
Refining Extra-Functional Property Values
in Hierarchical Component Models

Thomas Lévêque
Mälardalen Real-Time Research Center

Mälardalen University
Västerås, Sweden

thomas.leveque@mdh.se

Séverine Sentilles
Mälardalen Real-Time Research Center

Mälardalen University
Västerås, Sweden

severine.sentilles@mdh.se

ABSTRACT
It is nowadays widely accepted that extra-functional proper-
ties (EFPs) are as important as functional properties for sys-
tem correctness, especially when considering systems such
as safety-critical embedded systems. The criticality and
resource-constrained nature of these systems necessitate to
be able to predict tight and accurate extra-functional prop-
erty values all along the development, from early estima-
tions to measurements. By using a hierarchical component
model that allows implementing components as an assem-
bly of subcomponent instances, the same component can
be instantiated in several assemblies, i.e. in different usage
contexts. Many EFP values are sensitive to the usage con-
text and knowing information about the enclosing assembly
enables refining the values of the properties on the subcom-
ponents. Such refinement is usually not supported and the
consistency between refined values and the original ones not
ensured. This paper presents the concepts and mechanisms
to support EFP refinement in hierarchical component mod-
els with explicit property inheritance and refinement poli-
cies which formally define consistency constraints between
refined value and the original one. These policies are inter-
preted and ensured for all actors and in all workspaces. The
paper also describes the related experiments performed on
the ProCom component model.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics;
D.2.13 [Reusable Software]: Domain engineering;

General Terms
Measurement, Performance

Keywords
extra-functional properties, multiple values, inheritance pol-
icy, component type, component instance, virtual workspace

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE’11, June 20–24, 2011, Boulder, Colorado, USA.
Copyright 2011 ACM 978-1-4503-0723-9/11/06 ...$10.00.

1. INTRODUCTION
The development of embedded systems is nowadays chal-

lenged by a rapid and important increase in the complexity
of the systems to build. This complexity results not only
from a will to provide more advanced software functionali-
ties, but additionally from intricate interplays between sev-
eral factors including distribution and a mix between hard-
ware and software functionality. In particular, as defined
by IEEE, embedded systems are small computational de-
vices integrated into larger products to perform some of the
overall product requirements. Consequently, they are as per
nature severely resource constrained and must in general
satisfy dependability (reliability, safety, etc.) and real-time
(execution time, response time, etc.) demands. As a result,
supporting the management of extra-functional properties
(EFPs) and guarantying their correctness is as important in
those systems as their functional counterpart.

Component-Based Software Engineering (CBSE) is an ap-
proach that has already been proven successful for alleviat-
ing system complexity, mainly regarding functional aspects.
Much less attention has been paid to extra-functional prop-
erties [20] and although that topic has gradually gained in-
terest within the CBSE community as shown in many re-
cent works [23, 15, 4, 2, 24, 12], no standardized solution
has emerged yet for the specification, management and as-
sessment of extra-functional property values. As highlighted
in [8], a main reason behind this state-of-fact is that extra-
functional properties are highly heterogeneous and most of
their values are context-sensitive, i.e. dependent upon fac-
tors such as the overall system architecture, the usage pro-
file, the specific hardware of the targeted platform and/or
even upon the value of other properties.

This context-sensitivity of EFPs makes them difficult to
handle in a reusability context. Since components are in-
tended to be reusable in different systems, the value of their
associated extra-functional properties must remain valid in
these contexts. To cope with this issue, either their evalu-
ation is often simply postponed to late development phases
or over-estimations are introduced to ensure the validity of
the property in different contexts.

This is a major problem in embedded system development
for which safety and real-timeliness concerns are dependent
upon the accuracy and tightness of the extra-functional val-
ues with regards to their actual value. Hence, this calls for
solutions to manage extra-functional properties and enable
refining their values in a similar manner as what is done for
functional ones, i.e. assessed and gradually revised the val-
ues throughout the development process (starting from early

83

estimates to more accurate values). This is a non-linear pro-
cess that requires to consider multiple values with possibly
different evaluation context.

In a previous work [21], we proposed a framework, called
the attribute framework, tailored for component model de-
velopment that enables specifying and managing EFPs in a
uniform way. One particularity of this framework is to sus-
tain multiple values for a given extra-functional property,
hence supporting multiple contexts. In this paper, we pro-
pose a method to refine the values of these extra-functional
properties. The method relies on the assumptions that the
refinement of extra-functional properties is a parallel activ-
ity to functional refinement and that the functionality of
the component under study is not changed during the extra-
functional refinement. As a basis for the work, we re-used
the attribute framework together with ProCom [22], a hier-
archical component model for distributed embedded system
that enables having typed hierarchical components consist-
ing of instances at n-levels of nesting.

The rest of the paper is organized as follows. Section 4
presents our case study. Section 4 describes the background
information. Section 2 describes the challenges that are
faced in the refinement of extra-functional properties in hi-
erarchical component model. Section 3 describes the ap-
proach. Section 7 evaluates the work and Section 9 intro-
duces the related work before the conclusions in Section 10.

2. MAIN CHALLENGES
Following the CBSE’s principles in presence of a hierar-

chical component model, a system can be constructed out
of components (the composites), implemented as assembly
of component instances. This is a recursive process that al-
lows a component instance to be in its turn an instance of a
composite. As a result, a hierarchical component model gen-
erally implicitly leads to have multiple instantiation levels,
i.e. a hierarchy of component instances. Looking at extra-
functional properties, this raises the question of what the
influence of the multiple instantiation levels on the values of
the extra-functional properties is.

Following a common assumption, the value of an extra-
functional property specified for a component type must also
hold for all its instances as it is the case for the queryLan-
guages property shown in Figure 1. Some properties such as
the Worst-Case Execution Time (WCET) can be smaller in
a more constrained environment (see Figure 1. For example,
a smaller value range on some input parameters would re-
move possible execution paths in the component’s behaviour
possibly leading to greater WCET. EFP values of instances
can benefit from the knowledge (architectural, hardware,
etc.) of the composite they are enclosed in. This means
that it should be possible to refine the EFP value, defined
for a component type, on one or several of the component
instances. The question is in that case how to determine
(1) what are the properties that can be refined on the in-
stances, (2) how this refinement can be done and (3) if there
is some constraints associated with this refinement. For ex-
ample, the value of the WCET defined on the DB component
type should bigger or equal to the value specified in each in-
stance, since the value defined on a type denotes a upper
bound that should hold for all instances. The reciprocal
also applies: what are the influences of EFP values specified
on component instances only with respect to the component
types.

PNA

GPS1 : GPS Receiver

AS1:Almanac Store

DB1’:DB

encryption = none
queryLanguages = {SQL}

WCET = 13 ms

UI1:UI

DB2:DB

encryption = RSA
queryLanguages = {SQL}

WCET = 22 ms

GPS Receiver

AS1: Almanac Store

DB1:DB
--

encryption = none
queryLanguages = {SQL}

WCET = 22 ms

DB
--

encryption : NotDefined
queryLanguages = {SQL}

WCET = 22 ms

Almanac
Store

UI

encryption

queryLanguages

WCET

Component
Type

Component
Instance

Configuration value

Shared value

Refined value

Figure 1: Refinement examples

In general, available tools to compute EFPs do not know
how to manage EFPs with multiple values. As an example, a
WCET analysis assumes that there is only one WCET value
for each component. While CBSE helps to manage complex-
ity, managing multiple EFP values introduces a new com-
plexity level. This explains why EFPs are generally assumed
to have at most one value in most of component models. The
related challenge is how to allow multiple context sensitive
values for EFPs while reducing the complexity to manage
them for analysis and users.

Many works propose to annotate system and component
model with metadata to describe EFP values. A survey
can be found in [13]. However, extra functional proper-
ties are not independent. So, the consistency of attribute
values should be ensured. This lack of consistency manage-
ment leads in practice to lower the confidence of reliability of
EFP values and to force designers to execute all EFP value
computation after each modification or when a component
is reused. Component based approach has been recognized
as a promising way to improve reuse and quality in em-
bedded systems. While efficiency of component functional
description reuse has been proved, reuse of extra functional
properties still need to be improved.

3. APPROACH OVERVIEW
Taking the above mentioned challenges into consideration,

our objectives are:

[Objective 1] Refinement of EFP values
Allowing and controlling the refinement of EFPs values
according to the usage context of the related compo-
nent, i.e. enabling deriving EFP values between com-
ponent type and instances in a controlled manner;

[Objective 2] Consistencty between EFP values
Checking and ensuring the consistency of EFPs values
whenever it is possible;

[Objective 3] Usage Transparency
Hiding the versioned nature of EFPs to the analysis
tools and tool users.

While our main objective is to support EFP value refine-
ment, we would like to make the approach as generic as pos-
sible. That is why we propose to support EFP value refine-

84

ment using type specialization and instantiation paradigms.
To ensure the genericity of our approach, an object (compo-
nent or any model element) can be refined by creating a new
object which is an instance of the original one (e.g. a compo-
nent instance), or which is a subtype of the original one (e.g.
a component that extends another component). The original
and the refined object coexist in the workspace. We choose
the following definition for a refined object: “an object is
a refinement of another object if all information defined by
the original object is still valid for the refined object”. From
a certain point of view, they cannot be distinguished. The
original object is an abstraction of the refined one. Several
objects could be refinement of the same object. It enables
to have multiple variants of an object which can also have
been refined by a set of objects.

We base our work on the following assumptions:

– Assumption 1
A system is designed using a hierarchical component
model where a composite component is an assembly of
component instances;

– Assumption 2
Extra functional properties (EFPs) are defined as an-
notations on model elements;

– Assumption 3
Multiple values of EFPs can be defined and there is
means to distinguish between them (as with metadata
for example);

– Assumption 4
All actors used the same tool.

ProCom together with the attribute framework and Pride [6]
follow all these assumptions. Hence, we follow an MDE ap-
proach using ProCom component model which can be sum-
marized as:

– Introducing metaclasses to support multiple levels of
instantiation with strong typing of EFPs and their
metadata;

– Defining and interpreting explicit inheritance and deriva-
tion policies for attributes;

– Providing automatic selection mechanism based on user
preferences and task context to let the user work in a
mono version workspace.

4. BACKGROUND WORK

4.1 The ProCom Component Model
To address the key characteristics and concerns of em-

bedded system development, i.e. providing support for the
complete design-verification-deployment cycle, distribution,
extra-functional properties and code reuse, we have devel-
oped a domain specific component model called ProCom [22].

One of the particularities of ProCom lays in its notion
of rich design-time typed components, where components
are seen as the collection of all the artifacts needed or pro-
duced during the development of this system element. This
encompasses artifacts such as source code, early design mod-
els, test results, architectural models, and more specifically,

of analysis models, behavior models, and their correspond-
ing results. Reusing a component means reusing not only
its concrete realization, but the whole collection of artifacts.

Another of its particularity is to consider the need for the
design of a complete system consisting of both complex and
distributed functionalities on one hand, and small low-level
control-based functionalities on the other. As a consequence,
ProCom is structured into two hierarchical layers, each layer
dedicated to a specific type of functionality. The upper layer,
called ProSys, is intended for modeling distributed, complex,
active and concurrent subsystems, communicating via asyn-
chronous message passing. The lower layer, called ProSave,
serves for modeling of non-distributed, passive and small
units of functionalities, closer to tasks or control loops. The
connection between layer is done through modeling ProSys
component out of ProSave components. For more details,
see [7].

4.2 The Attribute Framework
Although dedicated to distributed embedded systems and

developed to facilitate evaluating extra-functional proper-
ties, extra-functional property value specification is not an
intrinsic part of ProCom. This specification is done through
the attribute framework metamodel, which derived extra-
functional properties artifacts are integrated to the rich com-
ponent definition.

The attribute framework [21] provides a systematic way to
support the management and integration of extra-functional
properties during the development of a component or a sys-
tem. In it, extra-functional properties are represented by
attributes with a unique identifier and several values. The
complete list of the attribute types that are available during
the development is stored in an attribute registry together
with the specification of each attribute, that is (i) the list
of entities to which this attribute can be attached, and (ii)
the valid format for its values (e.g. integer, interval, model,
etc.). Providing that it is authorized by its specification, an
attribute can be associated with any entity of a component
model such as component, service, port, connection or even
component instance.

5. SUPPORT FOR MULTI-LEVEL INSTAN-
TIATION

Figure 2: Simplified view of the attribute meta-
model

First, in order to ensure consistency of refined EFPs, we
need to track which objects are refined. That is why we

85

changed the ProCom metamodel to make explicit instantia-
tion and specialization. To do so, we have modified the core
part of the attribute meta-model in introducing Instance
and Type meta classes (see Figure 2). All model elements
inherit from one of these metaclasses. Every model element
has a global unique identifier. Refined objects and the re-
lated original object must be at least distinguishable by their
id. Pride generates this id for every model element. You
can observe that any model element (which is an Instance)
can be associated to a set of attribute values with their re-
lated metadata.

5.1 Introducing Refinement By Instantiation
The type-instance design pattern is often used in model-

ing languages to allow specifying information (in the type)
that will be shared by a set of objects (in the instances).
There is an implicit conformity between instances and their
type. Object-oriented programming languages use heavily
this pattern in which a class defines a set of attributes and
methods that all object which are instances of this class will
inherit. In such languages, conformity is checked at compi-
lation time and at runtime. In general, an instance cannot
be a type, which limits the number of instantiation levels to
one.

In our case, we want to allow to refine an object as many
times as necessary. In this case, the number of instantiation
level is not limited. That is why a Type inherits from In-
stance. It becomes possible to have instances which are also
types enabling refine them with their instances.

To have explicit refinement traces, an instance is linked
to his type thanks to an instanceOf link. While typical in-
stantiation forces instances to value the attributes defined
by the related type, we do not ensure such property because
EFPs do not need this strict conformity as they may be de-
fined after several refinement. In order to facilitate evolution
management, we choose to forbid an instance to change its
parent after creation time. In other words, the instanceOf
link destination is defined at the creation time of the source
element.

5.2 Introducing Refinement By Specialization
In object oriented languages, a class can be the special-

ization of zero, one or many other classes. A child class
inherits all information from the parent ones except some
of them such as their names. It refines its parent class by
adding new information (new attribute and methods). We
choose to manage only simple inheritance where a class can
at most inherits from another class. To have explicit refine-
ment traces, a type is linked to his parent type thanks to a
superType link. As with instantiation, we choose to forbid
a subtype to change its super type, i.e. to point to another
type, after creation time.

5.3 Application To ProCom
Figure 3 shows a simplified view of the ProCom meta-

model. One original part of the ProCom meta model is
the fact that a component instance is also a component
(CompInstance inherits from Component). It is considered
as a component type which is used in a specific context: its
enclosing composite. This means that a component instance
is a refinement of the related component.

We defined Component class as a sub class of the meta
class Type in order to be able to refine component using

Figure 3: Simplified view of the ProCom meta-
model

specialization. All others classes are defined as sub classes
of the Instance meta class. In order to apply the same ap-
proach to other component models, we have only to define
for each class if it inherits from Type or Instance.

5.4 Instance Creation

O1:T1

O2:T2 O3:T3

O4:T4

O5:T5

O1’:T1

O2’:T2 O3’:T3

O4’:T4

O1 instance creation

O:T Object O of Type T Containment link

standard link (no containment annotation)instanceOf link

Figure 4: An instantiation example

We used Eclipse Modeling Framework (EMF) to manage
our ProCom models. In EMF, a relationship R from a class
A to a class B can represent a whole/part relationship if it
is associated to a containment annotation. This annotation
defines a strong life cycle dependency between the source
element S and destination elements Di. An element Di can-
not exist without its parent S. As a consequence, deleting
S forces removal of Di elements. An important property is
that one element Di must have at most one parent element.

Our algorithm to create an instance preserves this prop-
erty. It can be summarized as cloning every model element
which is contained (following EMF containment links) in the
object to instantiate, and to keep same reference values if
destination model elements have not been cloned. So, con-
tainment relationships guide our instantiation mechanism.
The cloned object is associated to a new ID and is linked
to its corresponding parent using instanceOf reference. For
all shared EAttribute and EReference definition (same at-
tributes and outgoing relationships defined for both classes),
the attribute or reference value is copied or cloned. As we
want to manage EFP inheritance, the EFP values are not
copied but they are computed at access time.

Figure 4 shows an example of the creation of an instance

86

of the model element O1. All contained elements, i.e. the
transitive closure of containment, which includes O2, O3 and
O4 model elements, are instantiated. O5 is not instantiated
as it is not contained in O1 and all links pointing to O5
have been cloned on the related created instances: in this
example, O3’ is linked to O5.

An algorithm based on same principles is used to syn-
chronize modifications on refined objects and their related
original objects.

5.5 EFP Inheritance Policies
First of all, we take the hypothesis that the refined objects

cannot exist without their original objects. This hypothe-
sis is ensured by Pride which forces to import original ob-
jects and deletes refined objects when the original object is
removed. As values relationship is a containment relation-
ship, an attribute value can only be associated to exactly one
model element. From a conceptual point of view, a refined
object must be able to have his own attribute values which
may refine original values. Value refinement is tracked us-
ing refines links (see the “refines” relationship in Figure 2).
As other model elements, attributes and metadata have ids.
We choose to ensure that refined values are the same if no
modification has been performed on one of ancestor in the
inheritance model element hierarchy. In order to facilitate
evolution management of refined values, attribute values are
the same all the time if no modification has been performed
on one of ancestor in the inheritance model element hierar-
chy. In particular, it ensures that refined value ids does not
evolve if it is not necessary. It considerably simplify evo-
lution management as it ensures that refines links always
points to the original value even if the original evolves ex-
cept. In addition, if the original value is deleted, the refined
value must be deleted.

As already said previously, the inherited attribute values
are computed each time you access to the attribute values
of a model element. This computation is guided by inheri-
tance policies of attributes. We have defined three different
attribute value inheritance policies:

– final
the value of a final attribute is always inherited and
can only be modified on the original object where this
value has been defined;

– override
the value of a override attribute is inherited by de-
fault but can be overriden by the user. Additionally,
OCL constraints can be specified to check the consis-
tency with the parent value;

– notInherited
a notInherited attribute value is never inherited.

In order to be able to define an attribute value on a model
element, its definition must be available for the considered
model element. It explains why we also need an attribute
definition inheritance mechanism. We have defined two at-
tribute definition inheritance policies:

– inherited
the definition of an inherited attribute is always in-
herited;

– notInherited
the definition of a notInherited attribute is never in-
herited.

Identifier
Def. Pol-
icy

Value Pol-
icy

Constraint

Vendor
Name

notInherited notInherited none.

Acquisition
Time

inherited override
originalValue
>= refined-
Value.

Response
Time

inherited override
originalValue
>= refined-
Value.

WCET inherited override
originalValue
>= refined-
Value.

Static
memory

inherited final none.

Table 1: Example of attribute inheritance policies
related to PNA example.

The value inheritance and attribute definition inheritance
policies are not independent. Final and override value in-
heritance policies require that the attribute is defined. This
is the reason why these policies imply setting the inher-
ited attribute definition inheritance policy. The inheritance
policies may differ for specialization and instantiation. In
order to manage these specific cases, different inheritance
policies can be defined for specialization and instantiation.
Table 1 gives some examples of possible attribute inheri-
tance policies. the Vendor Name attribute is not inherited
at all. The attribute inheritance policies may be arbitrary
defined. However, defining specific inheritance policies such
as override can ensure that some properties computed for
the original object are still valid with the refined object.
As an example, if WCET attribute is defined as inherited
and override with the constraint that refined value cannot
be greater than the original value, it ensures that all WCET
computation done using refined object is valid even if it may
not be as precise as it is possible.

6. VIRTUAL WORKSPACE
While having value for each specific usage context seems

to be convenient, the number of possible configurations of se-
lected attribute values is too big to be manageable by hand.
In particular, tools such as static analysis cannot work on
multiples attribute value versions. That is why an automatic
or semi-automatic selection mechanism should be available
for the users.

To be able to select the most appropriate value, we need
to be able to distinguish the differences between the different
values of a same attribute. In order to be able to process au-
tomatically this selection, metadata must be strongly typed.
Using many case studies, we have observed that the consid-
ered attribute values depend upon the current activity the
user wants to perform. We propose to let user define what
his current task is and in particular, what the attribute val-
ues he is interested in are for his current task. Based on the
user’s preferences, he will have access only to the attribute
values that match his expectations. While the workspace
contains all attribute values, only some of them are visible
from the user. We call this view of the workspace a vir-
tual workspace. Figure 5 shows the meta model of a virtual
workspace. While multiple user tasks may be defined, there
is at most one defined as the current one at a given time and
each task has its own selection conditions for attribute val-
ues. We propose a selection language based on OCL expres-
sions which allow to specify the attribute values which must

87

Figure 5: VirtualWorkspace meta-model

be considered. The grammar of this language is described in
Listing 1. A selection condition expression (SelectCond) is
a list of selection expression (AtomCond). The selection ex-
pressions are evaluated in the order of their definition until
one of them results in at least one selected attribute value. A
selection expression defines mandatory constraints and op-
tional ones. The evaluation of such expression tries first to
select values which conform to mandatory and optional con-
straints. If there is no such value, the selection is performed
by considering only mandatory constraints. A constraint
(AttrCst) is defined as an OCL logical expression assuming
that the OCL context is the AttributeValue class.

Listing 1: Selection Expression Grammar
SelectCond => AtomCond [or SelectCond]
AtomCond => mandatory (AttrCst)

[and op t i ona l (AttrCst)] |
op t i ona l (AttrCst)

AttrCst => an OCL expr e s s i on

Listing 2 presents an example where a user defined that
all attribute values must be related to FreeRTOS platform
and that measured values are preferred upon estimates. It
allows to ensure that all considered EFP values are related to
the same targeted platform. Acquisition Time values must
be lower than or equal to -10 according to the user defined
preferences.

Listing 2: Selection Expression Example
Global Pr e f e r enc e s :

mandatory (s e l f . metadata (‘ ‘ platform ’ ’) .
s t r ingVa lue () = ’FreeRTOS ’) and

opt i ona l (s e l f . metadata (‘ ‘ measured ’ ’) .
booleanValue () = true)

Acqu i s i t i on Time Attr ibute Pr e f e r enc e s :
mandatory (s e l f . metadata (‘ ‘ minTemperature ’ ’) .

intValue () <= −10)

The selection expressions are merged and transformed to
an equivalent OCL expression using “if then else” and “ex-
ists” constructs. It allows to use OCL runtime to evaluate
our selection expression. As analysis access to attribute val-
ues thanks to the attribute framework which evaluate the
selection expressions to present only matching values, the
analysis as the user work in a mono version workspace. In
our example, only 7 min value for acquisition time attribute
will be visible for the user.

The system does not ensure that only one value is selected.
If selection expressions lead to multiple selected values for
the same attribute, a warning is logged and a non determin-
istic selection is performed on this value set.

7. EXEMPLIFICATION

7.1 The GPS Example
To illustrate ideas and results, we use the example of the

Personal Navigation Assistant (PNA) system. A PNA relies
on the Global Position System (GPS) to provide aid to nav-
igation functionalities such as computing the best routes be-
tween two cities, distance and time to arrival, current speed,
direction, etc. A GPS is composed of a group of 24 Earth-
orbiting satellites periodically sending information to GPS
receivers that calculate their Earth-based geolocation. In
common language, GPS refers to the GPS receiver devices
only. Likewise in this paper, we focus on the GPS receiver
part of the PNA.

A GPS receiver is a device able to determine its location
on Earth through a trilateration calculation method that
requires the exact position of at least three satellites. With
three satellites, a GPS is able to estimate its 2D-position
(longitude and latitude) whereas with four satellites, it can
also compute its altitude. The more satellite positions the
receiver get, the more accurate is the position calculation.
For example, most of today receivers, such as the Garmin
G18 [10], tracks simultaneously up to twelve satellites for
better results. Other type of receivers includes multiplexing
channel receiver that can only follow one satellite at a time,
thus forcing them to switch rapidly between the satellites
being tracked at the cost of time and precision.

In order to know the satellite’s position precisely, the GPS
receiver must be fully aligned with the signal of the satellite
being tracked. To enable satellite’s position discovery, the
GPS receiver uses a clock to have the current time and an
almanac containing the supposed positions of a satellite at
a given time.

To create the PNA, the GPS receiver is associated to a
navigation processor (Navigation System) that computes the
navigation data (current position, direction, current speed,
etc.) and a graphical user interface that enables displaying
the device’s geolocation data on maps, together with the
navigation data and other information such as distance and
time to destination, point of interests, etc.

Hence, the PNA system (illustrated on Figure 7) is devel-
oped out of four ProSys components (the GPS Reveiver,
Power Management, Navigation System and UI) since a
PNA installed in a car could be distributed, i.e. having
its central computation unit in one part of the vehicle while
the signal receiver units would be located closer to the roof
for better reception.

Figure 7: a PNA system modelled in ProCom

88

Figure 6: Screenshot of Pride showing different attribute values associated to the Antenna Digital Receiver

Looking closer at the GPS Receiver component shown in
Figure 8, it is a composite ProSys component that consists of
the Clock and Almanac Store ProSys components to help the
GPS receiver to faster locate the satellites on start-up and a
Parallel Receiver component that simultaneously tracks up
to twelve satellites to compute the geolocation of the device.

In that component, the Parallel Receiver is a primitive
ProSys component built out of ProSave components as shown
on Figure 9. It consists of twelve instances of an Antenna
Digital Receiver ProSave component, a Trilateration Pro-
cessor and an Output Mode Converter. For readability pur-
pose, only two instances of the Antenna Digital Receiver are
depicted on Figure 9. The Antenna Digital Receiver is in
charge of the synchronization with the satellite’s signal and
get the satellite location. The Trilateration Processor com-
putes the actual position of the devices and if activated, the
Output Mode Converter converts the position into a differ-

ent format. The communication between these components
follows a pipes-and-filters architectural style separating data
flows from control flows. Data input and output ports are
denoted by small rectangles whereas trigger ports are trian-
gles. Moreover, the antenna digital receivers are periodically
activated every ten seconds. Once one of the Antenna Dig-
ital Receiver has terminating its computation, it activates
the trilateration processor.

As listed in Table 2, several attributes can be used to
analyse the PNA system such as the acquisition time at-
tribute which specifies the amount of time that a component
requires to correctly receive the satelitte’s position signal.
Such an attribute is dependent upon the platform (paral-
lel receiver vs. multiplexing channel receiver), therefore it is
important to use the metadata Platform to know the context
in which this value is valid.

Table 3 shows attribute values defined for the GPS Re-
ceiver component.

89

Figure 9: A simplified version of a ProSys primitive receiver

Figure 8: Model of the GPS receiver as composite
ProSys components

Table 2: Examples of attribute specification related
to the PNA example.

Identifier Attributables
Data
Type

Doc.

Acquisition
Time

Component,
Instance

Int
Time (in ms) to ac-
quire a signal

Response
Time

Component,
Instance

Int
Time (in ms) to re-
act to a given input

WCET Service Int

The maximum
number of clock
cycles the ser-
vice can consume
before terminating.

Static
memory

Component,
Instance

Int

The amount of
memory (in kB)
statically allocated
by the component
or subsystem.

8. OUTCOMES
The approach has been implemented in Pride, the Pro-

Com IDE. The attribute framework has been redesigned to
introduce strong typing of metadata and the possibility to
define the inheritance policies. You can see attribute values
defined for our Parallel Receiver component on Figure 6.

Table 3: GPS Receiver Acquisition Time Attribute
Values

Value

Min
Temper-
ature
Meta-
data
value

Measured
Metadata
value

Platform
Metadata
value

43 s 0 true FreeRTOS
32 s 0 true Linux
5 min -15 false FreeRTOS
7 min -25 true FreeRTOS
5 min -15 false Linux

We designed several systems including an Advanced Cruise
Control system, an automatic truck and the example pre-
sented in this paper using Pride. In early Pride releases
without refinement support, users were lacking support for
EFP inheritance and consistency checking.

While Model Driven Engineering allows to reason at a
higher abstraction level, the model itself can also contain
multiple abstraction levels. In our work, we have shown
how a component instance can be seen as a refinement of
the related component. The idea of such refinement sup-
port started from observation of the system synthesis needs
where each component instance has its specific optimization
property depending on its usage context. In particular, two
different instances of the same component may be optimized
in different ways depending on their usage context. We have
also observed this need with fault tolerant properties.

The control of the EFP modification is not possible if hy-
pothesis 4 is not fulfill. It ensures that all modifications
on the model is performed thanks to Pride, especially that
each time EFP values of model element are accessed, the in-
herited values have been recomputed and that EFP refined
values are still consistent with their original value. Other-
wise, Pride shows a warning and list only the original value.

On one hand, while the selection expression language seems
to be able to define all selection we need, some expressions

90

could be quite complex such as selecting the most recent
value that follow a certain constraint. We investigate to in-
troduce some keywords for the most used constraints. On
the other hand, the language is easy to learn and to use as
constraints are OCL expressions.

9. RELATED WORK
Within the last decade, extra-functional properties have

gradually gained importance in system development to be
recognized as an indispensable counterpart to functional prop-
erties for establishing system correctness. As a consequence,
several works have been proposed to specify either extra-
functional properties in general [9, 1, 18, 24, 13] or focusing
on a dedicated subset of extra-functional properties such
as temporal, performance or resource-related properties [23,
16, 5]. However, none of the above approaches considers
multiple values for EFPs. As a consequence, they only sup-
port predefined value metadata. The refinement of extra-
functional property values is often done in ad hoc manner,
without tracking changes nor ensuring the consistency be-
tween changes. Furthermore, to the best of our knowledge,
there is little work in the CBSE community concerned with
studying the relationships and impacts of multiple levels of
component instantiations on EFP values.

On the other hand, in the modelling domain, several ap-
proaches [11, 19, 17, 3] have been proposed to manage multi-
ple instantiation levels together with the related attributes
at each level. Note that in that specific context the term
attribute refers to field or static variables that can be in-
stantiated at a given level of instantiation and not to extra-
functional properties. These approaches address the similar
problem of having to deal with multiple levels of instan-
tiation, which requires to be able to determine (1) whether
an element in a higher instantiation level influences elements
beneath that level and (2) what the impacts of that influence
are. In difference to those approaches, our approach is not
concerned with instantiation at run-time of elements (ob-
jects or variables) but with the impact of the instantiation
hierarchy on the values of extra-functional properties, that
is with refining the extra-functional property values within a
static hierarchy of component instances. Also, the potency
concept proposed in [3] is not applicable in the context of our
work, since determining the level of instantiation at which an
extra-functional property value would be applicable seem to
be a rather difficult decision to make at the development of a
component type or at the specification of an extra-functional
property. However, one particularity of the potency concept
is to enable the framework to know which values should exist
at which level of instantiation. Similarly in our approach,
we derive only values with suitable inheritance policies. Fi-
nally a main difference between these approaches and our
work lays in the fact that we have constraints to guaranty
the coherence in the refinement process.

With regards to our usage transparency objective, our
work relates to Mylyn [14]. Mylyn is an Eclipse extension
that facilitates multi-task activity by hiding unneeded infor-
mation such as unused projects. It allows to switch from an
activity to another one without restarting Eclipse. Mylyn
attachs task information to artifacts to easily recognize what
are the information related to a specific task. Our approach
differs from the fact that our workspace view is dynamic in
the sense that selection condition can evolve over time and

that elements are not directly associated to a task. A virtual
workspace is described by intention instead of by extension.

10. CONCLUSIONS
We have presented in this article how to support and

control refinement of extra functional properties in hierar-
chical component models by introducing attribute inheri-
tance mechanism based on explicit inheritance and refine-
ment policies. New extra functional property and analysis
can benefit this refinement support without modification on
the environment. Our contributions includes

• the demonstration that hierarchical component models
needs support of multi-level instantiation to support
component refinements;

• the definition and the implementation of a multiple
level instantiation mechanism;

• to provide an inheritance attribute definition and value
mechanism that interprets fine grain explicit inheri-
tance policies;

• to propose a new concept called virtual workspace that
allows users to work in a mono version workspace.

While this work has been applied on the ProCom component
model, it can be generalized to other hierarchical component
models. We focus our work now on finishing the implemen-
tation and the validation of the virtual workspace concept.
Our future work will intend to provide support for other
explicit evolution policies including versioning ones for ex-
tra functional properties. We are also investigating different
mechanism to allow designers to work at the most conve-
nient abstraction level depending on their goals.

11. ACKNOWLEDGMENTS
This work was partially supported by the Swedish Founda-

tion for Strategic Research via the strategic research centre
PROGRESS.

12. REFERENCES
[1] J. Ø. Aagedal. Quality of Service Support in

Development of Distributed Systems. PhD thesis,
Faculty of Mathematics and Natural Sciences,
University of Oslo, 2001.

[2] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson,
J. H̊akansson, A. Möller, P. Pettersson, and M. Tivoli.
The SAVE Approach to Component-Based
Development of Vehicular Systems. Journal of
Systems and Software, 80(5):655–667, May 2007.

[3] C. Atkinson, M. Gutheil, and B. Kennel. A Flexible
Infrastructure for Multilevel Language Engineering.
IEEE Transactions on Software Engineering,
99(RapidPosts):742–755, 2009.

[4] S. Becker, H. Koziolek, and R. Reussner. Model-Based
Performance Prediction with the Palladio Component
Model. the 6th international workshop on Software
and performance, 2007.

[5] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. J. Syst. Softw., 82:3–22, January 2009.

[6] E. Borde, J. Carlson, J. Feljan, L. Lednicki,
T. Leveque, J. Maras, A. Petricic, and S. Sentilles.
PRIDE, an Environment for Component-Based
Development of Distributed Real-time Embedded
Systems. WICSA, 2011.

91

[7] T. Bures, J. Carlson, I. Crnkovic, S. Sentilles, and
A. Vulgarakis. ProCom - the Progress Component
Model Reference Manual, version 1.0. Technical
Report ISSN 1404-3041 ISRN
MDH-MRTC-230/2008-1-SE, Mälardalen University,
June 2008.

[8] I. Crnkovic, M. Larsson, and O. Preiss. Concerning
Predictability in Dependable Component-Based
Systems: Classification of Quality Attributes. In
Architecting Dependable Systems III, volume 3549 of
Lecture Notes in Computer Science, pages 257–278.
Springer Berlin, 2005.

[9] X. Franch. Systematic Formulation of Non-Functional
Characteristics of Software]. In Proceedings of the 3rd
International Conference on Requirements
Engineering: Putting Requirements Engineering to
Practice, pages 174–181, Washington, DC, USA, 1998.

[10] Garmin. GPS 18 Technical Specifications
(190-00307-00), Rev. D. Technical report, June 2005.

[11] R. C. Goldstein and V. C. Storey. Materialization.
IEEE Trans. on Knowl. and Data Eng., 6:835–842,
October 1994.

[12] L. Grunske. Early quality prediction of
component-based systems - a generic framework. J.
Syst. Softw., 80:678–686, May 2007.

[13] K. Jezek, P. Brada, and P. Stepán. Towards context
independent extra-functional properties descriptor for
components. Electronic Notes in Theoretical Computer
Science, 264(1):55 – 71, 2010.

[14] M. Kersten and G. C. Murphy. Using task context to
improve programmer productivity. In Proceedings of
the 14th ACM SIGSOFT international symposium on
Foundations of software engineering, SIGSOFT
’06/FSE-14, pages 1–11, New York, NY, USA, 2006.

[15] J. E. Kim, O. Rogalla, S. Kramer, and A. Haman.
Extracting, Specifying and Predicting Software
System Properties in Component Based Real-Time
Embedded Software Development. In Proceedings of
the 31st International Conference on Software
Engineering (ICSE), 2009.

[16] M. Mohammad and V. Alagar. Tadl - an architecture
description language for trustworthy component-based
systems. In Proceedings of the 2nd European
conference on Software Architecture, ECSA ’08, pages
290–297, Berlin, Heidelberg, 2008. Springer-Verlag.

[17] B. Neumayr, K. Grün, and M. Schrefl. Multi-level
domain modeling with m-objects and m-relationships.
In Proceedings of the Sixth Asia-Pacific Conference on
Conceptual Modeling - Volume 96, APCCM ’09, pages
107–116, Darlinghurst, Australia, Australia, 2009.

[18] Object Management Group. A UML Profile for
MARTE, Beta 1, August 2007. Document number:
ptc/07-08-04.

[19] J. Odell. Power Types. JOOP, 7(2):8–12, 1994.

[20] H. Schmidt. Trustworthy components–composition-
ality and prediction. Journal of Systems and Software,
65(3):215 – 225, 2003. Component-Based Software
Engineering.

[21] S. Sentilles, P. Stepan, J. Carlson, and I. Crnkovic.
Integration of Extra-Functional Properties in
Component Models. In I. P. Christine Hofmeister,
Grace A. Lewis, editor, 12th International Symposium
on Component Based Software Engineering, LNCS
5582. Springer Berlin, LNCS 5582, June 2009.

[22] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and
I. Crnkovic. A Component Model for
Control-Intensive Distributed Embedded Systems. In
M. R. Chaudron and C. Szyperski, editors,
Proceedings of the 11th International Symposium on
Component Based Software Engineering, pages
310–317. Springer Berlin, October 2008.

[23] K. C. Wallnau. Volume III: A Technology for
Predictable Assembly from Certifiable Components
(PACC). Technical Report CMU/SEI-2003-TR-009,
Carnegie Mellon, 2003.

[24] S. Zschaler. Formal specification of non-functional
properties of component-based software systems: A
semantic framework and some applications thereof.
Software and Systems Modelling (SoSyM), 9:161–201,
Apr. 2009.

92

