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Abstract—We present extensions to the existing industrial
component model Rubus Component Model (RCM). By in-
troducing special purpose components to encapsulate and
abstract the communication protocols in distributed embedded
systems we allow use of legacy nodes and legacy protocols
in a component-based and model-based software engineering
environment. With the addition of these components, RCM will
be able to support state-of-the-practice development processes
of distributed embedded systems where communication rules
are defined early in the development process. The proposed
extension also allows model-based and component-based devel-
opment of new nodes that are deployed in the legacy systems
that use predefined communication rules. We also demonstrate
how an end-to-end timing model can be extracted from a
distributed embedded system modeled with extended RCM.
The extracted model is then used to perform an end-to-end
timing analysis that we implemented in the Rubus Analysis
Framework.

Keywords-Model-Based Software Engineering; Component-
Based Software Engineering; distributed embedded systems;
end-to-end timing analysis;

I. INTRODUCTION

Embedded systems are found in almost all electronic
products around us. Their applications span over many do-
mains including automotive, aerospace, consumer electron-
ics, biomedical, military applications, business applications,
industrial control, etc. It is claimed in [1] that more than
98 percent of the processors produced today are embedded
processors. Not only the number of embedded processors
has increased in the past few years but the software which
runs on them, i.e., the embedded software has also drastically
increased in size and complexity. In automotive domain, for
example, a modern premium car contains nearly 100 million
lines of code that run on about 70 to 100 embedded pro-
cessors [2]. Because of the continuously increasing trend in
size and complexity of embedded software, the development
of embedded systems has become very complex.

Often, embedded systems are resource-constrained and
have hard real-time requirements. In order to capture such
requirements as early as possible during the process of
system development, handle complexity of embedded soft-
ware, lower development cost, reduce time-to-market and
time-to-test, allow reusability and modeling at higher level
of abstraction, etc., the research community proposed the

use of Model-Based Engineering (MBE) and Component-
Based Software Engineering (CBSE) for the development
of embedded systems [3], [4]. MBE provides the means to
use models throughout the process of system development
while CBSE facilitates the development of large software
systems by integration of software components. CBSE raises
the level of abstraction for software development and makes
it possible to reuse software components and their architec-
tures. There is a great need for bringing these development
techniques in the embedded systems industry.

In distributed embedded systems, the functionality is
distributed over many nodes and the nodes communicate
with each other through a bus or a network. Software devel-
opment of distributed embedded systems is more complex
compared to single processor embedded systems. When
MBE and CBSE are used for the development of resource-
constrained and hard real-time distributed embedded sys-
tems, modeling of communication infrastructure arises as
another challenge. In the industry, embedded systems are
often deployed in legacy systems (previously developed)
which use predefined rules for communication. Furthermore,
distributed embedded systems are often expected to use
legacy network protocols for real-time communication. A
component model for the development of distributed embed-
ded systems should not only be resource-efficient, but also
abstract the application software from the communication
infrastructure. Moreover, it should support the modeling of
legacy communications and legacy systems.

In this paper we propose an extension to a commer-
cially available component model, the Rubus Component
Model (RCM) [5], used for the development of resource-
constrained real-time embedded systems in many domains
especially automotive. It supports glue code generation,
end-to-end response-time analysis, and resource requirement
estimations. Over the years, RCM has evolved based on the
industrial needs and the state-of-the-art research results. At
present, RCM is able to model only single-node embedded
systems. We extend RCM by adding special purpose compo-
nents to it. The purpose of new components is to encapsulate
and abstract the communication protocols and configuration
in a component-based and model-based software engineering
setting. The motivation for the extension of RCM comes
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from the industrial demand to model distributed embedded
systems, real-time network communication, legacy commu-
nications and legacy systems.

A. Goals and Paper Contributions

We present an extension to an existing industrial compo-
nent model by introducing new components to it. Our main
goals in introducing new components are:

1) Allow model-based and component-based develop-
ment of new nodes that are deployed in legacy systems
that use predefined communication rules.

2) Support state-of-the-practice development processes
where communication rules are defined early in the
development process.

3) Enable adaptation of a node when communication
rules change (e.g. due to re-deployment in a new sys-
tem or due to upgrades in the communication system)
without affecting the internal component design.

4) Generate these special components from the infor-
mation about legacy communication or from early
design decisions about network communication. The
generated components should be compatible with the
existing entities defining functionality and communi-
cation in RCM.

These goals are to be realized in RCM. The scope of this
paper is PSMs (Platform Specific Models) for distributed
embedded systems. With PSM we mean that the software
components have been allocated to nodes and any adaptation
to specific node characteristics (e.g., device drivers and
memory layouts) has been added to the model. Using our
new components, nodes can be developed without explicit
knowledge about the communication configuration.

One important objective during the extension of RCM
is to enable the developer to specify real-time properties
and analyze timing behavior of the modeled distributed
embedded system. While making design decisions about
the new modeling concepts and components, we placed
special focus on how the modeled system will render itself
to an end-to-end timing analysis. In this paper, we also
show how we extract an end-to-end timing model from a
distributed embedded system using the Rubus tool suite.
The extracted model is then used to perform an end-to-end
timing analysis that we implemented in the Rubus Analysis
Framework [6], [7].

B. Paper Layout

The rest of the paper is organized as follows. Section
II presents the Rubus concept, the component model and
its development environment. In Section III, we present the
related research and compare different modeling approaches
with ours. Section IV describes the new modeling objects
that support modeling of legacy communication. Section V
describes the implementation of the end-to-end timing anal-
ysis of distributed embedded systems in the Rubus tool

suite. Section VI concludes the paper and presents the future
work.

II. BACKGROUND – THE RUBUS CONCEPT

The Rubus concept is based around the Rubus Compo-
nent Model [5] and its development environment Rubus-
ICE (Integrated Component development Environment) [6],
which includes modeling tools, code generators, analysis
tools and run-time infrastructure. The overall goal of Rubus
is to be aggressively resource-efficient and to provide means
for developing predictable and analyzable control functions
in resource-constrained embedded systems.

A. The Rubus Component Model

The purpose of the component model is to express the
infrastructure for software functions i.e. the interaction be-
tween the software functions in terms of data and control
flow. One important principle is to separate functional code
and infrastructure implementing the execution model, i.e.,
explicit synchronization or data access should all be visible
at the modeling level. In RCM, the basic component is called
a Software Circuit (SWC). It is the lowest-level hierarchical
element in RCM and its purpose is to encapsulate basic
functions. The SWCs interact with each other through the
use of ports. An SWC can be seen as a type, or a class,
that can be instantiated an arbitrary number of times. By
separating functional code and the infrastructure, RCM
facilitates analysis and reuse of components in different
contexts (an SWC has no knowledge how it connects to
other components).

The execution semantics of software components (func-
tions) is simply:

1) Upon triggering, read data on data in-ports.
2) Execute the function.
3) Write data on data out-ports.
4) Activate the output trigger.
An example system modeled with RCM, depicted in

Fig. 1, shows how components interact with external events
and actuators with regard to both data and triggering. The
triggering events can consist of interrupts, internal periodic
clocks, internal and external events. Furthermore, the com-
ponent model has a possibility to encapsulate SWCs into
software assemblies enabling the designer to construct the
system at different hierarchical levels.

B. The Rubus Code Generator and Run-Time System

From the resulting architecture of connected SWCs, func-
tions are mapped to run-time entities; tasks. Each external
event trigger defines a task and SWCs connected through
the chain of triggered SWCs (triggering chain) are allocated
to the corresponding task. All clock triggered “chains” are
allocated to an automatically generated static schedule that
fulfills the precedence order and temporal requirements.
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In the figure one can also see how components interact with external events/actuators with 

regard to both data and triggering. Triggering events can consist of interrupts, internal 

periodic clocks or external events.  

Figure 1. An example system in RCM

Within trigger chains, inter-SWC communication is ag-
gressively optimized to use the most efficient means of
communication possible for each communication link. For
example, there is no use of semaphores in point-to-point
communications within a trigger chain. Another example is
sharing of memory buffers between ports when there are no
overlapping activation periods. This means that a buffer can
be shared between two ports belonging to different SWCs if
it can be guaranteed that these ports will never use the buffer
space at the same time. This is true in the case of a trigger
chain because a task early in the chain can never be active
at the same time as a task late in the chain (considering the
deadlines of tasks are smaller than their respective periods).

Allocation of SWCs to tasks and construction of schedule
can be submitted to different optimization criterion to min-
imize, e.g., response times for different types of tasks, or
memory usage. The run-time system executes all tasks on a
shared stack, thus eliminating the need for static allocation
of stack memory to each individual task.

C. The Rubus Analysis Framework

The model also allows expressing real-time requirements
and properties on the architectural level. For example, it is
possible to declare real-time requirements from a generated
event and an arbitrary output trigger along the trigger chain.
For this purpose, the designer has to express real-time prop-
erties of SWCs, such as worst-case execution times and stack
usage. The scheduler will take these real-time constraints
into consideration when producing a schedule. For event-
triggered tasks, response-time calculations are performed
and compared to the requirements.

III. RELATED WORK

There exist many component models for the development
of distributed systems, e.g., Distributed Component Object
Model (DCOM) [8], Common Object Request Broker Ar-
chitecture (CORBA) [9], Enterprise JavaBeans (EJB) [10],
etc. These models in their original form are not suitable for
the development of resource-constrained distributed embed-
ded systems with hard real-time requirements because they
require excessive amount of computing resources, have large
memory foot print and have inadequate support for modeling
of real-time communication.

There are very few commercial component models for
the development of distributed embedded and real-time
systems especially in automotive domain. In the last decade,
automotive research community and industry has focused
more on the component-based development of automotive
embedded systems which led to the development of various
solutions, approaches, methodologies, and models. Some of
them are discussed below.

AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture)
[11] is a standardized software architecture for the develop-
ment of software in automotive domain. It can be viewed
as a standardized distributed component model [12]. In
AUTOSAR, the application software is defined in terms of
Software Components (SWCs). The distribution of SWCs,
their virtual integration and communication at design time
is handled by the Virtual Function Bus (VFB). The run-
time representation of VFB for each Electronic Control Unit
(ECU) is defined by the Run-Time Environment (RTE). The
communication services are provided by the Basic Software
(BSW) via RTE to the AUTOSAR SWCs.

When AUTOSAR was being developed, there was no
focus placed on the specification and handling of real-time
requirements and properties during the process of system
development. On the other hand, such requirements and
capabilities were strictly taken into account right from the
beginning during the development of RCM. AUTOSAR
describes embedded software development at a relatively
higher level of abstraction compared to RCM. A Soft-
ware Circuit in RCM more resembles to a runnable en-
tity compared to AUTOSAR SWC. A runnable entity is
a schedulable part of AUTOSAR SWC. As compared to
AUTOSAR, RCM clearly distinguishes between the control
flow and the data flow among SWCs in a node. AUTOSAR
hides the modeling of execution environment. On the other
hand, RCM explicitly allows the modeling of execution
requirements, e.g., jitter, deadlines, etc., at an abstraction
level close to the functional modeling while abstracting the
implementation details.

In RCM, special Software Circuits, which are integral
part of our contribution in this paper and will be introduced
in the next Section, are used if SWCs require inter-ECU
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communication; otherwise, SWCs communicate via data
and trigger ports. On the other hand, AUTOSAR does not
differentiate between intra-node and inter-node communica-
tion at modeling level. Unlike RCM, there are no special
components in AUTOSAR for inter-node communication.
AUTOSAR SWCs use interfaces for all types of communi-
cations which can be of two types, i.e., Sender Receiver and
Client Server. The Sender Receiver communication mech-
anism in AUTOSAR is very similar to the pipe-and-filter
communication mechanism for component interconnection
used in RCM.

TIMMO

TIMMO (TIMing MOdel) [13] is an initiative to provide
AUTOSAR with a timing model. It describes a predictable
methodology and a language, TADL (Timing Augmented
Description Language) [14], to express timing requirements
and timing constraints during all design phases in the devel-
opment of automotive embedded systems. TADL is inspired
by MARTE (Modeling and Analysis of Real Time and
Embedded systems) [15] which is a UML profile for model-
driven development of real-time and embedded systems.
TIMMO development methodology makes use of structural
modeling provided by EAST-ADL [16] which is a domain
specific architecture description language used in automo-
tive domain. TIMMO methodology and its model structure
abstract the modeling of communication at implementation
level of EAST-ADL where they propose to use AUTOSAR.
Both TIMMO methodology and TADL have been evaluated
on prototype validators. To the best of our knowledge there
is no concrete industrial implementation of TIMMO. In
TIMMO-2-USE project [17], the results of TIMMO will be
further validated and brought to the industry.

ProCom

ProCom [18] is a two-layer component model for the
development of distributed embedded systems. At the upper
layer, called ProSys, it models a system with concurrent
subsystems which communicate by passing messages via ex-
plicit message channels. Unlike an RCM SWC, a subsystem
is active which means that it has its own thread of execution
and hence, it can be triggered periodically or by internal
events. At the lower layer, called ProSave, a subsystem
is internally modeled in terms of functional components
which are implemented as a piece of code, for example, a C
function. Like RCM SWCs, ProSave components are passive
which means that they cannot trigger themselves and hence,
they require an external trigger for activation.

ProCom is inspired by RCM, and there are a number of
similarities between the ProSave modeling layer and RCM.
For example, components in both ProSave and RCM are
passive. Similarly, both the models clearly separate data flow
from control flow among the components. Moreover, the
communication mechanism for component interconnection

used in both the models is pipe-and-filter. At modeling level,
ProCom does not differentiate between inter-node and intra-
node communication. ProCom uses two-step deployment
modeling, i.e., virtual node modeling and physical node
modeling [19]. At present, physical node modeling is a
work in progress. The validation of a complete distributed
embedded system, modeled with ProCom, is yet to be
done. Moreover, the development environment and the tools
accompanying ProCom are still evolving.

COMDES-II

COMDES-II (COMponent-based design of software for
Distributed Embedded Systems) provides a component-
based framework for the development of distributed em-
bedded control systems [20]. It models the architecture of
a system at two levels. At upper level, an application is
modeled as a network of actors that are active components.
Actors communicate with each other by sending labeled
messages. At the lower level, the functionality of an actor
is modeled in terms of Function Blocks which are passive
components similar to the SWCs in RCM. The Operat-
ing System (OS) employed by COMDES-II implements
fixed-priority timed multitasking scheduling. On the other
hand, Rubus OS implements hybrid scheduling policy that
combines both static cyclic scheduling and fixed-priority
preemptive scheduling [21]. COMDES-II is a relatively new
research project and the support for development tools and
run-time environment was provided fairly recently [22]. On
the other hand, RCM and its tool suite are relatively mature
as they are being used in the industry for the development
of embedded systems for more than 10 years [6].

Real-Time CORBA

Object Management Group (OMG) defined middleware
technologies such as Real-Time CORBA, minimum CORBA
and CORBA lightweight services for the development of
real-time and distributed embedded systems [23]. In some
projects, Real-Time CORBA has been used to develop dis-
tributed embedded and real-time systems [24], [25]. Because
of higher resource requirements, these models may not be
suitable for the development of resource-constrained dis-
tributed embedded systems with hard real-time requirements.

RCM can be considered a suitable choice for the develop-
ment of resource-constrained distributed embedded systems
for many reasons. For example, it can completely han-
dle timing related information, i.e., real-time requirements,
properties and constraints during all the stages of system
development; It has a small run-time footprint (timing and
memory overhead); it implements the state-of-the-art re-
search results; It has a strong support for development and
analysis tools, etc.
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IV. SUPPORT FOR MODELING OF LEGACY
COMMUNICATION

In an ideal scenario, it should be possible to automatically
generate the communication from the design model for each
distributed embedded application. However, this is often not
the practice in the industry because of legacy communi-
cations and legacy systems. These systems have their own
predefined rules of communication. Our goal is to introduce
the support for modeling of legacy communications in RCM.

To support abstraction of the implementation of commu-
nications in a node, we propose the introduction of two
special purpose modeling elements, i.e., Output Software
Circuit (OSWC) and Input Software Circuit (ISWC) for each
frame that is to be sent or received by a node (connected
to a network) respectively. In order to represent a model
of communication in a physical bus, we propose another
modeling object called Network Specification (NS).

A. Network Specification (NS)

It is the model representation of a physical bus. It consists
of two parts: one is protocol independent and the other is
protocol dependent. The protocol-independent part defines
messages and the data-elements mapped to these messages.
Moreover, it describes message properties, i.e., a message
ID, a unique sender node ID, a list of receiver nodes IDs
and an ordered set of RCM signals. A signal in RCM has a
name, data type and real-time properties.

The protocol-dependent part of NS defines the behavior
semantics of each message according to the protocol used for
network communication. It is specific to each protocol, e.g.,
it will be different for CANopen [26], Hägglunds Controller
Area Network (HCAN) [27], MilCAN (CAN for Military
Land Systems domain) [28], Flexray, etc. The protocol-
dependent part of NS contains complete information of all
the frames which are sent on the bus. Moreover, it describes
the frame properties. In RCM, a frame is a collection of
RCM signals.

The frame properties described by the protocol-dependent
part of NS (e.g., for a CANopen protocol) include an
identifier (a reference to the corresponding message in the
protocol-independent part of NS), a priority, a transmission
type (type of message transmission in CANopen), a sender
node ID, a list of receiver nodes IDs, whether a frame is an
IN frame or an OUT frame, a period (period with which a
message is sent in case of periodic transmission), an inhibit
time (minimum time between successive transmission of a
message in case of one of the asynchronous transmission
types in CANopen), SYNC period (time between SYNC
messages sent by the CANopen SYNC master), and real-
time requirements. Moreover, it also specifies the speed of
CAN bus. The transmission type of a frame can be periodic,
event or mixed (transmitted periodically as well as on arrival
of an event) [29].

The components inside a single node communicate with
each other by using data and control signals separately.
However, if a component on one node intends to commu-
nicate with a component on another node via a network
then the signals are packed into frames. These frames are
then transmitted over the network. Here, some questions
arise regarding the network communication. How are signals
packed into the frames? How many signals a message
contains? How are signals encoded into the frames at the
sender node? How are signals decoded from the received
frames and sent to the respective SWCs at the receiver
node? All the rules that are concerned with the answers to
these questions are specified in the Signal Mapping. The
Signal Mapping is unique for each network communication
protocol and is defined by the protocol-dependent part of
NS.

B. Output Software Circuit (OSWC)

OSWC is the model representation of signals in an
outgoing message (frame) to the network. Basically, it is
a Software Circuit which denotes the data that leaves the
model. An OSWC is associated with a LAN (Local Area
Network) object. In RCM, LAN is an object to represent
a connection between two or more nodes in a system.
Formally, a LAN is defined by its name, a list of connected
nodes and a Network Specification. There is exactly one
OSWC in a node for every outgoing frame on the network.
Each OSWC describes all the signals that can be sent in a
particular frame. A frame contains zero or more signals.

An OSWC has only one trigger in-port and at least
one data in-port. Each data in-port is associated with one
signal in the Network Specification. Therefore, the number
of data in-ports may vary depending upon the number of
signals to be packed in the frame. An OSWC has no data
and trigger out-ports. The OSWC component uses protocol-
specific rules, specified in the protocol-specific part of NS,
while encoding data and mapping signals to a frame. In this
way, OSWC provides a clear abstraction to the SWCs that
send signals to one of its data in-ports. Thus, SWCs are
kept unaware of the protocol-specific details such as signal-
to-frame mapping, data type encoding and transmission
patterns of frames. The OSWC component is graphically
illustrated in Fig. 2.
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Figure 2. Graphical illustration of OSWC.
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C. Input Software Circuit (ISWC)
ISWC is the model representation of signals in an in-

coming message (frame) from the network. Basically, it
is a Software Circuit which denotes the data that enters
the model. An ISWC is associated with a LAN object
defined in RCM. There is exactly one ISWC component in a
node for every frame received from the network. An ISWC
describes all the signals that are contained in a received
frame associated to it. An ISWC has one unconditional
trigger out-port. An unconditional trigger port produces a
trigger signal every time the SWC is executed. There is
at least one data out-port in the ISWC component. Each
data out-port is associated with one signal in the Network
Specification of the LAN object. Therefore, the number
of data out-ports may vary depending upon the number
of signals contained in the received frame. An ISWC has
no data out-ports. There is one trigger in-port in every
ISWC component which is triggered when a frame arrives
from the network. When a frame arrives at a node, the
physical bus drivers and protocol-specific implementation of
ISWC extract the signals (zero or more signals per frame)
and encode their data in the RCM data type. When the
signal(s) is delivered, the data is placed on the data port
which is connected to the data in-port of the destination
SWC (the tracing information is provided in NS), and the
corresponding trigger port is triggered. Fig. 3 graphically
illustrates ISWC.
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Figure 3. Graphical illustration of ISWC.

Example

Consider an example of a node in a distributed embedded
application modeled with newly introduced objects in RCM
as shown in Fig. 4. The network protocol considered in
this example is CAN. Note that the figure is divided into
two halves: the upper half represents the model of a node
whereas the lower half depicts the physical communication
including CAN controller and CAN network. There are two
grey boxes outside the model called CAN SEND and CAN
RECEIVE that are placed just below the sets of OSWCs and
ISWCs respectively. These gray boxes are specific for each
network protocol. The frames that leave the model (sent to
CAN SEND) are denoted by S (Send), e.g., S1, S2 and S3.
Similarly all the frames that enter the model (received from
CAN RECEIVE) are denoted by R (Receive), e.g., R1 and
R2 as shown in Fig. 4.
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Figure 4. Model of OSWCs and ISWCs in one of the nodes in a distributed
embedded system modeled with extended RCM.

All the signals sent in the frame S1 are provided at the
data in-ports of OSWC1. These signals are mapped and
encoded into S1 by OSWC1 according to the protocol-
specific information available in the Network Specification.
Once the frame is ready, it leaves the model as it is sent
to the grey box CAN SEND. In this example, this grey box
represents a CAN controller in the node which is responsible
for the physical transmission of this frame on the network
according to the communication rules of CAN protocol.

When a frame arrives at the receiving node, it is trans-
ferred by the physical network drivers to a grey box (CAN
RECEIVE in this example) that produces an interrupt. The
frame enters the model and is transferred to the destination
ISWC (the tracing information is provided in the Network
Specification). ISWC extracts the signals from the frame,
decodes the data from the frame and encodes it to RCM data
type. The data is placed on the data out-port of ISWC which
is connected to the data in-port of the destination SWC and
the corresponding trigger out-port is triggered (the tracing
information is provided in the Network Specification).

D. Automatic Generation of OSWC and ISWC

Both OSWC and ISWC can be automatically generated
from NS by a Network Configuration Tool. The input to this
tool is the protocol-specific information about the network
communication and the tracing information of tasks in all
the distributed transactions (event-based and periodic chains)
present in the application. This information is made available
from the configuration files that correspond to the NS. The
output of this tool is a set of automatically generated OSWCs
and ISWCs for each node in the network. This tool also
carries out mapping from NS to OSWC and ISWC and vice
versa. The Input and Output Software Circuits are translated
into a set of SWCs to execute the protocol at run-time.

Let us briefly compare our newly introduced modeling
approach for network communication with the existing
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modeling approach for intra-node communication in RCM
(depicted in Fig. 1 by means of connectors). An alternative
to the new modeling approach (presented in this paper)
would have been to use the same connectors for modeling
both inter-node and intra-node communication by attaching a
boolean specifier to it, say, 0 for intra-node and 1 for inter-
node communication; and some tool could automagically
generate the run-time architecture for all communications
and perform the deployment of the distributed embedded
application. Similarly, another alternative modeling approach
is to have an allocation property on each SWC, describing
which node it will run on. However, these modeling ap-
proaches may not be practical in an industrial setup because
of the requirements of modeling legacy systems and legacy
communications, deployment of newly developed nodes in
the existing systems and early analysis of the developed
system.

Analyzability was one important aspect that was kept
in mind while introducing new components in RCM. The
objective was to enable RCM to not only model the legacy
communication but also to analyze the end-to-end timing
behavior of the modeled system. In the next Section, we
will discuss how the required timing information is extracted
from a distributed embedded system, modeled with RCM,
to perform an end-to-end timing analysis.

V. IMPLEMENTATION OF END-TO-END TIMING
ANALYSIS IN RUBUS-ICE

In real-time systems, the time at which the result is
available is as important as correct value of the result. With
the newly introduced modeling elements in RCM, we can
model a complete distributed real-time embedded system.
In order to ensure that all timing requirements are met, the
modeled system should render itself to an end-to-end timing
analysis. To perform the timing analysis, an end-to-end
timing model of the application should be available. In this
Section, we first present the end-to-end timing model used
by the Rubus Analysis Framework. Then we demonstrate, by
an example, the extraction of the end-to-end timing model.
Finally, we describe the support for the end-to-end timing
analysis available in Rubus-ICE.

A. System Model for End-to-end Timing Analysis

The scheduling model that we implemented in the Rubus
Analysis Framework, to carry out the end-to-end timing
analysis, consists of two state-of-the-art scheduling models,
i.e., a node analysis model and a network analysis model.
The node analysis model was previously implemented in the
the analysis framework of Rubus-ICE [7]. The node analysis
model is a task model with offsets that is adapted from the
scheduling model for the holistic response-time analysis de-
veloped by [30] and later on, extended by many researchers,
e.g., [31], [32]. This model is used for the response-time
analysis of tasks in a node. The network analysis model

that we implemented in Rubus-ICE is a communication
model [33] which is used for the response-time analysis
of CAN messages. The task model and the communication
model together comprise the end-to-end timing model of a
distributed real-time and embedded system.

1) Node Analysis Model: The system (node), Γ, consists
of a set of k transactions Γ1, . . . ,Γk. Each transaction Γi is
activated by a periodic sequence of events with a period
Ti. In case of sporadic events, Ti denotes the minimum
inter-arrival time between two consecutive events. In this
model we consider that the activating events are mutually
independent, i.e., the phasing between them is arbitrary.
There are |Γi| tasks in a transaction Γi and each task may not
be activated until a certain time, called an offset, elapses after
the arrival of the external event. By task activation we mean
that the task is released for execution. A task is denoted by
τij . The first subscript, i, specifies the transaction to which
this task belongs and the second subscript, j, denotes the
number of the task within the transaction. A task, τij , is
defined by the following attributes.

• Cij : It is the worst case execution time of the task.
• Oij : It is an offset of the task.
• Dij : It is the deadline of the task.
• Jij : It is the maximum release jitter.
• Bij : It represents the maximum blocking of the task

from lower priority tasks.
• Pij : It represents the priority of the task.
• Rij : It represents the worst-case response time of the

task.
In this task model, there are no restrictions placed on

offset, deadline or jitter, i.e., they can each be either smaller
or greater than the period.

2) Network Analysis Model: The system (network) con-
sists of a number of nodes that are connected through a
CAN bus. If a task on one node intends to communicate
with a task on another node, it queues a message in the send
queue of its node. The CAN protocol ensures arbitration and
transmission of all messages over the bus. There are four dif-
ferent types of CAN frames used for message transmission,
i.e., Data frame, Remote Transmit Request (RTR) frame,
Overload frame and Error frame. In this model, a message
corresponds to a message that uses Data or RTR frames for
transmission. Each message m has the following attributes.

• IDm : It is a unique identifier.
• FRAME TYPE : It specifies whether the frame is a

Standard or an Extended CAN frame.
• TRANSMISSION TYPE : It specifies whether the

frame is periodic or event or mixed (both periodic and
event).

• Pm : It is a unique priority.
• Cm : It specifies the transmission time of the message.
• Jm : It is a release jitter that is inherited from the

response time of the task queueing the message.
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Figure 5. Example distributed system modeled with extended RCM

• DLCm : Each message can carry a data payload that
ranges from 0 to 8 bytes. This number is specified in
the header field of the frame called Data Length Code.

• Tm : It specifies the period of a message in case of
periodic transmission. In case of an event transmission,
Tm refers to the minimum time that should elapse
between the transmission of any two messages.

• Bm : Each message has a blocking time which refers
to the maximum amount of time this message can be
blocked by the lower priority messages.

• Rm : It denotes the worst-case response time of a
message m.

B. Extraction of End-to-End Timing Model

We extract an end-to-end timing model from the dis-
tributed transactions modeled with extended RCM. The
extracted model is used to analyze the end-to-end timing
for delays and network utilization. Consider the following
example.

Example

An example distributed embedded system modeled with
RCM using the new modeling objects is shown in Fig. 5.
There are two nodes in the system with three SWCs per
node. SWCs communicate with each other by using both
inter-node and intra-node communication. For inter-node
communication, CAN or any high level protocol of CAN
(e.g., CANopen, HCAN, MilCAN, etc.) can be used. In this
example, the nodes are connected to a CAN network. An
event chain (distributed transaction) that consists of four
Software Circuits, i.e., SWC1, SWC2, SWC4 and SWC5
is identified with bold lines in Fig. 5. In this transaction, a

clock triggers SWC1 which in turn triggers SWC2. SWC2
then sends a signal to the OSWC A1 which in turn maps
it to a CAN frame. It then sends the frame to the grey box
CAN SEND and hence, the data leaves the model. The frame
is transmitted over the CAN bus by the CAN controller
according to the communication rules of CAN protocol.

When the frame is received at Node B, the grey box CAN
RECEIVE raises an interrupt and passes the frame to ISWC
B1 and hence, the data enters the model. It should be noted
that there can be more than one ISWCs in a node. In that
case, a received frame is passed to the desired ISWC by
looking at the tracing information in the NS. The ISWC B1
decodes the received frame, extracts signal from the frame,
places the data on the corresponding data port and triggers
the corresponding trigger port. The elapsed time between
the arrival of a triggering event (clock trigger) at the input
of SWC1 and the response of SWC5 is referred to as an
end-to-end response time of the distributed transaction and
is indicated in Fig. 5.

The end-to-end timing model, used by the Rubus Analysis
Framework, requires the timing related information of all
the transactions and messages as discussed in the above
subsection. The required timing information about all the
transactions in the system is extracted from the compiled
and verified design representation of the modeled systems
provided in the form of node configuration files in Rubus-
ICE. At network level, the timing information is specified
in the Signal Mapping that is defined in NS. This informa-
tion is extracted from the configuration specification files
corresponding to NS.
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C. Support for End-to-End Timing Analysis

In Rubus-ICE, when the designed model is completed it is
compiled to the Intermediate Compiled Component Model
(ICCM) file [7]. All the timing information required by the
end-to-end timing model is extracted from the ICCM file.
From this timing model, the Rubus Analysis Framework
performs the response-time analysis of individual tasks [32],
the response-time analysis of messages on the network [33],
[34] and the end-to-end timing analysis [35]. The analysis
framework provides the results, i.e., response times of indi-
vidual tasks, response times of network messages, end-to-
end response times of event chains (distributed transactions),
network utilization, etc., back to Rubus-ICE. This whole
process is depicted in Fig. 6.

Rubus-ICE

Rubus Analysis Framework

Response Time Analysis

Of Tasks

Response Time Analysis 

of bus messages

End-to-end Timing Model

End-to-End Timing Analysis

End-to-end

Timing Information

(ICCM File)

Analysis Results

(XML File)

Figure 6. Extraction of end-to-end timing model for timing analysis in
Rubus-ICE

VI. CONCLUSION

We introduced new components to the industrial compo-
nent model, the Rubus Component Model (RCM), for the
development of distributed embedded systems. The purpose
of new modeling objects, i.e., Output Software Circuit
(OSWC), Input Software Circuit (ISWC) and Network Spec-
ification (NS) is to abstract the implementation and configu-
ration of communications in distributed embedded systems.
These objects make the communication capabilities of a
node very explicit, but efficiently hide the implementation
or protocol details. The extended model allows model-based
and component-based development of new nodes that are
deployed in legacy (previously developed) systems that use
predefined communication rules. While making the design
decisions about new components, one important objective
was to enhance analyzability in the component model. Here,

the focus was the ease to extract the end-to-end timing model
from a distributed application modeled with RCM. The
extracted model is used by the Rubus Analysis Framework
to perform the end-to-end timing analysis.

With the addition of new modeling capabilities, RCM can
be considered a suitable choice for the industrial develop-
ment of resource-constrained distributed embedded systems
with hard real-time requirements. There are a number of
reasons behind this motivation, e.g., it can model real-
time communication (both intra-node and inter-node); it
can completely handle timing related information (real-
time requirements, properties and constraints) during all
the stages of system development; it has a small run-time
footprint (timing and memory overhead); it implements the
state-of-the-art research results; it has a strong support for
development and analysis tools, etc.

In the future work, the implementation of OSWC and
ISWC will be automatically generated from protocol con-
figuration files of other specialized communication proto-
cols used for real-time network communication such as
CANopen, HCAN (Hägglunds Controller Area Network),
J1939, etc. For example, the next step will be to generate
automatically the implementation of OSWC and ISWC from
DCFs (Device Configuration Files) in CANopen or for
subsets of J1939.
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[7] K. Hänninen, J. Mäki-Turja, S. Sandberg, J. Lundbäck,
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[27] J. Westerlund, “Hägglunds Controller Area Network
(HCAN), Network Implementation Specification,” BAE
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