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Abstract

Dependable real-time embedded systems are typically composed of tasks with
multiple criticality levels allocated to a number of heterogeneous computing
nodes connected by heterogeneous networks. The heterogeneous nature of the
hardware, results in a varying level of vulnerability to different types of hard-
ware failures. For example, a computing node with effective shielding shows
higher resistance to failures caused by transient faults, such as radiation or
temperature changes, than an unshielded node. Similarly, resistance to failures
caused by permanent faults can vary depending on the manufacturing proce-
dures used. Task vulnerability to different types of errors, potentially leading
to a system failure, varies from task to task, and depends on several factors,
such as the hardware on which the task runs and communicates, the software
architecture and the implementation quality of the software. This variance, the
different criticality levels of tasks, and the real-time requirements, necessitate
novel fault-tolerance approaches to be developed and used, in order to meet
the stringent dependability requirements of resource-constrained real-time sys-
tems.

In this thesis, we provide four major contributions in the area of dependable
real-time systems. Firstly, we describe an error classification for real-time em-
bedded systems and address error propagation aspects. The goal of this work is
to perform the analysis on a given system, in order to find bottlenecks towards
satisfying dependability requirements, and to provide guidelines on the usage
of appropriate error detection and fault tolerance mechanisms.

Secondly, we present a time-redundancy approach to provide a-priori guar-
antees in fixed-priority scheduling (FPS) such that the system will be able to
tolerate a single value error per every critical task instance, while keeping the
potential costs minimized.

Our third contribution is a novel approach, Voting on Time and Value
(VTV), which extends the N-modular redundancy approach by explicitly con-
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sidering both value and timing errors, such that a correct value is produced at
a correct time, under specified assumptions. We illustrate our voting approach
by instantiating it in the context of the well-known triple modular redundancy
(TMR) approach. Further, we present a generalized voting algorithm targeting
NMR, that enables a high degree of customization from the user perspective.

Finally, we propose a novel cascading redundancy approach within a generic
fault tolerant scheduling framework. The proposed approach is i) capable of
tolerating errors with a wider coverage (with respect to error frequency and
error types) than our proposed time and space redundancy approaches in iso-
lation, ii) handles tasks with mixed criticality levels, iii) is independent of the
scheduling technique, and above all, iv) ensures that every critical task instance
can be feasibly replicated in both time and/or space.

The fault-tolerance techniques presented in this thesis address various error
scenarios that can be observed in real-time embedded systems with respect to
the types of errors and frequency of occurrence, and can be used to achieve the
high levels of dependability, required in many critical systems.
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Hansson, Mikael Sjödin, Ivica Crnkovic and Malin Rosqvist for their reviews
and feedback, as well as for the humour which they bring to the PROGRESS
research centre.

I would like to thank my officemates, Moris, Aida and Mikael for the good
times we have had, but especially Moris for reminding me all the deadlines
of any kind and Aida for keeping my plants alive. I would like to thank
many more people at this department, Farhang, Jörgen, Fredrik, Andreas, Bob,
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Hüseyin Aysan
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ules, Radu Dobrin, Hüseyin Aysan, and Sasikumar Punnekkat, In Proceedings
of the 14th IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA’08), KaoHsiung, Taiwan, August,
2008.

Paper C A Voting Strategy for Real-Time Systems, Hüseyin Aysan, Sasiku-
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Chapter 1

Introduction

Most real-time systems typically have to satisfy high dependability require-
ments due to their interactions with and possible impacts on the environment.
The real-time nature of such systems requires that the delivered services must
be both value-wise correct and timely, i.e. not too late or too early. Satis-
fying systems’ dependability requirements typically requires using both fault
prevention and fault tolerance (FT) approaches. However, implementation of
such approaches can be very costly, requiring a significant amount of extra re-
sources, and the designers have to judiciously select efficient and cost-effective
approaches specific to the system context.

A major step in designing dependable real-time systems is modeling of the
error scenarios, by explicitly stating several characteristics of each error that
forms a threat to satisfy the specified dependability requirements, and disre-
garding the errors that are too unlikely to occur. Once having such a model,
the next step towards efficiently and effectively satisfying the dependability
requirements is to introduce FT approaches, in the form of error masking, er-
ror detection and error recovery, that are capable of addressing only the errors
stated in the error model.

In this thesis, we propose an error modeling approach considering various
aspects, such as domain, consistency, impact, criticality and persistence of er-
rors. Although several works exist on error modeling and error classification,
our modeling approach can be seen as an all-encompassing view, elaborating
upon many of these works. Based on the impact, criticality and persistence of
errors, we propose the usage of appropriate redundancy approaches to provide
FT. For instance, for tolerating critical transient errors, we use a time redun-
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dancy approach in the form of task re-executions, or executions of alternate
tasks. On the other hand, for tolerating critical permanent errors, we use adap-
tations of N-modular redundancy approaches [1]. We address the domain prop-
erty of errors by explicitly considering time and value correctness in the voting
procedure. Furthermore, we use both approaches in combination to achieve a
more comprehensive error coverage.

1.1 Thesis Outline

This thesis consists of two main parts. The first part comprises seven chapters.
Chapter 1 describes the motivation for the research and provides an introduc-
tion to the research domain. Chapter 2 introduces the basic concepts related to
real-time systems and dependability. Chapter 3, 4 and 5 provide overviews of
our time-redundancy, space redundancy and cascading redundancy strategies,
respectively. Chapter 6 gives a technical overview of the papers, and finally,
Chapter 7 concludes and summarizes the thesis, and gives directions to possi-
ble future works. The second part of the thesis is a collection of peer-reviewed
conference and workshop papers, which are briefly described below:

1.1.1 Paper A

Towards an Error Modeling Framework for Dependable Component-based
Systems, Hüseyin Aysan, Radu Dobrin, Sasikumar Punnekkat, In Proceedings
of the DATE Workshop on Dependable Software Systems, Munich, Germany,
March, 2008.

Summary In this paper, we propose an approach to model errors that can
occur in the system components based on a synthesized view of several works
[2, 3, 4, 5, 6]. It presents various aspects of errors in two categories based on
their influence on the error handling mechanisms. These categories essentially
determine ’which mechanisms’ and ’how much’ are needed for adequate error
handling. The various aspects considered are domain, consistency, impact, crit-
icality and persistence of errors. The domain and consistency determine what
kind of error handling mechanisms are appropriate while the rest determine the
amount of error handling needed. The former is more relevant for design of the
system and for providing qualitative guarantees, whereas the latter is important
for quantitative predictions.

1.1 Thesis Outline 5

My contribution I was the main author of this paper and contributed with
the survey on existing error models and the proposed error modeling approach.
The co-authors contributed with valuable advice on the validity of the classifi-
cation of errors as well as on the formulation the research challenges.

1.1.2 Paper B
Maximizing the Fault Tolerance Capability of Fixed Priority Schedules, Radu
Dobrin, Hüseyin Aysan, and Sasikumar Punnekkat, In Proceedings of the 14th

IEEE International Conference on Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA’08), KaoHsiung, Taiwan, August, 2008.

Summary This paper focuses on incorporating time redundancy as a part of
the scheduling strategy used in a real-time node of a system in order to tolerate
transient errors occurring in critical task instances. The proposed methodology
is intended for a task set with fixed priorities resulting in a fault-tolerant task
set that provides timing guarantees for the failed critical tasks to re-execute or
run an alternate version under certain assumptions on the processor utilization
of critical and non-critical tasks. The resulting task set will have new task
attributes to provide such guarantees.

My contribution I was the second author of this paper, contributed with the
literature survey, took part in the development of the methodology and per-
formed the evaluations on the validity of the approach. The basic idea for
the methodology has its roots in Radu Dobrin’s Ph.D thesis which we further
adapted to fault-tolerant scheduling.

1.1.3 Paper C
A Voting Strategy for Real-Time Systems, Hüseyin Aysan, Sasikumar Pun-
nekkat, and Radu Dobrin, In Proceedings of the 14th IEEE Pacific Rim Inter-
national Symposium on Dependable Computing (PRDC’08), Taipei, Taiwan,
December, 2008.

Summary A widely used approach to ensure fault tolerance in dependable
systems is the N-modular redundancy (NMR) which typically uses a majority
voting mechanism. However, NMR primarily focuses on producing the cor-
rect value, without taking into account the time dimension. In this paper, we
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propose a new approach, Voting on Time and Value (VTV), applicable to real-
time systems, which extends the modular redundancy approach by explicitly
considering both value and timing errors, so that correct value is produced at
correct time, under specified assumptions. We present an algorithm directly
applicable for triple modular redundancy (TMR) as well as a generalized ver-
sion targeting NMR. Both intermittent and permanent errors are tolerated by
this approach.

My contribution I was the main author of this paper and contributed with the
idea, literature survey, development of the methodology and the algorithms.
The co-authors contributed with discussions during the development of the
methodology and provided continuous feedbacks.

1.1.4 Paper D
A Cascading Redundancy Approach for Dependable Real-Time Systems, Hüseyin
Aysan, Sasikumar Punnekkat, and Radu Dobrin, In Proceedings of the 15th

IEEE International Conference on Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA’09), Beijing, China, August, 2009

Summary In this paper, we combine our time redundancy approach pro-
posed as a scheduling strategy with our space redundancy approach to cover
errors in both time and value domains together with all degrees of persistence
from transient to permanent errors. As a result, our framework provides a
comprehensive methodology to enable synergistic usage of these redundancy
techniques.

My contribution I was the main author of this paper and contributed with
the idea for integration, development of the algorithm, and part of the method-
ology. The co-authors provided technical contributions to the time redundancy
part as well as useful feedbacks for the overall paper.

Chapter 2

Dependability in Real-Time
Systems

2.1 Real-Time Systems

Real-time systems are computing systems whose correctness depends not only
on the correctness of the outputs produced, but also on the timeliness of these
outputs [7]. Failing to meet the timeliness requirement may result in catas-
trophic consequences, such as loss of human life, in hard real-time systems,
while decrease in Quality of Service (QoS), or degraded service can be the
results of missing deadlines in soft real-time systems.

Fast computing or performance optimizations are not direct solutions for
satisfying the timeliness requirement, since increasing the speed of computa-
tions does not mean that meeting the deadlines will be guaranteed [8]. Real-
time research strives for assuring that the systems will behave predictably with
respect to time, e.g., execute their tasks before their predefined deadlines, while
enabling efficient usage of the limited resources such as processor and memory.

Real-time systems are typically composed of a set of tasks, where each
task performs a certain function satisfying certain timing constraints. The tim-
ing constraints are specified by special attributes, such as offsets which specify
the earliest time points at which the tasks can start executing, and deadlines
which specify the latest time points at which the tasks should complete their
executions. Tasks may have periodic, aperiodic or sporadic activations which
are controlled by a scheduler based on a scheduling policy. Each periodic task
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consists of an infinite sequence of activations, which are called instances. The
scheduling policy can either be off-line or on-line. In the off-line scheduling
policies, the time points for each activation of task instances are decided at
design-time, whereas in on-line scheduling, these decisions are made during
run-time based on, e.g., task priorities. On-line scheduling policies can fur-
ther be decomposed into fixed-priority scheduling (FPS), and dynamic-priority
scheduling policies depending on whether the task priorities are decided during
design-time or run-time [9].

Real-time systems consist of some sort of hardware, often relatively com-
plex real-time software and a dynamic environment that the systems interact
with. Despite the advances in the production techniques of computer hard-
ware, there remains a possibility that the hardware may fail. Similarly, despite
the advances in software engineering, bug free software development is con-
sidered as infeasible due to the costs, if at all practically possible. Furthermore,
due to the non-deterministic nature of the environments in which the real-time
systems operate, there is always a possibility of external interferences that may
adversely affect the correctness or timeliness of their functioning. Therefore,
special attention has to be paid in order to have the confidence in the real-time
systems at acceptable levels. This is the basic reason for the close coupling
between real-time systems and dependability concerns.

2.2 Dependability

Dependability of a system is a property which indicates the degree to which
extent its services can be trusted by its users. A systematic decomposition of
the dependability concept can be done as shown in Figure 2.1 where the main
components are the threats to dependability, attributes of dependability and the
means to achieve dependability [2, 10]:

2.2.1 Failures, Errors and Faults

A system failure is the deviation of its delivered service from the specified
service, therefore threatening the confidence degree of the system to deliver a
service that can be trusted. A system can fail in different ways based on the
domain of application. Typical failure modes, presented in ([2, 11]), are as
follows:

2.2 Dependability 9
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Figure 2.1: The dependability tree [2]

Fail-soft: In the fail-soft failure mode, the system continues functioning but
provides a degraded service until the system is restored.

Fail-safe: In the fail-safe failure mode the failure does not result in severe
consequences.

Fail-silent: In the fail-silent failure mode, the system does not produce any
services that are erroneous, but may still be functioning and could deliver cor-
rect services.

Fail-stop: In the fail-stop failure mode, the system does not produce any
outputs and continues to stay in this mode until restarted. Furthermore it is
assumed that the error is detected and signalled by an error message.

Crash failure: In the crash failure mode, the system does not produce any
outputs and continues to stay in this mode until restarted. Furthermore it is
assumed that the error is not signalled [12].
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Babbling idiot failure: In this mode, the system produces untimely outputs,
often loads of junk outputs, possibly threatening the availability of resources.

Deceptive failure: In Deceptive failure mode, the system pretends some other
identity, without authority such as sending and receiving messages in another
identity.

Byzantine failure: This is the mode where the system can fail in any possible
arbitrary way.

Each failure mode corresponds to different degrees of severity and control-
lability. One of the biggest challenges in system design is to introduce a certain
degree of restrictions, i.e., to set one, or a set of allowed failure modes, on how
the target system can fail.

Figure 2.2: Error Classification

An error is a system state that may lead to a system failure through prop-
agations, i.e., valid state transformations. Errors can be classified into several
categories, such as, domain, persistence, consistency, homogeneity, impact and
criticality [4, 3, 13, 14] as shown in Figure 2.2. The domain and consistency
properties determine the types of error handling mechanisms to be used. The
other properties describe with what frequency the errors may occur, and once
they occur, the probability of causing a system failure as well as the sever-
ity of the consequences of such failures. Hence, they determine where these
mechanisms should be located and how much resources should be reserved for
adequate handling of the expected errors. Modeling error scenarios, error trans-
formations and error propagations, is a crucial step in the dependable real-time

2.2 Dependability 11

systems design, in order to effectively and efficiently introduce mechanisms to
prevent system failures.

A fault is the adjudged cause of an error. The relationship between faults,
errors and failures is shown in Figure 2.3 where each arrow represents a relation
of cause and effect [2].

Figure 2.3: The chain of dependability threats [2]

2.2.2 Reliability and Availability
Reliability is the ability to continue delivering correct service, i.e., perform
failure-free operation, for a specified period of time. Availability is the prob-
ability of being operational and deliver correct service at a given time. These
two concepts are often mixed with each other, however, they do not mean the
same thing. A system that fails very frequently has a low reliability, but can
still have very high availability provided that the recoveries are performed very
quickly. Similarly, if a system breaks down very rarely, but the repair action
takes a long time, its reliability is high, while its availability is low.

Though being different concepts, they are closely connected in the sense
that, if system reliability is improved, then its availability is improved as well
(although the opposite case is not always true). In this thesis, we propose
strategies for improving reliability of real-time systems which also improves
the availability for the stated reason.

2.2.3 Fault Tolerance
Fault tolerance is the set of measures and techniques that are used to enable
continuity of correct service delivered by a system even in case of errors. It
is one of several complementary techniques to attain dependability along with
fault prevention, fault removal and fault forecasting [2]. Two essential steps for
providing fault tolerance are the error detection and the recovery from errors.
An optional third step is the fault diagnosis and fault isolation which causes
the error, in order to prevent them from causing more errors.

There exist various types of error detection strategies targeting different
types of errors. Examples are timing checks for timing errors, reasonableness
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checks for coarse value errors and replica comparison for subtle value errors.
Each detection approach has a different resource requirement and error cov-
erage, where resource requirement generally grows as the coverage increases.
Apparently, this may not be a linear relation since the error coverage may con-
sist of various error types which cannot be compared with each other.

Error recovery is the action to transform the system state into an error-free
state. There are three main approaches to perform error recovery:

1. Backward error recovery is the technique to take the system back to a
correct state that was saved before the error has been detected. The saved
state is called a checkpoint.

2. Forward error recovery is the technique to transform the system state to
a state known to be error-free.

3. Compensation through redundancy is the third error recovery approach
which uses the error-free replicas to compensate the error state. The re-
dundancy can be achieved in space by replicating the computing nodes,
or in temporal domain, by execution of recovery blocks [15], re-execution
of the same actions or execution of alternate actions.

This thesis focuses on the third type of error recovery approach, viz., compen-
sation through redundancy. In the following chapters, we present new time and
space redundancy techniques.

Chapter 3

Time Redundancy in
Real-Time Systems

In this chapter, we discuss the time redundancy approach used in real-time
systems, (also known as dynamic redundancy,) give pointers to the existing
approaches, and present an overview of our time redundancy approach target-
ing FPS which is a fairly matured scheduling technique commonly used in
complex industrial real-time systems.

Time redundancy is a widely used fault tolerance technique to recover from
transient and intermittent errors, which involves repeating the execution of a
failed action in the system. It is most often used in computer communications
in the form of message re-transmissions. In hard real-time systems, repetitions
of the executions should be performed before deadlines, therefore adequate
measures are needed to be taken to reserve sufficient spare times in schedules,
in order to assure that the deadlines will be met.

Large number of publications have addressed incorporating time redun-
dancy into various real-time scheduling paradigms. Liestman and Campbell
[16] investigated a fault tolerant scheduling problem where they tried to sched-
ule primary and alternate versions of a task in the same schedule to attain soft-
ware redundancy. The alternate version of a task can either be a simplified
version of the primary task, that gives an approximate result in a shorter time,
or the same as the primary task, which then becomes a basic time redundancy
solution. Krishna and Shin [17] used a dynamic programming algorithm to
embed backup schedules into the primary schedule, so that hard deadlines of
critical tasks will be met in the event of temporary processor failures up to
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a specified number. Pandya and Malek [18] showed that single faults with a
minimum inter-arrival time equal to the largest period in the task set can be re-
covered by re-executing the failed task, if the processor utilization is less than
0.5 under the Rate Monotonic scheduling policy. Ramos-Thuel and Strosnider
[19] used the Transient Server approach to handle transient errors which arrive
as aperiodic recovery requests. Ghosh et al. [20] presented a method for guar-
anteeing that the real-time tasks will meet the deadlines under transient faults,
by resorting to reserving sufficient slack in queue-based schedules. Burns et al.
[21] provided exact schedulability tests for fault-tolerant task sets under spec-
ified failure hypotheses where the fault tolerance is employed in the form of
recovery blocks, re-execution of the affected task, checkpointing schemes, or
forward recovery methods, like exception handlers. Han et al. [22] scheduled
primary and alternate versions of each task, using the imprecise computation
model, and aimed to guarantee either the primary or alternate version of each
task to be executed before deadlines, such that if the primaries are not suc-
cessfully executed before certain times, then the corresponding alternates are
executed.

Each of the above works has advanced the field of fault tolerant schedul-
ing within the contexts mentioned above. However, some of the disadvantages
are restrictive task and fault models, non-consideration of task sets with mixed
criticality, non-consideration of scenarios where multiple types of faults cause
failures, high computational requirements of complex online mechanisms, and
scheduler modifications which may be unacceptable from an industrial per-
spective. We try to address these limitations in our time-redundancy approach
which is outlined below.

3.1 System Model
We assume a single node real-time system consisting of a set of periodic tasks
whose deadlines are equal to their periods. The task set consists of critical and
non-critical tasks where the criticality of a task could be seen as a measure
of the impact of the correctness of the output it delivers on the overall system
correctness. Each critical task has an alternate task with a worst case execu-
tion time less than or equal to that of its primary and a deadline equal to the
deadline of the primary. This alternate task can typically be the same as the pri-
mary task, a recovery block, an exception handler or a program with imprecise
computations to perform the desired task.

The maximum utilization of the original critical tasks together with their

3.2 Time Redundancy in Fixed Priority Scheduling 15

alternates can be up to 100%. This will imply that, during error recovery, ex-
ecution of non-critical tasks cannot be permitted as it may result in overload
conditions. We assume that the scheduler has adequate support for flagging
non-critical tasks as unschedulable during such scenarios, along with appropri-
ate error detection mechanisms in the operating system.

We assume that the transient and intermittent errors can effectively be toler-
ated by a simple re-execution of the affected task whilst the effects of software
design faults could be tolerated by executing an alternate action such as recov-
ery blocks or exception handlers. Both of these situations could be considered
as execution of another task (either the primary itself or an alternate) with a
specified computation time requirement.

We assume that an error can adversely affect only one task at a time, and
is detected before the termination of the current execution of the affected task
instance. This can be achieved by commonly applied techniques such as accep-
tance checks at the end of task executions or watchdog timers that interrupt the
execution of the task once the worst case execution time has been exhausted.

Our proposed approach enables masking of up to one error per each task
instance which is a more demanding scenario compared to earlier assumptions
such as one error per longest task period, or an explicit minimum inter-arrival
time between consecutive error occurrences.

3.2 Time Redundancy in Fixed Priority Schedul-
ing

The goal of our approach is to derive feasibility windows for each task in the
task set, which guarantees the fulfillment of the dependability requirements
by providing recovery for the errors that are specified in the error model, and
to assign FPS attributes (new attributes in case of legacy systems) that ensure
task executions within these feasibility windows. An overview of the proposed
methodology is shown in Figure 3.1.

While executing non-critical tasks in the background can be a safe and
straight forward solution, in our approach we aim to provide non-critical tasks
a better service than background scheduling. Hence, depending on the criti-
cality of the original tasks, the feasibility windows we are looking for differ as
following:

1. Fault Tolerant (FT) feasibility windows for critical task instances

2. Fault Aware (FA) feasibility windows for non-critical ones
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Figure 3.1: Methodology overview

While critical task instances must execute within their FT feasibility win-
dows to be able to re-execute feasibly upon an error, the derivation of FA fea-
sibility windows has two purposes: to prevent non-critical task instances from
interfering with critical ones, and to enable their execution at high priority lev-
els, i.e., not only executing in the background. Since the size of the FA feasibil-
ity windows depend on the size of the FT feasibility windows, in our approach
we first derive FT-feasibility windows and then FA feasibility windows. Then,
we assign fixed priorities to ensure the task executions within their newly de-
rived feasibility windows. In some cases, however, it is not possible to achieve
the required fault tolerance for the error assumptions with the same priorities
for all instances directly. In certain cases reaching the desired degree of fault
tolerance may require that instances of a given set of tasks need to be executed
in different order on different occasions which is obviously not directly possi-
ble in FPS. Our approach detects such situations, and circumvents the problem
by splitting certain tasks into their instances. Then, the algorithm assigns dif-
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ferent priorities to the newly generated ”artifact” tasks, which are the former
instances. Key issues in resolving the priority conflicts are the number of ar-
tifact tasks created, and the number of priority levels. Depending on how the
priority conflict is resolved, the number of resulting tasks may vary, i.e., based
on the size of the periods of the split tasks. Our algorithm minimizes the num-
ber of artifact tasks by using Integer Linear Programming (ILP) for solving the
priority relations.
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Chapter 4

Space Redundancy in
Real-Time Systems

Space redundancy is a static redundancy technique for achieving fault toler-
ance, and it is implemented in a large number of critical applications [23, 24].
It is most often used in the form of triple-modular redundancy (TMR) where
a critical node is triplicated, and the outputs of the replicas are delivered to a
voting mechanism which outputs the majority of the delivered values [1] (see
Figure 4.1). The key attraction of this technique lies in its low overhead and

Figure 4.1: Triple modular redundancy

instant detection and masking abilities of errors occurring in a single replica,
without requiring backward recovery [10]. Furthermore, with this technique
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it is possible to detect and mask errors that are not easily detectable due to
the lack of prior knowledge on the error behaviour of the critical components.
Hence, it provides a wide coverage of different types of errors. The disadvan-
tages include, e.g., cost of redundancy in terms of additional resources, and
single point of failure mode. Traditionally, voters are constructed as simple
electronic circuits, so that a very high reliability can be achieved. Replication
of voters has also been employed to take care of the single-point failure mode
in case of highly critical systems [25, 26] as shown in Figure 4.2.

Figure 4.2: Triple modular redundancy with triplicated voters

With the additional cost of increased computation time and software com-
plexity of the voter, more enhanced voting strategies are proposed, such as
plurality, median and average voters [27, 28, 29]. Plurality voters (or m-out-
of-n voters) requirem corresponding outputs out of n, where m is less than the
majority, to reach a consensus [30, 31]. Median voters output the middle and
average voters output the average value of the replica output values.

The primary goal of space redundancy approaches has been the assurance
of correctness in the value domain. This implies that tight synchronization is
assumed in order to use this approach in time-critical applications. However,
providing tight synchronization to compensate for the variations in replicas’
output delivery times due to several factors, such as clock drifts, node failures,
processing and scheduling variations at node level, as well as communication
delays, can be either too costly or simply infeasible. Therefore, a solution
based on loose synchronization may be an attractive alternative due to low
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overheads, requiring, however, specifically designed asynchronous voting al-
gorithms to compensate for the timing variations [32].

A simple approach towards tolerating both value and timing errors in repli-
cas using the NMR approach could be adding time stamps to the replica out-
puts. Then, voting on time stamp values could detect possible timing anomalies
of the replicas, under the assumption that even erroneous nodes issue correct
time stamps and no node ever halts. Moreover, this approach is unable to mask
late timing errors since the voter has to wait for all the values to be delivered
from the replicas.

4.1 Quorum Majority Voting and Compare Ma-
jority Voting

Two adaptations of majority voting techniques to time-critical systems, viz.,
Quorum Majority Voting (QMV) and Compare Majority Voting (CMV) have
been proposed by Shin et al., [33], where voting is performed among a quorum
or a majority of responses received, rather than waiting for all.

In QMV, majority voting is performed among the received values as soon as
2n+1 out of 3n+1 replicas deliver their outputs to the voter. This 2n+1 values
form the quorum. This approach guarantees detection of a majority consisting
of matching values in a bounded time, under the assumption that maximum n
replicas can be erroneous in the value domain, be late or both.

In CMV, the voter keeps track of the received values, and outputs the major-
ity value as soon as it is formed without waiting for the possibly late arriving
other replica outputs. This approach can mask up to n replica errors out of
2n+1 replicas as in basic majority voting.

Both QMV and CMV provide outputs within a bounded time interval, as
long as the assumptions regarding the maximum number of errors hold. This
implies that the late timing errors of replicas will be masked. However, QMV
and CMV are unable to mask any early timing errors. The coverage of timing
errors for different techniques are shown in Figure 4.3.

In the rest of this chapter, we present an overview of our new approach
which tolerates value errors, as well as both early and late timing errors, tar-
geting loosely synchronized time-critical systems.
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Figure 4.3: Error coverage comparison for different techniques

4.2 System Model

We assume a distributed real-time system where each critical node is repli-
cated and the outputs are voted to ensure correctness in both value and time.
The replicas receive identical inputs and requests for computation. The deliv-
ery times of any two replica outputs to the voter are assumed to differ at most
by δ. This bound can be achieved by relatively inexpensive software clock
synchronization algorithms (compared to hardware-based tight clock synchro-
nization implementations) and using reliable communication techniques that
have bounded message transmission times. The graph in Figure 4.4 shows the
typical characteristics of a replica output.

Figure 4.4: Replica output characteristics

Here, t∗ is correct time point (seen by a perfect observer) of the output de-
livery, � is the computation time of the voting algorithm, σ is the maximum ad-
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missible deviation in value domain and ∆ is the minimum value of a maximum
admissible time window for the voter output as per the real-time system speci-
fications, i.e., what the rest of the system can tolerate. It will be still acceptable
if ∆ is greater than this value shown on the graph, although the opposite sce-
nario can result in timing failures. In such cases, additional efforts should be
spent for tightening the range δ by, for instance better clock synchronization or
faster message transmissions.

Basic assumptions:

1. After each computation block, the non-faulty nodes produce values within

• a specified admissible value range,

• a specified admissible time interval.

2. Incorrect replica outputs do not form a consensus.

3. The voting mechanism does not fail.

4.3 Voting on Time and Value (VTV)
VTV is a voting strategy which tolerates value and timing errors with any per-
sistence, and enables the use of space redundancy in real-time applications
with high dependability requirements, while eliminating the tight synchroniza-
tion requirement for the replica nodes. The key point in this approach is to
incorporate the time domain into the voting procedure by performing majority
(or plurality) voting on both the delivery times and the values of the replica
outputs.

Early outputs can result in taking wrong decisions, even if they are value-
vise correct at the time they are produced, depending on the application. Let
us assume that R1 to R5 in Figure 4.5 represent altitude sensor replicas which
form 5-modular redundancy on a descending airplane. Let us also assume that
all replicas produce correct altitude values at the time points they deliver the
outputs. At time t5, if we consider a majority of all the received values, the
plane (the overall system) will assume that the correct altitude is c. However, if
the majority voting is performed only among the freshly produced, i.e., timely,
data, then the correct altitude (a) can be obtained. In this example early values
should be considered invalid for voting.



22 Chapter 4. Space Redundancy in Real-Time Systems

Figure 4.3: Error coverage comparison for different techniques

4.2 System Model

We assume a distributed real-time system where each critical node is repli-
cated and the outputs are voted to ensure correctness in both value and time.
The replicas receive identical inputs and requests for computation. The deliv-
ery times of any two replica outputs to the voter are assumed to differ at most
by δ. This bound can be achieved by relatively inexpensive software clock
synchronization algorithms (compared to hardware-based tight clock synchro-
nization implementations) and using reliable communication techniques that
have bounded message transmission times. The graph in Figure 4.4 shows the
typical characteristics of a replica output.

Figure 4.4: Replica output characteristics

Here, t∗ is correct time point (seen by a perfect observer) of the output de-
livery, � is the computation time of the voting algorithm, σ is the maximum ad-

4.3 Voting on Time and Value (VTV) 23

missible deviation in value domain and ∆ is the minimum value of a maximum
admissible time window for the voter output as per the real-time system speci-
fications, i.e., what the rest of the system can tolerate. It will be still acceptable
if ∆ is greater than this value shown on the graph, although the opposite sce-
nario can result in timing failures. In such cases, additional efforts should be
spent for tightening the range δ by, for instance better clock synchronization or
faster message transmissions.

Basic assumptions:

1. After each computation block, the non-faulty nodes produce values within

• a specified admissible value range,

• a specified admissible time interval.

2. Incorrect replica outputs do not form a consensus.

3. The voting mechanism does not fail.

4.3 Voting on Time and Value (VTV)
VTV is a voting strategy which tolerates value and timing errors with any per-
sistence, and enables the use of space redundancy in real-time applications
with high dependability requirements, while eliminating the tight synchroniza-
tion requirement for the replica nodes. The key point in this approach is to
incorporate the time domain into the voting procedure by performing majority
(or plurality) voting on both the delivery times and the values of the replica
outputs.

Early outputs can result in taking wrong decisions, even if they are value-
vise correct at the time they are produced, depending on the application. Let
us assume that R1 to R5 in Figure 4.5 represent altitude sensor replicas which
form 5-modular redundancy on a descending airplane. Let us also assume that
all replicas produce correct altitude values at the time points they deliver the
outputs. At time t5, if we consider a majority of all the received values, the
plane (the overall system) will assume that the correct altitude is c. However, if
the majority voting is performed only among the freshly produced, i.e., timely,
data, then the correct altitude (a) can be obtained. In this example early values
should be considered invalid for voting.



24 Chapter 4. Space Redundancy in Real-Time Systems

Figure 4.5: Voting dilemma

On the other hand, let us assume that R1 to R5 in Figure 4.5 represent ac-
celeration sensor replicas in an airbag system on a car. These sensors are trig-
gered as soon as a crash has detected to measure the intensity of the crash. The
sensors output value c if the detected acceleration during the crash is greater
than a threshold value to indicate that airbags should be inflated, and value a
otherwise. Since the values in this example are not dynamically changing as
in the altitude measurement example, the voting should be performed in all
received values rather than the timely values alone.

The correct functioning of our methodology relies on two conditions re-
garding the permissible number of errors for various types:

Condition 1 The number of timely replica outputs should be greater than or
equal to the minimum number of replica outputs required for consensus in the
time domain (Mt):

N − Ft ≥ Mt

where N is the total number of replica tasks, Ft is the number of replica outputs
with incorrect timing, and Mt is either majority (Mt ≥ �N+1

2
�) or plurality

(Mt ≤ N/2) in time domain.

Condition 2 Depending on the validity of early replica outputs we have two
different scenarios:

• Early values are invalid: In order to achieve a consensus in the value
domain, the number of replica outputs with correct values should be
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greater than or equal to the number of minimum number of replicas
required to achieve consensus in value domain (Mv). However, since
timeliness is a precondition for value correctness, i.e., since we want to
compare only relatively timely replica outputs and we cannot wait for
late outputs, the replica outputs forming the consensus in value domain
needs to be free from any type of errors:

N − F ≥ Mv

where F is the number of replica outputs with incorrect timing and/or
value, and Mv is either majority (Mv ≥ �N+1

2
�) or plurality (Mv ≤

N/2) in value domain.

• Early values are valid: The number of error-free replica outputs, except
the ones with early timing errors, must be greater than or equal to the
minimum number of replica outputs required to achieve consensus in
the value domain (Mv):

N − (F − F e
t ) ≥ Mv

where F is the number of replica outputs with incorrect timing and/or
value and F e

t is the number of replica outputs with early timing error.

In this thesis, we have provided an algorithm to be run on the voter which
performs the voting in both value and time domains. The output of our voter al-
gorithm is the correct value delivered within the feasible time window provided
that the conditions on the maximum number of errors that can occur hold. In
case conditions are violated, the algorithm enables the voter to provide infor-
mation about such violations to the rest of the system.
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Chapter 5

Cascading Redundancy in
Real-Time Systems

In this chapter, we present an overview of our cascading redundancy frame-
work capable of tolerating errors with a wider coverage (when considering
both error frequency and error types) than our time and space redundancy tech-
niques in isolation. The framework handles tasks with various criticality levels
for more flexibility, and, above all, ensures that every critical task instance
can be feasibly replicated in both time and space, independent of the real-time
scheduling policy.

5.1 System Model
In our cascading redundancy approach, we assume a distributed real-time ar-
chitecture consisting of processing nodes, sensors and communication media.
Similar to the system model in our space redundancy approach, each node has
its own clock allowed to drift from the correct time (i.e., seen by a perfect ob-
server) by a maximum permissible deviation δ which is bounded by relatively
inexpensive clock synchronization algorithms implemented in software (as op-
posed to expensive tight clock synchronization implementations) and reliable
communication techniques that have bounded message transmission times.

On each processing node, a periodic task set is allocated, where each task
represents a real-time thread of execution with a specified criticality. We as-
sume that tasks’ deadlines are equal to the end of their periods. The criticality
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of a task is a combined measure which indicates the severity of the conse-
quences caused by its failure together with its vulnerability to different types
of errors, as well as different error intensities. Without loss of generality, in
this framework, we specified four different criticality levels, addressing differ-
ent error scenarios:

1. Non-critical tasks: The failure of these tasks does not have any major
impacts on the system performance.

2. Critical tasks: These tasks are vulnerable to value errors of transient or
intermittent nature.

3. Highly-critical tasks: These tasks are vulnerable to both value and time
errors of transient, intermittent or even permanent nature.

4. Ultra-critical tasks: These tasks are vulnerable to similar types of er-
rors as highly-critical tasks. However, the intensity of errors and/or the
severity of its failure consequences are higher.

Compared to the task model in our space redundancy approach, we relax
the assumption of starting the replicas at the same time and performing the re-
quested operations simultaneously, by allowing them to execute and complete
anywhere during their periods. In a system with no redundancy, or in a redun-
dant system with tight synchronization, the deviation in output delivery times
of a task is less than or equal to the maximum permissible deviation (MPD)
that is equal to its feasibility window, i.e., the time interval between its release
time and deadline, minus its best case execution time (BCET ) (Figure 5.1 (a)).
However, in loosely synchronized redundant systems, local clocks on the pro-
cessing nodes are allowed to drift by a specified value (δ), which can, in certain
scenarios, result in delivery of replica outputs that are farther apart from each
other than they are designed for with respect to time (Figure 5.1 (b)), and cause
system failures.

We assume that the total utilization of the critical, highly-critical, and ultra-
critical tasks together with all the alternate tasks (or the primary re-executions)
on a processing node is less than or equal to 100%. This will imply that, during
error recovery, the execution of non-critical tasks cannot be permitted as it
may result in overload conditions. We assume that the scheduler has adequate
support for flagging non-critical tasks as unschedulable during such scenarios,
along with appropriate error detection mechanisms for the errors that can be
tolerated by time redundancy.
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Figure 5.1: The timing issue in redundant real-time systems

We assume that the value errors caused by a large variety of transient
and intermittent hardware faults can effectively be tolerated by a simple re-
execution of the affected task, whilst the value errors caused by software de-
sign faults could be tolerated by executing an alternate action such as recovery
blocks or exception handlers. Both situations could be considered as execu-
tions of another task (either the primary itself or an alternate) with a speci-
fied computation time requirement. On the other hand, in addition to all types
of errors that can be tolerated by a time redundancy mechanism, value errors
caused by permanent hardware faults, and timing errors can be tolerated by a
space redundancy mechanism. If ultimate dependability is desired, using both
approaches together will provide recovery from a wide range of errors, as well
as from an increased number of error occurrences, with the obvious additional
cost. The error type coverage achieved by each technique is shown in Figure
5.2.
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Figure 5.2: Coverage of error types achieved by time and space redundancy

5.2 Methodology
The cascading redundancy approach addresses the different error and cost mod-
els of tasks with various criticality by allowing the following configuration lev-
els for each predetermined criticality:

1. no redundancy for non-critical tasks

2. only time redundancy for critical tasks

3. only space redundancy for highly-critical tasks

4. both time and space redundancy for ultra-critical tasks

Highly-critical and ultra-critical tasks are replicated, and the replica out-
puts are voted by the voting mechanism implemented on a a stand-alone node,
to ensure correctness in both value and time. Upon receiving identical re-
quests or inputs, replicas start their executions on separate processors whose
clocks are allowed to drift from each other by a maximum deviation. When
the highly-critical task replicas complete their executions, the outputs are sent
to the stand-alone voter. For ultra-critical tasks, before sending the outputs
to the voter, error detection for transient coarse value errors and re-executions
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value delivered by the voter and, in the worst case, force the nodes executing
such tasks to drift from the correct time by maximum δ, which is still admissi-
ble with respect to the real-time specifications.

As the replicas of a task need to agree on an output value, the only feasible
order for performing cascading redundancy is first time redundancy followed
by space redundancy. Whenever a consensus is achieved for a replicated criti-
cal task, any uncompleted replica instances, or their alternate actions becomes
obsolete for the purpose of voting, thus, can be shed to improve the service to
the non-critical tasks. In Figure 5.3, neither the ultra-critical task B on Node
3 nor its alternate is executed since the voter reports that majority has been
formed before B starts executing on that node.
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Chapter 6

Conclusions and Future
Work

In this thesis, we have presented methods that improve the state of the art for
development of dependable real-time embedded systems. In particular, tak-
ing Laprie’s definition of dependability as a reference [10, 2], we have mainly
focused on the reliability attribute of dependability, contributed with a compre-
hensive error modeling approach and new fault tolerance techniques applicable
to dependable real-time embedded systems (Figure 6.1).

The main goal of our proposed fault tolerance techniques is to ensure that
the delivered services are both correct value-wise and timely, i.e., not too late or
too early. Furthermore, as our domain of interest is embedded systems which
are often constrained with respect to available computational resources, we pay
special attention to the usage of such resources in our proposed techniques. We
provide several degrees of fault tolerance corresponding to different levels of
error coverage, each of which has different resource requirements.

6.1 Contributions
The following are the main contributions of this thesis:

Error modeling We present our findings from our survey of various error
classifications and failure modes in the literature with the aim of identifying
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Figure 6.1: Thesis research focus, highlighted on the Dependability Tree [2]

their relations/contrasts as well as in arriving at an ’all-encompassing compi-
lation of classifications’. We also discuss the effects of various error handling
mechanisms on error propagation.

Time redundancy technique in fixed-priority scheduling We present a fault
tolerant scheduling framework which allows the system designer to schedule a
set of real-time tasks with mixed criticalities and FT requirements. Our main
contribution is a methodology which guarantees every critical task instance to
be re-executed upon an error before its deadline, provided the combined uti-
lization of primaries and alternates is less than or equal to 100%. Additionally
our methodology allows non-critical tasks to execute at priority levels higher
than the critical ones, in an error-aware manner. Hence, the non-critical tasks
are provided a better service than using background scheduling.

Space redundancy technique with voting on time and value We present a
new voting strategy, Voting on Time and Value (VTV), for redundant real-time
systems, to explicitly consider both value and timing failures for achieving fault

6.2 Future work 35

tolerance in real-time applications. Our method produces the correct output
value, as well as identifies the correct window of time in which the output has
to be delivered, provided the conditions on the maximum number of permis-
sible failures are not violated. Moreover, our method is capable of providing
information about violation of such conditions, if any. We present algorithms
for the particular case where the nodes are triplicated, as well as a generalized
version that enables a high degree of customization with respect to the number
of replicas as well as the validity of early values for the purpose of voting.

Cascading redundancy technique We present a framework that enables the
use of both time and space redundancy in dependable real-time systems. We
propose a cascading redundancy approach that is capable of tolerating a wider
range of errors (with respect to error frequency and error types) than either time
or space redundancy alone. The approach is independent from the underlying
scheduler, can cope with tasks of mixed criticality levels, and guarantees the
feasible time and space replication of every critical task instance while fully
utilizing the resources.

6.2 Future work
This thesis work brings possibilities to conduct further research in certain areas
that are not thoroughly addressed. Some of these possibilities include:

• Adding formalizations to the error modeling approach including mod-
eling of the error propagations and the effects of error handling mecha-
nisms.

• Development of error handling mechanisms for consistency and homo-
geneity related errors.

• Incorporating more complex error models to our time redundancy ap-
proach by enabling different assumptions on the maximum frequency of
errors.

• Handling babbling idiot errors in our space redundancy approach.

• Defining an end-to-end errormodel for component-based embedded soft-
ware systems and adapting this work to the Progress Component Model
[34].
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• Investigating the task distribution and migration aspects together with
on-line adaptations in our cascading redundancy approach, in order to
optimize the schedulability of the lower critical tasks, e.g., non critical,
in error free scenarios.
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