adds another source of explosion, i.e. when to stimulate the system and
expect response.

In this paper we demonstrate how it is possible to generate time-optimal
test cases and test suites, i.e. test cases and suites that are guaranteed to take



the least possible time to execute. Time optimal test suites are interesting for
several reasons. First, reducing the total execution time of a test suite allows
more behavior to be tested in the (limited) time allocated to testing. Second, it is
generally desirable that regression testing can be executed as quickly as possible
to improve the turn around time between changes. Third, it is essential for
product instance testing that a thorough test can be performed without testing
becoming the bottleneck, i.e., the test suite can be applied to all products coming
of an assembly line. Finally, in the context of testing of real-time systems, we
hypothesize that the fastest test case that drives the SUT to a some state, also
has a high likelihood of detecting errors, because this is a stressful situation for
the SUT to handle. Most other work, e.g [1,17], focus on minimizing the length
of the test suite which is not directly linked to the execution time because some
events take longer to produce or real-time constraints are ignored.

We propose a new technique for automatically generating time optimal test
cases and test suites for embedded real time systems. We focus on conformance
testing i.e., checking by means of execution whether the behavior of some black
box implementation conforms to that of its specification, and moreover doing
this within minimum time. The fact that the SUT is a black box means that
communication with the SUT only takes place via a well defined set of observ-
able actions which implies limited observability and controllability. The required
behavior is specified using Uppaal style timed automata. The fastest diagnostic
trace facility of the Uppaal model checking tool is used to generate time optimal
test sequences.

The test cases can either be generated using manually formulated test pur-
poses or automatically from several kinds of coverage criteria—such as transition
or location coverage–of the timed automata model. Even coverage based test
suites are guaranteed to be time optimal in the sense the total time required to
execute the test sequences in the suite (and the intermediate resets) is minimal.
The main contributions of the paper are:

– Definition of a subclass of timed automata from which the diagnostic traces
of Uppaal can be used as test cases.

– Application of time optimal reachability analysis algorithms to the context
of test case generation.

– A technique to generate time optimal covering test suites for three important
coverage criteria.

– Experimental evidence in that the proposed technique has practical merits.

The rest of the paper is organized as follows: in the next section we introduce
a framework for testing real-time systems based on a testable subclass of timed
automata. In Section 3 and 4 we describe how to encode test purposes and test
criteria, and report experimental results respectively. In Section 5 we conclude
the paper and discuss future work.



2 Timed Automata and Testing

We will assume that both the system under test (SUT) and the environment in
which it operates are modelled as timed automata.

2.1 Testable Timed Automata

The model used in this paper is networks of timed automata [2] with a few
restriction to ensure testability.

Let X be a set of non-negative real-valued variables called clocks, and Act
a set of actions and co-actions (denoted a! and a?) and the non-synchronising
action (denoted τ). Let G(X) denote the set of guards on clocks being con-
junctions of simple constraints of the form x ./ c, and let U(X) denote the
set of updates of clocks corresponding to sequences of the form x := c, where
x ∈ X, c ∈ N, and ./ ∈ {≤, <, =,≥}1. A timed automaton over (Act,X) is a
tuple (L, `0, I, E), where L is a set of locations, `0 ∈ L is an initial location,
I : L → G(X) assigns invariants to locations, and E is a set of edges such that
E ⊆ L× G(X)×Act× U(X)× L. We write `

g,a,u−−−−→ `′ iff (`, g, a, u, `′) ∈ E.
The semantics of a timed automaton is defined in terms of a timed transition

system over states of the form p = (`, σ), where ` is a location and σ ∈ RX
≥0 is

a clock valuation satisfying the invariant of `. Intuitively, there are two kinds
of transitions: delay transitions and discrete transitions. In delay transitions,
(`, σ) d−→ (`, σ + d), the values of all clocks of the automaton are incremented
with the amount of the delay, d. Discrete transitions (`, σ) a−→ (`′, σ′) correspond
to execution of edges (`, g, a, u, `′) for which the guard g is satisfied by σ. The
clock valuation σ′ of the target state is obtained by modifying σ according to
updates u.

A network of timed automata A1 ‖ · · · ‖ An over (Act, X) is defined as the
parallel composition of n timed automata over (Act,X). Semantically, a network
again describes a timed transition system obtained from those of the components
by requiring synchrony on delay transitions and requiring discrete transitions to
synchronize on complementary actions (i.e. a? is complementary to a!).

To ensure testability, certain semantic restrictions turn out to be required.
Following similar restrictions in [15], we define the notion of deterministic, input
enabled and output urgent timed automata, DIEOU-TA, as follows:

1. Determinism. For a given state p and label l, all transitions of form p
l−→

lead to the same state.
2. Input enableness. In any state, any input action is enabled.
3. Output uniqueness. Each state p has at most one out action, i.e. p

a!−→, p
b!−→

implies a = b.
4. Output urgency. When an output (or τ) is enabled, it will occur immediately,

i.e. time is not allowed to pass when p
a!−→ (or p

τ−→).

1 To simplify the presentation in the rest of the paper, we restrict to guards with
non-strict lower bounds on clocks.
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Figure1. Test Specification.

2.2 Testing Timed Automata

We assume that the test specification is given as a closed network of timed au-
tomata that can be partitioned into one subnetwork modelling the behavior of
the SUT, and one modelling the behavior of its environment (ENV), as shown
in Figure 1. Often the SUT operates in a specific environment, in case it is only
necessary to establish correctness under the (modelled) environment assump-
tions; otherwise the environment model can be replaced with a unconstrained
environment allowing all possible interaction sequences.

We assume that the tester can take the place of the environment and control
the SUT via a distinguished set of observable input (I) and output actions (O),
Act = I ∪ O. For the SUT to be testable the subnetwork modelling it should
be controllable in the sense that it should be possible for an environment to
drive the subnetwork model through all of its syntactical parts (e.g. edges and
locations). This is precisely ensured by making the assumption that the model
of the system under test satisfy the restrictions of DIEOU.

Example 1. We use the simple light switch controller shown in Figure 2 to illus-
trate the concepts. The user interacts with the controller by touching a touch
sensitive pad. The light has three intensity levels: OFF, DIMMED, and BRIGHT.
Depending on the timing between successive touches (recorded by the clock x),
the controller toggles the light levels. For example, in dimmed state, if a second
touch is made quickly (before the switching time Tsw = 4 time units) after the
touch that caused the controller to enter dimmed state (from either off or bright
state), the controller increases the level to bright. Conversely, if the second touch
happens after the switching time, the controller switches the light off. If the light
controller has been in off state for a long time (longer than Tidle = 20), it should
reactivate upon a touch by going directly to bright level. We leave it to the
reader to verify for herself that the conditions of DIEOU are met by the model
given.

The environment model shown in Figure 3(a) models a user capable of per-
forming any sequence of touch actions. When the constant Treact is set to zero
he is arbitrarily fast. A more realistic user is only capable of producing touches
with a limited rate; this can be modelled setting Treact to a non-zero value. Fig-
ure 3(b) models a different user able to make two quick successive touches, but
which then is required to pause for some time (to avoid cramp) Tpause = 5.
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Figure2. Light Controller.

2.3 UPPAAL and Time-Optimal Reachability

Uppaal is a verification tool for a timed automata based modelling language
[11]. Besides dense-time clocks, the tool supports both simple and complex data
types like bounded integers and arrays as well as synchronisation via shared vari-
ables and actions. The specification language supports both safety and liveness
properties.

To produce test sequences, we shall make use of Uppaal’s ability to generate
diagnostic traces witnessing a posed safety property. Currently Uppaal support
three options for diagnostic trace generation: some trace leading to the goal
state, the shortest trace with the minimum number of transitions, and fastest
trace with the shortest accumulated time delay. The underlying algorithm used
for finding time-optimal traces is an extended version of Uppaal’s symbolic on-
the-fly reachability analysis algorithm, extended with ideas from the well-known
A∗-algorithm [3]. Hence to further improve performance it is possible to supply
a heuristic function which, for all reachable symbolic states, gives a lower bound
estimation of the remaining cost needed to reach a goal state.

2.4 From Diagnostic Traces to Test Cases

Let A be the timed automata network model of the SUT together with its inteded
environment ENV. Consider a (concrete) diagnostic trace produced by Uppaal
for a given reachability question on A. This trace will have the form:

(S0, E0)
l0−→ (S1, E1)

l1−→ (S2, E2)
l2−→ · · · (Sn, En)

where Si, Ei are states of the SUT and ENV, respectively, and li are either
time-delays or synchronization (or internal) actions. The latter may be further
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Figure3. Two possible environment models for the simple light switch

partitioned into purely SUT or ENV transitions (hence invisible for the other
part) or synchronizing transitions between the SUT and the ENV (hence ob-
servable for both parties).

From the diagnostic trace above a test sequence λ may be obtained simply by
projecting the trace to the ENV-component, while removing invisible transitions,
and summing adjacent delay actions. Finally, a test case to be executed on the
real SUT implementation may be obtained from λ by the addition of verdicts.

Adding the verdicts require some comments on the chosen correctness rela-
tion between the specification and SUT. In this paper we require timed trace
inclusion, i.e. that the timed traces of the implementation are included in the
specification. Thus after any input sequence, the implementation is allowed to
produce an output only if the specification is also able to produce that out-
put. Similarly, the implementation may delay (thereby staying silent) only if the
specification also may delay.

To clarify the construction we may model the test case itself as a timed
automaton Aλ for the test sequence λ. Locations in Aλ are labelled using two
distinguished labels, pass and fail. The execution of a test case is now formalized
as a parallel composition of the test case automaton Aλ and SUT AS .

S passes Aλ iff Aλ ‖ AS 6Ã fail

Aλ is constructed such that a complete execution terminates in a fail state if
the SUT cannot perform λ and such that it terminates i pass state if the SUT
can execute all actions of λ. The construction is illustrated in Figure 4.

3 Test Generation

In this section we describe how to generate time-optimal test sequences from
test purposes, and time-optimal test suites from coverage criteria.
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Figure4. Test case automaton for the sequence i0! · delay · o0?.

3.1 Single Purpose Test Generation

A common approach to the generation of test cases is to first manually formulate
informally a set of test purposes and then to formalize them such that the model
can be used to generate one or more test cases for each test purpose. A test
purpose is a specific test objective (or property) that the tester would like to
observe on the SUT.

Because we use the diagnostic trace facility of a model-checker based on
reachability analysis, the test purpose must be formulated as a property that
can be checked by reachability analysis of the combined ENV and SUT model.
We propose different techniques for this. Sometimes the test purpose can be
directly transformed into a simple location reachability check. In other cases
it may require decoration of the model with auxiliary flag variables. Another
technique is to replace the environment model with a more restricted one that
matches the behavior of the test purpose only.

TP1: Check that the light can become bright.
TP2: Check that the light switches off after three successive touches.

The test purpose TP1 can be formulated as a simple reachability property: E<>
LightController.bright (i.e. eventually the LightController automaton en-
ters location bright). Generating the shortest diagnostic trace results in the
test sequence: 20 · touch! · bright?. However, the fastest sequence satisfying the
purpose is 0 · touch! · dim? · 0 · touch! · bright?.

Test purpose TP2 can be formalized using the restricted environment model2

in Figure 5 with the property E<> tpEnv.goal. The fastest test sequence is
0 · touch! · dim? · 0 · touch! · bright? · 0 · touch! · off ?.
2 It is possible to use Uppaal’s committed location feature to compose the test purpose

and environment model in a compositional way. Space limitations prevents us from
elaborating on this approach.
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3.2 Coverage Based Test Generation

Often the tester is interested in creating a test suite that ensures that the specifi-
cation or implementation is covered in a certain way. This ensures that a certain
level of systemacy and thoroughness has been achieved in the test generation
process. Here we explain how test sequences with guaranteed coverage of the
SUT model can be computed using reachability analysis, effectively giving au-
tomated tool support. In the next subsection, we show how to generalise the
technique to generate sets of test sequences.

A large suite of coverage criteria have been proposed in the literature, such as
statement, transition, and definition-use coverage, each with its own merits and
application domain. We explain how to apply some of these to timed automata
models.

Edge Coverage: A test sequence satisfies the edge-coverage criterion if, when
executed on the model, it traverses every edge of the selected network compo-
nents. Edge coverage can be formulated as a reachability property in the follow-
ing way: add an auxiliary variable ei of type boolean (initially false) for each
edge to be covered (typically realized as a bit array in Uppaal), and add to
the assignments of each edge i an assignment ei := true; a test suite can be
generated by formulating a reachability property requiring that all ei variables
are true: E<>( e0==true and e1 ==true . . . en==true ).

The light switch in Figure 2 requires a bit-array of 12 elements. When the
environment can touch arbitrary fast the generated fastest edge covering test
sequence has accumulated execution time 28. The solution (there might be more
traces with the same fastest execution time) generated by Uppaal is:
EC: 0 · touch! · dim? · 0 · touch! · bright? · 0 · touch! · off ? · 20 · touch! · bright? · 4 ·
touch! · dim? · 4 · touch! · off ?.

Location Coverage: A test sequence satisfies the location-coverage criterion
if, when executed on the model, it visits every location of the selected TA-
components. To generate test sequences with location coverage, we introduce an



auxiliary variable si of type boolean (initially false for all locations except the
initial) for each location `i to be covered. For every edge with destination `i:
`′

g,a,u−−−−→ `i add to the assignments u si := true; the reachability property will
then require all si variables to be true.

Definition-Use Pair Coverage: The definition-use pair criterion is a data-
flow coverage technique where the idea is to cover paths in which a variable is
defined (i.e. appears in the left-hand side of an assignment) and later is used
(i.e. appears in a guard or the right-hand side of an assignment). Due to space-
limitation, we restrict the presentation to clocks, which can be used in guards
only.

We use (v, ed, eu) to denote a definition-use pair (DU-pair) for variable v if
ed is an edge where v is defined and eu is an edge where v is used. A DU-pair
(v, ed, eu) is valid if eu is reachable from ed and v is not redefined in the path
from ed to eu. A test sequence covers (v, ed, eu) iff (at least) once in the sequence,
there is a valid DU-pair (v, ed, eu). A test sequence satisfies the (all-uses) DU-pair
coverage criterion of v if it covers all valid DU-pairs of v.

To generate test sequences with definition-use pair coverage, we assume
that the edges of a model are enumerated, so that ei is the number of edge
i. We introduce an auxiliary data-variable vd (initially false) with value domain
{false} ∪ {1 . . . |E|}to keep track of the edge at which variable v was last de-
fined, and a two-dimensional boolean array du of size |E|×|E| (initially false) to
store the covered pairs. For each edge ei at which v is defined we add vd := ei,
and for each edge ej at which v is used we add the conditional assignment
if (vd 6= false)then du[vd, ej ] := true. Note that if v is both used and defined on
the same edge, the array assignment must be made before the assignment of vd.

The reachability property will then require all du[i, j] representing valid DU-
pairs to be true for the (all-uses) DU-pair criterion. Note that a test sequence
satisfying the DU-pair criterion for several variables can be generated using the
same encoding, but extended with one auxiliary variable and array for each
covered variable.

3.3 Test Suite Generation

Often a single covering test sequence cannot be obtained for a given test purpose
or criterion (e.g. due to dead-ends in the model), or there might exist a covering
set of test sequences for which the total time is shorter than for the fastest
covering single test sequence. In these cases, the time-optimal test suite (i.e.
the set of test sequences with shortest accumulated time) is needed to test the
system. To generate time-optimal test suites, we shall introduce in the model
resets that resets the model to its initial state, from which the test may continue
to cover the remaining parts. The generated test is then interpreted as a test
suite consisting of a set of test sequences separated by resets.

To introduce resets in the model, we allow the user to designate some lo-
cations as being resettable. Obviously, performing a reset in practice may take



some time Tr (or other costs measured in time) that must be taken into consid-
eration when generating time-optimal test sequences. Resettable locations can
be encoded into the model by adding reset transitions leading back to the initial
location. Let xr be an additional clock used for reset purposes, and let ` be a
resettable location. Two reset-edges must then be added from ` to the initial
location `0, i.e.,

`
reset!,xr:=0−−−−−−−−→ `′(xr≤Tr)

xr==Tr,τ,u0−−−−−−−−−→ `0

Here u0 are the assignment needed to reset clocks and other variables in the
model (excluding auxiliary variables encoding test purpose or coverage criteria3).
If more than one component is present in either the SUT-model or environment
model, the reset-action must be communicated atomically to all of them. This
can be done using the committed location feature of Uppaal.

3.4 Environment Behavior

A potential problem of the techniques presented above is that the generated test
sequences may be non-realizable, in that they may require the environment of
SUT to operate infinitely fast. In general, it is necessary to establish correctness
of SUT only under the (modelled) environment assumptions. Therefore assump-
tions about the environment should be modelled explicitly, and will then be
taken into account during test sequence generation.

4 Experiments

In the previous section we present techniques to compute time-optimal covering
test suites. In the following we apply the presented technique to a version of
Philips audio control protocol [5,4], frequently studied in the context of model
checking.

We have created a DIEOU-TA model of the the protocol. The system consists
of a sender component and a receiver component communicating over a shared
bus. The sender inputs a sequence of bits to be transmitted, Manchester encodes
them, and transmits them as high and low voltage on the bus. To detect collisions
the sender also checks that the bus is indeed low when it is itself sending a
low signal. The receiver is triggered by low-to-high transitions on the bus, and
decodes the bits based on this information.

Table 5 summarizes the results. The first row contains results for the protocol
tested with an environment consisting of a bus that may spontaneously go high
to emulate collision, and a sender buffer producing any legal input-bit sequence.
The second row shows results for a receiver testing in an environment consiting
of a bus, and a buffer to hold the received bits. The third row is the results for the
receiver tested in an environment consisting of a sender component with sender
buffer, a bus, and receiver buffer. Thus the last row represents a rather large
3 In the encoding of DU-pair coverage, the variables vd should be reset to false at

resets.



Criteria E(µs) G (s) M (Kb)

ECS 212350 2.2 9416
ECR 18981 1.2 4984
ECR,S 114227 129.0 331408

Table5. Results for the Philips audio-control protocol.

system. In all cases the time optimal covering test sequence could be computed
in reasonable time.

5 Conclusions and Future Work

In this paper, we have presented a new technique for generating timed test se-
quences for a restricted class of timed automata. It is able to generate time
optimal test sequences from either a single test purpose or a coverage criterion.
The technique uses the time optimal reachability feature of Uppaal. Using a
version of Philips audio-control protocol, we have demonstrated how our tech-
nique works and performs. We conclude that it can generate practically relevant
test sequences for practically relevant sized systems. However, we have also found
a number of areas where our technique can be improved.

The DIEOU-TA model is quite restrictive, and a generalization will benefit
many real-time systems. Especially, we are working on removing the output ur-
gency requirement. Without fundamental changes our technique can be applied
to models that are output persistent only, meaning that outputs are allowed to
appear at some unspecified time in an interval.

Adding the required annotations for various coverage criteria by hand, and
manually formulating the associated reachability property is tedious and error
prone. We are working on a tool that performs these tasks automatically.

Finally, we have found that the bit-vector annotations for tracking coverage
and remaining time estimates may increase the state space significantly, and
consequently also generation time and memory. The extra bits does not influence
model behavior, and should therefore be treated differently in the verification
engine. We are working on techniques that ignores these bits when possible, and
that takes advantage of the coverage bits for pruning states with “less” coverage.
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