
Memory Positioning of Real-Time Code
for Smaller Worst-Case Execution Times

Amine Marref
Department of Computer Science

Umm Al-Qura University
Makkah, Saudi Arabia
ajmarref@uqu.edu.sa

Adam Betts
Mälardalen University

School of Innovation, Design, and Engineering
Västerås, Sweden

adam.betts@mdh.se

Abstract—The process of determining the worst-case execution
time (WCET) is challenged in the presence of caches due to
their unpredictable effect on the speed of memory references.
In particular, when cache conflicts between program lines are
common, thrashing occurs and this inadvertently increasesthe
WCET, sometimes significantly so. One way to minimise the cache
impact on the WCET, therefore, is to judiciously lay out code
and data in memory to avoid cache conflicts.

In this paper, we show how to formulate the WCET-aware
code placement problem as a Constraint-Optimization Problem
(COP), which can then be efficiently solved by off-the-shelfCOP
solvers. Experimental evaluation of our proposed analysisshows
that the proposed analysis successfully identified code positioning
that yields the minimum WCET for over half of the problems
within manageable time.

I. I NTRODUCTION

Real-time systems (RTSs) must operate in a timely manner
to ensure their correct functioning. An RTS is a set of tasks
that cooperate in order to deliver a specific functionality.To
ensure that the RTS works correctly, a schedulability analysis
is performed which checks whether or not all tasks can meet
their deadlines at runtime — this requires knowledge about the
worst-case execution time (WCET) of the individual tasks. In
order to estimate the WCET of a task, either static analysis
(SA) or dynamic analysis (DA) are performed [1].

The SA of a real-time task to obtain an upper bound
on the WCET involves creating a mathematical model of
the hardware where the task runs. Contemporary hardware
inevitably contains caches since they speed-up computation
time considerably. Consequently, the SA of modern hardware
to obtain the WCET naturally includes the analysis of the
cache behaviour that classifies cache accesses asdefinite hits,
definite misses, and unclassified accesses. An unclassified
cache access results when SA fails to determine whether a
portion of the task will or not be in the cache when it is
accessed because of some complexcache-conflictpattern that
cannot be accurately captured by the SA. Since safety in SA
is mandatory, the unclassified cache accesses are considered
as cache misses — as long as this does not cause timing
anomalies [2] i.e., situations where assuming a local worst-
case behaviour leads a global non worst-case behaviour.

Large WCET estimations are not practical as they might
eventually lead to unschedulable systems, and so decreasing
the WCET is always desired. The magnitude of the WCET

returned by SA is a function of the number and magnitude
of cache hits and cache misses — the latter influences the
estimation considerably since the cost of a cache miss is
several orders of magnitude larger than the cost of a cache
hit. Reducing the number of cache conflicts eventually reduces
the number of definite cache misses and unclassified cache
accesses, allowing SA to derive a tighter WCET bound.

The number of cache conflicts in the task also affects DA —
which involves executing the task on its target hardware. When
the WCET estimation is obtained by DA, a certain level of
execution-time coverage [3] is usually needed to acquire more
confidence in the WCET estimation. When the analysed task
exhibits a complex cache behaviour, reasoning about timing
coverage becomes very hard as the testing process of DA
must be able to stress task execution in situations that cause
worst-case cache behaviour which might only be observed
in very pathological executions of the task. Reducing the
number of cache conflicts reduces the number of cache misses
during execution which contributes to a smaller WCET, and
also minimizes the timing variations which allows a better
reasoning about timing coverage.

One way to make the WCET smaller is to organise its code
in memory in a way that minimizes cache conflicts at run-
time — this is the problem for which we offer a solution in
this paper. The proposed technique only applies to instruction
caches which we refer to as simply caches throughout this
paper.

In this work, we consider the problem of code positioning
of real-time tasks that contain a number of functions. The
problem for which we propose a solution is how to organise
the functions that form the real-time task in main memory so
that their interaction in cache at run-time yields a minimal
number of cache conflicts, and hence decreases the WCET.
The analysis could in theory additionally be applied at the
basic-block level of the different functions i.e., minimizing
cache conflicts resulting from both intra-function and inter-
function cache interaction. We focus on this level of granu-
larity because the computed layout can only be enforced with
linker support, which typically only allows control over the
start addresses of functions.

In this paper, we show how to model the problem of
code positioning in memory for lower WCET as a constraint-
optimization problem (COP). Using a COP to model the

problem has two main advantages. First, it is possible to
obtain theoptimalcode positioning in memory that yields the
minimal number of cache conflicts using a complete search
method. Second, the problem can seamlessly be augmented by
extra constraints that describe restrictions on code placement
or reflect functionality constraints between portions of the code
of the task being analysed. This is a particularly important
consideration in industry where it is often necessary, for
example, to force functions to particular address so that new
layouts have minimal changes.

The contributions of the paper are the following.

• We show how to model the problem of code positioning
to minimize the WCET as a COP.

• We show that the COP solution to the code-positioning
problem can transparently be augmented by real-life
constraints that normally govern code positioning in main
memory.

• We prove that positioning task code in order to minimize
the WCET never causes an increase in the WCET with
respect to the most-commonly used hardware accelera-
tors.

• We evaluate the quality and cost of the solutions obtained
for the COP formulation using two off-the-shelf COP
solvers.

• We implement our own COP search method in constraint-
logic programming, and evaluate the quality and cost of
its solution.

The rest of the paper is organised as follows. In Section II,
we review related work. In Section III, we describe the
COP formulation of the code-positioning problem in a WCET
setting. In Section IV, we describe the search methods that we
use to solve the COP formulation of the problem. In Section V,
we present the enhancements we perform in the COP solver
that decreases the effort of solving the COP. In Section VI,
we conduct an empirical evaluation of the goodness and
complexity of our proposed technique. In Section VII, we draw
conclusions and set directions for future work.

II. RELATED WORK

Code positioning is a compiler technique [4] that aims
at reducing the average-case execution time (ACET). Using
execution-profile data, the compiler decides on a particular
code (and data) positioning that enhances spacial and temporal
locality which at the end yields a better use of the cache.

Code positioning aimed at decreasing the ACET is not
guaranteed to also decrease the WCET — it can potentially
increase it. Therefore, code-positioning techniques to reduce
the ACET are relevant to our work, but non-comparable.

In [5], [6], the problem of code positioning to reduce the
WCET is considered. The work in [5] addresses the issue
of positioning basic blocks in main memory in a way that
reduces the branch penalties along the longest path. This work
is different from ours in two ways. First, the positioning of
code is performed at a basic-block level, while in our case,
the positioning is performed at the function level. Second,the

cost of positioning is derived from branch-prediction penalties,
while in our case it is derived from cache-conflict penalties.

In [6], code positioning is performed at the function level,
and its cost is based on instruction-cache conflicts. The work
in [6] addresses the same problem that we attempt to solve —
but we make the following observations. First, the formulation
of the problem is different; [6] views the code positioning
problem as a heuristic problem while we formulate it as
a COP. Second, the algorithm presented in [6] is greedy
whose solution is not guaranteed to be optimal. However,
our formulation enables obtaining optimal solutions if desired.
Third, [6] uses a third-party WCET analysis tool that performs
cache modelling, which is not required in our case because we
integrate the cache analysis as a set of constraints in our COP
formulation. Fourth, [6] does not consider real-life constraints
that may restrict code positioning, while our COP formulation
can transparently be augmented with such constraints.

In [7], WCET reduction is implemented by careful inlining
of task functions using machine-learning techniques. Thisis
different from our work in the sense that the reduction of
the WCET is obtained by inlining functions as opposed to
positioning them.

III. PROBLEM FORMULATION AS A COP

The problem that we address in this paper is the following.
An executable (real-time) task contains a set of functions
whose interaction with each other is dictated by the functional
semantics of the task. The functions are in object-code format
i.e., compiled; and are awaiting to be linked in the task’s
memory-address space. The way by which the functions are
linked yields a specific cache behaviour of the task charac-
terised by a number of cache conflicts. We want to find the
arrangement of functions in memory that yields a minimum
number of cache conflicts and thus decreases the WCET of
the task.

In order to formulate the code-positioning problem to min-
imize the WCET as a COP, we define what a COP is. First,
a constraint-satisfaction problem (CSP) is defined as a set
of variables and a set of constraints on the variables; and a
solution to the CSP is a total assignment to the variables that
satisfies all the constraints. A COP is a CSP augmented with
an objective function and a cost variable; in this case a solution
to the COP is a total assignment to the variables that satisfies
all the constraints and optimizes (minimizes or maximizes)the
cost variable according to the objective function.

In the problem of code positioning to minimize the WCET,
the variables are the functions and their attributes e.g., position
in main memory. The set of constraints dictates mandatory
properties (e.g., no two functions can map to the same mem-
ory address) and optional properties of functions (e.g., two
functions are mutually exclusive). The cost that we want to
minimize is the WCET of the task.

Formally, we consider a taskt of n functions Fi. Each
function Fi has a start addresssi, an end addressei, and
a sizezi. The start and end addressessi and ei respectively
will indicate the placement of the functions in main memory

and hence finding an assignment to them — that minimizes
the WCET — is the objective of the solution. The sizeszi are
given and they are a function of the number of instructions
in the object code (known from the object code) and their
respective sizes (known from the instruction-set description).

Table I shows the memory constraints of the COP that
we attempt to solve. Constraint 1 defines the domain of the
variablessi and ei between memory boundariesmeml and
memh (for memory low and memory high respectively); infor-
mally constraint 1 states that the functions can be positioned
anywhere in the memory-address space. Here, the memory-
address space is a finite range of integers frommeml to
memh, inclusive. Constraint 2 adds information about the
sizes of the functions. Constraint 3 states the no-overlapping
property i.e., the functions are arranged in disjoint portions of
the address space available for the task. The constraints 1 to
3 are mandatory.

Optionally, the COP can be augmented with additional
constraints specified by the user. For example, specific areas
of memory cannot be used for procedure allocation because
e.g., they are reserved for interrupt-service routines. This is
encoded in the COP using constraint 4 in Table I whereRS
(for reserved space) is the set of address-space ranges where
no function can be positioned. Another example is that a
particular function must always be positioned at a specific
address in memory. This is implemented by constraint 5 where
k is a user-specified address where the functionFi is to be
mapped. A third example is that, an extra memory space
following the end address of some function is needed to be
free in case the function’s code increases in size in future.This
is achieved using constraint 6 wherek address-space units
after the end of functionFi cannot be used to position other
functions.

The problem as formulated so far is a CSP (or a COP
with a non-variable cost) whose solution returns a feasible
positioning of functions in memory. The next step is to
devise a cost variable that guides the optimization of the
CSP which will be a function of the memory layout of the
functions, their execution behaviour in the task, and the cache
architecture. In this paper, we restrict our analysis to direct-
mapped caches, which are commonplace in embedded systems
because they conserve power by preventing the simultaneous
tag comparison needed by set-associative caches.

In order to define the cost variable, we need to determine
which functions might conflict with each other in the cache. A
naı̈ve solution is to consider that every function can conflict
with every other function. This does not yield an accurate
positioning of functions in main memory. A more accurate
solution is to consider the call and loop relationships between
functions. For example, if someF1 calls someF2 and both
conflict in the cache, a large number of misses is incurred
compared to when they do not conflict. Similarly, ifF1 and
F2 are part of the same loop nest, a large number of cache
misses is incurred if they conflict in the cache, compared to
when they do not conflict.

For this purpose, we define the call-and-loop graph to rep-

F1 F2 F3 · · · Fn

F1 0 w12 w13 · · · w1n

F2 0 0 w23 · · · w2n

F3 0 0 0 · · · w3n

... · · · · · · · · · · · · · · ·
Fn 0 0 0 · · · 0

Fig. 1. The weight matrixW of graphG containingn functionsFi.

resent the interaction of the functions in the cache. Formally,
a call-and-loop graphG = (V, E), |V | = n, E ⊆ V × V is a
directed graph where each nodevi ∈ V is a functionFi, and
there is an edge(vi, vj) ∈ E if and only if Fi andFj call each
other in taskt or belong to the same loop nest. Notice that the
construction ofG is not sensitive to loop-nest levels. Building
G might potentially encounter problems e.g., the resolutionof
function pointers — solving this problem which is relevant to
many static code-analysis techniques is considered outside the
scope of this work.

A pair of functions might conflict with each other more
than another pair e.g., a pair of large functions executing in
a loop that iterates many times will conflict more than a pair
of functions that call each other once only. For this reason,
the graphG should be weighted with maximum number of
executions of functions to accurately model the sources of the
cache conflicts. Since the positioning of functions is performed
in a WCET setting, the weights on the graph must be safe.
The information about these weights or execution counts more
precisely (i.e., the number of times they are executed in any
single run of the task) either comes as annotations from the
user in the form of loop and recursion bounds or using a third-
party flow-analysis tool for WCET e.g., SWEET [8].

The graphG is represented in the COP as a (square) weight
matrix W of the form shown in Figure 1 where the entry
W (Fi, Fj) contains the weightwij . Notice that the entries of
W below the main diagonal are zeros since the weights are
already accounted for in their symmetric entries with respect
to the main diagonal. This is becauseG is directed.

A function Fi can have its sizezi superior to the cache i.e.,
zi > cache size. In this case, the address range of function
Fi is split into ⌈ zi

cache size
⌉ address ranges of hypothetical

functionsFik
with the constraints(sik+1

= eik
+1) to preserve

the contiguousness ofFi — wheresik+1
is the start address of

the(k+1)th (split) portion ofFi andeik
is the end address of

thekth one. For this reason, no functionFi in our formulation
has a size larger than the cache i.e., no function can conflict
with itself — but its split contiguous parts may conflict with
each other, and hence the zeros along the main diagonal in
matrix W .

Now that we know which functions can potentially conflict
with each other in the form of a weighted graphG, we can
define the cost variable. The amount of conflicts will depend
on the positioning in memory e.g., consider Figure 2 where the
cache is direct-mapped of size600 units. In the left-hand side
of the figure, functionsF1 andF2 both fit disjointly in cache at
address spaces[0..199] and[200..499] respectively resulting in

TABLE I
THE MEMORY CONSTRAINTS OF THECOPREPRESENTATION OF THE CODE-POSITIONING PROBLEM TO MINIMIZE THEWCET.

1 ∀i ∈ [1..n] • {si, ei} ⊂ [meml..memh]
2 ∀i ∈ [1..n] • ei − si + 1 = zi

3 ∀i, j ∈ [1..n], i 6= j • [si..ei] ∩ [sj ..ej] = ∅

4 ∀i ∈ [1..n],∀rs ∈ RS • [si..ei] ∩ rs = ∅
5 ∃i ∈ [1..n] • si = k, k ∈ [meml..memh]
6 ∃i ∈ [1..n],∀j ∈ [1..n], i 6= j • [sj ..ej] ∩ [ei + 1..ei + k] = ∅, k ≥ 1

Memory Positioning Memory

Cache MappingCache Mapping

299
300

F1

F2

299
F1

F2

0

999

599

100

700

100

200

499

599

199

599

F1

F2

0
F1

0

F2

599

0

599

Positioning

Fig. 2. An example of how positioning of functions in memory results in
different cache conflicts: to the left, no conflicts occur; tothe right, an amount
of z1 (size ofF1) conflicts occur.

zero cache conflicts — a cache line at addressa in memory
maps to (a mod cache size) in a direct-mapped cache. In
the right-hand side of the figure, the memory mapping is
different resulting in non-zero cache conflicts. Therefore, the
cost variable will depend both on the number of edges inG and
also their weights and magnitudes, and is computed according
to Formula (1) wherecostt is the cost of the positioning of
functions in memory for the taskt, (vi, vj) ∈ E is an edge
of the call-and-loop graphG, wij is the weight on the edge
(vi, vj) computed by a safe WCET flow analysis, andcij is
the number of the cache conflicts that occur between functions
Fi andFj given the chosen memory layout —cij is yet to be
defined.

costt =
∑

(vi,vj)∈E

wij ∗ cij , G = (V, E) (1)

What happens now (informally) is that when the COP is
passed to a COP solver, the latter makes an initial assignment
to the variablessi and ei that satisfies the constraints of the
underlying CSP. Then, using a search method e.g., branch-and-
bound, better solutions (i.e., other assignments to variables
si and ei) to the CSP are found that optimize (in our case
minimize) the cost variablecostt. At the end of the search,
an assignment to the variablessi and ei that makes the
value ofcostt minimum (globally or locally depending on the
search method) is found — which will be the best function
positioning in our case.

Next, we definecij which represents the number of cache
conflicts between functionsFi and Fj . In this case, we
conjecture that the WCETwcett of taskt is reduced when the
functionsFi are positioned in memory in an arrangement that
minimizescostt; which is equivalent to saying that reducing
inter-function cache conflicts reduceswcett. However, we

must show that reducing inter-function cache conflicts doesnot
cause an (unintentional) increase inwcett by e.g., worsening
intra-function cache behaviour.

In our formulation of the problem, we view a function as
a black-box “chunk” of memory with a start address, an end
address, and a size. The way by which the instructions or
basic blocks are arranged inside the functions is not modelled
in our formulation. We want to show that the amount of cache
conflicts between the basic blocks of some functionFi does
not increase if we “slide” its start addresssi over a range
of addresses in memory. If we show this, then we can safely
state that the way by which the functions are positioned in
main memory does not lead to an increase in the number of
intra-function cache conflicts.

Since a function is mapped to the cache according to a
(mod cache size) relation, the cache behaviour ofFi when
si = a is the same as its cache behaviour whensi = b, a 6= b
if (a mod cache size = b mod cache size). This means
that when studying how positioning ofFi in main memory
affects its internal cache behaviour, we can limit ourselves to
a range of memory addresses of sizecache size since outside
this range, the (internal) cache behaviour ofFi repeats itself
because of themodulusmapping.

Now, all is needed is to show that the number of inter-
nal cache conflicts of functionFi does not change when
its start addresssi changes over the memory-address range
ri = [s1

i ..s
cache size
i]. This reduces to showing that for any two

basic blocksBi.1, Bi.2 of functionFi, the magnitude of their
conflict in the cache remains the same whensi moves along
the rangeri. For this, we need to determine the magnitude
of the cache conflicts between two basic blocks — this is
the number of cache lines occupied by one of the two blocks
which are displaced by the execution of the other block. The
number of displaced cache lines depends on how the blocks
Bi.1, Bi.2 are mapped in the cache.

Figure 3 shows the possible ways by which two blocksBi.1,
Bi.2 can be mapped to the cache in the form of positioning
scenarios labelled1-16; and from which we should derive
the number of cache lines between the two blocks that will
potentially be displaced. Positioning scenarios4 and 10 are
annotated to explain the notation used in Figure 3. Table II
lists the magnitude of the cache conflicts incurred by the
execution of the two basic blocksBi.1, Bi.2. Rows 1-3 in
Table II correspond to the three rows (from top to bottom) of
Figure 3 respectively. Each row of Table II captures the cache
mapping of the blocksBi.1, Bi.2 as a boolean expression in
the columnPositioning-Scenario Condition, and the respective

start of cache

end of cache1 2 3 4

5 6 7 8 9 10

161514131211

Bi.1

Bi.2

Bi.1 Bi.2 Bi.1

Bi.2

Bi.1

Bi.2

si.1 mod cachesize

ei.1 mod cachesize
si.2 mod cachesize

ei.2 mod cachesize

Bi.2

Bi.1

Bi.2

Bi.2

Bi.1

Bi.2

Bi.2

Bi.1

Bi.2

Bi.1

Bi.2

Bi.2

Bi.2

Bi.1

Bi.2

Bi.2

Bi.1

Bi.1

Bi.2

Bi.2

Bi.2

Bi.1

Bi.1
Bi.2

Bi.1

Bi.1

Bi.2

Bi.2

Bi.1 Bi.2

Bi.2

Bi.1

Bi.1

Bi.2

ei.2 mod cachesize
si.2 mod cachesize

Bi.2

Bi.1

Bi.2

Bi.1

Bi.2

Bi.2

Bi.1

Bi.1

Fig. 3. Half of all the possible ways two blocksBi.1 andBi.2 can be arranged in the cache with respect to their start addressessi.1, si.2, and end addresses
ei.1, ei.2 respectively. The other half is symmetric by makingBi.1 ← Bi.2 andBi.2 ← Bi.1 simultaneously.

TABLE II
THE MAGNITUDE OF THE CACHE CONFLICTS INCURRED FROM THE EXECUTION OF Bi.1 , Bi.2 AS SHOWN IN FIGURE 3.

HERE, x′

i.k
= xi.k mod cache size, AND ‘⊕’ IS THE EXCLUSIVE-OR LOGICAL OPERATOR.

Positioning-Scenario Condition Conflict-Magnitude Expression
1 cond1 = (s′

i.1
< e′

i.1
) ∧ s′

i.2
< e′

i.2
mag1 = max((min(e′

i.1
, e′

i.2
)−max(s′

i.1
, s′

i.2
)), 0)

2 cond2 = (s′
i.1

> e′
i.1

)⊕ s′
i.2

> e′
i.2

mag2 max((max(e′i.1 , e′i.2)−max(s′i.1, s′i.2)), 0)
+max((min(e′

i.1
, e′

i.2
) −min(s′

i.1
, s′

i.2
)), 0)

3 cond3 = (s′
i.1

> e′
i.1

) ∧ s′
i.2

> e′
i.2

mag3 = min(e′
i.1

, e′
i.2

) + max((max(e′
i.1

, e′
i.2

)
−min(s′

i.1
, s′

i.2
)), 0) + cache size−max(s′

i.1
, s′

i.2
)

cache-conflict magnitude in the columnConflict-Magnitude
Expression— which is the exact number of cache lines that
conflict between the two blocks. Notice that the union of the
three conditions in the table i.e., their disjunction is a tautology
which means that they capture every possible positioning of
blocksBi.1, Bi.2: the positioning scenarios shown in Figure 3
and their symmetric counterparts.

The equations in Table II have been derived by hand; to
prove their correctness, they are applied to their respective
cache-mapping scenarios in Figure 3, in which case they yield
the exact number of conflicting cache lines. For example, the
amount of conflict between blocksBi.1, Bi.2 as arranged in
positioning scenario14 in Figure 3 is derived according to
the third row of Table II since the arrangement satisfies the
condition(s′i.1 > e′i.1∧s

′

i.2 > e′i.2). By applying the expression
mag3 of row 3, we obtain the value(e′i.1 +cache size−s′i.1)
which is the exact number of cache lines that conflict between
the two basic blocks. The correctness of the expressions
is proved by applying them to all16 scenarios which is

straightforward and will not be shown here.

When the start addresssi of function Fi changes in the
rangeri, the start addressessi.k of the blocksBi.k of Fi

also change. Since the function “slides” as awhole chunkin
the memory space, the distance between the starting addresses
si.k of the blocksBi.k is preserved. This means that whenever
the starting addresssi of function Fi changes by an amount
d, the starting addresses of all blocksBi.k change by the
same amountd since they all move together i.e., the relative
placement of blocksBi.k to each other remains unchanged.

Consequently, we want to show that the number of cache
conflicts between blocksBi.1, Bi.2 is the same when their
starting addressessi.1, si.2 change by the same amountd ∈
ri. When the starting addressessi.1, si.2 change by the same
amount, what happens is that the mapping of blocksBi.1,
Bi.2 changes through the scenarios enumerated in Figure 3.
For example, ifBi.1, Bi.2 have initial positioning as shown
in scenario 3 and their starting addressessi.1, si.2 increase by
an amountd > 0 in memory, they could end up having the

TABLE IV
THE CACHE-CONFLICT COSTScij OF THE COPREPRESENTATION OF THE

CODE-POSITIONING PROBLEM TO MINIMIZE THEWCET.

1 ∀i, j ∈ [1..n], i 6= j • cond1 ⇒ cij = mag1

2 ∀i, j ∈ [1..n], i 6= j • cond2 ⇒ cij = mag2

3 ∀i, j ∈ [1..n], i 6= j • cond3 ⇒ cij = mag3

positioning scenario6 or remain in scenario3 depending on
the magnitude of the changed. Since the distance between
s′i.1, e′i.1, s′i.2, and e′i.2 is always preserved, the number of
cache lines that conflict is always preserved whenFi slides
by some amount in main memory.

We have just shown that when a functionFi changes its
position in main memory, the internal cache conflicts between
its constituent basic blocks remain unchanged. This means
that minimizing the inter-function cache conflicts of taskt
with respect to its constituent functionsFi does not cause
an increase inwcett due to intra-function cache effects.
The positioning of functionsFi will not affect the internal
pipeline timing behaviour of the individual functions since
the timing behaviour of the pipeline depends on the intra and
inter basic-block overlapping of instructions both of which
are not affected by altering the position of the function in
main memory. In addition to this, the branch prediction is
not affected since it is not a function of the memory location
of basic-block instructions. Finally, the data-cache timing
behaviour depends on the positioning of data in main memory
— not the positioning of code and so remains unaffected by
the positioning of functions in main memory.

Pipelines, branch predictors, and data caches are the hard-
ware accelerators normally accounted for in WCET analysis.
We have shown that the positioning of functions in main
memory with the aim of minimizing the WCET will not
unintentionally cause the WCET to increase with respect to
intra-function instruction-cache behaviour, pipeline behaviour,
branch-predictor behaviour, or data-cache behaviour.

The valuescij of the inter-function cache conflicts are
computed in the same way by which the basic-block cache
conflicts are computed in Table II. The reason for this is
that the functionsFi just like blocksBi.k are regarded as
whole chunks of code. Therefore, the positioning scenariosof
basic blocksBi.1, Bi.2 in Figure 3 also apply to functions
Fi, Fj with attributessi, ei, sj , andej. Function-positioning
can be illustrated by a figure equivalent to Figure 3 where
Bi.1 ← Fi, Bi.2 ← Fj , si.1 ← si, ei.1 ← ei, si.2 ← sj ,
and ei.2 ← ej. The valuescij together with their associated
positioning-scenario categories are shown in Table III. With
reference to Table III, the costscij are added to the COP as
shown in Table IV.

In summary, we have shown that the CSP underlying our
COP representation is modelled as shown by Table I, the cost
function is shown in Formula (1), the costs of the pairwise-
conflicting functions are captured by Tables III and IV. A
solution to this COP — which minimizes the valuecostt in
Formula (1) yields the positioning of functionsFi of the task
t that reduces the number of cache conflicts which minimizes

the valuewcett.

IV. SOLVING THE COP

A COP can be solved using a variety of techniques e.g.,
linear programming, constraint programming, evolutionary
search, etc. — depending on the characteristics of the COP
e.g., linearity of the constraints, integrality of the solution,
guaranteed optimality, etc. It is not possible — within this
paper — to exhaustively compare the applicability of all dif-
ferent optimization techniques to solve our COP, but we shall
choose the following two criteria: integrality and optimality;
the former is compulsory while the latter is desired.

By integrality, we mean that the assignment to the variables
si, ei must be (positive) integer. This suggests the use of an
optimization method that solves COPs over discrete domains
of which there is integer programming and finite-domain con-
straint programming. Both integer and constraint programming
guarantee optimality through the use of (the NP-complete)
branch-and-bound. Constraint programming, however, is su-
perior in the sense that the search for the solution can be
controlled by appropriate heuristics that aim at speeding-up
the search by exploiting relevant COP attributes.

It is desired to obtain the optimal solution of the COP, how-
ever, it is not a pressing need. This by no means undermines
the usefulness of obtaining an optimal placement of code that
minimizes the WCET — which has both its scientific value
and allows reasoning (via comparison) about the goodness of
sub-optimal approaches to the problem. Nevertheless, in some
COP instances, obtaining the optimal solution can be very
costly since the process is NP-complete in the general case.
A suboptimal solution to the code-positioning problem is a
good-enough placement of functions in memory that reduces
the WCET by some amount depending on the quality of the
returned solution

We suggest to use a COP solution method that guarantees
optimality (potentially expensive) and another solution method
that does not guarantee optimality (potentially fast); andcom-
pare (empirically) the quality of the returned solution by both
methods.

We shall use constraint programming as a solution method
to the COP which guarantees both integrality and optimality.

As for the quick (and potentially suboptimal) solution
method, there is an issue to be faced. Most optimization
techniques in the literature are suitable for continuous domains
i.e., the returned solutions are not guaranteed to be integral.
A quick fix to this problem involves rounding up/down the
assignments to the variablessi, ei to their closest integer
values. Such rounding of values might result in a lower-quality
solution, but most importantly, might result in a solution
that does not satisfy the constraints. Therefore, the resulting
integral assignment is checked for consistency against the
constraints of the COP. Notice that this process of checking
the feasibility of the solution is not a CSP: we check the
feasibility of a given assignmentto the variables against a
set of constraints as opposed to findingan assignmentto the
variables that satisfies the set of constraints which is a way

TABLE III
THE MAGNITUDE OF THE CACHE CONFLICTS INCURRED FROM THE EXECUTION OF Fi , Fj .

HERE, x′

i
= xi mod cache size, AND ‘⊕’ IS THE EXCLUSIVE-OR LOGICAL OPERATOR.

Positioning-Scenario Condition Conflict-Magnitude Expression
1 cond1 = s′

i
< e′

i
∧ s′

j
< e′

j
mag1 = max((min(e′

i
, e′

j
)−max(s′

i
, s′

j
)), 0)

2 cond2 = s′i > e′i ⊕ s′j > e′j
mag2 = max((max(e′

i
, e′

j
) −max(s′

i
, s′

j
)), 0)

+max((min(e′
i
, e′

j
)−min(s′

i
, s′

j
)), 0)

3 cond3 = s′i > e′i ∧ s′j > e′j
mag3 = min(e′

i
, e′

j
) + max((max(e′

i
, e′

j
)

−min(s′
i
, s′

j
)), 0) + cache size−max(s′

i
, s′

j
)

cheaper process. The loss in the quality of the solution after
a successful rounding might or not be significant; it will be
considered as one of the shortcomings of the quick approach.
When the rounding of the non-integral solution yields a non-
feasible solution, the quick solution method is declared asnot
finding a solution to the COP.

Next, we have to decide on which continuous-domain
solution method to use. Given that our cost variablecostt
is implemented using the implication and modulus operators,
a linear programming method — which otherwise is very
attractive — is not suitable since the two operators cannot
be expressed as linear equalities or inequalities to our best
knowledge.

A COP can also be solved by an iterative algorithm or search
method (IASM) which in general attempts to find a solution
to a problem where it is possible to evaluate the goodness of a
particular solution with respect to another solution. Using this
kind of comparison, the space of solutions is visited always
looking for a better solution. The way by which the space
of solutions is visited depends on the implementation of the
IASM which can be e.g., a genetic algorithm (GA) [9]. It is
not possible to state whether or not the final solution of the
IASM is optimal, nor is it guaranteed that the IASM finds
better sub-optimal solutions than the COP in a shorter time.
However, in general, IASMs have successfully been applied
to optimization problems that otherwise do not have efficient
algorithms to solve them.

Formally, the IASM optimizes a vectorvt or a set of vectors
vt of the form shown in Formula (2) wheresi, ei are the start
and end addresses of functionFi.

vt = 〈s1, e1, s2, e2, · · · , sn, en〉 (2)

Assignments tovt are explored in the search space until no
further improvement in the quality of the solution is found,or
until a predefined amount of time has elapsed.

When using an IASM, we are normally concerned about
how fast it converges to a good-enough solution. The speed
of the IASM depends on the goodness of its starting vector(s)
vt, the cost of evaluating the goodness of a solution, and the
cost of finding new solutions. With respect to this work, the
initial input to the IASM is random since any other initial
code positioning is not guaranteed to be better than random
unless it comes from a code-positioning technique in a WCET
setting — in which case applying the IASM is only useful
if further improvement is sought. Here, we want to evaluate

the goodness of using an IASM for finding a good code
positioning as opposed to improving an existing one.

A major speed hindrance in the IASM could potentially be
the generation of new solutions: it is compulsory to produce
only new vectorsvt that satisfy the constraints of Table I. For
this reason, the generation of new solutions is not completely
free in choosing new vectorsvt — but rather goes through
the process of checking the constraint consistency of every
newly created vectorvt. For IASMs that base their solution
generation on an element of randomness e.g., GAs, this can
be very costly.

In summary, a solution to the COP formulation of code
positioning to minimize the WCET must be integral and
preferably optimal. In order to guarantee integrality and op-
timality, constraint programming over finite domains is used
with a complete search method e.g., branch-and-bound. When
the constraint-programming solution to the COP turns out to
be costly, a quicker solution method consisting of an IASM
combined with integer rounding of solution and constraint-
consistency checking is used.

V. ENHANCING THE CONSTRAINT SEARCH

The reason for using constraint programming (CP) — over
integer programming — to solve the COP is that it allows
the user to define own search heuristics that reduce the
effort of finding a solution. A search method in CP explores
systematically the variables in the problem, and attempts to
make new value assignments to them from their respective
domains that satisfy the constraints and optimize the cost
variable. The efficiency of such search method depends to a
great extent on the order in which the variables are visited,
and also on the order by which the values are assigned to
the variables. In CP, we normally have heuristics forvariable
ordering and heuristics forvalue ordering.

For instance, it makes sense to start with the variables
that are mostly constrained as they have smaller domains and
will enhance constraint propagation if they arelabelled (i.e.,
assigned a value) first. The order of choosing values to label
variables is equally important, for example, in a maximization
problem, if the cost variable is proportional to some problem
variable, then it makes sense to label that problem variableby
choosing its largest value first.

With respect to code positioning to minimize the WCET,
variable ordering is important. The cost variablecostt in-
creases with respect to the termswij ∗ cij according to
Formula (1); and each termwij ∗ cij increases with respect to

wij , andcij since both are always non-negative. The ordering
of variables must be determined at compile time where the
costs cij — which depend on the values ofsi, ei that are
determined at runtime — are not available. Therefore, the only
available information is the weightswij from the call-and-loop
graphG. A variable ordering in this case is to first label the
si, ei, sj, and ej of functionsFi, Fj whosewij is highest.
This obviously can be misleading as somew12 ∗ c12 can be
smaller thanw34 ∗ c34 even thoughw12 > w34 — this is why
it is a heuristic.

Formally, variable ordering is determined as follows.
First, the weightswij available at compile time are or-
dered from largest to smallest to obtain the sequence
〈wi1j1, wi2j2, · · · , wimjm〉 where|E| = m. Then, the search
method in the COP is instructed to visit the variablessi, ei

in the order〈si1, ei1, sj1, ej1, si2, ei2, sj2, ej2, · · · , sjm, ejm〉.
Let us call thisgreedy variable orderingto reflect the fact that
it promotes the labelling of variables involved in the largest
conflictswij .

We can also have a (rather unimaginatively)less-greedy
variable orderingwhich promotes the labelling of variables
si, ei whose associated functionsFi are involved in large
global conflicts. For example, the variabless1, e1 of someF1

involved in conflictsw1j are labelled before the variabless2,
e2 of someF2 involved in conflictsw2k if (

∑
w1j ≥

∑
w2k).

Formally, for each functionFi, we compute(wi =
∑

wij +∑
wki), and then the variables are labelled in the order

〈si1, ei1, si2, ei2, · · · , sin, ein〉 if (wi1 ≥ wi2 ≥ · · · ≥ win).
As for value ordering, choosing (maximum) boundary

values does not benefit the search since the cost variable
does not increase/decrease in a proportional way to the in-
crease/decrease of the variablessi, ei. Intuitively labelling the
variablessi, ei starting bymeml is better than labelling them
starting frommemh for obvious reasons.

In summary, the CP solver for the COP is augmented
by heuristics specifying variable ordering and value ordering
during search. The usefulness of this approach can only be
evaluated through empirical experiments.

VI. EVALUATION

In this section we describe our experimental environment,
evaluate the goodness, and evaluate the scalability or practical
applicability of our proposed COP approach.

A. Experimental Setup

All experiments are conducted on a personal computer with
the following specification: 32-bit x86 CPU running at 2.8GHz
and 4GB memory on Ubuntu 9.10.

The COP is implemented and solved by both the constraint-
logic programming (CLP) solverECLiPSeand the Matlab
optimization Toolbox [10] (MOT). The reason for choosing
ECLiPSe as the CP language is its ease of use for CP
“outsiders”, and also efficiency. The reason for choosing the
MOT to implement the quick COP solution is that it contains
mature, well-engineered algorithms to solve general COPs,

and we argue in favour of using a good solver if one can
have access to it.

The CLP solver is a CP solver with syntax based on logic
programming. We will evaluate the goodness and complexity
of finding a solution to the COP in three different ways.
First, we use the default variable and value ordering provided
by the solver as-is. Second, we use a conjunction of the
greedy variable ordering and value ordering. Third, we use
a conjunction of the less-greedy variable ordering and value
ordering.

The MOT contains a comprehensive set of IASMs, of
which we choose to use the GA for its common use in
solving general optimization problems (functionga in the
MOT). The GA implementation in Matlab allows the user to
add constraints on the vectorsvt which are to be evolved.
The MOT also contains an efficient implementation of the
sequential quadratic-programming (SQP) method [11] (func-
tion fminicon in the MOT) which can be used to solve
multivariate (non-linear) constrained optimization problems.
An SQP method uses a quadratic model for the objective
function and a linear model of the constraints and solves a
series of sub-problems that optimize the objective function
subject to the constraints. The objective function is expressed
using conditionals to implement the different cost scenarios
(which cannot be achieved using linear programming). The
returned solution by the SQP method is not guaranteed to be
integral and so the (non-integer) assignments to the variables
si, ei are rounded up or down to their closest integer values.
This rounding of values may yield less optimal, potentially
infeasible solutions.

B. Evaluation

An evaluation metric for the goodness of our approach is
to compute by how much the WCET of the task is reduced
when the linker uses the output of the COP solver. For this, we
need a reference WCET to compare to, apply the optimization,
obtain the new WCET, and compare the old WCET to the
new WCET. One way to proceed is to use real-life programs
e.g., from the WCET benchmarks [12] compiled and linked
using some compiler — with maybe some inter-function code
optimization techniques for the ACET — which are then re-
linked using the suggested positioning by our approach, and
finally the WCETs obtained from compiler positioning and
our suggested positioning are compared.

The problem with the above way of evaluation is that it
only reflects the goodness of the positioning for the specific
benchmarks, and using a specific compiler. It could be the
case that a compiler with no inter-function optimization for the
ACET gives a better WCET positioning than that of a compiler
that performs inter-function positioning to minimize the ACET
— in which case evaluating the goodness of our approach
by comparing to the compiler’s positioning is biasedly in
our favour. It could also be the case, that for the specific
benchmarks used, the positioning of functions to minimize
the ACET always leads to a large WCET — which might not
be true for another set of benchmarks.

In order to conduct a more convincing evaluation, we
suggest to estimate both the (inter-function) code positioning
that yields the largest WCET (by maximizingcostt), and the
one that yields the smallest WCET (by minimizingcostt).
In this case, we obtain a range of WCETs[wcettl

..wcettu
]

(wcettl
and wcettu

not optimal in the general case). If the
size of the range is large then it means that the method is
good practically since it could be the case that the positioning
generated by the compiler for the ACET case yieldswcettu

.
The method can obviously not generate positioning that yields
a smallerwcett if the compiler positioning to reduce the ACET
already results inwcettl

.
The inputs to our suggested approach are the weighted

call-and-loop graphG, the sizeszi of the functionsFi, the
constraints on the positioning of functionsFi as shown in
Table I, the cache size, and the main-memory size. To perform
our evaluation, we prefer to generate COP instances ourselves
and solve them instead of using real-life programs since all
that matter in our analysis are the number of functionsFi

per task t, their sizeszi, and their interaction that makes
the graphG. As for the number of functions and sizes, they
can be generated randomly while obeying real-life constraints
e.g., they must all fit in main memory at the same time. As
for the interaction between functions in the task, it can be
anything — from a function conflicting with a few functions
to a function conflicting with every other function in the task.
In this evaluation, we generate hundreds of COPs — which
again is superior to basing the evaluation on a small set of
benchmark programs.

A COP instance is generated like follows.

• The number of functionsFi per task isn ∈ [10..100].
This is way above the number of functions per benchmark
programs in e.g., [12]. Choosing a large number of
functions per task stresses more the COP and IASM since
more variables and constraints are added to the problem
— which is useful for the complexity evaluation later on.

• The constraintmemz

2 ≤

i=n∑

i=1

zi ≤ memz is always

satisfied where(memz = memh − meml + 1). This
constraint ensures that the functions cover (together) at
least half of the memory space because there are always
costs that need to be minimized when choosing hardware
for real-time systems e.g., memory space, i.e., a memory
size is chosen depending on the code and data size
of the intended applications. A more relaxed constraint

e.g.,
i=n∑

i=1

zi ≤ memz could lead to easy-to-solve COPs

since there is more “freedom” in placing the functions in
memory.

• A weight on an edge(vi, vj) in G is wij ∈ [1..1000]. The
magnitudes of the weightswij — alone — are orthogonal
to the complexity of solving the COP but a combination
of the magnitude and their disparity is of relevance as
eachwij pushes the optimization search in a potentially
different direction depending on its magnitude; thus in-

creasing the search effort. Choosing a random weight
from the rangewij ∈ [1..1000] ensures enough disparity
in the generated COP.

We have generated 1000 instances of COPs which are
then encoded both inECLiPSeand the MOT. An exhaustive
listing of all the results is not feasible here, but we reportthe
following.

• We have computed the reduction in the number of cache
conflicts as follows. First, we solve each of the generated
COPs using both optimization methods while maximizing
costt which results in costmax

t (the largest value of
costt obtained by any of the two optimization methods).
Then, we solve the COP using both methods while
minimizing costt which results incostmin

t . Finally, we
compute(costmax

t −costmin
t)/costmax

t which represents
the percentage of the cache conflicts that can potentially
be avoided using the positioning that yieldscostt =
costmax

t . We took the average of this percentage across
the 1000 COP solutions and this gave about 28%. The
smallest recorded percentage is 19% while the largest
is 42% with a standard deviation of about 11 for all
the 1000 percentages. This result shows that the method
has the potential to minimize the WCET considerably by
reducing the total number of cache conflicts by a good
percentage.

• The time taken to solve the COP using the GA function
in the MOT is unmanageable because of the random
generation of solutions and checking their constraint sat-
isfaction. However, the time taken using the SQP function
was less than 10 seconds in all generated COPs. The time
taken to solve the COP usingECLiPSeranged from less
than one second to just below 15 minutes which was set
as the maximum time allowed to find the solution after
which the COP solver is forced to return its (so far) best
solution. This result shows that solving (and modelling)
the code-positioning problem using constraint-logic pro-
gramming or sequential-quadratic programming is not
expensive.

• In the generated COPs, 58% were solved optimally by
ECLiPSein less than 15 minutes each. A further 20%
could be solved optimally by increasing the time limit
to 1 hour each. The solver could not decide whether or
not the current solution is optimal for the remaining 22%
even when increasing the time limit to 2 hours. This result
shows that it is possible to determine the optimal code
positioning for a large number of problems.

• In 23% of the obtained optimal COP solutions by
ECLiPSe, the SQP method generated an optimal solution
too. The time it takes the SQP method to find the optimal
solution is significantly less (5% in some cases) than
the time it takesECLiPSeto find the optimal solution.
This result shows that using an IASM method has the
advantage of quickly obtaining a good solution with a
good probability of it being optimal.

• The less-greedy variable ordering combined with value

ordering converges to a solution quicker than the greedy
variable ordering with value ordering in 79% of the
cases. The difference in solution time in these cases
is on average 10% of the slowest-heuristic’s solution
time. In few cases, the quicker heuristic reached the
optimal solution before the time limit while the slower
heuristic either reached the optimal solution after time-
limit extension or never decided whether it has reached
it or not. This result shows that heuristics can reduce
the time taken by the COP solver to reach an (optimal)
solution.

VII. C ONCLUSION

In this paper we have shown how to formulate and solve the
code-positioning problem to reduce the worst-case execution
time (WCET) as a constraint-optimization problem (COP).
We have shown via empirical evaluation that the solutions we
obtain using our proposed approach are optimal in numerous
cases; and when they are not optimal, they still result in
a significant (potential) decrease of the WCET by reducing
instruction-cache conflicts.

In a future paper, we explain how to apply the method to set-
associative caches. We also aim to devise even better search
heuristics to reduce the COP solution time even further.

ACKNOWLEDGEMENTS

This work is supported by the Swedish Foundation for
Strategic Research (SSF) through the Research Centre for
Predictable Embedded Software Systems (PROGRESS).

REFERENCES

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The Worst-Case
Execution-Time Problem — Overview of Methods and Survey of Tools,”
ACM Transations on Embedded Computing Systems, vol. 7, no. 3, pp.
1–53, 2008.

[2] T. Lundqvist and P. Stenström, “Timing Anomalies in Dynamically
Scheduled Microprocessors,” inProceedings of the IEEE Real-Time
Systems Symposium, 1999, pp. 12–21.

[3] A. Betts, G. Bernat, R. Kirner, P. Puschner, and I. Wenzel, “WCET
Coverage for Pipelines,” TU Vienna, Tech. Rep., 2006.

[4] S. S. Muchnick,Advanced Compiler Design and Implementation. Mor-
gan Kaufmann Publishers, 1997.

[5] W. Zhao, D. Whalley, C. Healy, and F. Mueller, “ImprovingWCET
by applying a WC code-positioning optimization,”ACM Trans. Archit.
Code Optim., vol. 2, no. 4, pp. 335–365, 2005.

[6] P. Lokuciejewski, H. Falk, and P. Marwedel, “WCET-driven Cache-
based Procedure Positioning Optimizations,” inProceedings of the 2008
Euromicro Conference on Real-Time Systems (ECRTS’08). Washington,
DC, USA: IEEE Computer Society, 2008, pp. 321–330.

[7] P. Lokuciejewski, F. Gedikli, P. Marwedel, and K. Morik,“Automatic
WCET Reduction by Machine Learning Based Heuristics for Function
Inlining,” in Proceedings of the 3rd Workshop on Statistical and Ma-
chine Learning Approaches to Architectures and Compilation (SMART),
Paphos / Cyprus, 2009, pp. 1–15.

[8] WCET-IDT-MRTC, “SWEET,” http://www.mrtc.mdh.se/projects/wcet/
sweet.html, June 2010.

[9] D. E. Goldberg,Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, Massachusetts: Addison-Wesley Publishing
Company, 1989.

[10] MathWorks, “The MathWorks — Optimization ToolBox,”
http://www.mathworks.com/products/optimization/, June 2010.

[11] R. Brayton, S. Director, G. Hachtel, and L. Vidigal, “A new algorithm for
statistical circuit design based on quasi-Newton methods and function
splitting,” Circuits and Systems, IEEE Transactions on, vol. 26, no. 9,
pp. 784 – 794, September 1979.

[12] Mälardalen WCET Research Group, “WCET project/benchmarks,”
http://www.mrtc.mdh.se/ projects/wcet/benchmarks.html, June 2010.

