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Abstract

In this paper we present a case-study in which the tool Uppaal is extended and
applied to verify an Audio-Control Protocol developed by Philips. The size of the
protocol studied in this paper is signi�cantly larger than case studies, including
various abstract versions of the same protocol without bus-collision handling, re-
ported previously in the community of real-time veri�cation. We have checked that
the protocol will function correctly if the timing error of its components is bound
to �5%, and incorrectly if the error is �6%. In addition, using Uppaal's ability
of generating diagnostic traces, we have studied an erroneous version of the proto-
col actually implemented by Philips, and constructed a possible execution sequence
explaining the error.

During the case-study, Uppaal was extended with the notion of committed loca-

tions. It allows for accurate modelling of atomic behaviours, and more importantly, it
is utilised to guide the state-space exploration of the model checker to avoid explor-
ing unnecessary interleavings of independent transitions. Our experimental results
demonstrate considerable time and space-savings of the modi�ed model checking
algorithm. In fact, due to the huge time and memory-requirement, it was impossi-
ble to check a simple reachability property of the protocol before the introduction
of committed locations, and now it takes only seconds.
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1 Introduction

In the past decade a number of tools for automatic veri�cation of hybrid and
real-time systems have emerged, e.g. HyTech [HHWT97], Kronos [Yov97],
PMC [ST01], RT-Cospan [AK95] and Uppaal [LPY97a]. These tools have by
now reached a state, where they are mature enough for industrial applications.
In this paper, we substantiate the claim by reporting on an industry-size case
study where the tool Uppaal is applied.

We analyse an audio control protocol developed by Philips for the physical
layer of an interface bus connecting the various devices e.g. CD-players, am-
pli�er etc. in audio equipments. It uses Manchester encoding to transmit bit
sequences of arbitrary length between the components, whose timing errors
are bound. A simpli�ed version of the protocol is studied by Bosscher et.al.
[BPV94]. It is showed that the protocol is incorrect if the timing error of the
components is � 1

17
or greater. The proof is carried out without tool support.

The �rst automatic analysis of the protocol is reported in [HWT95] where
HyTech is applied to check an abstract version of the protocol and auto-
matically synthesise the upper bound on the timing error. Similar versions of
the protocol have been analysed by other tools, e.g. Uppaal [LPY97a] and
Kronos [Yov97]. However, all the proofs are based on a simpli�cation on the
protocol, introduced by Bosscher et.al. in 1994, that only one sender is trans-
mitting on the bus so that no bus collisions can occur. In many applications
the bus will have more than one sender, and the full version of the protocol
by Philips therefore handles bus collisions. The protocol with bus collision
handling was manually veri�ed in [Gri94] without tool support. Since 1994,
it has been a challenge for the veri�cation tool developers to automate the
analysis on the full version of the protocol.

The �rst automated proof of the protocol with bus collision handling was
presented in 1996 in the conference version of this paper [BGK+96]. It was the
largest case study, reported in the literature on veri�cation of timed systems,
which has been considered as a primary example in the area (see [CW96,
LSW97]). The size of the protocol studied is signi�cantly larger than various
simpli�ed versions of the same protocol studied previously in the community,
e.g. the discrete part of the state space (the node-space) is 103 times larger
than in the case without bus collision handling and the number of clocks,
variables and channels in the model is also increased considerably.

The major problem in applying automatic veri�cation tools to industrial-size
systems is the huge time and memory-usage needed to explore the state-space
of a network (or product) of timed automata, since the veri�cation tools must
keep information not only on the control structure of the automata but also on
the clock values speci�ed by clock constraints. It is known as the state{space
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explosion problem. We experienced the problem right on the �rst attempt in
checking a simple reachability property of the protocol using Uppaal, which
did not terminate in hours though it was installed on a super computer with
giga bytes of main memory. We observed that in addition to the size and com-
plexity of the problem itself, one of the main causes to the explosion was the
inaccurate modelling of atomic behaviours and ineÆcient search of the unnec-
essary interleavings of atomic behaviours by the tool. As a simple solution,
during the case-study, Uppaal was extended with the notion of committed
locations. It allows for accurate modelling of atomic behaviours, and more
importantly, it is utilised in the state-space exploration of the model checker
to avoid exploring unnecessary interleavings of independent transitions. Our
experimental results demonstrate that the modi�ed model-checking algorithm
consume less time and space than the original algorithm. In fact, due to the
huge time and memory-requirement, it was impossible to check certain prop-
erties of the protocol before the introduction of committed locations, and now
it takes only seconds.

The automated analysis was originally carried out using an Uppaal version
extended with the notion of committed location installed on a super computer,
a SGI ONYX machine [BGK+96]. To make a comparison, in this paper we
present an application of the current version (version 3.2) of Uppaal, also
supporting committed location, installed on an ordinary Pentium II 375 MHz
PC machine, to the protocol. We have checked that the protocol will function
correctly if the timing error of its components is bound to �5%, and incor-
rectly if the error is �6%. In addition, using Uppaal's ability of generating
diagnostic traces, we have studied an erroneous version of the protocol actually
implemented by Philips in their audio products, and constructed a possible
execution sequence explaining a known error.

The paper is organised as follows: In the next two sections we present the
Uppaal model with committed location and describe its implementation in
the tool. In section 4 and 5 the Philips Audio-Control Protocol with Bus
Collision is informally and formally described. The analysis of the protocol is
presented in section 6 where we also compare the performance of the current
Uppaal version with the one used in [BGK+96]. Section 7 concludes the
paper. Finally, formal descriptions of the protocol components are enclosed in
the appendix.

2 Committed Locations

The basis of the Uppaal model for real-time systems is networks of timed au-
tomata extended with data variables [AD90, HNSY94, YPD94]. However, to
meet requirements arising from various case-studies, the Uppaal model has
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Fig. 1. Broadcasting Communication and Committed Locations.

been extended with various new features such as urgent transitions [BLL+95]
etc. The present case-study indicates that we need to further extend the
Uppaal model with committed locations to model atomic behaviours such
as multiway synchronisations and atomic broadcasting in real-time systems.
Our experiences withUppaal show that the notion of committed locations in-
troduced in Uppaal is not only useful in modelling but also yields signi�cant
improvements in performance.

We assume that a real-time system consists of a �xed number of sequential
processes communicating with each other via channels. We further assume that
each communication synchronises two processes as in CCS [Mil89]. Broadcast-
ing communication can be implemented in such systems by repeatedly sending
the same message to all the receivers. To ensure atomicity of such \broadcast"
sequences we mark the intermediate locations of the sender, which are to be
executed immediately, as so-called committed locations.

2.1 An Example

To introduce the notion of committed locations in timed automata, consider
the scenario shown in Figure 1. A sender S is to broadcast a message m to two
receivers R1 and R2. As this requires synchronisation between three processes
this can not directly be expressed in theUppaalmodel, where synchronisation
is between two processes with complementary actions. As an initial attempt we
may model the broadcast as a sequence of two two-process synchronisations,
where �rst S synchronises with R1 on m1 and then with R2 on m2. However,
this is not an accurate model as the intended atomicity of the broadcast is not
preserved (i.e. other processes may interfere during the broadcast sequence).
To ensure atomicity, we mark the intermediate location S2 of the sender S as
a committed location (indicated by the c:-pre�x). The atomicity of the action
sequence m1!m2! is now achieved by insisting that a committed sequence must
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be left immediately! This behaviour is similar to what has been called \urgent
transitions" [HHWT95, DY95, BLL+95], which insists that the next transition
taken must be an action (and not a delay), but the essential di�erence is that
no other actions should be performed in between such an atomic sequence. The
precise semantics of committed locations will be formalised in the transition
rules for networks of timed automata with data variables in Section 2.3.

2.2 Syntax

We assume a �nite set of clock variables C ranged over by x; y; z and a �nite
set of data variables D ranged over by i; j. We use B(C) to stand for the set
of clock constraints that are the conjunctive formulas of simple constraints in
the form of x � n or x� y � n, where � 2 f<;�;=;�; >g and n is a natural
number. Similarly, we use B(D) to stand for the set of non-clock constraints

that are conjunctive formulas of i � j or i � k, where � 2 f<;�;=; 6=;�; >g
and k is an integer number. We use B(C;D) ranged over by g to denote the
set of formulas that are conjunctions of clock constraints and a non-clock
constraints. The elements of B(C;D) are called constraints or guards.

To manipulate clock and data variables, we use reset-sets which are �nite sets
of reset-operations. A reset-operation on a clock variable should be in the form
x :=n where n is a natural number and a reset-operation on an data variable
should be in the form: i :=k � j + k0 where k; k0 are integers. A reset-set is a
proper reset-set when the variables are assigned a value at most once, we use
R to denote the set of all proper reset-sets.

We assume that processes synchronise with each other via complementary ac-
tions. LetA be a set of action names with a subset U of urgent actions on which
processes should synchronise whenever possible. We use Act = f �? j � 2
A g[f �! j � 2 A g[f � g to denote the set of actions that processes can per-
form to synchronise with each other, where � is a distinct symbol representing
internal actions. We use name(a) to denote the action name of a, de�ned by
name(�?) = name(�!) = �.

An automaton A over actions Act, clock variables C and data variables D is a
tuple hN; l0;�!; I; NCi where N is a �nite set of locations (control-locations)
with a subset NC � N being the set of committed locations, l0 is the initial
location, �! � N �B(C;D)�Act�R�N corresponds to the set of edges,
and I : N 7! B(C) is the invariant assignment function. To model urgency,
we require that the guard of an edge with an urgent action is a non-clock
constraint, i.e. if name(a)2 U and hl; g; a; r; l0i 2 �! then g 2 B(D).

In the case, hl; g; a; r; l0i 2 �! we shall write l
g a r
�! l0 which represents a

transition from the location l to the location l0 with guard g, action a to
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be performed, and a sequence of reset-operations r to update the variables.
Furthermore, we shall write C(l) whenever l 2 NC .

To model networks of processes, we introduce a CCS-like parallel composition
operator for automata. Assume that A1; :::; An are automata. We use A to
denote their parallel composition. The intuitive meaning of A is similar to the
CCS parallel composition of A1; :::; An with all actions being restricted, that
is, A = (A1j:::jAn)nAct. Thus only synchronisation between the components
Ai is possible. We call A a network of automata. We simply view A as a vector
and use Ai to denote its ith component.

2.3 Semantics

Informally, a process modelled by an automaton starts at location l0 with all its
variables initialised to 0. The values of the clocks may increase synchronously
with time at location l as long as the invariant condition I(l) is satis�ed.

At any time, the process can change location by following an edge l
g a r
�! l0

provided the current values of the variables satisfy the enabling condition g.
With this transition, the variables are updated by r.

To formalise the semantics we shall use variable assignments. A variable as-

signment is a mapping which maps clock variables C to the non-negative reals
and data variables D to integers. For a variable assignment u and a delay d,
u�d denotes the variable assignment such that (u�d)(x) = u(x) + d for a
clock variable x and (u�d)(i) = u(i) for any data variable i. This de�nition
of � re
ects that all clocks proceed at the same speed and that data variables
are time-insensitive.

For a reset-set r (a proper set of reset-operations), we use r[u] to denote the
variable assignment u0 with u0(w) = Value(e)u whenever (w := e) 2 r and
u0(w0) = u(w0) otherwise, where Value(e)u denotes the value of e in u. Given
a constraint g 2 B(C;D) and a variable assignment u, g(u) is a boolean value
describing whether g is satis�ed by u or not.

A control vector l of a network A is a vector of locations where li is a location
of Ai. We write l[l0i=li] to denote the vector where the ith element li of l is
replaced by l0i. Furthermore, we shall write C(l) whenever C(li) for some i.

A state of a network A is a con�guration (l; u) where l is a control vector of A
and u is a variable assignment. The initial state of A is (l0; u0) where l0 is the
initial control vector whose elements are the initial locations l0i of Ai's and u0

is the initial variable assignment that maps all variables to 0.

The semantics of a network of automata A is given in terms of a transition
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system with the set of states being the con�gurations. The transition relation
is de�ned by the following three rules, which are standard except that each rule
has been augmented with conditions handling control-vectors with committed
locations:

� (l; u) ; (l[l0i=li]; ri[u]) if li
gi � ri�! l0i and gi(u) for some li, gi, ri, and for all k

if C(lk) then C(li).

� (l; u) ; (l[l0i=li; l
0

j=lj]; (rj [ ri)[u]) if li
gi �! ri�! l0i, lj

gj �? rj
�! l0j, gi(u), gj(u), and

i 6= j, for some li; lj, gi, gj, �, ri, rj, and for all k if C(lk) then C(li) or
C(lj).

� (l; u) ; (l; u� d) if I(l)(u), I(l)(u� d), :C(l) and no li
gi�?ri�! , lj

gj�!rj
�! such

that gi(u), gj(u), � 2 U , i 6= j, li; lj, ri and rj.

where I(l) =
V
i I(li).

Intuitively, the �rst rule describes a local internal action transition in a com-
ponent, and possibly the resetting of variables. An internal transition can
occur if the current variable assignment satis�es the transition guard and if
the control-location of any component is committed, only components in com-
mitted locations may take local transitions. Thus, only internal transitions of
components in committed location may interrupt other components operating
in committed locations.

The second rule describes synchronisation transitions that synchronise two
components. If the control-location of any of the components is committed
it is required that at least one of the synchronising components starts in a
committed location. This requirement prevents transitions starting in non-
committed locations from interfering with atomic (i.e. committed) transition
sequences. However, two independent committed sequences may interfere with
each other.

The third rule describes delay transitions, i.e. when all clocks increase syn-
chronously with time. Delay transitions are permitted only while the location
invariants of all components are satis�ed. Delays are not permitted if the
control-location of a component in the network is committed, or if an urgent
transition (i.e. a synchronisation transition with urgent action) is possible.
Note that the guards on urgent transitions are non-clock constraints whose
truth-values are not a�ected by delays.

Finally, we note that the three rules give a semantics where transition se-
quences marked as committed are instantaneous in the sense that they hap-
pen without duration, and without interference from components operating in
non-committed locations.
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3 Committed Locations in Uppaal

In this section we present a modi�ed version of the model-checking algorithm
of Uppaal for networks of automata with committed locations.

3.1 The Model-Checking Algorithm

The model-checking algorithm performs reachability analysis to check for in-
variance properties 82�, and reachability properties 93�, with respect to a
local property � of the control locations and the values of the clock and data
variables 1 . It combines symbolic techniques with on-the-
y generation of the
state-space in order to avoid explicit construction of the product automaton
and the immediately caused memory problems. The algorithm is based on a
partitioning of the (otherwise in�nite) state-space into �nitely many symbolic
states of the form (l; D), where D is a constraint system (i.e. a conjunction
of clock constraints and non-clock constraints). It checks if a any part of a
symbolic state (lf ; Df) (i.e. a state (lf ; uf) with uf � Df) is reachable from
the initial symbolic state (l0; D0), where D0 expresses that all clock and data
variables are initialised to 0 [YPD94]. Throughout the rest of this paper we
shall simply call (l; D) a state instead of symbolic state.

The algorithm essentially performs a forwards search of the state-space. The
search is guided and pruned by two bu�ers: Waiting, holding states waiting
to be explored and Passed holding states already explored. Initially, Passed
is empty and Waiting holds the single state (l0; D0). The algorithm then
repeats the following steps:

S1. Pick a state (l; D) from the Waiting bu�er.
S2. If l = lf and D ^Df 6= ; return the answer yes.
S3.a. If l = l0 and D � D0, for some (l0; D0) in the Passed bu�er, drop (l; D)

and go to step S1.
b. Otherwise, save (l; D) in the Passed bu�er.

S4. Find all successor states (ls; Ds) reachable from (l; D) in one step and
store them in the Waiting bu�er.

S5. If the Waiting bu�er is not empty then go to step S1, otherwise return
the answer no.

We will not treat the algorithm in detail here, but refer the reader to [YPD94,
BL96].

1 From version 3.2 released in 2001, the model-checking algorithm in Uppaal also
supports liveness properties of the kind 83� and 92�.
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Note that in step S3.b all explored states are stored in the Passed bu�er to
ensure termination of the algorithm. In many cases, it will store the whole
state-space of the analysed system which grows exponentially both in the
number clocks and components [YPD94]. The algorithm is therefore bound to
run into space problems for large systems. The key question is how to reduce
the growth of the Passed bu�er.

When committed locations are used to model atomic behaviours there are two
potential possibilities to reduce the size of the Passed bu�er. First, as atomic
sequences in general restrict the amount of interleaving that is allowed in a
system [Hol91], the state-space of the system is reduced, and consequently also
the number of states stored in the Passed bu�er. Secondly, as a sequence of
committed locations semantically is instantaneous and non-interleaved with
other components, it suÆces to save only the (non-committed) control-location
at the beginning of the sequence in the Passed bu�er to ensure termination.
Hence, our proposed solution is simply not to save states in the Passed bu�er
which involve committed locations. We modify step S3 of the algorithm in the
following way:

S30.a. If C(l) go directly to step S4.
b. If l = l0 and D � D0, for some (l0; D0) in the Passed bu�er, drop (l; D)

and go to step S1.
c. If neither of the above steps are applicable, save (l; D) in the Passed

bu�er.

So, for a given state (l; D), if l is committed the algorithm proceeds directly
from step S30.a to step S4, thereby omitting the time-consuming step S30.b
and the space-consuming step S30.c. Clearly, this will reduce the growth of the
Passed bu�er and the total amount of time spent on step S30. In the following
step S4 more reductions are made as interleavings are not allowed when l is
committed. In fact, the next transition must be an action transition and it
must involve a li which is committed in l (according to the transition rules
in the previous section). This reduces the time spent on generating successor
states of (l; D) in S4 as well as the total number of states in the system.
Finally, we note that reducing the Passed bu�er size also yields potential
time-savings in step S30.b when l is not committed as it involves a search
through the Passed bu�er.

It should be noticed that the algorithm presented in this section is not guaran-
teed to terminate if the notion of committed locations is used in an unintended
way 2 . For the modi�ed algorithm to terminate, it is assumed in the that com-
mitted locations are used to model atomic behaviours. In particular this means

2 In the current implemention of Uppaal, the algorithm uses a technique presented
in [LLPY97] to identyify and store at least one so-called covering state in each
dynamic loop to guarantee termination for all input models.
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Fig. 2. Broadcasting Using Committed Locations.

that any sequence of committed control-locations must be of �nite length.

3.2 Space and Time Performance Improvements

To investigate the practical bene�ts from the usage of committed locations and
its implementation in Uppaal we perform an experiment with a parameteri-
zable scenario, where a sender S wants to broadcast a message to n receivers
R1; : : : ;Rn. The sender S simply performs n a!-transitions and then terminates,
whereas the receivers are all willing to perform a single a?-transition hereby
synchronizing with the sender. The data variable k ensures that the ith re-
ceiver participates in the ith handshake. Additionally, there are m auxiliary
automata D1; : : : ;Dm simply oscillating between two states. Consider Figure 2,
where the control node S2 is committed (indicated by the c:-pre�x).

We may now use Uppaal to verify that the sender succeeds in broadcasting
the message, i.e. it forces all the receivers to terminate. More precisely we
verify that SYSn;m = ( Sn j R1 j : : : j Rn j D1 j : : : j Dm) satis�es the formula
93(at(S,S3) ^

n
i=1 at(Ri,Ri2)), where we assume that the proposition at(A,l) is

implicitly assigned to each location l of the automaton A, meaning that the
component A is operating in location l. We perform two veri�cations, one with
S2 declared as committed, and one with S2 beeing non-committed but with a
location invariant x � 0, where x is a clock which is reset on the transition from
S1 to S2, preventing the automaton from delaying in location S2. The result is
shown in Figure 3. In both test sequences the number of disturbing automata
was �xed to eight. Time is measured in seconds and space is measured in
pages (4KB). The general observation is that use of committed locations in
broadcasting saves time as well as space. The most important observation is
that in the committed scenario the space consumption behaves as a constant
function in the number of receivers.
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4 The Audio Control Protocol with Bus Collision

In this section an informal introduction to the audio protocol with bus collision
is given. The audio control protocol is a bus protocol, all messages are received
by all components on the bus. If a component receives a message not addressed
to it, the message is just ignored. Philips allows up to 10 components.

Messages are transmitted using Manchester encoding. Time is divided into
bit-slots of equal length, a bit \1" is transmitted by an up-going edge halfway
a bit-slot, a bit \0" by a down-going edge halfway a bit-slot. If the same bit is
transmitted twice in a row the voltage must of course change at the end of the
�rst bit-slot. Note that only a single wire is used to connect the components,
no extra clock wire is needed. This is one of the properties that makes it a
useful protocol.

The protocol has to cope with some problems: (a) The sender and the receiver
must agree on the beginning of the �rst bit-slot, (b) the length of the message
is not known in advance by the receiver, (c) the down-going edges are not
detected by the receiver. To resolve these problems the following is required:
Messages must start with a bit \1" and messages must end with a down-going
edge. This ensures that the voltage on the wire is low between messages.
Furthermore the senders must respect a so-called \radio silence" between the
end of a message and the beginning of the next one. The radio silence marks
the end of a message and the receiver knows that the next up-going edge is the
�rst edge of a new message. It is almost possible, and actually mandated in
the Philips documentation, to decode a Manchester encoded message by only
looking to the up-going edges (problem c) only the last zero bit of a message
can not be detected (consider messages \10" and \1"). To resolve this, it is
required that all messages are of odd length.
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It is possible that two or more components start transmitting at the same
time. The behavior of the electric circuit is such that the voltage on the wire
will be high as long as one of the senders pulls it high. In other words: The wire
implements the or-function. This makes it possible for a sender to notice that
someone else is also transmitting. If the wire is high while it is transmitting
a low, a sender can detect a bus collision. This collision detection happens at
certain points in time: Just before each up-going transition, and at one and
three quarters of a bit-slot after a down going edge (if it is still transmitting a
low). When a sender detects a collision it will stop transmitting and will try
to retransmit its message later.

If two messages are transmitted at the same time and one is a pre�x of the
other, the receiver will not notice the pre�x message. To ensure collision detec-
tion it is not allowed that a message is a pre�x of another message in transit.
In the Philips environment this restriction is met by embedding the source
address in each message (and assigning each component a unique source ad-
dress).

In Figure 4 an example is depicted. Assume two senders, named A and B,
that start transmitting at exactly the same time. Because two lines on top
of each other are hard to distinguish from one line, in the picture they are
shifted slightly. The sender A (depicted with thick lines) starts transmitting
\11..." and sender B (depicted with thin lines) \101...". At the end of the
�rst bit-slot sender A changes from high to low voltage, to prepare for the
next up-going edge. But one quarter after this down it detects a collision and
stops transmitting. Sender B did not notice the other sender and continues
transmitting. Note that the receiver will decode the message of the sender B
correctly.

The protocol has to cope with one more thing: timing uncertainty. Because
the protocol is implemented on a processor that also has to execute a number
of other time critical tasks, a quite large timing uncertainty is allowed. A
bit-slot is 888 microseconds, so the ideal time between two edges is 888 or
444 microseconds. On the generation of edges a timing uncertainty of �5% is
allowed. That is, between 844 and 932 for one bit-slot and between 422 and
466 for half a bit-slot. The collision detection just before an up-going edge
and the actual generation of the same up-going edge should be separated by
at most 20 microseconds (according to the protocol speci�cation). The timing
uncertainty on the collision detection appearing at the �rst and third quarters
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Fig. 5. Philips Audio-Control Protocol with Bus Collision.

after a down-going edge is �22 microseconds. Also the receiver has a timing
uncertainty of�5%. To complete the timing information, the distance between
the end of one message and the beginning of the next must be at least 8000
microseconds (8 milliseconds).

5 A Formal Model of the Protocol

To analyse the behavior of the protocol we model the system as a network of
seven timed automata. The network consists of two parts: a core part and a
testing environment. The core part models the components of the protocol to
be implemented: two senders, a wire and a receiver. The testing environment,
consisting of two message generators (one for each sender) and an output
checker, is used to model assumptions about the environment of the protocol
and for testing the behavior of the core part. Figure 5 shows a 
ow-graph of the
network where nodes represent timed automata and edges represent synchro-
nisation channels or shared variables, the latter enclosed within parentheses.

The general idea of the model is as follows. The two automata MessageA
and MessageB are designed to non-deterministically generate possible valid
messages for the both senders (as described in section 4), in additionMessageA
informs the Check-automaton on the bits it generated for SenderA. The senders
transmit the messages via the wire to the receiver. We have chosen to model
the wire as an automaton to separate its behaviour from the two senders and
the receiver. The receiver communicates the bits it decoded to the checker.
Thus the Check automaton is able to compare the bits generated by MessageA
and the bits received by Receiver. If this matches the protocol is correct.

The senders A and B are, modulo renaming (all A's in identi�ers to B's),
exactly the same. Because of the symmetry, it is enough to check that the
messages transmitted by sender A are received correctly. If a scenario exits in
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which a message of sender B is received incorrectly, the same scenario (modulo
renaming) exists for sender A. We will proceed with a short description of
each automaton. The de�nition of these uses a number of constants that are
declared in Table 1 in Appendix 8.

The Senders

SenderA is depicted in Figure 10. It takes input actions Ahead0?, Ahead1?
and Aempty?. The output actions UP! and DOWN! will be the Manchester
encoding of the message. The clock Ax is used to measure the time between
UP! and DOWN! actions. The idea behind the model (taken from [DY95])
is that the sender changes location each half of a bit-slot. The locations HS
(wire is High in Second half of the bit-slot) and HF (High in First half of the
bit-slot) refer to this idea. Extra locations are needed because of the collision
detection.

The clock Ad is used to measure the time elapsed between the detection just
before UP! action and the corresponding UP! action. The system is in the
locations ar Q�rst and ar Qlast when the next thing to do is the collision test
at one or three quarters of a bit-slot. When Volt is greater than zero, at that
moment, the sender detects a collision, stops transmitting and returns to the
idle location. The clock w is used to ensure the radio silence between messages.
This variable is checked on the transition from idle to ar �rst up.

The Wire

This small automaton keeps track of the voltage on the wire and generates
VUP! actions when appropriate, that is when a UP? action is received when
the voltage is low. The automaton is shown in Figure 9.

The Receiver

Receiver, shown in Figure 8, decodes the bit sequence using the up-going (mod-
eled as VUP?) changes of the wire. Decoded bits are signaled to the environ-
ment using output actions Add0!, Add1! and OUT! (where OUT! is used for
signaling the end of a decoded message). The decoding algorithm of the re-
ceiver is a direct translation of the algorithm in the Philips documentation of
the protocol. In the automaton each VUP? transition is followed by a tran-
sition modeling the decoding. This decoding happens at once, therefore the
intermediate locations are modeled as committed locations. The automaton
has two important locations, L1 and L0. When the last received bit is a bit \1"
the receiver is in location L1, after receiving a bit \0" it will be in location L0.
The error location is entered when a VUP? is received much too early. In the
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complete model the error location is not reachable, see Section 6. The receiver
keeps track of the parity of the received message using the integer variable
odd. When the last received bit is a bit \1" and the message is even, a bit \0"
is added to make the complete message of odd length.

The Message Generators

The message generators MessageA and MessageB, shown in Figure 11, gen-
erate valid messages (i.e. any message for which the protocol should behave
correctly according to the speci�cation) for sender A and B. In addition, the
messages generated for sender A are communicated to the checker. The start
of a message is signaled to the checker by AINc!, bits by expect0! and expect1!.
When a collision is detected by sender A this is communicated to MessageA
via Acoll?. The message generator will communicate this on his turn to the
check automaton via CAcoll!.

Generating messages of odd length is quite simple. The only problem is that
it is not allowed that a message for one sender is a pre�x of the message for
the other sender. To be more precise: If only one sender is transmitting there
is no pre�x restriction. Only when the two senders start transmitting at the
same time, it is not allowed that one sender transmits a pre�x of the message
transmitted by the other. As mentioned before the reason for this restriction
is that the pre�x message is not received by the receiver and it is possible
that the senders do not notice the collision. In other words: the pre�x message
can be lost. To ensure that the two generated bit-streams di�er on at least
on position, the generator always compare the last generated bit-values stored
in the variables lb and Blb on the edge from locations sending0 or sending1
to location sending. If the bits di�er, the variable ok is set to 1, which is a
requirement for the message generation to end normally (on the transition
from sending to idle in the two automata).

The Checker

This automaton is shown in Figure 7. It keeps track of the bits \in transit",
i.e. the bits that are generated by the message generators but not yet decoded
by the receiver. These bits are encoded using the two variables l, which stores
the length of the bit-stream, and r that stores the actual bit-stream in transit.
Whenever a bit is decoded or the end of the message is detected not conform
the generated message the checker enters location error. Furthermore, when
sender A detects a collision the checker returns to its initial location.
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6 Veri�cation in Uppaal

In this section we present the results of analysing the Philips audio-control
protocol formally described in the previous section. We will use A:l to denote
the (implicit) proposition at(A; l) introduced in Section 3.2. Also, note that
invariance properties in Uppaal are on the form 82�, where � is a local
property.

Correctness Criteria

The main correctness criterion of the protocol is to ensure that the bit sequence
received by the Receiver matches the bit sequence sent by SenderA. Moreover,
the entire bit sequence should be received by Receiver (and communicated
to Check). From the description of the Check-automaton (see the previous
section) it follows that this behaviour is ensured if Check is always operating
in location start or normal:

82 (Check:start _ Check:normal) (1)

When the Receiver-automaton observes changes of the wire too early it changes
control to location error. If the rest of the components behave normally this
should not happen. Therefore, the Receiver-automaton is required to never
reach the location error:

82(:Receiver:error) (2)

Incorrectness

Unfortunately the protocol described in this paper is not the protocol that
Philips has implemented. The original sender checked less often for a bus
collision. The \just before the up going edge" collision detection was only
performed before the �rst up. In the Uppaal model this corresponds to delet-
ing outgoing transitions of ar Qlast ok and using the outgoing transitions of
ar up ok instead. This incorrect version is shown in Figure 12. In general the
problem is that if both senders are transmitting and one is slow and the
other fast, the distance can cumulate to a high value that can confuse the
receiver. Uppaal generated a counter-example trace to Property 1. The trace
is depicted in Figure 6. The scenario is as follows: Sender A (depicted with
thick lines) tries to transmit \111..." and sender B (depicted with thin lines)
\1100...". The sender A is fast and the other slow. This causes the distance
between the second UP's to be very big (77 microseconds). In the third bit-slot
the sender A detects the collision. The result of all this is that the time elapsed
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Fig. 6. Error execution of the incorrect protocol.

between the VUP actions is 6.65Q instead of the ideal 6Q. Because of the tim-
ing uncertainty in the receiver this can be interpreted as 7Q (7 � 0:95 = 6:65),
and 7Q is just enough to decode \01" instead of the transmitted \0". Thus, it
is possible that the sent and received message di�er with this version of the
protocol.

In the correct version this scenario is impossible, because if collision detection
happens before every UP action, the distance between the UP's in the second
bit-slot can not be that high (at most 20 microseconds).

It is not likely that these kind of errors happen in the actual implementation.
First, it is not likely that two senders do start at suÆciently close time-points.
Secondly, the timing uncertainty is at most 2% instead of 5%, and the \aver-
age" timing uncertainty is even less. For more details, see [Gri94].

Although this problem was known by Philips it is interesting to see how pow-
erful the diagnostic traces can be. It enables us not only to �nd mistakes in
the model of a protocol, but also to �nd design mistakes in real-life protocols.

Veri�cation Results

Uppaal successfully veri�es the correctness properties 1 and 2 for an error
tolerance of 5% on the timing. Recall that SenderA and SenderB are, modulo
renaming, exactly the same, implying that the veri�ed properties for SenderA
also applies to the symmetric case for SenderB. The veri�cation of Property 1
and 2 was performed in 0.5 sec using 2.5 MB of memory.

The analysis of the incorrect version of the protocol with less collision de-
tection (discussed above) uses Uppaal's ability to generate diagnostic traces
whenever an invariant property is not satis�ed by the system. The trace, con-
sisting of 46 transitions, was generated in 0.4 sec using 2.5 MB of memory.
Also, veri�cation of Property 1 for the protocol with full collision detection
and an error tolerance of 6% on all the timing produces an error trace as well.
The scenario is similar to the one found by Bosscher et.al. in [BPV94] for the
one sender protocol.
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The properties were veri�ed using Uppaal version 3.2 [LPY97a, BLL+98,
ABB+01] that implements the veri�cation algorithm handling committed lo-
cations described in Section 3. It was installed on a Pentium II 375 MHz PC
running Debian Linux 2.2. In the conference version of this paper [BGK+96]
we reported that the same protocol was veri�ed using Uppaal version 0.96 3

installed on a SGI ONYX machine. The veri�cation of the two correctness
properties then consumed 7.5 hrs using 527.4 MB and 1.32 hrs using 227.9
MB, whereas a diagnostic trace for the incorrect version was generated in 13.0
min using 290.4 MB of memory. Hence, both the time- and space-consumption
of the veri�er for this particular model have been reduced with over 99%. These
improvements of the Uppaal veri�er are due to a number of developments in
the last years that will not be discussed further here. It should also be noticed
that the older version uses backwards analysis whereas the newer performs
forwards analysis. For more information he developments of Uppaal we refer
the reader to [LPY97b, BLL+98, ABB+01].

7 Conclusions

In this paper we have presented a case-study where the veri�cation tool
Uppaal is used to verify an industrial audio-control protocol with bus-collision
handling by Philips. The protocol has received a lot of attention in the for-
mal methods research community (see e.g. [BPV94, HWT95, CW96]) and
simpli�ed versions of the protocol without the handling of bus collisions have
previously been analysed by several research teams, with and without support
from automatic tools.

As veri�cation results we have shown that the protocol behaves correctly if the
error on all timing is bound to �5%, and incorrectly if the error is �6%. Fur-
thermore, using Uppaal's ability to generate diagnostic traces we have been
able to study error scenarios in an incorrect version of the protocol actually
implemented by Philips.

In this paper we have also introduced the notion of so-called committed lo-
cations which allows for more accurate modelling of atomic behaviours. More
importantly, it is also utilised to guide the state-space exploration of the model
checker to avoid exploring unnecessary interleavings of independent transi-
tions. Our experimental results demonstrate considerable time and space-
savings of the modi�ed model checking algorithm. In fact, due to the huge
time and memory-requirement, it was impossible to check certain properties
of the protocol before the introduction of committed locations, and now it

3 The two Uppaal versions 0.96 and 2.17 are dated Nov 1995 and March 1998
respectively.
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takes only seconds.

References

[ABB+01] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R.
D'Argenio, Alexandre David, Ansgar Fehnker, Thomas Hune,
Bertrand Jeannet, Kim G. Larsen, M. Oliver M�oller, Paul Pet-
tersson, Carsten Weise, and Wang Yi. Uppaal - Now, Next, and
Future. In F. Cassez, C. Jard, B. Rozoy, and M. Ryan, editors,
Modelling and Veri�cation of Parallel Processes, number 2067 in
Lecture Notes in Computer Science, pages 100{125. Springer{
Verlag, 2001.

[AD90] Rajeev Alur and David Dill. Automata for Modelling Real-Time
Systems. In Proc. of Int. Colloquium on Algorithms, Languages

and Programming, number 443 in Lecture Notes in Computer Sci-
ence, pages 322{335, July 1990.

[AK95] Rajeev Alur and Robert P. Kurshan. Timing Analysis in
COSPAN. In Rajeev Alur, Thomas A. Henzinger, and Eduardo D.
Sontag, editors, Proc. of Workshop on Veri�cation and Control of

Hybrid Systems III, number 1066 in Lecture Notes in Computer
Science, pages 220{231. Springer{Verlag, October 1995.

[BGK+96] Johan Bengtsson, W.O. David GriÆoen, K�are J. Kristo�ersen,
Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
Veri�cation of an Audio Protocol with Bus Collision Using Up-
paal. In Rajeev Alur and Thomas A. Henzinger, editors, Proc. of
the 8th Int. Conf. on Computer Aided Veri�cation, number 1102
in Lecture Notes in Computer Science, pages 244{256. Springer{
Verlag, July 1996.

[BL96] Johan Bengtsson and Fredrik Larsson. Uppaal a Tool for Auto-
matic Veri�cation of Real-time Systems. Master's thesis, Uppsala
University, 1996. Available as http://www.docs.uu.se/docs/-
rtmv/bl-report.pdf.

[BLL+95] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Petters-
son, and Wang Yi. Uppaal| a Tool Suite for Automatic Veri�-
cation of Real{Time Systems. In Proc. of Workshop on Veri�ca-

tion and Control of Hybrid Systems III, number 1066 in Lecture
Notes in Computer Science, pages 232{243. Springer{Verlag, Oc-
tober 1995.

[BLL+98] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Petters-
son, Wang Yi, and Carsten Weise. New Generation of Uppaal.
In Int. Workshop on Software Tools for Technology Transfer, June
1998.

[BPV94] D. Bosscher, I. Polak, and F. Vaandrager. Veri�cation of an

19



Audio-Control Protocol. In Proc. of Formal Techniques in Real-

Time and Fault-Tolerant Systems, number 863 in Lecture Notes
in Computer Science, 1994.

[CW96] Edmund M. Clarke and Jeanette M. Wing. Formal Methods:
State of the Art and Future Directions. ACM Computing Surveys,
28(4):626{643, December 1996.

[DY95] C. Daws and S. Yovine. Two examples of veri�cation of multirate
timed automata with Kronos. In Proc. of the 16th IEEE Real-

Time Systems Symposium, pages 66{75. IEEE Computer Society
Press, December 1995.

[Gri94] W.O. David GriÆoen. Analysis of an Audio Control Protocol
with Bus Collision. Master's thesis, University of Amsterdam,
Programming Research Group, 1994.

[HHWT95] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
HyTech: The Next Generation. In Proc. of the 16th IEEE Real-

Time Systems Symposium, pages 56{65. IEEE Computer Society
Press, December 1995.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
HyTech: A Model Checker for Hybrid Systems. Int. Journal on
Software Tools for Technology Transfer, 1(1{2):134{152, October
1997.

[HNSY94] Thomas. A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Ser-
gio Yovine. Symbolic Model Checking for Real-Time Systems.
Information and Computation, 111(2):193{244, 1994.

[Hol91] Gerard Holzmann. The Design and Validation of Computer Pro-

tocols. Prentice Hall, 1991.
[HWT95] Pei-Hsin Ho and Howard Wong-Toi. Automated Analysis of an

Audio Control Protocol. In Proc. of the 7th Int. Conf. on Com-

puter Aided Veri�cation, number 939 in Lecture Notes in Com-
puter Science. Springer{Verlag, 1995.

[LLPY97] Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi.
EÆcient Veri�cation of Real-Time Systems: Compact Data Struc-
tures and State-Space Reduction. In Proc. of the 18th IEEE Real-

Time Systems Symposium, pages 14{24. IEEE Computer Society
Press, December 1997.

[LPY97a] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a
Nutshell. Int. Journal on Software Tools for Technology Transfer,
1(1{2):134{152, October 1997.

[LPY97b] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal: Status
and Developments. In Orna Grumberg, editor, Proc. of the 9th Int.
Conf. on Computer Aided Veri�cation, number 1254 in Lecture
Notes in Computer Science, pages 456{459. Springer{Verlag, June
1997.

[LSW97] Kim G. Larsen, Bernard Ste�en, and Carsten Weise. Continu-
ous modeling of real-time and hybrid systems: from concepts to

20



tools. Int. Journal on Software Tools for Technology Transfer,
1(1{2):64{85, December 1997.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, En-
glewood Cli�s, 1989.

[ST01] R. F. Lutje Spelberg and W. J. Toetenel. Parametric real-time
model checking using splitting trees. Nordic Journal, 8(1):88{120,
2001.

[Yov97] Sergio Yovine. A Veri�cation Tool for Real Time Systems. Int.

Journal on Software Tools for Technology Transfer, 1(1{2):134{
152, October 1997.

[YPD94] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Ver-
i�cation of Real-Time Communicating Systems By Constraint-
Solving. In Dieter Hogrefe and Stefan Leue, editors, Proc. of the
7th Int. Conf. on Formal Description Techniques, pages 223{238.
North{Holland, 1994.

8 Appendix
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Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?
l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1
l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1

OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?
l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0

Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?
l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0
l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0

CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?

l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3

AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2

OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2

Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0

Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0

Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1

Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0

Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2

Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1

expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?
r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1
l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1

expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?
r:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*r
l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1

Fig. 7. The Check Automaton.
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The constants used in the formulas

q 2220 One quarter of a bit-slot: 222 micro sec

d 200 Detection 'just before' the UP:

20 micro sec

g 220 'Around' 25% and 75% of the bit-slot:

22 micro sec

w 80000 The radio silence: 8 milli sec

t 0.05 The timing uncertainty: 5%

The constants in the automata

W w 80000

D d 200

A1min q-g 2000

A1max q+g 2440

A2min 3*q-g 6440

A2max 3*q+g 6880

Q2 2*q 4440

Q2minD 2*q*(1-t)-d 4018

Q2min 2*q*(1-t) 4218

Q2max 2*q*(1+t) 4662

Q3min 3*q*(1-t) 6327

Q3max 3*q*(1+t) 6993

Q5min 5*q*(1-t) 10545

Q5max 5*q*(1+t) 11655

Q7min 7*q*(1-t) 14763

Q7max 7*q*(1+t) 16317

Q9min 9*q*(1-t) 18981

Q9max 9*q*(1+t) 20979

Table 1
Declaration of Constants.
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receiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiver

c:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:b

c:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:a

L0L0L0L0L0L0L0L0L0L0L0L0L0L0L0L0L0
(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)

c:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:e

c:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:c

L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1
(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle

errorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerror

c:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:d

Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!
odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1

OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!

w>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3min
w<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

w>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7max
Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!

w>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5min
w<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

w<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!

Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!
odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1

w>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9max
odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!

w>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7min
w<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

w>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9max
odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1

w>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5min
w<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

w>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3min
w<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?
w<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3max

VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?
odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0

Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!

Fig. 8. The Receiver Automaton.

wirewirewirewirewirewirewirewirewirewirewirewirewirewirewirewirewire

aaaaaaaaaaaaaaaaa

c:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:b

UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?
Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1
Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1

DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?
Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1

UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0

VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!
Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1
w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0

Fig. 9. The Wire Automaton.
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senderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderA

ar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_ok
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

ar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_ok
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

ar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlast
(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)

c:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LS

do_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_down
(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)

ar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_ok
(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)

c:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:ready
HFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHF
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Fig. 10. The SenderA Automaton.
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Fig. 11. The Message Automata.
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Fig. 12. The Incorrect SenderA Automaton.
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