IT Licentiate theses
2000-004
MRTC Report 00/21

A Formal Approach to Analysis of
Software Architectures for
Real-Time Systems

ANDERS WALL
ﬂ UPPSALA UNIVERSITY MRTC
Department of Information Technology MALARDALEN REAL-TIME

RESEARCH CENTRE

s D&

\ A RD a
S
SN2 SA\4
—HYERTTAS K

LVER]

o
A

33

UPPSALA UNIVERSITY

A Formal Approach to Analysis of Software Architectures for
Real-Time Systems

BY
ANDERS WALL

September 2000

DEPARTMENT OF COMPUTER SYSTEMS
INFORMATION TECHNOLOGY
UPPSALA UNIVERSITY
UPPSALA
SWEDEN

Dissertation for the degree of Licentiate of Philosophy in Computer Systems
at Uppsala University 2000

A Formal Approach to Analysis of Software Architectures for
Real-Time Systems

Anders Wall

anders.wall@mdh. se

Department of Computer Systems
Information Technology
Uppsala University
Box 337
SE-751 05 Uppsala
Sweden

http://www.it.uu.se/
http://www.idt.mdh.se/

© Anders Wall 2000
ISSN 0346-8887, ISSN 1404-3041
Printed by University Printers, Uppsala University, Sweden

Licentiate theses from the Department of Information Technology

2000-001 Katarina Boman: Low-Angle Estimation: Models, Methods and Bounds

2000-002 Susanne Remle: Modeling and Parameter Estimation of the Diffusion Equation

2000-003 Fredrik Larsson: Efficient Implmentation of Model-Checkers for Networks of
Timed Automata

2000-004 Anders Wall: 4 Formal Approach to Analysis of Software Architectures for Real-
Time Systems

& Z20 S

VERITAS }

UPPSALA
UNIVERSITY

A Dissertation submitted for the Degree of Licentiate of Philosophy in Computer Systems at Uppsala
University, September 2000

ABSTRACT:

Wall A. 2000: A Formal Approach to Analysis of Software Architectures for Real-Time Systems. IT
Licentiate thesis 2000-004 , ISSN 0346-8887. MRTC Technical report 00/21, ISSN 1404-3041.

A software architecture is a high-level design description of a software system. In
terms of the architecture, early design decisions can be analyzed to improve the
quality of a real time software system, which depends very much on how it is
structured rather than how it is implemented. Architectural analysis techniques vary in
their degree of formality. The least formal is based on reviews and scenarios, whereas
the most formal analysis methods are based on mathematics. In this thesis, we propose
to use a formal approach to software architectural analysis. We use networks of timed
automata to model the architecture of real time systems and transform architectural
analysis problems to reachability problems that can be checked by the existing tools
for timed automata. The typical properties that can be handled using this approach are
schedulability and safety properties.

As the first technical contribution, we extend the classic model of timed automata
with a notion of real time tasks. This yields a general model for real-time systems in
which tasks may be periodic and non-periodic. We show that the schedulability
problem for the extended model can be transformed to a reachability problem for
standard timed automata, and thus it can be checked by existing model-checking
tools, e.g. UPPAAL for timed automata. As the second contribution, we present a
method to check general high level temporal requirements e.g. timing constraints on
data flowing in multi-rate transactions, which can not be handled by traditional
approach to schedulability analysis. We have developed an algorithm that given a data
dependency model and a schedule for a transaction constructs a timed automaton
describing the behavior of the transaction. Thus, by using existing verification tools
we can verify that a given architecture is schedulable and more importantly, it is
correctly constructed with respect to the high level temporal constraints.

Anders Wall, Department of Computer Engineering, Mdlardalen University, Box 883, S-721 23
Visterds Sweden, and Department of Computer Systems, Information Technology, Uppsala University,
Box 325, §-751 05 Uppsala, Sweden

© Anders Wall 2000
ISSN 0346-8887, ISSN 1404-3041
Printed by University Printers, Uppsala, Sweden

Distributed by Department of Computer Engineering, Mdlardalen University, Box 883, S-721 23
Visteras Sweden, and Department of Computer Systems, Information Technology, Uppsala University,
Box 325, S-751 05 Uppsala, Sweden

Acknowledgments

I would like to thank my supervisors Dr. Wang Yi at the Department of Computer
Systems at Uppsala University and Dr. Christer Norstrom at the Department of
Computer Engineering at Mélardalen University for their guidance and constructive
feedback on my work. Your support is highly appreciated.

I also want to thank my colleagues here at the Department of Computer Engineering
at Mélardalen University, especially the people at the systems design lab. So far, it has
been a great pleasure to work together with you.

Finally, I would like to thank Kristian Sandstrom and Henrik Thane for taking on the
burden of reviewing this thesis.

This work has been supported by ARTES.

Visteras, May 2000
Anders Wall

Thesis contents

A. Wall A., Software Architectures for Real-Time Systems, Technical Report MRTC

00/20 ISSN 1404-3041, Mailardalen Real-Time Research Centre, Mailardalen
University, May 2000

. Norstrom C., Wall A., and Yi W., Time Automata as Task Models for Event-
Driven Systems, In proceedings of the 6™ International Conference on Real-Time
Computing Systems and Applications

. Wall A., Sandstrom K., Miki-Turja J., Norstrom C., and Yi W., Verifying
Temporal Constraints on Data in Multi-Rate Transactions using Timed Automata,
Submitted to Real-Time Systems Symposium 2000.

2 Thesis introduction

A real-time system is a software system where the correctness depends not only on
correct functionality, but also the time when the computation is performed, i.e.
temporal correctness. The functionality in a real-time system is usually divided into
several concurrent processes called fasks. Each task in a real-time system has its own
temporal requirement regarding, for instance, when to start its execution and when the
execution should be finished. The collected set of temporal attributes that can be
specified for a task constitutes a task model. The task model provides the information
necessary for scheduling the task set.

Depending on the criticality of the temporal correctness, real-time systems are divided
into hard- and soft real-time systems. If the system is considered hard, all temporal
constraints must be satisfied. Typically, such systems reside in nuclear power plants,
aircraft, vehicles, etc. On the contrary, tasks in soft real-time systems may
occasionally violate their temporal constraints. Many soft real-time systems exist in
our surrounding, e.g. home appliances, toys, and telecommunication.

Traditionally, when designing real-time systems, models are constructed out of the
temporal constraints on tasks for the purpose of verifying the temporal correctness.
The temporal correctness of real-time systems is of great importance but there exist
other important properties, e.g. safety, dependability, reusability, maintainability,
usually referred to as x-abilities. In order to verify, or predict, how well a designed
system complies with such quality requirements, models of more than the temporal
constraints are needed.

One approach to attacking this problem is to employ the software architecture and
software analysis techniques available. Software architectures are high-level
descriptions of software systems. On its highest level of abstraction, software
architectures describe the components in a system and their interconnection, i.e. the
structure of the system. Many of the properties mentioned above can be estimated by
analyzing the architecture of the system solely. There exist several techniques for
architectural analysis, all with varying level of formality reaching from experience-
based reasoning to mathematical methods. Basically, the modeling language
determines the level of formality of the analysis.

Languages for modeling of the architecture of a system are called an architectural
description language (ADL). On its simplest form, an ADL may only describe the
components in a system and the connection between them. Formal models are usually
considered to model the behavior of a software system on a lower level than its
architectural structure. However, by applying formal modeling and verification
techniques in the architectural design, some of the quality properties can be verified
using mathematics.

As time is of great significance for real-time systems, it is important that the language
used for modeling such systems has a notion of time. In this thesis, the formal
modeling language timed automata is used. By making models of real-time systems in
timed automata, the temporal correctness, as well as safety properties, can be formally
verified.

We describe how formal modeling languages, such as timed automata, can be used in
software architectural design and analysis for real-time systems. More specifically, we

describe how to verify the temporal requirements that are derived from the high-level
requirements by model-checking architectural models constructed in timed automata.
For this purpose we have extended the classical definition of timed automata with a
notion of tasks. Moreover, high-level temporal requirements for a system do not
necessarily have their correspondence in the temporal attributes available in the task
model. For instance, there could be a requirement on the end-to-end deadline for a
task transaction, while the task model only allow specification of period times and
deadlines for the individual tasks. In order to verify the temporal correctness,
schedulability analysis is performed. However, the schedulability analysis is based on
the mapping of the high-level temporal requirements to the temporal attributes
provided by the used task model. Consequently, a system can be schedulable, i.e. all
deadlines for each task is met, even though the temporal behavior is incorrect, as the
high-level requirements might not be fulfilled. In the method proposed in this thesis,
we aim at verifying that, not only is a schedulable architecture constructed, but also
that the correct architecture is constructed with respect to the high-level requirements.
The high-level temporal requirements we consider are on data flowing through task
transitions. Such requirements typically specify minimum or maximum age on
sampled data used in computations.

3 Results

Paper A: Software Architectures for Real-Time Systems

In this report, the state of the art in the field of software architectures, with a focus on
software architectures for real-time systems, is described. Software architectures is a
part of software engineering concerned with high-level design and analysis. The
objective of architectural analysis is to verify quality requirements on software.
Typically examples of such quality requirements are maintainability, reliability and
reusability. For real-time systems, the temporal correctness is a crucial quality
property. The report discusses architectural description languages, architectural view
and architectural analysis. Moreover, quality properties valid for real-time systems
and methods for analyzing such properties are described.

Paper B: Timed Automata as Task Models for Event-Driven Systems

In this paper, the classical model of timed automata is extended with a notion of real-
time tasks. The main idea is to associate each discrete transition in a timed automaton
with a task. Intuitively, a discrete transition in the extended timed automaton denotes
an event releasing a task and the guards on the transition specify the possible arrival
times of the event. This yields a general model for real-time systems in which tasks
may be periodic and non-periodic. Moreover, the paper shows that the schedulability
problem for the extended model can be transformed to a reachability problem for
standard timed automata and thus it is decidable. This allows us to apply model-
checking tools for timed automata to verify the schedulability of a event-driven
system. In addition, based on the same models of a system, properties such as safety
and, to some extent functionality, can be verified.

Paper C: Verifying Temporal Constraints on Data in Multi-Rate
Transactions using Timed Automata

This paper describes how to verify temporal constraint on data flowing through a set
of collaborating tasks that runs at different frequencies. Such a set of tasks is called a
multi-rate transaction. Typically temporal constraints on data flowing through such a
transaction is maximum time from input to output or a maximum time difference
between inputs. Such constraints are of great importance to guarantee the correct
functioning of the designed system. But normally they cannot be checked using the
traditional approach to schedulability analysis. The paper describes how to use timed
automata and reachability analysis to verify such temporal constraints on data in
transactions. By making a timed automaton model of the data dependencies in a
transaction, we enable automatic verification of timing constraints such as end-to-end
latency. The model can handle different computational models and any non-
preemptive execution order of the tasks in the transaction.

4 Future work

As future work we will implement tools that, based on existing model-checkers,
support the methods proposed in this thesis. Furthermore, as timed automata is used,
we will consider to implement a tool that automatically generates code from such
models. Thus, the gap between formal models and their implementations, which is a
source of possible divergences, is reduced.

Today in industry, products are developed based on existing platforms and
applications. The platforms must be constructed in such a way that they easily can
adopt new functionality, i.e. they should be flexible. We will investigate how the
temporal dimension, present in the domain of real-time systems, affects the analysis
of quality properties such as flexibility, and how flexible platforms should be
constructed.

5 Papers produced

A. Wall , Software Architectures for Real-Time Systems, Technical Report MRTC
00/20 ISSN 1404-3041, Mailardalen Real-Time Research Centre, Malardalen
University, May 2000

C. Norstrom, A. Wall , and W. Yi, Time Automata as Task Models for Event-Driven
Systems, In proceedings of the 6™ International Conference on Real-Time Computing
Systems and Applications

A. Wall, K. Sandstrom, J. Miki-Turja, C. Norstrom, and W. Yi, Verifying Temporal
Constraints on Data in Multi-Rate Transactions using Timed Automata, Submitted to
Real-Time Systems Symposium 2000.

H. Thane, and A.Wall, Formal and Probabilistic Arguments for Reuse and
Reverification of Components in Safety-Critical Real-Time Systems, Technical
Report, Mélardalen Real-Time Research Centre, Milardalen University, March 2000

Software Architectures for Real-Time Systems
By
Anders Wall

Technical Report MRTC 00/20 ISSN 1404-3041, Milardalen Real-Time
Research Centre, Milardalen University May 2000

Software Architectures for Real-time Systems

Anders Wall
Department of Computer Engineering
Milardalen Real-Time research Center
Milardalen University

Sweden
anders.wall@mdh.se

ABSTRACT

The solution to the complex nature of developing software is software engineering.
Software engineering provides techniques for structured design, formal- and informal
analysis, and software metrics. The part of software engineering concerned with high-
level design and analysis is called software architectures. The objective of
architectural analysis is to verify quality requirements on software. It can be applied
on any level in the design but it focuses on the structure of the software. While the
architecture provides a high-level abstraction of the software, divergences between
the designed system and the requirements can be detected early in the design phase.
However, the structure of the software alone does not always provide enough
information in order to analyze all requirements put upon a software system.
Additional information about the software construction is provided by different
architectural views. The number of views, and their contents varies depending on the
system domain and the required quality properties to analyze.

In this report, the state of the art in the field of software architectures is described.
The survey is focused on software architectures for real-time systems but many of the
described techniques can be applied to general software systems.

Contents

L 1 TP OAUCHIO . cooeveroeneioneurionsurionsurionsasssnsussonsarssnsssssssssssssssnsssssssssasssssssssssssssssssssssssssssssssssnes 5]
[.L1 Towards a definition 6|
[1.2 Open research areas 6|
[1.3 Outline 7|

e e Ly e L ———~ 9
R.1 __ Desired properties of an architecture description language...... 9|
R.2 Semantics of an ADL 10|
2.3 Examples of existing architectural description languages 11

B AFCHILCCTUTAL VICWS..u.evreeeereneerereererersereneesenersasensessnesasenssensasssensssesensssensasensasensassnenssenses 13|
B.1 _ Discussions 18]

7] AVCRTILCCTUT Al ARLALYSIS eovveeeeennnneeeeeeeeeenneeeesssesseseessssssssssssssssssssssssossssssssssssssssosssssssssssssssoes 20)|
U.1 Methods for architectural analysis 20|
#.2 Functional analysis 22|
#.3 Nonfunctional analysis 27|

N ., 32
5.1 An example 33|

L T —— 36|

A T T ——— 39|

Dl L Dy L L R —— 43|

1 Introduction

The number of projects in industry developing software is constantly increasing.
Software is not only replacing old and well-established technologies, but also
increasing in size and complexity. To manage the complexity, engineering methods
for constructing software needed, i.e. sofiware engineering. Software engineering has
been established as a broad discipline that covers topics ranging from requirements
capture, design, implementation, and software metrics, to maintenance, verification
and validation. An established engineering practice is taken for granted in many
engineering disciplines but not in the software community. In order to be considered
an engineering practice, we must be able to construct models that can be analyzed and
verified. Moreover, design methods are needed including established techniques that
have been proven successful as well as tools supporting the methods. The part of
software engineering that focuses on high-level design and analysis is called sofiware
architectures.

Edsger Dijkstra pointed out in a paper from 1968 the importance of partitioning and
structuring software, in contrast to just focusing on programming to produce the
correct functionality [dijk68]. This is what software architecture, and software
architectural analysis is about as it deals with how to structure a software system and
how to evaluate that structure with respect to different quality properties. The interest
in the software architecture field has increased lately due to the increased functionality
provided by software systems, the increased size and complexity, and the increased
cost of developing and maintaining software products. Today, industry is aware of the
benefits of being able to analyze and verify software constructions in an early phase of
the development process. If a software development project diverges from the
functional requirements or the quality requirements, and if those divergences are not
detected early, the cost of revising the design in the end of the project will be
significant due to redesign. Almost 80 percent of the cost for developing a software
product are spent after the initial design and implementation phases [Clem96b]. These
80 percent spent on maintenance, which includes error detection, correction and
evolutionary development.

Not only does a structured description of a software system constitute a basis for
architectural analysis, it can also improve the productivity of new members in a
project. The architecture provides a simple and holistic view of the whole system.
This is very important since complex system usually engage a lot of people, all with
unique competencies, at different stages of the development process. Since designing
real-time systems usually require multi-disciplinary knowledge, it is very important to
have an architectural description that can be understood by software engineers as well
as control and mechanical engineers. Furthermore, many software projects employ a
lot of consultants. Consultants may have little knowledge of a company’s product line
and need a quick briefing in order to get productive and cost efficient.

The complexity of software systems also causes problems when maintaining and
correcting errors in a software product. It is seldom possible to, in advance, be aware
of all the side effects that particular a correction may give rise to. If an architectural
description is at hand, it could give some guidance on what modules are most likely to
be affected by the correction. This is highly related to evolutionary development. If the
architecture of the software construction is violated, it ceases to exist in its former

shape. The construction still has an architecture, but as long as the architecture is not
explicitly, and correctly described, it is of no use. Consequently, the architectural
description may, and should, evolve as the construction that it describes evolves.

1.1 Towards a definition

There are almost as many definitions of software architecture in the literature as there
are software architects and designers. We mention a few examples:

The software architecture of a program or computing system is the structure or
structures of the system, which compromise software components, the external visible
properties of those components, and the relationships among them [BCK98].

In [Paul94] the following definition is given:

Software architecture not only reflects how the functional requirements are met, but
addresses:

1. non-functional requirements
2. design rationale
3. architecture style
Yet another definition is provided in [Clem96a]:

A view of a system that includes the system’s major components, the behavior of those
components as visible to the rest of the system, and the ways in which the components
interact and coordinate to achieve the system’s mission.

One property that seems to be common among almost every proposed definition is
that the software architecture describes a system by a composition of its software
components and their interrelationships. In addition, software architectures should
provide a high level description, i.e. a more abstract level than the level that
algorithms and data structures provide. However, defining a software architecture only
as a syntactical representations of components and their interconnections in the
software systems is not sufficient. To be useful, additional information must be
present in the description, in particular the semantics of components and connections.
Different domains of software systems have different semantics of their software
architectural description. A domain defines the class of application to wich a product
belongs, e.g. desktop applications and industrial control applications. As a
consequence, there will be variations in the definitions of software architectures
depending on the domain. Furthermore, the definition also depends on the aim of the
architectural description, e.g. support for architectural analysis, representation or
description of the designed system. It is probably impossible to unify software
designers in one single definition as it depends on the aim of the architecture and the
domain in which it is used. What we can state is that software architecture is a
description of the software structure and methods to evaluate and compare design
solutions.

1.2 Open research areas

As software architecture is an immature research area, a lot of open questions still
exist. Most of the ongoing research in the field of software architectures is focused on
description languages and analysis of architectures for non-real-time systems. The

analysis methods are still informal in their nature. As the analysis methods are
informal they provide rough metrics and estimations. We believe that formality can be
added to architectural models. Thus, the models can provide means for formal
verification of some of the quality properties that are listed in this survey.

Most of the material on software architectural analysis found in the literature ignores
the temporal aspects. By adding the temporal dimension on software, completely new
problem arises. As an example, components developed for real-time systems, i.e.
system for which correctness depend on both the functionality and the temporal
correctness, can not be reused in new environments unless at least the temporal
constraints are still fulfilled. Quality properties such as flexibility, i.e. the ability of a
software system to adopt new, or remove old functionality, are also important. As
real-time systems are restricted to resources such as processors, communication
busses, etc., a lot of additionally parameters must be taken into account in such an
analysis.

The tool support for architectural design and analysis is poor. Tools that support the
complete process of developing an architecture are needed. Today, architectural tools
for real-time systems almost exclusively focus on schedulability analysis. As indicated
in this report, there are a lot of other important properties of real-time systems
software. However, implementing such tools is non-trivial. One approach is to use
existing tools for automatic verification. This can be done if the problem of analyzing
a specific quality property can be transformed into a property that can be verified
using that tool. Examples of existing tools for formal verification are UPPAAL and
KRONOS [LPY97][DaY095].

1.3 Outline

Chapter 2 discusses architectural description languages and desired properties of such.
In Chapter 3, the architectural view necessary for an architectural analysis of real-time
software architectures is discussed. Architectural analysis is dealt with in Chapter 4.
Finally, Chapter 5 concludes the report. Terminology used in the paper is explained as
it is used. Appendix A provides, however, a complete list of the vocabulary together
with a short explanation.

2 Architecture description languages

Communication among software engineers 1is crucial. Without means for
communication, important information into- and from the design phase might
accidentally get lost, resulting in misinterpretations. Moreover, a system designer must
be able to communicate with customers, other project members and management in an
unambiguous way. An unambiguous architectural description is also a necessary
condition for performing architectural analysis. A parable is the building trade, where
building architects transform the customer requirements into a design. This design
must be described in a way the building constructor understands in order to do
mechanical strength calculus and for building workers to use as a blueprint. When
developing software, a software engineer formalizes the customer requirements. Based
on the requirements, a high-level design is described in a language that is commonly
understood by customers and designers. The common language is a necessity in order
to communicate and discuss design solutions. As output from the high-level design
phase, one or several candidate architectural solutions are produced.

To verify that the quality requirements of the system are met by the architectural
solutions, the architecture has to be analyzed. Hence, the description language used in
the high-level design must support the analysis methods. Once a software architecture
is constructed that fulfils the requirements, the architectural description is used as a
”blueprint” when implementing the system. In addition, an architectural description
makes maintenance easier since it facilitates the understanding how parts of software
systems cooperate. Thus, the parts of a software system, i.e. components and sub-
systems, affected by a correction are detected in advance.

2.1 Desired properties of an architecture description language

Languages for architectural description are called Architecture Description Languages
(ADL). There is an abundance of ADL:s, each of them with its own specific syntax,
semantics, expressiveness and purposes| EHLS94][LKAV93][Vest94]. An ideal ADL
should however, provide six classes of properties: composition, abstraction,
reusability, configuration, heterogeneity and analysis [SHGA96]. By composition is
meant that a software system should be described as a composition of components and
connections. Furthermore, components and connections must also be described in a
way that clearly and explicitly describes the exact role of each element, i.e. modeled
on an appropriate level of abstraction.

As components are reused in different applications that are described using different
description languages, the architectural description must be able to adopt to reuse.
That is, it should be possible to reuse components, connectors describing the
interconnection between components and architectural patterns in different
architectural descriptions. Related to reusability is heterogeneity. Heterogeneity is the
possibility of combining different heterogeneous architectural descriptions.

Configuration means that the architectural structure among components in the system
should be separated from the structure in the components. The language should also
support dynamic reconfiguration. As will be discussed in Chapter 3, the structural

view describes all components and connections, whereas the module view unveils the
structure of each component.

Finally, as high-level design analysis is one of the primer justifications for using
software architectural techniques, the architectural description must support different
kinds of analyses.

Considering the desired properties of an architectural description above, how can a
software architecture be described? One possibility is a plain textural description in a
natural language. However, natural languages tend to be ambiguous, making them
really hard to interpret in a consistent manner. By using a formal language an
unambiguous description is obtained. With formal languages it is possible to use
mathematics when modeling and verifying the architecture. The disadvantage of using
formal languages as architectural descriptions are that most of them requires a lot of
experience and mathematical skill. Consequently, such a description may be sufficient
and useful at some stage in the design process but not for communication with
partners in a project without a computer science background. By relaxing the
formality, a semi-formal, graphical representation may be obtained. Even
inexperienced people can get a feeling for how a system is constructed by interpreting
a graphical representation. The semi-formal description also permits analyses and
quality predictions to be made as described later in this report. The graphical approach
has been adopted by many of the available ADL, where the software design is

Component A

Component B Component C

Figure 1. A graphical software architecture
description.

constructed using components and their interconnections in a 4™ generation language
manner as illustrated in Figure 1.

2.2 Semantics of an ADL

The architectural description in Figure 1 provides only the information that there are
tree components in the system, which are connected to each other. The connections
could indicate a class hierarchy or a network communication link over a distributed
hardware architecture. As stressed by Clements and Northrop [Clem96b], it must be
known exactly what the components are, what the connections mean and what the
position of the components imply, i.e. a well-defined semantics. If the semantics is not
clear the architectural description is quite useless.

One single architectural description language can not fit the desired level of
abstraction for every different software domain and application. There is for example

10

a big difference between designing a real-time system with hard- and soft temporal
requirements compared to designing an administrative application with database
management and transactions. Consequently, we need a unique description language
for every application domain.

Even though there must be differences in the architectural description depending on
the application domain, there might exist a least common denominator. Such a least
common denominator could, for instance, consist of components and connections. But
the significance of a connection or a component could be domain specific.

If the ADL has an unambiguous semantics, design tools for architectural analyses can
be developed [ERGUSA97] [LPY97]. However, analysis of quality properties usually
requires more information than just the architectural structure. This additional
information is provided by the architectural views and is discussed in Chapter 3.

2.3 Examples of existing architectural description languages

There exist several architectural description languages for real-time systems. Typically
they differ in their expressiveness and formality. As an example of a formal modeling
language that can be used for describing architectures for real-time systems we use
timed automata [ALDI92]. Architectures are described in timed automata as a
network of finite state machines, where a process or a component is one state
machine. Synchronization channels connect processes in timed automata to each
other. A synchronization channel defines the name of the signal used for
synchronization. Thus, architectural interconnections are described using
synchronization. Below is a more rigorous description of timed automata.

A timed automaton is a finite state machine extended with real-valued clocks that
increases uniformly. Moreover, transitions in a timed automaton are decorated with
guards and actions. Guards are clock constraints that enables or disables a transition,
1.e. if the guard is true then the transition can be taken. In Figure 2, the transition from
S1 to S2 can be taken if the clock x has a value greater than 10 time units.

x>10
@ ‘ 82

Figure 2. A simple timed automaton

Actions enable synchronization between different timed automata in a rendezvous
manner, i.e. processes halts until both participating processes can synchronize. This
indicates that a complete system is modeled by a set of timed automata, such a set is
called a network and consists of the parallel composition of the included processes.
Consider Figure 3 where a small network is displayed consisting of two processes, 4
and B.

11

Figure 3. A network of timed automata processes

Whenever process B is in state S3, it will wait for another process to send a signal on
channel a. The question mark after the channel name indicates that B is waiting for the
signal. As long as no signal is being sent on channel a, B is stuck in state S5. As soon
as process 4 reaches state S3, the processes can synchronize and the processes
progress to S and S4 respectively. During this transition, no clocks are progressing,
1.e. it is a discrete transition. Models of timed automata can be constructed and
automatically verified using existing model-checking tools, e.g. UPPAAL and KRONOS
[LPY97][DaYo095].

Another example of an ADL for real-time systems is MetaH [Vest94]. This is a
language that models a system on level of abstraction higher than timed automata.
MetaH provides means for specifying real-time processes, referred to as tasks, that can
be either periodic or aperiodic, communication among tasks, modes and composites of
processes and modes that are called macros. Furthermore, the hardware allocation of
processes and characteristics of the hardware such as channels that are used for
communication among processors can be specified. As the temporal properties of
tasks and modes are provided in the models, MetaH support different kinds of real-
time analyses such as schedulability analysis. There exist a graphical tool that supports
the modeling in MetaH and analysis of real-time software architectures described in
MetaH. The schedulability analysis in this tool is based on rate-monotonic [LILA73].

12

3 Architectural views

Architectural views constitute an important part of a software architectural description
as they expose architectural information apart from only the structure. In Figure 4,
architectural description languages for different software families (domains), are
viewed as an inheritance graph. The top node includes description primitives shared
by all domains (compare with a virtual base class in the object orientation
community). Two common description primitives could, for example, be syntactical
symbols representing components and the connections between components. This
means that components and links can describe the structure of any sub-domain of
software applications. However, the component primitives and the connection
primitives have no semantics in the top node. Semantics and new syntactical symbols
will be added while moving down in the inheritance hierarchy. For instance, the
semantics of a component in a real-time system is probably a task, and the links are
the communication among tasks or precedence relations. In an administrative software
application on the other hand, components are most certainly databases or user
interfaces, and connections denote database transactions.

All domains

Administrative Real-Time System

F—

Periodic

e

Static Schedule

Figure 4. Architectural description and view hierarchy.

The nodes in Figure 4 are intentionally displayed in a 3-dimensional manner. Each
side of a cubical node is a metaphor for a unique view of the architecture. There might
be arbitrary many different views, depending on the needs for verification and analysis
in a software development project.

In this Chapter, views important for the real-time systems domain are discussed. Note
that not all views must be modeled in a project developing real-time systems. Only the
views sufficient for the analyses required must be present in the architectural
description. The names of the views and their contents are not standardized but we
propose the following:

e Structural view

e Module view

Logical view

Hardware view

13

e Temporal view
e Communication view

e Synchronization view

Structural view

The structural view describes the overall architectural design and style, providing the
highest level of abstraction. This is the natural starting point for an architect designing
a software system. The structural view consists of software modules and their
interconnections, i.e. the interfaces between them. The syntactical representation of
modules and connections is optional but should be uniform within the development
project for the sake of communication among engineers.

As design on this level is rather rapid, it is possible to design several competing
architectures for evaluation and comparison. Once a software architecture satisfying
the quality requirements is selected, it is settled. Depending on the required analyses,
more views might have to be modeled in order to make a correct decision. For
instance one or more of the views proposed in this chapter could be considered.

In Figure 5, the structure of a system consisting of four components is displayed. The
arrows between the components represent function calls through the component
interfaces.

Module A Module B

Module C Module D

Figure 5. The structural view of the software architecture.

In the design methodology called Module Approach to Software Construction,
Operation and Test (MASCOT), the structural view is modeled with a diagram called
the decomposed component level view [Masc87]. This view provides a decomposition
of a sub-system into its main constituents, i.e. its tasks.

The object-oriented methodology for real-time systems called Hard Real-Time
Hierarchical Object-Oriented Design (HRT-HOQOD), also has a structural view that is
provided by the so-called parent-objects [BuWe94]. A parent-object is a component
on its highest-level that may be further decomposed.

The corresponding abstraction for networks of timed automata is the processes. A
system modeled in a network consists of a set of automata (processes). Each of these
processes could be seen as a component. The interconnections are modeled using
synchronization actions. Interconnections visualize the data flow. Information of the
control flow is given by the logical view, which is discussed in Chapter 3.3.

14

Module view

The module view exposes all the functions, methods or sub-modules in all the
components modeled in the structural view. A software component is a software
module, which is further, decomposed into functions and sub-modules in order to
unveil the division of functionality. This view should also describe the interactions
between the functions. It is, for example, desirable that the interaction between
functions in different components is held to a minimum. Some communication
between components is necessary, but the communication must be performed trough
well-defined interfaces that conceal the underlying functionality.

Hierarchical methods such as MASCOT and HRT-HOOD both provide means for
component decomposition. In MASCOT the module view becomes the structural view
as each component is refined, while in HRT-HOOD, the module view is described by
child-objects derived from each parent-object.

Figure 6. The Module view of components.

Logical view

In this view the functions from the module view is described in more logical details. It
serves as a model of the actual implementation, which can be used as a low-level
description or constitute the basis for formal verification. Some possible descriptions
are state machines or algebra like CCS [Miln87]. These are all different ways of
describing the functionality of software formally. State machines can be of different
types depending on the application. For example, timed automata can be used for real-
time systems as it provides a notion of time as well as concurrency [ALDI92]. If time
is of no concern, an ordinary state machine can be used. CCS is a process algebra with
which it is possible to model concurrent systems. Such algebra is useful when
modeling communication and synchronization, which is essential when designing
real-time systems.

In Figure 7, The logical view for the sub-components is modeled using time automata.
The upper sub-module synchronizes with the lower sub-module by sending signal a.

From the software architecture perspective, the logical view may be on a far too
detailed level since software architectures are descriptions of software systems on a
higher level than algorithms. However, this view will eventually be implemented, if
not in logic so in the chosen programming language which in itself is a formal
description of the specification.

15

The logical view is of no interest when settling the architectural style. It provides a
basis for formal verification and in the end the program source code.

| 020
o

e

S

Figure 7. The logical view.

Hardware view

If the system is distributed, i.e. a set of interconnected and geographically separated
CPUs, or a multi-processor system, i.e. a set of interconnected and geographically
collected CPUs, there might be requirements of pre-allocated functionality among the
nodes in the system. Such an allocation will affect the final architecture and the
performance of the application. Yet another reason for having a hardware view
description in the software architecture is the issue of portability. If software should be
easy to move between different types of platforms, the dependencies to the hardware
and the operating systems must be encapsulated from the rest of the software system.
One can discuss whether this is a software architectural view or not, but as long as
hardware has an impact on the software architecture, we consider it a view.

Processor 2

Figure 8. The processor allocation in the hardware view.

In the Yourdon Structured Method (YSM), the allocation of functions to hardware
processors is called the processor environment model [Cool91]. Besides the function
allocation, this view reveals the data that will be communicated among the processors.

Temporal view

The views discussed so far are common among different software families and
consequently reside in the topmost node in the architectural hierarchy shown in Figure
5. The temporal view is, however, domain specific. As the correctness of a real-time

16

system not only depends on correct function, but also correct timing, the temporal
constraints must be present in the architecture. By correct timing we mean not too
early and not too late. In order to verify whether or not tasks in a real-time application
will be schedulable, i.e. all temporal constraints are fulfilled such as all deadlines are
met, we need a view of the temporal requirements.

The temporal view contains data such as release time i.e. the earliest start time of a
task, the deadline i.e. the latest completion time of a task, the period time (the
frequency) of a task, etc. We say that a task model determines the exact content of the
temporal view. The exact appearance of a task model varies depending on the
execution strategy. The execution strategy defines the rules that determine what task
to execute.

As an example of a variation in the temporal view, consider a periodic task that
samples a sensor in a process. As the sampling should be performed with some
specific frequency in order to obtain a correct view of the process, a period specifying
the interval between two consecutive executions of the sampling must be specified. In
contrast, if the application is purely event trigged, i.e. tasks have arbitrary release
times, there is no need for specifying period times. Instead, the minimum inter-arrival
times must be specified for the tasks.

HRT-HOOD has a temporal view that is divided into two parts, one that describes the
execution strategies for a class and one that provides the temporal attributes. The
execution strategy can be either cyclic or sporadic. Depending on the execution
strategy, classes can be assigned, e.g. period times, minimal inter-arrival times, and
deadlines.

In timed automata, clocks and guards on clocks describe the temporal view.

Communication view

For telecommunication systems, and for real-time systems in general, it is desirable to
model communication among tasks and processes. Communication is typically
performed using messages and signals that are sent back and forth in the system, either
locally on one processor or among nodes in a distributed system. For this purpose the
communication view can be used. In Figure 9, the communication is visualized with
Message Sequence Charts (MSC). The vertical line in each process depicts time which
increase downwards. The horizontal lines between the processes depict the messages
or signals.

17

msg 1

\ msg 2
msg 3
msg 4 4/

Figure 9. Message Sequence Chart

The MSC can be translated into ordinary finite state automata which makes it possible
to formally verify them using, for instance, temporal logic [LaLe94].

Synchronization view

As real-time systems often are multi-tasking systems having several tasks running
concurrently, it is necessary to synchronize access to shared resources in order to
avoid inconstancy. Tasks that uses a shared resource must mutually exclude each
other, i.e. only one task can use the resource at the time. There exist several techniques
for handling mutual exclusion in real-time systems, e.g. semaphores, signals or
separation of task in time. In addition, to guarantee precedence relations, i.e.
requirements of the execution order among tasks in a system, synchronization is
necessary.

What synchronization technique to choose depends on the provided infrastructure, i.e.
the real-time operating system (RTOS), and the available task models. For instance, if
the system is pre-run-time scheduled, i.e. a pre-runtime generated table defines the
execution order of the tasks, time-vise separation of tasks can be used. On the other
hand, if the system is event-triggered, and semaphores are the only means for
synchronization provided by the infrastructure, the semaphore approach must be used.

The information unveiled in the synchronization view is implicitly present in other
views discussed in this section. For instance, if synchronization is resolved by
separation in time, this is visible in the temporal view, or if signals are used, this is
visible in the communication view.

In MASCOT, communication and synchronization is modeled using paths along
which entities communicate. A path can indicate a dependency to commonly used
data, or a dependency to another entity that results in a sending/receiving of messages.

Communication and synchronization between processes can be modeled in timed
automata by using synchronization actions.

3.1 Discussion

All the different views should not be designed in the beginning of a development
project. Instead an iterative process is often preferred. For some applications, some of
the views can be excluded. For instance, if there is no distribution and no
requirements regarding portability, the hardware view may be excluded.

18

There exist relations among different architectural views. The relation between the
structural view and the module view is obvious as the module view provides a
decomposition of the architecture specified in the structural view. The logical view
defines the "low-level-design”, specified in some formal language suitable for formal
verification of, for instance, the communication and synchronization among the
modules in the software system. The schedulability of a distributed real-time system
depends on how tasks are allocated, i.e. how the tasks are distributed. The allocation
affects the utilization of each processor and the time spent on communication between
tasks allocated on different processors.

19

4Architectural analysis

The main incitement for using software architecture notation when designing a
software system is the ability to analyze and verify the design in an early stage of the
development process. By comparing different candidate architectures, confidence in
early design decisions is achieved. Such a comparison is done by listing pros and cons
for each architectural solution according to the quality requirements put on the system.
Furthermore, architectural analysis enables the possibility to get software metrics
based on the high-level design, e.g. the level of coupling and cohesion within and
between the different modules that constitute the software system [Fenton96].

In this report, the software system quality properties are divided into two different
classes, functional and nonfunctional. Functional quality properties are those
concerned with the runtime behavior of the software, e.g. performance or reliability,
whereas nonfunctional quality properties are concerned with the quality of the
software itself, e.g. maintainability or reusability. Most of these software quality
properties are qualitative rather than quantitative, thus being practicable only for
comparison between different architectures.

4.1 Methods for architectural analysis

An architectural analysis process is divided into two stages, questioning and
measuring. The questioning phase generates questions that are answered by the
measuring phase. Len Bass et. al. [BCK98], have categorized the questioning stage in
architectural review and evaluation into three different classes namely Scenario-
based, checklist-based and questionnaire-based.

Scenarios are a set of cases where the software architect asks a lot of “what if”
questions that reflect the requirements. It is however not a trivial task to construct the
right questions and to know when to stop generating scenarios. This requires a lot of
experience and knowledge, which can be achieved by being involved in many design
projects. A scenario is always system specific, i.e. tailor-made for a particular
application in a domain, whereas questions that are valid for all architectures in a
particular domain resides in a checklist. The items in the checklist can either generate
scenarios or be verified in the measuring stage directly. As an example, consider the
domain of safety-critical real-time systems. The checklist contains the following
1tems:

1. Is the system schedulable?
2. Is there error recovery code in the system to clean up after error detection?

The first item is verified directly by performing a mathematical schedulability
analysis. The second item is too general and therefore it must be formalized into a set
of scenarios before it can be answered. As scenarios are system specific, they can
stress different types of errors in specific modules residing in the system. One possible
scenario is: “What happen when division by zero occurs in the control task”. The
scenarios can than be verified by, for instance, simulation or scenario execution, both
described later in this chapter.

20

The questionnaire-based questioning typically stresses general logistical software
architecture questions. These questions have usually very little to do with the quality
of the software itself, but rather focusing on issues such as documentation, and how
the architecture was generated. Although the logistical questions do not examine the
quality of the software product itself, it has impact on the quality since good quality
requires a mature development process. Examples of such questions are: “Is a
standard architectural description language used?”, or “Is the intended work
distribution supported by the architecture?”.

There are a couple of measuring techniques available for architectural analysis namely
scenario execution, simulation and prototyping, mathematical methods and experience
based knowledge reasoning. The idea with scenario execution is to “execute” the
question stated by a scenario on the architecture. By executing a scenario is meant that
the effects on the architecture imposed by a scenario is investigated. This method is
particular suited for analysis of non-functional quality properties.

Simulation requires a prototype implementation of the architecture. Such a prototype
should be as small as possible, containing only the information needed for the analysis
to be performed. Simulation is a method targeting on analysis of functional quality
properties.

Experienced-based reasoning can be used for any of the two classes of quality
properties. Actually, experienced-based reasoning is usually how the software
architecture evaluation is done in industry today, although in a relatively unorganized
manner. As an organization and its development process mature, more of the formal
evaluation techniques will be adopted.

Mathematical methods can be used provided that a mathematical model of the
architecture exists. Such a model is provided by, e.g. timed automata. More examples
of mathematical measuring techniques are the schedulability test for real-time systems
and statistical reliability modeling. These methods give a clear yes- or no answer, or a
quantitative value that is comparable among all different types of software
applications.

Figure 10 provides a schematic picture of how the different evaluation techniques
relate.

System requirements System domain
|
v
Questionnaire based Checklist based
Questioning

Scenario based

¥ v
. Scenario execution Simulation/Prototyping
Measuring <

N

N

> (Mathematical methods
> N
\ ~
N
N
N
N
N
\ N
v
A

Propel’ty class Project logistics Nonfunctional properties Functional properties

21

Although measuring techniques might give quantitative values, these values must be
treated carefully. The quantitative values should be used as relative values when
comparing competing software architectures. Moreover, if scenarios or experienced
reasoning was used to obtain the values, the exact same set of scenarios and reasoning
must be used when evaluating the competing or refined architecture. Otherwise, the
measures are not comparable. Consequently, it is impossible to compare measured
quality of a software architecture across the application domain i.e. within the same
class of products but in different environments or applications.

4.2 Functional analysis

There exist functional quality properties in abundance, among which the properties of
particular interest when designing safety-critical real-time system is listed in Table 1.

—i Figure 10. Schematic picture of the relations between the evaluation techniques

time
Safety The property of the system that it will not endanger human life or the

environment
Security The ability of a software system to resist malicious intended actions
Availability The probability of a system functioning correctly at any given time
Temporal Real-time attributes such as deadlines, jitter, response time, worst case
constraints execution times (wcet), etc.

Table 1. Functional quality properties

Performance

Certain functional properties of a software system are tricky or even impossible to
predict using the architectural description level only, e.g. performance. Performance
estimations must have the algorithmic solutions as input. As discussed in the
introduction, software architecture is a description of the system on a higher level of
abstraction than algorithmic solutions and data structures. However, by using
prototyping and simulation techniques, performance in terms of ,for instance, event
throughput or queuing length for events in a system, can be estimated [GRBO]. Since
such a performance measure is not absolute, it can only be used when comparing two
different architectural solutions, not when estimating, for instance, the worst execution
time for handling an event in the system.

Reliability

22

There are mathematical methods based on probability theories such as Markov models
for assessing reliability [Tram95]. However, these theories are developed for hardware
where failures often are caused by physical wear such as corrosion, overheating, etc.
Such failures are probabilistic in nature whereas software failures are mistakes
(errors), made in the specification, the design or in the implementation. These types of
failures are certainly not probabilistic according to some distribution over time.
Furthermore, software can never be worn out. Attempts have been made to apply the
methods from the hardware community to software. In software, the statistics are the
numbers of errors in the program or the likelihood of a failure in a point of time based
upon the error distribution in the past [Fenton96]. To get such failure estimations,
there must be an implementation of the application or at least a prototype. Anyhow, a
description of the application on a lower level than the architecture is needed. With
some heuristics from similar applications developed earlier experienced engineers can
estimate the expected number of errors in the components. Such estimations are very
complex, giving rough metrics. An alternative to directly measure the reliability of the
architecture is to measure the testability. The testability is a function of the effort
required in order to assure the required level of reliability or availability.

There are three different approaches to handle faults in order to achieve a reliable
system [Lapr92]:

e Fault avoidance
e Fault removal
e Fault tolerance

Fault avoidance is about designing error free systems. This implies the use of
structured design methodologies such as formal methods or semi-formal methods.
Formal methods are based on mathematical models of the software system and the
requirement specification. These models form the basis when proving correctness of
the model with respect to the system specification. There exists a wide area of formal
methods and formal modeling languages, each supporting different system domains.
Semi-formal methods are, as the name suggests, less formal, i.e. they do not support
techniques to exhaustively prove correctness of the models. Instead, they offer a
structured way of reasoning, both when designing models of the system and when
analyzing the models. The methods are usually based on some “formal” notation, e.g.
Unified Modeling Language (UML)[BRJ98], ADLs, etc., representing the system
model. Examples of such methods are object-oriented analysis and design
(OOA/OQOD), and software architecture techniques in general.

No matter how accurate the models are analyzed, there may still be errors in the
implementation. These errors usually originate from the specification and from the
mismatch when mapping the models to the source code. In order to improve reliability
in the program, fault removal techniques can be applied. Fault removal is basically the
task of finding the errors by testing and removal of them by error correction. Under
the assumption that no new errors are introduced, the reliability will grow as errors are
corrected. This assumption is, unfortunately, seldom true, implying that the whole
system has to be re-tested after each increment. The results from testing and re-testing
can be used for statistically forecasting of the failure rate (and consequently the
reliability), of a software system. Such a method is the reliability growth model, first
proposed for software by Jelinsky et. al. [JEMO72]. There exist an abundance of

23

different approaches to model reliability growth; they are all based on data collected
during testing, but differ in the way the statistical model is made.

Some faults are impossible to avoid regardless of how accurate the design and the
tests are performed. If it is particularly important that a certain module in the system
does not fail, fault-tolerance can be introduced. Fault-tolerance is a technique which
can be interpreted in two different ways: it could be the ability of a software system to
tolerate faults from its environment, e.g. the operator, hardware errors, etc., or it could
mean that the system should be tolerant against design faults in the software itself.
The two different fault-tolerance approaches are, naturally, solved using different
techniques. For instance, to be fault-tolerant against hardware errors such as
electromagnetic distortion, redundant hardware can be used, each with equivalent
software running on them. This solution will however not tolerate software faults.
Different approaches to be tolerant against software faults are recovery blocks and N-
version programming [Storey96][CA78].

Recovery blocks are based on acceptant tests of the calculated values. If the processed
value is not accepted the program tracks back to a recovery point where it is safe to
continue the execution after having restored the system’s state.

N-version programming is achieved by developing N different versions of the
software; each developed by different and isolated design teams. All N different
versions run in parallel at runtime and their respective results are voted upon. This
technique has, however, been proven not so successful since all different versions of
the software start out from the same specification, and since most design errors
originate from the specification, they will contain common errors.

Even if the source code is absolutely correct, the compiler may still produce erroneous
binaries. Faults introduced by the compiler can be tolerated by using the N-version
approach. Each version has exactly the same code, but they are all compiled using
different compilers.

It is important to note that the different techniques discussed above can be applied at
any stage in the development process. For instance fault removal can be used when
verifying the designed architecture against the system specification. Fault-tolerance is
also a matter of architectural design. The techniques for fault-tolerance discussed
above are all achieved using different architectural solutions.

Safety

Safety seems, at a first glance, very similar to reliability. There is however a clear
distinction as safety is only concerned with failures that endangers human life and the
environment, i.e. hazards, whereas reliability deals with all failures regardless of their
consequences. However, before any safety analysis of the architecture can be
performed, the hazards must be identified. This is done in a hazard analysis that is a
reasoning based method for finding all hazards in the system that is going to be
designed [Leve95].

There exist several techniques for assessing safety properties in software designs.
Most of them are scenario based and work either backward or forward. If the method
works backwards, the analysis starts with the hazard as a scenario, trying to trace

24

down the responsible component. On the contrary, if the method works forward, the
effects of an error in a component is investigated.

Some of the most well known forward methods are Failure Mode and Effects Analysis
(FMEA) and Hazard and Operability studies (HAZOP). Both methods analyze the
consequences of failures in the components. One commonly used backward technique
is called Fault Tree Analysis (FTA)[Storey96]. FTA starts with a hazard, trying to
determine its origin among the components. This kind of analyses give an
understanding of where in the architecture fault-tolerance techniques should be
introduced, or if already introduced, verifying whether the intended fault-tolerance is
achieved or not.

Depending on the results from the safety analysis, changes in the design may have to
be performed. Different design approaches to avoid catastrophic failures can be
applied based on the severity of an accident caused by the hazard. The different
approaches are [Leve95]:

e Hazard elimination

e Hazard reduction

e Hazard control

e Damage minimization

The severity is a quantified value that makes it possible to compare and rank hazards.
Typically, the severity is given in terms of the cost or, lost lives, for the stakeholder if
the accident occurs.

Substitution, decoupling, and simplifications achieve hazard elimination. By
substitute a dangerous design possibility by a functionally equivalent, but not
dangerous solution, the hazard itself is eliminated. For instance, if the system involves
a very toxic chemical liquid, substituting the liquid with a non-toxic one eliminates
the hazard. Moreover, by decoupling safety-critical parts of the software from non-
critical software, the risk for an error in the non-critical part to propagate into the
safety-critical parts is eliminated. There exist some known architectural solutions
based on decoupling, e.g. safety kernels, firewalls, hierarchical architectures
[Storey96].

Hazard reduction reduces the likelihood of the occurrence of a hazard. It might not be
feasible or even possible, to eliminate the hazards. Then the designer has to design the
system in such a way that the hazard is not very likely to occur. An example of hazard
reduction is to erect a fence around an industrial robot, preventing humans to come
close enough in order to get hurt.

Hazard control 1s applied in order to reduce the likelihood of an accident if a hazard
arises. This can be achieved using fail-safe design, i.e. the system should be designed
to detect the hazard and then transfer it into a safe state if such exists. There are,
however systems where no safe state exists. A typically example of such a system is
airplanes. These systems must keep operating even if something goes wrong. This is
achieved using fault-tolerance such as redundancy. It is essential that an airplane
keeps flying even if one engine breaks down by using the second engine. The
performance will of course be reduced, but the airplane can still be maneuvered to its
safe state on the ground.

25

Yet, if an accident still occurs, the consequences and losses must be reduced. This is
achieved with damage minimization that strives to minimize the exposure of the
accident to the environment or human beings.

Availability

Reliability and availability are strongly correlated. According to the definitions given
in Table 1, reliability is the probability of a software system functioning correctly over
a given period of time and availability is the probability of a software system
functioning correctly at any given time. More generally, reliability is equivalent to
Mean-Time-Between-Failure (MTBF) and the availability is a percentage figure given
by the formula below:

MTTR
MTBF

Availability = 1-

MTTR is an abbreviation for Mean-Time-To-Repair, 1.e. time spent on service. The
relation is shown graphically in Figure 11 below. If any point of time is picked
randomly along the y-axis, there is a probability of having correct functionality, i.e.
the availability of the software system.

MTTR
4 <> MTBF
R S —

Functionality

v

time

Figure 11. Availability and reliability

Security

Security is concerned with protecting a software system from malicious intended
actions, e.g. intrusion by unauthorized users or locking out unintended accesses to
safety-critical parts of the system. This can be achieved by different architectural
solutions: safety/security kernels, firewalls, etc. which all are different ways of
restricting the access to the system or sub-systems. As security can be achieved using
different architectural solutions, it can be assumed that security is assessable by
architectural analysis. A scenario-based method can be used. Typically, such a
scenario could reason about what happens if an operator or a sub-module tries to
access a protected region of the system. Another possible way of analyzing software
architectures from the security point of view, is simulation, provided that the logical
view of the software architecture contains sufficient information regarding rules for
authorization and identification.

26

Real-time requirements

When designing real-time systems it is important to ensure the temporal correctness of
tasks in the application. The timing must be just perfect, neither too fast nor too slow.
The information necessary for the verification of temporal constraints is provided by
the temporal view of the architecture. A typical example of such an analysis are
schedulability test, i.e. analyzing whether the task set is schedulable or not given the
resources and temporal constraints given as release times, deadlines, worst case
execution times (wcet), jitter, etc. The resources taken into account when analyzing
the schedulability of a system are typically CPUs, communication busses, actuators,
etc.

There exist a lot of mathematical methods for verifying the temporal behavior of a
real-time system, all having different assumptions on the scheduling strategy and the
task model [LILA73][ABDTW95]. A task model defines the temporal requirements
put upon a task, i.e. priorities, period times, etc. The task model and the scheduling
strategy is strongly coupled since the task model provide the input to the
schedulability analysis.

In Figure 12, a classification of different scheduling strategies is illustrated.

Scheduling
Y

Preemtive/non-preemtive

/\

Run-time scheduling Pre-run-time scheduling
'
Priority based
/\
Static priorities Dynamic priorities)
RM Rate Monotonic
/\ /\ FPS Fixed Priority Scheduling
RM User definerade =~ RM+PCP ED ED Earliest Deadline

PCP Priority Ceiling Protocol

Figure 12. Classification of scheduling strategies.

4.3 Nonfunctional analysis

The number of nonfunctional quality properties is, as the functional quality properties
in the previous chapter, very large. In Table 2, a subset of all such quality properties is
listed, all being important in a mature and modern design process for real-time
systems.

Cost The cost for performing any action such as development, evolution
and verification

Testability How easy it is to prove correctness of the system by testing

Reusability The extent to which the architecture can be reused

Portability How easy it is to move the software system to a different hardware-

and/or software platform

27

Maintainability The aptitude of a system to undergo repair and evolution

Modifiability How sensible the architecture is to changes in one or several
components

Table 2. Nonfunctional quality properties

A very simple but yet powerful method for analysis of nonfunctional quality
properties is execution of scenarios. Several of the direct and indirect quality
properties listed in Table 2 can be examined and analyzed by using scenarios. By
direct we mean an attribute that focus on the software only such as the reusability of a
module or subsystem or the portability i.e. how easy or hard it is to move the system
to another operating system or hardware platform. An indirect property is one that
depends on a direct one. A typical example is the cost. The cost is always related to
the action, for instance the cost associated with testing, development, maintenance,
etc.

Cost

As discussed above, cost is an indirect quality property, always depending on other
quality properties of the system. Typically, after a system has been released and been
running for a while, new functionality is required from the customer or new features
and improvements are desired within the organization. Then the cost is probably
dependent on the reusability, maintainability and testability of the software. Cost
estimations are probably one of the hardest tasks for every development project. The
cost estimation for the design of a completely new system is extremely hard to
achieve. Usually such estimations are based only upon historical experiences with
similar systems. If no such experience is available, the estimation gets even more
imprecise. The software architecture description could help illuminate the cost of
developing a system or adding new functionality to an existing system. Partly by being
a structured description of the application, helping the designer to get a full
perspective of the application scope, but also by providing techniques for analyzing
the effects of adding new features to an existing software system.

Testability

Testing is essential in order to prove functional correctness of a software system. It is
also used for obtaining some confidence in functional quality properties such as
reliability, performance, etc. A lot of time and consequently, money is spent in the
testing phase of software development. To reduce the amount of time needed for
testing of the software, the architecture must be designed so that it is easy to test, i.e.
having high testability. The testability is dependent on three individual properties:
observability, controllability, and for concurrent systems and systems dependent on
time, reproducibility [Bind94]. Testability is consequently an indirect quality property
as well.

In order for a test case to be useful, the result of it must be observed. If the
components in the architecture are seen as “black boxes”, i.e. the structural view, only

28

the interfaces are observable. The bigger interface, the more visibility. Apparently,
bigger interfaces give higher observability, thus higher testability.

When performing a test, a particular input is given to the system or a sub-system. This
input is the only way in which the test engineer can control the path taken in the
program. If the path taken only depends on the input itself, maximum controllability is
achieved. This is of course not the case in general. There are often data dependencies
between different modules such as global variables etc. If those data dependencies,
which are not controllable by the test input data, affect the control flow, the
controllability is decreased, giving lower testability.

Finally, when testing concurrent system or real-time systems in general, the order in
which different processes in the system are executed will influence the observed result
from a test. For instance, in a system controlling the water level in a tank, there is one
process sampling the actual water level and one process calculating how to adjust the
water level based on the measured value and some set value. If the control process
executes twice without any intermediate execution of the sampling process, the result
of the control decision will be different in the second invocation than if the water level
was re-sampled in between. To get high testability, the order in which processes
execute must be controllable or deterministic, i.e. high reproducibility [ThHa99].

Reusability

Reusing a software component to its full extent, without any modifications, is
extremely difficult if not the domain in which the reuse is intended is the exact
domain of the component origin. When a component or architecture is reused in the
same application domain we call it a domain-dependent reuse. When containers are
reused, i.e. lists, arrays, sets, etc., they can be reused across different application
domains. An example of such reuse is the Standard Template Library (STL) for the
object-oriented language C++. Reuse, which is possible across the application
domains, is consequently called domain-independent reuse.

When analyzing the level of reusability of a component or a part of the architecture,
one must consider not only the original application domain, but also how isolated and
independent it is from rest of the system. The less dependencies, the more reusable,
and vice versa.

The focus on reuse, in industry, has been intensified due to the potential cuts of cost.
The time spent on implementation decreases when reusing components. Furthermore,
components can be bought from third-party developers. Such components are called
Commercial-Off-The-Shelf components (COTS).

Portability

To be able to analyze software architectures with respect to portability, the platform
on which the system is going to run on has to be modeled as well. This to unveil the
dependencies between the software components in the system and the platform. As
platform we consider the hardware, e.g. processors, A/D converters, as well as the
software providing the infrastructure e.g. operating systems. If the amount of direct
dependencies, i.e. the number of components having a direct connection to the

29

platform, is low, then the architecture as whole is quite insensible to a change of
platform. Thus, having a high degree of portability.

Maintainability

Kazman et. al. [KAC96], have proposed a methodology for visualizing the amount of
changes required in the modules or in the architecture when adding or changing
functionality in the system. The amount of changes in the software architecture
enforced by adding new functionality or error corrections, are referred to as
maintainability. By using scenarios developed from the requirements of the new
function, the existing architecture is analyzed.

The concept, direct scenarios, were introduced meaning scenarios that are directly
supported by the existing architecture i.e. no major architectural changes are required.
In opposite, an indirect scenario exposes the need for architectural changes, which is
more difficult and costly to achieve. Remember that there is a difference between a
direct or indirect scenario and the direct and indirect quality properties introduced
earlier in this chapter. After having mapped the scenarios on the architectural structure
and determined if the scenario is direct or indirect, scenario interaction should be
revealed. Two or more indirect scenarios are said to interact if they affect the same
module.

To make the potential architectural violations and changes in the system visible,
graphical representation of modules were scaled in the ADL according to the amount
of indirect scenario interactions.

30

31

5 Architectural design

Architectural analysis can, and should, be used as guidance when designing a software
system. A software system can be implemented in several ways, all having different
architectural solutions. By using architectural analysis, the architecture that fulfills the
requirements best can be chosen. The workflow for designing architectures for a
system is shown in Figure 13.

Describe candidate architectures ¢———Iterate————p» Develop scenarios
[]

v

Evaluate each scenario

v

Visualize pros and cons

Figure 13. Architecture development and analysis process.

The first phase when developing a software system is to develop candidate
architectures and a set of scenarios that reflects the requirements on the system. The
number of scenarios to develop is related to the generation of ordinary test cases.
Eventually, a state is reached where the added value of a new scenario is less then the
effort required to develop the scenario itself. When this point in time is reached or
when the development budget is violated, the scenario generation should stop.

Now we have the candidate architecture and a set of scenarios. By executing the
scenarios on the architecture a table with the desired quality attributes can be
constructed. In the table, all requirements are marked with plus signs and minus signs
representing how well the architecture fulfills the requirements. If the result from the
analysis is satisfactory, the next phase is to do low-level design and implementation.
However, if the analysis results are not satisfactory, an alternative architecture must be
developed on which exactly the same scenarios are executed. Consequently, the
evaluation must be done all over again. The work of finding a sufficient architecture is
highly iterative, meaning that the architecture can evolve by small steps until a
reasonable solution is found. Consequently, changes suggested by the analysis may
result in a complete redesign using a completely different architectural style or minor
modifications in subsystems only.

The table produced in the analysis phase containing all the analyzed quality properties
constitutes the input to a tradeoff analysis. In a tradeoff analysis the set of competing
architectures is compared or the result from a refined architectural solution is
compared with the result from the analysis of the preceding generation of the
architecture. The objective of the tradeoff analysis is to choose the architectural
alternative that best complies with the ranking among the quality properties.

A method for tradeoff analysis called Architecture Tradeoff Analysis Method (ATA)
has been developed at the Software engineering institute (SEI) at Canegie Mellon
university [Kazm98]. It is an iterative development method that is similar to the
process shown in Figure 13.

32

A method called Software Architecture Analysis Method (SAAM) is also developed at
SEIL. The purpose of SAAM is to analyze software quality attributes by examining
competing architectures [KBAW94]. To do so, they partitioning the functionality in
the architecture i.e. identifies were in the different architectures the functionality of
the system is allocated. The functional partitioning is system domain specific. Some
domains already have a well-defined functional partitioning; a typical example of such
a domain is compilers. Compilers are built with a front-end, a parser, a code generator
etc. However, nothing is assumed about how functions are organized and structured,
1.e. the architecture of the compiler. This partitioning gives a common description and
common modules, each with the same functionality but organized in different ways.
The communal description is an absolute condition for the comparison, which aims to
unveil how well a certain quality attribute, i1s adopted by the architecture. Again, the
analysis is based on scenarios, constructing input for a tradeoff analysis.

5.1 An example

As an example of how an architecture is constructed, analyzed and transformed in
order to better comply with the requirements consider a real-time system that controls
the water level in a tank. The system samples a water level sensor, takes a decision
whether to let water out, or pour water into the tank. The system actuates a pump or a
valve if the level has to be adjusted. As it is a real-time system, the temporal
constraints on the system must be fulfilled, i.e. there is a functional quality
requirement on timing. Moreover, the system should easily be modified to run on
different platforms (real-time operating system and hardware), i.e. portability.

First, the structural view of the architecture is developed, identifying the components
in the system and their interconnections. In this case, the interconnections represents
transportation of data among the task using services provided by the RTOS. While
portability is crucial, the operating system and the hardware view is modeled as well.
The first candidate architecture is shown in Figure 14.

Sampling
Task

Control
Task

RTOS |t HW

L

Actuate
Task

Figure 14. The first candidate architecture for a water tank controller

Next the compliance between the architecture and the required quality properties must
be analyzed. Verifying the temporal behavior requires the temporal view of the
architecture. For this particular application, the period time, the estimated worst
execution time (wcet), and the deadlines for the three tasks is shown in Table 3.

33

Task Period time (T) wcet (C) Deadline (D)
Sampling task I ms 50 us 60 us
Control task 2 ms 200 us 1 ms
Actuate task 2 ms 50 us I ms

Table 3. The temporal view

The temporal behavior is verified using exact analysis where the worst case response
time for all tasks is calculated. If the response times are less than the specified
deadlines for all tasks, the system is schedulable [JOPA86]. Exact analysis requires
priorities to be assigned to the tasks. In this particular example, priorities are assigned
according to the rate monotonic algorithm where the task with the shortest period gets
highest priority [LILA73]. Rate monotonic gives the sampling task high priority, the
control task medium priority and the actuating task low priority. The exact analysis
formula is recursive and calculates the worst case response time with respect to
interference of the execution of tasks with higher priorities. The recursion stops when
two subsequent calculations result in the same response time, i.e. a fix-point is
reached. The formula is shown below:

R =C, + Z |VR—’NC ; Vj € hp(i) Denotes all tasks j with higher priority
viehp)| 1
than task 1.

The response times for the sampling task is 50 us as no other task interferes with it
since it has the highest priority. The response time for the control task is 250 ps.
Finally, the actuate task has a response time of 300 us. If the calculated response times
are compared to the specified deadlines, it could easily be verified that the system is

schedulable as the response times for all tasks are less than corresponding deadlines.

To assess portability, scenarios can be used. For the matter of simplicity, only one
scenario is used in this example, namely: "Move the system to another platform”. The
idea is to execute this scenario on the proposed software architecture to estimate the
number of component being subjects to changes. As portability is the issue, the
number of affected components should be held to a minimum. In the architecture
suggested in Figure 14, all the components interact with the real-time operating
system. Consequently, there are a lot of platform specific system calls embedded in
each and every component, giving poor portability since every component has to be
changed as a result of a changed platform. To increase the portability, architectural
transformations have to be performed, i.e. the software architecture has to be refined.
One possible transformation is to introduce a proxy-component between the task
components and the real-time operating system. This transformation is shown in
Figure 15.

34

Sampling
Task

Control

Task RTOS |f=t—m HW

Actuate
Task

Figure 15. The architecture after the transformation

The proxy provides the tasks with all necessary services in order for them to perform
their intended tasks, while hiding the actual system calls. To verify the new
architecture according to the requirements, the scenario has to be re-executed. Now
the proxy component is the only one affected by a changed platform, i.e. a maximal
portability is achieved. However, the portability is achieved at the expense of an
increased overhead for system calls. Therefore, the worst case execution times for the
individual task components must be re-estimated and the exact analysis must be done
all over again to verify the temporal behavior of the system. The phenomena that

quality properties might affect each other in a negative manner, is referred to as
tradeoff.

35

6 Conclusions

Software architecture is part of what generally is referred to as software engineering.
Software engineering also includes a lot of other techniques like software metrics,
formal methods, test methodologies, etc. Thus, software engineering is an umbrella
for all techniques and methods needed to establish a “’science of engineering” practice
in the software community. Software architectures are an important part of software
engineering since it deals with high-level modeling and evaluation. The software
architecture community is still very young, but the recent interests from the industry
have launched a lot of research activities in academia. Especially relevant are the
software architecture analysis methods as the analysis provides the information for
early design decisions.

To make architectural analysis possible, the architecture must be described in a
language with well-defined semantics. A language that describes software
architectures is called Architectural Description Language (ADL). There exists a lot of
different ADL:s, but few of them have received any particular attention since it is very
difficult to design a language with syntax and semantics powerful enough to cover all
possible application domains and that can be interpreted by all stakeholders in a
project. As a consequence, software developers use their own description languages.
An important property of an ADL is the architectural views, providing detailed
information needed for the analysis. The number of views and the contents of each
view will vary between different application domains and the required analyses.
Finally, a description language with a well-defined semantics is also a necessary
condition for developing tools that support architectural development and evaluation.

This report has described existing techniques for describing and evaluating software
designs based on information mainly provided by the high level description, i.e. the
software architecture. The ability to evaluate early design decisions is very important
since early design decisions are crucial for the final result, both regarding correct
functionality and cost. The earlier design mistakes are detected, the less time has to be
spent on redesign. The properties analyzed using software architectures are called
quality properties. In this survey, the quality properties are divided into two separate
classes, functional and nonfunctional. Functional quality properties are concerned with
the run-time behavior of the software system, for instance performance and reliability.
In contrast, nonfunctional quality properties are concerned with the quality of the
software itself. Examples of nonfunctional properties are reusability, maintainability,
and testability.

Tool support for architectural development and evaluation is poor. It is possible to
formalize knowledge in frameworks, guiding the designer in both architectural
transformations and in the tradeoff analysis. There exist tools for some of the analyses,
for instance tools for verifying the temporal behavior in a real-time system
[ERGUSA97], but these tools are still islands in the ocean called software
engineering. We need to discover, or build new islands and connect them to each other
in order to get complete suits of tools, supporting the complete software development-
and maintenance process. In mature engineering disciplines, such tool support is taken
for granted. Software engineering tools will probably appear as the software

36

community gets more mature, it is still very young, at least when compared to other
traditional engineering disciplines.

37

38

7 References

[ABDTW95] N. C. Audsley, A. Burns, R. I. Davis, K. Tindell, and A. J. Wellings,
Fixed Priority Pre-emptive Sceduling: An Historical Perspective, Real-Time Systems
8(2-3):173-198, 1995

[ALDI92] R. Alur, and D. L. Dill, A theory of timed automata, 1992

[BCK98] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
Addison Wesley 1998

[Beng97] PO. Bengtsson, and J. Bosch, Scenario-based Software Architecture
Reengineering, University of Karlskrona/Ronneby 1998

[Bind94] R. V. Binder, Design for Testability in Object-Oriented Systems,
Communications of the ACM, Volume 37, No 9, pp. 87-101, 1994

[BRJ98] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language
User Guide, Addison Wesley ISBN 0-201-57168-4, 1998

[BuWe94] A. Burns, and A. Wellings, HRT-HOOD, a Structured Design Method for
Hard Real-Time Systems, 1994

[CA78] L. Chen, and A. Avizienis, N-version programming: a Fault Tolerant
Approach to Reliability of Software Operation, In proceedings of 8" Annual
International Conference on Fault Tolerant Computing, pp. 3-9, 1978

[Clem96b] P. C. Clements, and L. M. Northrop, Software Architecture: An Executive
Overview, Technical report CMU/SEI-96-TR-003 1996

[Clem96a] P. C. Clements, Coming Attractions in Software Architecture, Technical
report CMU/SEI-96-TR-003 1996

[DaYo095] C. Daws, and S. Yovine, Two examples of verification of multirate timed
automata with Kronos, In proceedings of 16™ IEEE Real-Time Systems Symposium,
PP 66-77, 1995

[dijk68] E. W. Dijkstra, The Structure of "THE”-Multiprogramming System, ACM
on Operating System Principles 1967

[EHLS94] S. Edwards, W Heym, T. Long, M. Sitarman, and B. Weide, Specifying
Components in RESOLVE, Software Engineering Notes, vol. 19, no. 4, 194

[ERGUSA97] K. Sandstrom, C. Eriksson, and M. Gustafsson, RealTimeTalk - a
Design Framework for Real Time Systems - a Case Study, SNART 1997

[Fenton96] N.E. Fenton, and S. Lawrence Pfleeger, Software Metrics, International
Thomson Computer Press 1996

[Garl93] D. Garlan, and M. Shaw, An Introduction to Software Architecture,
Advances in Software Engineeri Vol 1 World Scientific Publishing Company 1993

[GHJV94] E. Gamma, R. Helm, R. Johanson, and J. Vlissides, Design Patterns -
Elements of Reusable Object-Oriented Software, Addison-Wesley 1994

[GRBO] H. Grahn, and J. Bosch, A Simulation Approach to Predict and Evaluate the
Performance of Software Architectures, University of Karlskrona/Ronneby 1998

39

[JEMO72] Z. Jelinsky, and B.P. Moranda, Software Reliability Research, Statistical
Computer Performance Evaluation, pp 465-484, New York , SA, Academic Press,
1972

[JOPA86] M. Joseph, and P. Pandya, Finding Response Times in a Real-Time
System, The Computer Journal, Volume 29, No. 5, pp. 390-395, 1986

[KAC96] R. Kazman, G. Abowd, L. Bass, and P. Clements, Scenario-Based Analysis
of Software Architecture, IEEE Software 1996

[KBAWY94] R. Kazman, L. Bass, G. Abowd, and M. Webb, SAAM: A Method for
Analyzing the Properties of Software Engineering, Int. Conf. On Software
Engineering IEEE Computer Science Press pp. 81-90, 1994

[Kazm98] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J.
Carriere, The Architecture Tradeoff Analysis Method, Submitted to the 1998
International Conference on Software Engineering

[LalLe94] P. B. Ladkin, and S. Leue, What Do Message Sequence Charts Mean?, IFIP-
Transactions-C:-Communication-Systems.n C-22, pp 301-316, 1994

[Lapr92] J.C. Laprie, Dependability: Basic Concepts and Associated Terminology,
Dependable Computing and Fault-Tolerant Systems, vol. 5, Springer Verlag, 1992

[Leve95] N.G. Leveson, Safeware, System Safety and Computers, Addison Wesley
1995

[LILA73] C. L. Liu, and J. W. Layland, Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment, Journal of ACM, Volume 20,
Nr. 1, pp. 46-61, 1973

[LKAV93] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, and W. Mann,
Specification and Analysis of System Architecture Using Rapide, Stanford University
technical report, 1993

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi, Uppaal in a Nutshell, In Springer
International Journal of Software Tools for Technology Transfer 1(1+2), 1997

[Masc87] The official handbook og MASCOT, Version 3.1, Issue 1, 1987
[Miln87] R. Milner, Communication and Concurrency, Prentice Hall 1989

[Paul94] F. Paulisch, Software Architecture and Reuse — An Inherent Conflict?,
Proceedings of 3 ™ International Conference on Software Reuse, pp 214, 1994

[SHGA96] M. Shaw, and D. Garlan, Software Architecture - Perspective on an
emerging Disipline, Prentice Hall 1996

[Storey96] Neil Storey, Safety-Critical Computer Systems, Addison-Wesley 1996

[ThHa99] H. Thane, and H. Hansson, Towards Systematic Testing of Distributed
Real-Time Systems, In proceedings of the 20™ IEEE Real-Time Systems Symposium,
1999

[Tram95] C. Trammell, Quantifying the reliability of software: statistical testing based
on a usage model, In 'Experience and Practice', Proceedings., Second International
IEEE Software Engineering Standards Symposium,. , pp. 208 —218, 1995

40

[Vest94] S. Vestal, Mode Changes in a Real-Time Architecture Description Language,
Proceedings of 2" International Workshop on Configurable Distributed Systems,
1994, Page(s):136-146

41

42

Appendix A - Terminology

ADL - Architectural Description Language, Language for describing software
architectures

Architectural style - Standard types of architectures identified with names and
patterns

Architectural view - Provide the architecture description with information needed
when analyzing it. The components and their interconnections are shown in the
structural view.

Architectural transformation — Changing the architecture in order to obtain required
functionality and quality

Availability - The probability of a system functioning correctly at any given time

Checklist based questions — Domain specific questions used when evaluating a
software architecture

Cost - The cost for performing any action such as development , evolution and
verification

COTS - Commercial Off The Shelf components
Design patterns - Named object oriented solutions in the object oriented community

Design space - A N-dimensional space where every axis represents a design
parameter, scaled with the different design options possible for that particular
parameter

Direct scenario - A scenario that is directly supported by the architecture

Fault-tolerance - The ability of software to detect and tolerate errors in the design
and/or from its environment

Framework - An architectural pattern for a particular domain, widely used in the
object oriented community.

Functional quality property — Quality properties concerned with the run-time
behavior of the software system

Indirect scenario — A scenario that requires an architectural transformation to be
supported by the architecture

Maintainability - The aptitude of a system to undergo repair and evolution

Modifiability - How sensible the architecture is to changes in one or several
components

MTBF — Mean-Time-Between-Failure
MTTR — Mean-Time-To-Repair

Nonfunctional quality property - Quality properties concerned with the software
itself

43

Performance - How fast or slow the system performs its functions measured in time
or the systems capacity measured in event-throughput

Portability - How easy it is to move the software system to a different hardware-
and/or software platform

Reference style - Architectural styles widely used in particular application domains,
e.g. the pipe-and-filter Architecture used in compilers.

Reliability - The probability of a system functioning correctly over a given period of
time

Reusability - The extent to which the architecture can be reused

Safety - The property of the system that it will not endanger human life or the
environment

Scenario based questions — Application specific questions used when evaluating a
software architecture

Scenario execution - Method for analyzing an architecture by asking “what if”
questions

Security - The ability of a software system to resist malicious intended actions

Temporal constraints - Real-time attributes such as deadlines, jitter, response time,
worst case execution times (wcet), etc

Testability - How easy it is to prove correctness of the system by testing

Tradeoff - A relation between two or more quality attributes where an increased level
of on property results in a decrease of another property.

Questionnaire based evaluation — Questions used when evaluating project logistic
properties of software architectures

44

Time Automata as Task Models for Event-Driven Systems
By

Christer Norstrom, Anders Wall, and Wang Yi,
In proceedings of the 6™ International Conference on Real-Time
Computing Systems and Applications, 1999

Timed Automata as Task M odelsfor Event-Driven Systems

Christer Norstrom! and Anders Wall!
IMélardalen University
Department of Computer Engineering
P.O. Box 883, S-721 23 Vésteras, Sweden
{awl,cen} @mdh.se

Wang Yi'?
2Uppsala University
Department of Computer Systems
P.O. Box 325, S-751 05 Uppsala, Sweden
yi@docs.uu.se

Abstract

In this paper, we extend the classic model
of timed automata with a notion of real time
tasks. The main idea is to associate each dis-
crete transition in a timed automaton with a
task (an executable program). Intuitively, a
discrete transition in an extended timed au-
tomaton denotes an event releasing a task and
the guard on the transition specifies all the
possible arriving times of the event (instead
of the so—called minimal inter-arrival time).
Thisyields a general model for hard real-time
systems in which tasks may be periodic and
non-periodic.

We show that the schedulability problem for
the extended model can be transformed to a
reachability problem for standard timed au-
tomata and thus it is decidable. This allows
us to apply model-checking tools for timed
automata to schedulability analysis for event-
driven systems. In addition, based on the same
model of a system, we may use the tools to

verify other properties (e.g. safety and func-
tionality) of the system. This unifies schedula-
bility analysis and formal verification in one
framework. We present an example where the
model—checker UPPAAL is applied to check
the schedulability and safety properties of a
control programfor a turning lathe.

1. Introduction

The traditional approach to the development
of hard real-time system is often based on
scheduling theory. There are various meth-
ods [5, 12, 7] e.g. rate monotonic schedul-
ing, which have been very successful for the
analysis of time-driven systems as tasks are
periodic. To deal with non-periodic tasks in
event—driven systems, the standard method is
to consider non-periodic tasks as periodic us-
ing the minimal inter-arrival times as task pe-
riods. Clearly, the analysis result based on
such a task model would be pessimistic in

many cases, e.g. a task set which is schedula-
ble may be considered as non-schedulable as
the inter-arrival times of the tasks may vary
over time, that are not necessary minimal.

In recent years, in the area of formal methods,
there have been several advances in formal
modeling and analysis of real time systems
based the theory of timed automata due to the
pioneering work of Alur and Dill [2]. Notably,
a number of verification tools have been de-
veloped (e.g. KRONOS and UPPAAL [6, 4]) in
the framework of timed automata, that have
been successfully applied in industrial case
studies (e.g. [3, 13, 11]). Timed automata
have proved expressive enough for many real-
life examples, in particular, for event-driven
systems. The advantage with timed automata
is that one may specify very relaxed timing
constraints on events (i.e. discrete transitions)
than the traditional approach in which events
are often considered to be periodic. However,
it is not clear how the model of timed au-
tomata can be used for schedulability analy-
sis. In this paper, we present an extended ver-
sion of timed automata with real-time tasks
to provide a model for event-driven systems.
We show that the extended model can be used
for both schedulability analysis and verifica-
tion of other properties, e.g. safety and live-
ness properties of timed systems. This unifies
schedulability analysis and formal verification
in one framework.

The main idea is to associate each discrete
transition in a timed automaton with a task (or
several tasks in the general case). A task is as-
sumed to be an executable program with two
given parameters: its worst execution time
and deadline. Intuitively, a discrete transi-
tion in an extended timed automaton denotes
an event releasing a task and the guard (clock
constraints) on the transition specifies all the
possible arrival times of the associated task.
Whenever a task is released, it will be put in

the scheduling queue for execution. We as-
sume that the tasks will be executed accord-
ing to a given scheduling strategy e.g. earliest
deadline first. Then a delay transition of the
timed automaton corresponds to the execution
of the task with earliest deadline and idling for
the other waiting tasks.

Thus, the sequences of discrete transitions of
an extended timed automaton will correspond
to the sequences of arrivals of non-periodic
tasks. We say that such a sequence of tasks
is schedulable if all the tasks can be executed
within their deadlines. Naturally an automa-
ton is schedulable if all the task sequences are
schedulable. We shall show that under the as-
sumption that the tasks are non-preemptive,
the schedulability problem can be transformed
to a reachability problem for ordinary timed
automata and thus it is decidable. This al-
lows us to apply model-checking tools for
timed automata to schedulability analysis for
event-driven systems. We present an example
where the model-checker UpPAAL is applied
to check the schedulability and safety proper-
ties of a control program in control applica-
tions.

The rest of this paper is organized as follows:
Section 2 presents the syntax and semantics of
the extended timed automata with tasks. Sec-
tion 3 shows how to transform the scedula-
bility analysis problem for extended model to
a reachability problem for ordinary timed au-
tomata, and thus schedulability analysis may
be performed by the existing verification tools
for timed automata. Section 4 provides an ex-
ample to illustrate our approach. Section 5
concludes the paper with summarized results
and future work.

2. Timed Automata with Real-Time
Tasks

The theory of timed automata was first intro-
duced in [2] and has since then established as a
standard model for real time systems. We first
give an brief review to fix the terminology and
notation and then present an extended version
of the model with tasks.

2.1. Timed Automata

A timed automaton is a standard finite-state
automaton extended with a finite collection
of real-valued clocks. The transitions of a
timed automaton are labelled with a guard (a
condition on clocks), an action, and a clock
reset (a subset of clocks to be reset). In-
tuitively, a timed automaton starts execution
with all clocks set to zero. Clocks increase
uniformly with time while the automaton is
within a node. A transition can be taken if the
clocks fulfill the guard. By taking the transi-
tion, all clocks in the clock reset will be set
to zero, while the remaining keep their val-
ues. Thus transitions occur instantaneously.
Semantically, a state of an automaton is a pair
of a control node and a clock assignment, i.e.
the current setting of the clocks. Transitions in
the semantic interpretation are either labelled
with an action (if it is an instantaneous switch
from the current node to another) or a positive
real number i.e. a time delay (if the automaton
stays within a node letting time pass).

For the formal definition, we assume a finite
set of alphabets Act for actions and a finite set
of real-valued variables C' for clocks. We use
a, b etc to range over Act and X, X, etc. to
range over C. We use B(C') ranged over by
g and later by ¢ etc, denote the set of con-
junctive formulas of atomic constraints in the
form: X;~m or X; — X;~n where X;, X; €
C are clocks, ~ € {<,<,>,>},and m,n are

natural numbers. The elements of B(C') are
called clock constraints.

Definition 1. A timed automaton over actions
Act and clocks C' is a tuple (N, ly, E') where

e N is a finite set of nodes,
e [y € N is the initial node, and

e £ C N x B(C) x Act x 29 x N is the
set of edges.

When (1, g,a,r,1'Y € F, we write | 225 ',
O

Formally, we represent the values of clocks as
functions (called clock assignments) from C'
to the non-negative reals R-,. We denote by
Y the set of clock assignments for C. A se-
mantical state of an automaton is now a pair
(I,u), where [is a node of the automaton and
u is a clock assignment and the semantics of
the automaton is given by a transition sys-
tem with the following two types of transi-
tions (corresponding to delay—transitions and
action-transitions):

o (I,u)-L5(l,u+d)
)L>(z' u') if 1 22 1w € g and

0,
u = [r— 0lu

where for d € R, u + d denotes the clock
assignment which maps each clock X in C to
the value u(X) + d, and for » C C, [r —
0]u denotes the assignment for C which maps
each clock in r to the value 0 and agrees with
uover C\r. By u € g we denote that the clock
assignment « satisfies the constraint g.

2.2. Extended Timed Automata with Tasks

We shall view a timed automaton as an ab-
stract model of a running process. The model

Figure 1. An Example Timed Automaton
with Tasks.

describes the possible events (alphabets ac-
cepted by the automaton) that may occur dur-
ing the execution of the process and the oc-
currence of the events must follow the timing
constraints (given by the clock constraints).
But the model gives no information on how
these events should be handled. In many
cases, for example in a control system, when
an external event occurs, some computation
must be performed to handle the event. A
more concrete example is an interrupt han-
dling system. Whenever an interrupt signal
occurs, the associated interrupt handling pro-
gram will be executed.

Now, assume that each action symbol in a
timed automaton is associated with a program
called task. Let P ranged over by p etc, de-
note the set of tasks. We further assume that
the worst case execution time and hard dead-
line of the tasks in P are known. We shall use
clock constraints to specify the arrival times
of the tasks. Thus, each task p in P is charac-
terized as a pair (¢, d) of natural numbers with
¢ < d where c is the execution time of p and d
is the relative deadline for p.

The deadline d is a relative deadline meaning
that when task p is released, it should finish
within d time units.

Definition 2. An extended timed automaton
with tasks (TAT), over actions Act, clocks C'
and tasks P is a tuple (N, ly, E, T') where

e (N,ly, E,T) is a standard timed automa-

ton,

e T': Act — P is a partial function assign-
ing tasks to actions.

O

Semantically, an extended automaton may
perform two types of transitions just as an
ordinary timed automaton. In addition, an
action transition will release a new instance
of the task associated with the action. As-
sume that there is a queue holding all the task
instances generated by action transitions and
ready to run. The queue corresponds to the
ready queue in an operating systems. A se-
mantic state of an extended automaton is a
triple consisting of a node (the current control
node), a clock assignment (the current setting
of the clocks) and a task queue (the current
status of the ready queue).

Consider the automaton of Figure 1. Let
pl and p2 be tasks handling the interrupt
signals a and b respectively. Assume that
the initial state is (m,[z = 0,y = 0],[])
where the clocks are 0 and the task queue
is empty. Then the automaton may demon-
strate the following sequence of transitions:

(m,[z =0,z =0],[]) =

Note that several instances of the same task
may be released. However, the number of
copies may be bounded by the clock con-
straints. For example, in state (n, [z = 4,y =
1], [p1, p1,p1]), no more instance of p1 will
be released because the clock values will not
satisfy the constraint x < 4 and y > 2, but

(m, [z =3,y =3],1])

an instance of p2 may be released by the b-
transition (which has no timing constraint).

In the above example, we have only shown
that the task queue is growing due to action
transitions. Now we discuss the effect of
delay transitions on task queue. We shall
see that the queue will be shrinking due to
delay transitions. Let pl = p2 = (2,8) i.e.
the computation time of both pl and p2 is
2 and the deadline is 8. We assume that
there is a processor running the task instances
according to a certain scheduling strategy. A
delay transition with ¢ time units is to execute
the tasks in the queue with ¢ time units.
After the transition, a task will be removed
from the queue (shrinking) if its computation
time becomes 0 and the deadlines of all
tasks in the queue will be decreased by
t (since time has progressed by t). Now
we have a precise description on the state
changes for the above transition sequence:

(m, [= 0,2= 0, [) = (m, [¢ =3,y = 3],)

5 (n, [z =0,y = 3],[(2,8)])
5 (n, [= 0,y =0],[(2,8), (2,8)])
25 (n,[r =3,y = 3],[(1,5)))
%5 (n, [= 3,y =0],[(1,5),(2,8)])
5 (n, o = 4,y =1],[(2,7)])
s (n, o =4,y =1],[(2,7),(2,8)])

More precisely we have the following as-
sumptions on the underlining execution
model:

1. A ready queue holding the task instances
released and waiting for execution. A
task instance will be removed from the
queue when its computation time be-
comes 0.

. An on-line scheduler Sch sorting the
queue according to a given scheduling
strategy. It will report L if the queue be-

comes non-schedulable when a new task
instance is added.

3. A single processor executing the tasks
according to the ordering of the queue. It
will always execute the task in the first
position. The tasks are executed non-
preemtive.

Further we use Run(g, t) to denote the resulted
task queue after ¢ time units of execution. The
meaning of Run(g, t) should be obvious. For
example, let ¢ = [(2,7),(2,8)] and ¢t = 3
then Run(q,t) = [(1, 5)] in which the first task
is finished and the second has been executed
for 1 time unit. Now we are ready to present
the transitional rules for extended timed au-
tomata.

Definition 3. The semantics of an extended
automaton is a transition system defined by
the following transition rules (corresponding
to release of new task and execution of exist-
ing tasks):

o (Lu,q) % (I';u',Sch(q)) if 1 2% 1,
ue€g,u =u[r—0,andq =q:T(a)

o (I,u,q) = (I,u+t,Run(q,1))

We shall write (l,u,q) — (I',u/,q') if
(Lu,q) = (I';u',q") for an action a or
(l,u,q) LN (I',u',q") for adelay d. O

Finally, to handle concurrency and synchro-
nization, parallel composition of extended
timed automata may be introduced in the
same way as for ordinary timed automata (e.g.
see [10]) using the notion of synchronization
function [8]. For example, consider the par-
allel composition A||B of A and B over the
same set of actions Act. The set of nodes
of A||B is simply the product of A’s and B’s
nodes, the set of clocks is the (disjoint) union
of A’s and B’s clocks, the edges are based

on synchronizable A’s and B’s edges with
enabling conditions conjuncted and reset-sets
unioned. Note that due to the notion of syn-
chronization function [8], the action set of the
parallel composition will be Act and thus the
task assignment function for A||B is the same
as for A and B.

3. Schedulability Analysis as Reach-
ability Analysis

Traditionally, the temporal attributes for a
real-time computer systems are derived from
their environment, e.g. period times, etc.
These attributes are used for constructing a
model of the system in terms of its tempo-
ral behavior. Such a temporal model is often
called a task model, which is used to verify
whether the system is schedulable or not, but
other properties such as functional and safety
properties can not be verified based on such
a model. In our approach, we may construct
a model for the whole system including the
environment and tasks in the control system.
The parallel composition of these models give
us the possibility of not only verifying tempo-
ral constraints, but also its other aspects such
as synchronization between tasks and simple
computations within tasks etc.

Normally, a system is said to be schedulable if
all tasks can always be executed within their
deadlines, i.e. no deadlines are violated. The
objective of the schedulability analysis is to
verify that there are no violation of deadlines
in all situations where the system may evolve
to. Now we formalize the notion of schedula-
bility for extended timed automata.

Definition 4. An extended timed automaton
A is non-schedulable if it may reach a non-
schedulable state, that is: (1o, uo,) —*
(I, u, L) where (ly, ug, go) istheinitial state of
A, and —* is the transitive closure of —.

We say that A is schedulableif and only if all
its reachable states are schedulable. O

Thus, the schedulability of extended automata
can be checked by reachability analysis, to
prove that (,u, L) is not reachable in the au-
tomaton. However, it is not obvious that the
reachability problem for extended automata
is decidable. In fact, the decidability of this
problem is closely related to the preemptive-
ness of the tasks P. The following is one of
our main results in this paper.

Theorem 1. The problem of checking schedu-
lability for extended timed automata over non-
preemptive tasks P is decidable.

Proof idea: It is based on the fact that the
problem of schedulability checking for ex-
tended timed automata can be transformed to
the reachability problem for standard timed
automata, which is known to be decidable [1].
See the following subsection for details on the
transformation. O

3.1. Transformation from TAT to ordinary
timed automata

The idea is to construct a timed automaton
simulating a ready queue and a scheduler that
code all possible scenarios of the system de-
scribed by a TAT, including the tasks in the
queue and schedules. For example, consider
the temporal attributes of the two tasks p, and
task p,, where p, had a worst-case-execution
time (wcet), of 4 time units (tu), and a dead-
line (d), of 7 tu. The second task p, has a wcet
of 3 tu and a deadline of 5 tu.

Intuitively for a system to be schedulable, the
ready queue can contain only a finite num-
ber of task instances. More precisely, there
can only be M NT; instances of task i, where
M NT; is given by:

w4

&)

where d; denotes the deadline for task 7 and c¢;
denotes the computation time.

By calculating the maximum length of the
ready queue, we know that to be schedulable,
the queue in our example can only contain one
instance of p, and one instance of p,. If at any
time point, there are more than one instances
of a particular task in the ready queue wait-
ing for execution, we know for sure that the
system is non-schedulable and the error state
should be reached. This ensures a finite num-
ber of states in our model of the scheduler and
the ready queue. Now, we use the above ex-
ample to present the algorithm for construct-
ing the scheduler and queue automaton, which
can be generalized easily to the general case.

1. Create three different nodes, one node in
which the ready queue is empty, one for
which there exists task instances in the
ready queue and, finally an error node.

2. Create transitions from the empty node
to the running node, one for every ac-
tion associated with a task. Further-
more, tasks can arrive while in the run
node, consequently we need one transi-
tion from run back to run for every pos-
sible task instance as well. In order to
keep track of every new task instance, a
unique semaphore for every instance is
introduced (denoted as taska and taskb in
Figure 2). We also need a unique dead-
line clock for every instance in order to
know which task to execute and to detect
deadline violations.

3. According to EDF, the task having least
time left until its deadline should be ex-
ecuted. For all possible task instances,
create a transition from run to run which
compares its relative deadline to all the
other ready tasks. In our example p,
should be executing if 7 — d, < 5 — dp,

and py, if 5 —dy, < 7—d, where d, and d,
are the deadline clocks. In order to keep
track of execution time of the running
task, a clock is reseted on every release of
a task. In our example, this clock is de-
noted as c. Furthermore, as we consider
the non-preemptive case, no task can start
to execute while another task already is
executing. Thus we need a semaphore to
know whether the processor is idle or not
(denoted r in Figure 2).

4. Introduce one transition from run to run
for every possible instance which termi-
nates the task whenever ¢ becomes equal
to its specified execution time and its
deadline clock is less or equal to its speci-
fied deadline. Termination is modeled by
resetting the instance semaphore.

5. If ready queue gets empty, i.e. no tasks
instances are present in the queue a tran-
sition to the empty node should be taken.

6. For each possible task instance we intro-
duce a transition from run to error if:

e An action A occurs, making the
number of instances of A exceeding
MNT,

e The executing task has overrun its
deadline

e A task pending for execution in the
ready queue has exceeded its dead-
line

Figure 2 shows the result from transforming
our example system shown. This is an or-
dinary timed automata for which decidability
has been proven in [1].

For the general case, the scheduler and queue
automata is illustrated in Figure 3 where q
denotes a queue, r is the executing task, c
measures how long time the executing task

taska==1
taska==0 __
—__> taskb==1
tzis_kb——l 7-da<5-db
taska==1 ==0 r==

taskb==0 Cf_:g c:=0 taska==1
r==0 r= ri=1 taskb==1
c:=0 5-db<7-da
r=1 r==0
c:=0
taska== r=2
taskb==
r==0 r==1
c==4
da<=7
r=0
taska:=0
r==2
empty b? c==3
" N
. taskb:=0
taska==0
a?
da:=0
taska:=1

db:=0
taskb:=1

error a?

Figure 2. A model of the ready queue and
the scheduler using ordinary timed au-
tomata

has been running and d(i) is a vector keep-
ing track of the time elapsed since the tasks
entered the ready queue. C(i) is a vector hold-
ing the worst case execution time of all tasks.
Both are vectors are finite as been discussed
above. Moreover, the function sch() returns
the instance among all tasks residing in the
queue having least time left until its deadline.
Task i is returned by sch() if the predicate
Nvmeqmei A0) — d(m) < D; — Dy, is true,
where D; denotes the relative deadline speci-
fied for task i.

4. A Case Study with UpPPAAL

UpPPAAL is a model-checker for timed au-
tomata [9]. As shown in the previous section,
the scheduler and ready queue can be mod-
eled as an ordinary timed automaton. In this

47 t;?
i 7

d(i):=0

r:=i

i := insert(ti,q)

d(i):=0

c=C(r)

c:=0
@ <) delete(tr, q)
r = sch(q)
c:=0
d(r) > D,
¢ < C(r) t; €q:d(i) >DiAr#i
error

Figure 3. Ageneral model of the scheduler
using ordinary timed automata

section, we present an example showing how
to use UPPAAL for schedulability checking.

Our example system is a event-driven applica-
tion controlling the speed of the shaft in a turn-
ing lathe. The objectives of the formal verifi-
cation is to verify that the system is schedula-
ble and the safety requirement that the engine
is not turned on by the control task while the
emergency stop is active. An event reports the
current speed of the shaft and a control task
is checking that the speed is within the speed
limits (in our example speed=3). If the speed
is to high (over 3), the engine is turned off
and if the speed is to low (below 3), the en-
gine is turned on. There is also an emergency
stop function which is implemented in soft-
ware. The setup is shown in Figure 4.

As shown in Figure 4, the parts belonging to
the systems environment are the shaft having
an optical sensor generating an event on ev-
ery complete revolution, the emergency stop
button having two states: up or down and the
engine, being either on or off. Consequently,
we have to model all these parts as a network
of TATs. Moreover, we have two software
tasks, the control task and the emergency stop

Stop/activate

Emergancy
stop
On/Off

on/off
. Velocity

Figure 4. The setup for our example sys-
tem

Emergency
Task

handler. These parts also have to be modeled
in TATs belonging to the network constituting
the complete system.

4.1. Modeling the system

We start by modeling the environment, i.e. the
shaft, the emergency stop button and the en-
gine. This can for instance be done as shown
in Figure 5, 6.

em_t>=5
empos:=0
off? c.es em t:=0
status:=0 | status:=1 emb!
-o@pe =k

status:=1

emb!

Figure 6. A model of the engine and the
emergency stop button

If the engine is on, the shaft makes a complete
revolution in between 4-8 time units, and an
event is generated every time the optical sen-
sor detects a complete revolution.

Next to model is the emergency stop handler
and the control task. The control task has a
calculated wcet of 2 tu and a hard deadline of
3 tu (Figure 8).

As for the control task, a deadline and a wcet
must be specified for the emergency stop han-
dler. According to our imagined requirement
specification, it must respond within 2 tu, i.e.
it has a deadline at 2 tu. The wcet estimation
result in a wcet of 1 tu (see Figure 7). Further-
more, two subsequent activations/deactivation
of the emergency stop can not be less than 5
tu in between. This gives us a minimum inter-
arrival time for the emergency stop handler of
S tu.

Figure 7. A model of the emergency han-
dler in timed automata

The model of the scheduler is omitted in the
paper. However, this process will be gener-
ated automatically by UpPAAL according to
the algorithm given in Section 3.1 and will be
invisible for the designer.

4.2. Verifying schedulability and safety

We use model checking and reachability anal-
ysis on our network of TAT for this purpose.
UpPPAAL uses a timed CTL language for spec-
ifying properties to verify. To verify that the
system is schedulable, we must show that the

status==1 status==1
x>7 X>6
speed:=1 speed:=2
X:=0 x:=0
vell vel!

== d:=4
E G e Al oGl sy o)

status==1 status==1

x>5 x>4

speed =3 speed:=4
=0 x:=0

vel| vell

status==1
x>=4

(X< 8) status==0 (X< 7 status==0 (X< 6) status==0 (X< 5) status==0 (X< 4)
s eed =0 5 eed =1 s eed =2 > =
i = 5 ez
veII vel! veII vell

Figure 5. A model of the shaft in timed automata

velr? cx>=2

cx>=2

cx:=0
off! Ispeed:=speed

em==0
Ispeed>3

Figure 8. A model of the control task in
timed automata

error state is never reachable. We will use the
always predicate in our example as always not
« is equivalent to never. This property is spec-
ified as shown in the formula below, sched-
uler.error means the state error in the process
named scheduler:

YOnot scheduler.error

For the safety property we need to verify that
the system never reach a state where the con-
trol task is in position to turn the engine on
while the emergency stop has been activated.
For our model, such an expression looks like

the formula given below:

VOnot(control_task.ton and em = 1)

First we will verify the schedulability prop-
erty. Asaresult UppAAL tells us that the prop-
erty is not satisfied by giving a counter exam-
ple. Consequently, the system is not schedu-
lable. In order to obtain a schedulable system,
the temporal constraints on the tasks have to
be modified. The counter example given by
UpPPAAL, shows that the emergency handler
task misses its deadline if this event happens
just after the control task has been invoked.
By changing the deadlines for the control task
and the emergency stop handler to 4 tu, the
system becomes schedulable. This is veri-
fied by the same property, but with an updated
scheduler model. The model of the scheduler
must be updated since now there can exist two
instances of the control task and four instances
of the emergency handler simultaneously in
the ready queue.

Next to verify is our safety property, i.e. the
control task should not be able to turn the
engine on as long as the emergency stop is
activated. In this case UPPAAL reports that
the property is satisfied and consequently, the
safety requirement is fulfilled.

It is of course possible to verify other func-
tional properties. For instance, we can verify

that the shaft eventually will rotate with the set
value. In our model, the set value is the speed
of 3, i.e. the speed is eventually equal to 3.
The corresponding formula given in UPPAAL
logic is:

dOspeed = 3

5. Conclusions

An important step in the development of em-
bedded real-time systems is “schedulability
analysis” that is to check whether all tasks
in a system can be executed within the given
deadlines in all possible scenarios. The tra-
ditional approach to schedulability analysis is
often based on scheduling theory and a task
model, which has been very successful for
periodic tasks, but less successful for event-
driven tasks.

In this paper, we have developed an extended
version of timed automata with real-time tasks
to provide a model for event-driven systems,
which can be used for modeling, schedulabil-
ity analysis, formal verification, and code gen-
eration. The main idea is to associate each dis-
crete transition in a timed automaton with a
task (an executable program e.g. written in C)
with its worst case execution time. Intuitively,
a discrete transition in an extended timed au-
tomaton denotes an event releasing a task and
the guard on the transition specifies all the
possible arriving times of the event (instead
of the so—called minimal inter-arrival time).
This yields a general model for hard real-time
systems in which tasks are non-periodic. In
this model, an automaton is used to model
control structure of a systems and associated
tasks are used to perform computation. Thus,
code generation for such a model is reduced to
transform the automaton into a runnable pro-
gram with procedure-call. However, a critical
problem is to guarantee that all the tasks as-
sociated with the automaton can be executed

within their deadlines. This is the so-called
schedulability checking problem. As the main
result of this paper, we have shown that the
schedulability checking problem for the ex-
tended timed automata with real time tasks
can be transformed to a reachability problem
for standard timed automata and thus it is de-
cidable. This result allows us to apply model-
checking tools for timed automata to schedu-
lability analysis for event-driven systems. In
addition, based on the same model of a sys-
tem, we may use the tools to verify other prop-
erties (e.g. safety and functionality) of the sys-
tem. This unifies schedulability analysis and
formal verification in one framework.

As future work, we plan to extend the Up-
PAAL model checker for schedulability analy-
sis. Future work also include code generation
which is to translate extended timed automata
with tasks into executable programs.

References

[1] R. Alur. Model-checking in dense real-time.
Information and computing, 1993.

[2] R. Alur and D. Dill. Automata for mod-
elling real-time systems. In Proceedings of
ICALP’90, volume 443 of Lecture Notes in
Computer Science. Springer, 1990.

[3] Bengtsson, Griffioen, Kristoffersen, Larsen,
L. an d Pettersson, and Yi. Verification of
an audio protocol with bus collision using
uppaal. In Proceedings of CAV' 96, volume
1102, 1996.

[4] J. Bengtsson, K. G. Larsen, F. Larsson,
P. Pettersson, and W. Yi. UPPAAL in 1995.
In Proc. of the 2nd Workshop on Tools and
Algorithms for the Construction and Anal-
ysis of Systems, number 1055 in Lecture
Notes in Computer Science, pages 431-434.
Springer-Verlag, Mar. 1996.

[5] G. C. Buttazzo. Hard Real-Time Comput-
ing Systems. Kluwer Academic Publishers,
1997.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

C. Daws and S. Yovine. Two examples
of verification of multirate timed automata
with KRONOsS. In Proc. of the 16th |IEEE
Real-Time Systems Symposium, pages 66—
75, Dec. 1995.

M. L. Dertouzos. Control robotics: The pro-
cedural control of physical processes. Infor-
mation Processing, 1974.

H. Huttel and K. G. Larsen. The use of
static constructs in a modal process logic. In
Logic at Botik' 89, number 363, pages 163—
180. Springer—\Verlag, 1989.

K. G. Larsen, P. Pattersson, and Y. Wang.
UPPAAL in a nutshell. Soringer Interna-
tional Journal of Software Toolsfor Technol-
ogy Transfer, 1, 1997.

K. G. Larsen, P. Petterson, and Y. Wang.
Compositional and symbolic model-
checking of real-time systems. In Pro-
ceedings of the 16th Real-Time Systems
Symposium, pages 76-87. IEEE Computer
Society Press, 1995.

M. Lindahl, P. Pettersson, and W. Yi. Formal
design and analysis of a gear controller. Lec-
ture Notes in Computer Science, 1384:281—
297, 1998.

C. Liu and J. Layland. Scheduling Al-
gorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the
Association for Computing Machinery, 2,
1973.

H. Lonn, P. Pettersson, and W. Yi. For-
mal Verification of a TDMA Protocol Start-
Up Mechanism. In Proceedings of 1997
|EEE Pacific Rim International Symposium
on Fault-Tolerant Systems, pages 235-242,
1997.

Verifying Temporal Constraints on Data in Multi-Rate
Transactions using Timed Automata

By

Anders Wall, Kristian Sandstrom, Jukka Maki-Turja, Christer Norstrom,
and Wang Yi
Submitted to Real-Time Computing Systems and Applications 2000.

Verifying Temporal Constraints on Data in Multi-Rate Transactions
using Timed Automata

Anders Walll, Kristian Sandstrém', Jukka Maki-Turj al, and Christer Norstrom'
Milardalen University'
Milardalen Real-Time research Center (MRTC)
P.O Box 883, S-721 23 Visteras, Sweden
{awl,ksm, jma,cen}@mdh. se

Wang Yi'?
Uppsala University”
Department of Computer Systems

P.O Box 325, S-751 05 Uppsala, Sweden
yi@edocs.uu.se

Abstract

Transactions involving multiple tasks, possibly with different period times, are
common constructs used in the design of real-time systems. Data flowing through a
transaction is usually subject to temporal constraints, such as maximum time from
input to output or a maximum time difference between inputs. Such constraints are of
great importance to guarantee the correct functioning of the designed system. But
normally they cannot be checked using the traditional approach to schedulability
analysis. In this paper we describe how to use timed automata and reachability
analysis to verify such temporal constraints on data in transactions. By making a
timed automaton model of the data dependencies in a transaction, we enable
automatic verification of timing constraints such as end-to-end latency. The model
can handle different computational models and any non-preemptive execution order
of the tasks in the transaction. Our experiences from industrial case studies indicate
that in a substantial number of applications, the transactions are of sizes that can be
handled using this approach.

1 Introduction

Designing safety-critical real-time systems involves assessment of functionality,
temporal requirements and dependability. The temporal requirements on such systems
may come in many forms, examples are end-to-end deadlines, jitter constraints, and
latency constraints. Such constraints can for example be found in multi-rate control
systems, where sampling, control, and actuation may execute with different frequency.
In such a system there are requirements on the delay from sampling to actuation in the
feedback loop. More precisely, for a particular actuation one wants to know which
sample the calculation is based on. The feedback loop delay is then defined as the time
difference between actuation and sampling. To be able to fulfill such constraints, the
designer has to have some means to express and preferably also verify them.
However, computational models like fixed priority scheduling [1,2], and pre-run-time
scheduling [3], used in the industry, cannot directly express such constraints. For
instance, jitter constraints are handled by manual transformations into release times
and deadlines of individual tasks. Translating these constraints to the attributes of the
computational model is non-trivial and the schedulability analysis does not verify that
the translation itself is correct.

In this paper, we will show how to verify that this mapping is correct. We do this by
presenting an algorithm that transforms the data flow and available timing information
of an application, or part of an application, into timed automata. In addition, we
construct an automaton modeling the execution strategy that defines the execution
orders of the involved tasks. By composing these two automatons and by using model
checking, we can verify timing constraints such as latency. The benefit of this is two
folded. First, the result from the scheduler can be checked, and second the high-level
requirements from the specification can be verified. We also believe that this is the
starting point for integrating real-time scheduling and timed automata to enable
efficient design and verification techniques of both time-triggered and event-triggered
systems in one framework.

Several researchers including Mok, Gerber, and Kim have provided specific
computational models that directly allow specification of latency constraints [4, 5, 6].
Our approach makes few assumptions about the computational model, and can
therefore be applied to different computational models. Furthermore, it also gives the
possibility to model the functional behavior of tasks and to efficiently integrate
handling of event-triggered tasks by defining an environment model, as reported in

[7].

The paper is structured as follows: In section 2 we define transactions, data
dependency, and execution strategies. Section 3 describes the construction of a timed
automaton that models data dependencies and how to verify temporal constraints on
data. Finally, in Section 4 we present our conclusions.

2 Transactions, Data Dependency Model and Execution strategies

A transaction is a set of tasks, collaborating in order to provide some desired function.
For instance, consider a control transaction consisting of three tasks, sample, control,
and actuate. The task sample reads an input value from the process, performs some
filtering, and thereafter sends the value to the control task. The control task consumes
the sample value, reads a reference value, and calculates a new control signal. Finally,
the actuator task consumes the new control signal and imposes it on the controlled
process. In our model, each task in a transaction has an input — calculate — output
behavior. That is, when the task starts its execution it first consumes all its input data,
performs the computations, and before completion, it outputs the results.

The execution of tasks is considered to be non-preemptive. Apart from being non-
preemptive, tasks may execute according to any strategy, e.g., time driven or event
driven. Furthermore, transactions can be of multi-rate nature, i.e., tasks in the
transaction may execute with different rates. In Figure 1, a transaction consisting of
four tasks is displayed, where 1, 2, and 3 are input to the transaction and the arrows
describe the data flow through the transaction.

We will represent a transaction as a data dependency graph. A data dependency graph
is a set of nodes, ny,...,n,, that represents the inputs and the tasks in the transaction,
and a set of edges that represents the data flow in the transaction. The initial nodes of
the dependency graph model the inputs to a transaction. If a task 7, consumes several

different data from task 7,, only one edge between those nodes is needed. Moreover, if
a task reads several inputs, there is need for only one initial node representing those
inputs. This is not a restriction but a consequence of the input — calculate — output
behavior of tasks, in which a task reads all its inputs at the beginning of its execution.

T

B

Figure 1. An example transaction.

Figure 2 illustrates the data dependency graph of the transaction in Figure 1, where
task 7c depends on data produced by both 7, and 73. Moreover, 7p depends on 7.
Note that 74 consumes data from input 1 and 2, which is represented in the
dependency graph as a single initial node #,.

Figure 2. The data dependency graph for the example transaction.

Definition 1. A data dependency graph for a transaction is a Directed Acyclic Graph
(DAG) defined by a tuple (N, E, Ny, nenq), where

e Nis a finite set of nodes representing tasks in the transaction.

e ECNXN denotes the edges between nodes.

e NycN is a finite set of initial nodes denoting the inputs.

e n.4€ N represents the last task in the transaction.

O
Note, that for each initial node ny € Ny there exists only a single edge e, to another
node. If several tasks in a transaction read the same input, two or more initial nodes in
the data dependency graph can be used to model that input. Each node n,e N has an
execution time specified as an interval C(n,)=[bcet, wcet], where bcet is the best-case
execution time and wcet is the worst-case execution time for task 7,.

Furthermore, as tasks in the transaction may execute in any arbitrary order, the
dependencies do not imply a precedence relation between tasks. The execution order
depends upon the execution strategy, e.g., event triggered tasks with fixed priorities or
time triggered pre-run-time scheduled tasks. Formally, an execution order is defined
as follows:

Definition 2. An execution order o is a sequence of pairs (¢, s) where t€ denotes the
start time and se N is a sequence of one or more tasks, thus 6 € (N xN")".

m
The start time for the first task in the sequence s is equal to ¢, whereas the remaining
tasks in s start as soon as the preceding tasks complete. Thus, the start time of a task,
that is not the first task in s, i1s determined by the start time of the preceding task 7,
and the execution time interval ranging from bcet to wcet. An example of an execution
order involving four tasks is {{0, 74 T3 - 7c), {12, T4 Tp)}.

From the data dependency graph the dependencies for each task in the transaction can
be derived. The data dependencies for task 7, are represented as the set L(n,) of
independent paths from the set of initial nodes to node n,. Formally a data dependency
is defined as follows:

Definition 3. A data dependency relation is
® ()= O where npe Ny
o o= Ubsue L)
(Pa)E
m
Note that u denotes a path from nye Ny to node n,. For instance, the dependency set
L(n¢) for node ne in the data dependency graph depicted in Figure 2 is given as

L(nc)y={nop-n, np-ng}.

We will denote the set of all the data dependencies for the tasks in a transaction as L,
which is a union of all data dependency sets.

3 Verifying temporal constraints using timed automaton

Timed automata has been recognized as a basic semantic model for specifying and
verifying timing constraints for real-time systems. Here we give a brief introduction to
the model of timed automata. For details, we refer to [9].

A timed automaton is a standard finite-state automaton extended with a finite set of
real-valued clocks. On each transition there are constraints (guards) on clocks,
synchronization action, and clocks to be reset. Whenever the guard is satisfied of the
current values of the clocks, the transition can be taken, i.e., the synchronization
action is performed and the clocks to be reset are set to 0. A state of a timed
automaton can be considered as a tuple containing the current node of the finite
automaton, and the current values of the clocks. Informally, the semantics of a timed
automaton is given by two transition rules. First of all, it can stay in the current node
letting time pass (delay), i.e. the clocks are updated and the current node remains
unchanged. Secondly, it can take the transition instantaneous resulting in a state with a
new node. In recent years, there have been a number of software tools developed e.g.
KRONOS and UPPAAL [8,10] for automated analysis of logical properties of timed
automata.

In this paper, we are aiming at using the existing tools to verify timing constraints on
transactions by transforming the data dependency model to timed automata. We will

refer to a timed automaton that describes data dependencies as a data dependency
automaton.

The temporal constraints that can be verified using the approach proposed in this

paper are:

e End-to-End timing constraint, i.e., minimum and maximum time from readings of
inputs until the end of the transaction.

e Variation in End-to-End timing, i.e. output jitter.

e Input synchronization, i.e., minimum and maximum time difference between input
readings used by the transaction in order to produce a result.

3.1 From Data Dependency Graphs to Timed Automata: an Example

In this subsection, we use an example to show the main idea and intuition of the
translation algorithm. The transaction for the example, illustrated in Figure 3, consists
of the input & and the three tasks 7,4, 75, and 7¢. The task executes according to a non-
preemptive time-triggered strategy. We want to verify that the data that tc uses to
produce the result for the transaction does not origin from an input reading that is

older than 10 time units.
k
Ta TB Tc T

Figure 3. The example transaction with its three tasks.

The data dependency graph representing the transaction in Figure 3 will consist of
four nodes and is displayed in Figure 4. The node n.,, represents the last task 7¢.

Figure 4. The data dependency graph.

According to definition 3, all tasks in the transaction depend on input data k. The data
dependency relation sets for the nodes are L(ny) = { }, L(ng) = {ni}, L(ng) = {ng-na},
L(neng) = {ngnynp}.

In the data dependency automaton we measure the age of data when an input data
instance has been processed by the last task in the transaction (7,,,). Therefore we use
time stamps to measure the time elapsed since a particular data entered the
transaction. We denote a time stamp for inputs represented by the initial node 7y in the
dependency graph as X*. As the transaction might be of a multi-rate nature, more than
one instance of an input could exist simultaneously in the transaction, all with
different age. Consequently, for all initial nodes in the dependency graph, there must
be one or more associated time stamp instances. The actual number of time stamp
instances for an initial node is correlated to the number of paths from that initial node
to all other reachable nodes in the dependency graph, excluding #.,,. For instance, the
number of time stamp instances needed for X* in this example is two, since there is
one path from 7y to ny and one additional path from ny to np (see L(n4) and L(np)).

We use clocks, which can only be reset, to implement time stamp instances in timed
automata. Therefore, when a task that reads an input executes, the corresponding time
stamp instance is reset. When consumers of data produced by that task execute, the
time stamp instance is distributed. Since several time stamp instances may be needed
for an input, nodes in the data dependency graph may use any of these instances. To
ensure that the time stamps are consistent, a state in the data dependency automaton is
used to keep track of the time stamp instances currently used by each node, i.e., one
state in the data dependency automaton models the assignments of time stamp
instances for all nodes. This gives for all nodes the age of all data that the tasks,
represented by the nodes, have read at this point. Table 1 presents the assignment of
time stamp instances for state S0 to S3 in the data dependency automaton displayed in
Figure 5.

node Ty np
SO xt X
S1 Xk XxF
S2 Xéf Xf
S3 Xk x4

Table 1. Time stamp instance assignments for state SO to S3 in the dependency
automaton.

Since several nodes simultaneously can use the same time stamp instance, a time
stamp instance cannot be reset without considering possible multiple uses. Assume
that a task 7, executes, and as a consequence a time stamp for an input should be reset.
If the time stamp instance used by node 7, is used by at least one other node, then
node n, will have to use a time stamp instance that is not assigned to any node.
Consequently, a transition has to be made to a state in which node n, is assigned the
new time stamp instance. As an example of such an instance replacement consider the
transition from S0 to S/ in Figure 5 where the time stamp instance for node 7y
changes from x{ to x%. If, on the other hand, no other node in the data dependency
graph uses x/, it can be reused. The transition S/ to S/ in Figure 5 is an example of
reusing a time stamp instance. In this case x4 is reused in order to reflect the most
recent reading of input £.

In addition to the states that are needed to represent the use of time stamp instances,
there must exist states that represent that the transaction is completed, i.e.,
corresponding to the last task, 7.,,. We will refer to such a state as an end-state. Upon
a transition from a state S to an end state a time stamp is reset, thereby making it
possible to verify the end-to-end age constraint on the data. Note that this transition
does not affect the assignment of time stamp instances, thus there is always a
transition back to state S in the automaton.

end?,X,,, =0

Figure 5. The data dependency automaton for the example.

In order to verify temporal constraints for a transaction, an automaton describing the
execution strategy is needed. The execution strategy of tasks can be time triggered or
event triggered. For time triggered systems the translation of the execution order to a
timed automaton is straightforward. If the system is event triggered, the system
environment that generates the events must be modeled as well [7]. For the purpose of
illustration, a simple execution scenario for the tasks in the example transaction is
depicted in Figure 6. All tasks have a bcet equal to 1 time unit and a wcet equal to 2
time units. The start time for the two instances of 74 and the second instance of 7z 1s
fixed, whereas the start times for the rest of the task instances are relative to the
preceding task. The complete execution sequence is repeated as soon as the second
instance of 7¢ has completed.

LT - MY - N

0 2 4 6 8 10 12 14
Figure 6. A possible execution scenario in the three-task transaction.

The execution scenario depicted in Figure 6 results in the automaton illustrated in
Figure 7.

b! clk>=9
end!

Figure 7. The execution order automaton.

The execution order automaton in Figure 7 give rise to the following state transitions
in the data dependency automaton in Figure 5:

S0 a?,X,=0 S1 b? S2 a?,X,:=0 S3 end?,X, =0 S7 S3 b? S0 end?,X =0 S4 S0

The transaction is completed when the data dependency automaton reaches the end-
states S7 and S4. Consequently, the age constraint is satisfied if, when in those states,
a related reading of input k& occurred no longer than ten time units earlier. By related
reading we mean a reading of data that has propagated through the entire transaction.
Thus, in order to verify the age constraint the following invariant must hold.

VOS54 (X,g 2 XE=10) A (S5 (Xpg 2 XE —10) A (S6 = (X g = X5 —10) A (ST > (X,,,g = X5 —10)))

That is, in all possible execution scenario, restricted by the execution automaton, the
time difference between an instance of the time stamp corresponding to the reading of
input k (xf or x¥), and the time stamp corresponding to the completion of 7, is never
greater than 10 time units.

1.2 From Data Dependency Graphs to Timed Automata: the Translation
Algorithm

In this section we present how to construct a timed automaton that represents the data
dependencies for a given transaction. The translation considers the data dependencies
in the transaction, represented by the L set. Transactions are assumed to have a N-to-1
topology. That is, there can be multiple tasks that may read inputs, but only one task
that produces outputs. A transaction with multiple tasks producing outputs can be
represented as several different transactions, each with a single output-task.
Furthermore, the execution of tasks is considered to be non-preemptive.

As discussed in Section 3.1, several instances of a time stamp may be needed in order
to keep track of the age of data flowing through a multi-rate transaction. We denote a
particular instance i of time stamp x* as x* . The number of time stamp instances numy,

needed to measure the age of input data represented by an initial node #y is finite and
equal to the number of nodes depending on n, i.e., the size of{y -oln o< r}where

ni€ Ny. As the tasks in the transaction can execute in arbitrary order, they can in
particular execute in a manner that gives each task a unique age of the input data it
depends on. If the number of time stamps needed for an initial node ny i1s numy, the
instances will be enumerated from 1 to numy.

The age of an input £, that a task depends on, is represented as a pair consisting of the
time stamp for &, and the path from the initial node in the data dependency graph that
represents k to the node that represents the task. This path uniquely identifies a
dependency and distinguishes different dependencies of the same data. For each task
T, in a transaction, the set 4(n,) contains all such pairs for the data that 7, depends on.

Definition 4. The set 4(n,) contains pairs (X*, s) where X* is the time stamp of input,
represented by the initial node 7y, and s is a path from 7, to the node n,, representing
task 7,.

A= <X",nk~y>

npeL(n,)

m

Note that for each pair (X*, s) in A(ny), the path s is static whereas the particular

instance i of time stamp X* may vary between states in the data dependency

automaton. We will use 4 to denote the set containing the sets A(n,) for all tasks in the
transaction excluding the last task 7.

A state in the data dependency automaton represents a unique time stamp instance
assignment for the set 4. Moreover, the number of states in the data dependency
automaton is finite. Thus, the problem of verifying temporal constraints using
reachability analysis is decidable.

Proposition 1. The number of states in the data dependency automaton is finite and
given by:

2+] [Joum, wWhere n, # neya.
n,eN <X‘ ,.Y>EA(nP)

PROOF: Since every time stamp X* in A(ny) can be one of numy instances, there are
]>_1numk ways of constructing A(7,,).

(x* s)eden,)

The total number of possible states for the data dependency graph excluding 7., is

then given as all possible ways of combining the time stamp instances for all nodes.

Consequently, the total number of combinations is given by:

Hnumk

n,eN <X",s>eA(nl,)
Since from every state there must be a transition to a unique end state, the total
number of states in the data dependency automaton is 2« [T [Jmum,
n,eN (X4 sk d(n,)
O
We will now present the rules for constructing the time automaton representing the
data dependency graph for a given transaction that complies with the assumptions
given earlier in this section. The automaton is constructed starting from an initial state
S and the rules G/ to G5 decides what action to take and how the states changes when
a task T, executes. Two basic rules R; and R, constitute the basis for G/ to G4,
whereas G5 corresponds to completion of the transaction. If node 7, is an immediate
successor to the initial node n; and if node 7, uses the time stamp instance x} to

represent the age of data read by task 7, then R; is satisfied if x/ is not used by any
other node. Moreover, R; is also satisfied if node n, does not depend upon an initial
node. The second rule R; is satisfied if every immediate predecessor to node n, in the
data dependency graph uses the same time stamp instance as n, itself. R, is also
satisfied if n, has no dependencies to other nodes.

R;: <Xf,nk>e A(ny) — <X§,nk <,u>e£ A(ny)vn, =n,

Ro: (k- wemy)e Aln,) = (Xh o) e A(ry)

In Figure 8, the transitions corresponding to rules G/ to G5 are displayed. For each
node in the data dependency graph, one out of four possible transitions, G/ to G4,
should be present in every state of the resulting timed automaton. The rules G2 to G4
result in a change of the time stamp instance assignment in the set 4 and therefore a
transition must be made to another state in the timed automaton that represents the
assignment of time stamp instances. G/ on the other hand, does not change time
stamp instance assignments, and consequently, a transition to a new state in the timed
automaton is superfluous. Finally, G5 corresponds to completion of the transaction by
reaching an end-state. The rules should be applied in all states for all nodes in the
dependency graph.

(=9
(=

/TN

G2 G3 G4

Figure 8. The rules for constructing the data dependency automaton.

The rules are described by a condition consisting of a composition of the basic rules
R1 and R2, an action describing the transition taken in the timed automata and which
time stamp instance, if any, that should be reset. Furthermore, the initial state S is
formed as:

S = A where <X§,s>e Any)= j=1

That is, initially tasks that depend on the same input data uses the same time stamp
instance for that data.

Transition G1. The time stamp instance for the input (if any) that the task reads is not
used by any other task, and there is no updated time stamp for the data that the task
consumes (if any). The time stamp for the input is updated.

Condition: R; AR,

Action:

2,X:=0 P
S5 i (X e AQn,)

S—Ls8" iff (X) A(r,)

Transition G2. The time stamp instance for the input that the task reads is used by at
least one other task. If the task consumes data from other tasks, there is no updated
time stamp, i.e., the tasks use the same time stamp. As a consequence, the state S
changes to S’.

Condition: "Ry ARy

. k.
Action: s—22=s 5 where(X4,) e A(n,) foralln, e N

Transition G3. The time stamp instance for the input (if any) that the task reads is not
used by any other task, but there are one or more updated time stamps for the data that
the task consumes. The state S changes to S”as one or more time stamp instances has
to be changed considering the data dependency.

Condition: Ri A "Ry

Action:

2,X:=0 P
S5 i (X e AQn,)

AN gﬁ(xj?,nk>e A(n,)

Transition G4. The time stamp instance for the input that the task reads is used by at
least one other task, and there are one or more updated time stamps for the data that
the task consumes. The new state S” reflects the fact that we need both a unique time
stamp instance for the input and that one or more time stamp instances have to be
changed considering the data dependency.

Condition: "Ry A "Ry

. 2 yk._
Action: s—"=05" where(XSm -u)e A(n,) foralln, € N

Transition G5. The last task in the transaction executes and completes. The time
stamp Xepq 1 reset on the completion of Tepg.
Condition: Teng completes.

Action: §—24%Xui=0 5 opg S where end = Nopy

1.3 From Data Dependency Graphs to Timed Automata: The example revisited

As an example on how to apply the rules G/-G5 in order to construct a data
dependency automaton, reconsider the transaction of the example in Section 3.1. The
data dependency graph for that transaction is equal to the graph in Figure 9.

Figure 9. The data dependency graph.

The L sets for the nodes are L(ny) = { }, L(ng) = {nx}, L(ng) = {npny}, L(neng) =
{mingng}. Using Definition 4 gives the 4 sets A(ny) = {(X'n)} and A(ng)
{<Xk,l’lk'7’lA>}.

For the initial node S the sets A(n,) is assigned time stamp instances according to S =
A where <X§,s>e An,) = j=1, which gives A(ny) = {{ xt, niy} and A(ng) = {{ x¥, nna)}.

Now we will explore the rules for constructing a data dependency automaton by
deducing the transitions from the initial state S.

Transition G1 (R; ARy)

Starting with node ny4, rule Ry is not satisfied since { x{, ny-n4)e A(ng) and thereby no
transition is taken. For node np, both rule R; and R, is satisfied and therefore the
transition s—2*5 is taken. Since (x{, n;) is not in A(np) no time stamp instance is
reset.

Transition G2 ("R; AR»)

For node n4, "R; is satisfied as well as rule Ry, and thereby the transition s—42%=0 g

is taken, where (x%, n-u) ¢ A(ng) for all n,e N. For state S* A(ny) = {{x%, mp) }
whereas A(ng) = {{ x{, ny-ny)} remains unchanged. For node ng, "R, is not satisfied
and therefore no transition is taken.

Since neither G3 (R; A "Ry) nor G4 ("R A TRy) is satisfied for any of the nodes, there
are no transitions for these cases.

Transition G5
Finally, according to G5, the transition §—2%Xui=0 ;0pnq sis added to the
automaton.

The part of the data dependency automaton constructed so far is displayed in Figure
10. Repeating the procedure above for state S’ will eventually complete the
automaton, resulting in the automaton of Figure 5.

G5 end?,X,, ;=0

@ Ga ALX5 =0

B?
Gl

Figure 10. The partial data dependency automaton.

4 Conclusions

A temporal constraint can for instance be the time from input to output or the time
difference between several inputs to a transaction. Such constraints of a transaction
are not always possible to express in the task models at hand. Thus, the designer has
to map such a constraint manually onto the temporal attributes in the existing task
model, e.g. period times, deadlines, offsets, etc. The schedulability analysis only
verifies whether the mapped system description can be realized or not. It does not
verify that the requirement mapping itself is correct. In this paper we have described
how to use timed automata to verify temporal constraints on data in transactions. By
constructing a timed automaton model of the data dependencies in a transaction, we
enable verification of, for instance, end-to-end constraints using model-checking.

As the model is general, it can handle arbitrary computational models and execution
orders of the task in the transaction. The main contribution of the paper is the rules for
automatically generating such a model in timed automata. Although the size of the
constructed automaton grows, in the worst case, exponentially with the number of
tasks in a transaction, we believe that the method is suitable and applicable to real-
world applications. The method can be applied to one transaction in isolation, i.e.,
modeling and verification can be performed on one transaction at a time.
Consequently, only the transactions of interest in the complete system have to be
verified. Our experiences from industrial case studies indicate that, in a substantial
number of applications, the majority of the transactions are of size feasible for this
method.

As future work we will extend the method to also include preemptive execution
strategies and we will implement a tool that, from a given system description,
generates data dependency automata and timed automata modeling the tasks’
execution. The model of the tasks’ execution will be derived from an existing
scheduler, and for model-checking we will use the existing model-checkers, e.g.
UPPAAL [10]. Furthermore, we plan to investigate the possibility of making timed
automata models of the functional behavior of tasks at some appropriate level of

abstraction. Such models enable verification of, not only temporal correctness, but
also functional properties such as safety and functional correctness.

5 References

[1]
[2]

[3]

[4]

[3]

[6]
[7]
[8]

[9]

[10]

Liu C. L. and Layland J. W. Scheduling Algorithms for Multiprogramming in
a Hard Real-Time Environment. Journal of ACM 20(1), 1973.

Audsley N. C., Burns A., Davis R. 1., Tindell K., and Wellings A. J. Fixed
Priority Pre-emptive Scheduling: An Historical Perspective. Real-Time
Systems 8(2-3): 173-198, 1995.

Xu Jand Parnas D. L. Scheduling Processes with Release Times, Deadlines,
Precedence and Exclusion Relations. IEEE Transaction on Software
Engineering, Vol. 16 No. 3, March 1990.

Mok A. K., Tsou D., and De Rooij R. C. M., The MSP.RTL Real-Time
Scheduler Synthesis Tool, In proceedings of 17™ IEEE Real-Time Systems
Symposium, pp. 118-128, 1996

Gerber R., Hong S., and Saksena M. Guaranteeing Real-Time Requirements
with Resourse-Based Calibration of periodic Processes. IEEE Transactions on
Software Engineering, 21(7), 1995.

Kim N. A Scheduling Technique for Real-Time Systems with End-to-End
Timing Constraints, In proceedings of RTCSA, 1996.

Norstrom C., Wall A., and Yi W., Timed Automata as Task Models for Event-
Driven Systems, In proceeding of RTCSA, 1999.

Daws C. and Yovine S., Two examples of verification of multirate timed
automata with KRONOS, In proceedings of 16™ IEEE Real-Time Systems
Symposium, PP 66-77, 1995

Alur R. and Dill D. A theory of timed automata, Theoretical Computer Science
vol. 126 pp. 183-235, 1994

Larsen K. G., Pettersson P. and Yi W., UPPAAL in a Nutshell, In Springer
International Journal of Software Tools for Technology Transfer 1(1+2), 1997.

	Licentiate theses from the Department of Information Technology
	thesis introduction.pdf
	Thesis contents
	Thesis introduction
	Results
	Paper A: Software Architectures for Real-Time Systems
	Paper B: Timed Automata as Task Models for Event-Driven Systems
	Paper C: Verifying Temporal Constraints on Data in Multi-Rate Transactions using Timed Automata

	Future work
	Papers produced

	paper a.pdf
	Software Architectures for Real-Time Systems

	SA for RT.pdf
	Introduction
	Towards a definition
	Open research areas
	Outline

	Architecture description languages
	Desired properties of an architecture description language
	Semantics of an ADL
	Examples of existing architectural description languages

	Architectural views
	Discussion

	Architectural analysis
	Methods for architectural analysis
	Functional analysis
	Nonfunctional analysis

	Architectural design
	An example

	Conclusions
	References
	Appendix A - Terminology

	age constraints with TA.pdf
	Verifying Temporal Constraints on Data in Multi-Rate Transactions �using Timed Automata
	Introduction
	Transactions, Data Dependency Model and Execution strategies
	Verifying temporal constraints using timed automaton
	From Data Dependency Graphs to Timed Automata: an Example
	From Data Dependency Graphs to Timed Automata: the Translation Algorithm
	From Data Dependency Graphs to Timed Automata: The example revisited

	Conclusions
	References

