
Automatic Generation of Timing Models for
Timing Analysis of High-Level Code

Peter Altenbernd
Department of Computer Science
University of Applied Sciences

Darmstadt, Germany
p.altenbernd@fbi.h-da.de

Andreas Ermedahl, Björn Lisper, Jan Gustafsson
School of Innovation, Design, and Engineering

Mälardalen University
Västerås, Sweden

{andreas.ermedahl,bjorn.lisper,jan.gustafsson}@mdh.se

Abstract

Traditional timing analysis is applied only in the late
stages of embedded system software development, when
the hardware is available and the code is compiled and
linked. However, preliminary timing estimates are often
needed already in early stages of system development,
both for hard and soft real-time systems. If the hardware
is not yet fully accessible, or the code is not yet ready to
compile or link, then the timing estimation must be done
for the source code rather than for the binary. This paper
describes how source-level timing models can be derived
automatically for given combinations of hardware archi-
tecture and compiler. The models are identified from mea-
sured execution times for a set of synthetic “training pro-
grams” compiled for the hardware platform in question.
The models can be used to derive source-level WCET es-
timates, as well as for estimating the execution times for
single program runs. Our experiments indicate that the
models can predict the execution times of the final, com-
piled code with a deviation up to 20%.

1. Introduction

Many safety-critical embedded systems have hard real-
time requirements, i.e., failures to meet timing deadlines
can have catastrophic consequences. For these, a safe
(i.e., never underestimated) Worst-Case Execution Time
(WCET) of the software is a key measure.

Often, the hardware is configured in parallel with
the software development. For embedded systems in a
high-volume market, it is important to choose a suitable
hardware configuration (CPU, memory, peripherals, etc.)
which is just powerful enough, in order not to have a too
costly hardware. Consequently, it is important to assess
the worst-case timing of the software to be able to choose
a suitable hardware configuration.

However, timing properties are normally verified rather
late in the development process, when the code has been
compiled and linked, and when the hardware configura-

tion has been determined. If the timing requirements turn
out not to be met, then a costly system redesign may be
needed. Timing estimates are therefore very useful ear-
lier in the real-time embedded systems development, since
they can help getting the dimensioning of the system right
(selection of hardware configuration, timing budgets for
tasks, etc.). This will reduce the risk that in the end, the
system will not meet its timing requirements.

In contrast to the final verification of the timing proper-
ties for a safety-critical system, early timing estimates do
not have to be safe. Safe bounds derived in early develop-
ment stages will most likely have to be very pessimistic,
due to the lack of detailed information about software
and/or hardware. Pessimistic bounds will typically lead to
severe overdimensioning of the hardware. It is therefore
more important to have a low expected deviation from the
final WCET than to have a safe WCET estimate. This is
even more true for soft real-time systems.

These early, approximate WCET estimates can be con-
firmed later in the development cycle. Safe and more exact
estimates can be calculated using existing WCET tools as
soon as the code has been compiled and linked towards a
selected hardware configuration.

In this paper, we present a method to identify a source-
level timing model for a given combination of hardware
configuration and compiler. The timing model can be
used for static source-level WCET analysis as well as es-
timating performance dynamically with source-level sim-
ulators. The approach consists of the following steps:

1) For the source language to be analyzed, a num-
ber of “virtual instructions” are selected (such
as arithmetic/logic operations, branching, functions
calls/return, etc). The set of virtual instructions should
define an abstract machine that can execute the source
code in a reasonably direct manner.

2) A number of synthetic “training” programs are com-
piled for the intended platform, and each program is
executed. A reasonably timing-accurate simulator can
be used, if the hardware is not available. The execution
times are recorded.

3) The training programs are executed on an emulator that

can count the number of executions of each virtual in-
struction. When the training program is executed, the
execution count is recorded for each virtual instruction.

4) A linear timing model, with an execution time for each
virtual instruction, is automatically identified from the
measured execution times and the recorded instruction
counts.

5) The resulting timing model can be used to make source-
level timing estimates for any program in the selected
source language without having access to binaries or
target hardware. The timing estimation can be made
either by a static WCET analysis or by simulation.

Steps 2) – 4) can be performed once and for all generate
a timing model for a given combination of compiler and
hardware configuration.

When the timing model is available, it can be used for
quick timing estimation while developing the software.
The analyzed source code must be complete enough to be
translatable into virtual instructions, but calls to yet un-
known functions can be present if they are assigned ex-
ecution times by the user1. Complete code snippets can
also be analyzed.

If a library of timing models is available for different
HW/compiler combinations, then 5) can be performed re-
peatedly to explore HW/compiler alternatives.

We believe that WCET estimation based on our timing
models would fit well into the interactive WCET analysis
methodology put forward in [16].

The main contributions of the paper are:

• we have extended state-of-the-art of designing timing
models by using dedicated, portable training programs,

• we give insights in what method to use to find the best-
fit of the timing model, and

• we have developed novel methods to apply the derived
timing models in static timing analysis.

Our experiments indicate that the deviation of execution
times predicted by the model from real execution times
typically are in the range 0-20%. It should be noted that
our WCET estimates are not always safe, due to the ap-
proximative nature of the timing model.

The rest of this paper is organised as follows. Section 2
gives an account for related work. In Section 3 we explain
the general idea of identifying timing models from mea-
surements. Section 4 describes our approach to source
level timing analysis, and gives an overview of our exper-
imental setup. In Section 5 we describe our approach to
constructing training program suites for model identifica-
tion. Section 6 gives an account for the concrete model
identification techniques that we have tried out. In Sec-
tion 7 we describe our experimental setup, experiments,
and outcomes, in more detail. Section 8, finally, wraps up.

1If the function calls can affect the subsequent program flow,e.g.,
through side effects, then these side-effects must be captured by value
annotations. Most WCET analysis tools support such annotations.

2. Related Work

TimingExplorer [22] is a version of the static WCET
analysis tool aiT [8], which is designed for fast design
space exploration of different hardware configurations. It
sacrifices absolute safety for analysis speed. The analysis
uses the binary, and can thus only be applied if the code
is ready to compile. The tool relies on hand-crafted hard-
ware timing models.

Another interesting approach for early stage WCET
analysis is the integration of timing analysis and mod-
elling/code generation tools (aiT, SCADE, ASCET) [7].
Here, a traditional WCET analysis is done on the binary
that is compiled from the generated source code. The tool
integration provides support for maintaining mappings be-
tween model and code. Since the binary is needed, the
models must be in the state that code can be generated
from them. Any supporting code that is linked with the
generated code must also be compilable. This restricts
the portability of the approach to hardware where timing
models already exist, and puts restrictions on the use for
early phase timing estimation. Similar attempts to do tim-
ing analysis for models have been done, targeting state-
charts [6], Petri nets [24], and Simulink [19].

There have been approaches to WCET analysis for
Java [2, 3, 23], where JVM provides a virtual instruction
set. They all rely on manually derived timing models.

Identification of linear timing models has been at-
tempted in the past. Giusto et. al. have investigated the
use of model identification for Source-Level Simulation
(SLS), which is used for performance evaluation of em-
bedded software [11]. A more recent, similar approach
is reported in [17]. Franke [9] has used the approach on
machine code level, to build binary level simulators where
approximate execution times are calculated quickly from
instruction counts. Franke’s models also include data such
as cache miss ratio, which is recorded by the simulator.
What sets our work apart from these contributions is the
systematic design of training programs, the use of other
methods than the least-squares method for model identifi-
cation, and the use of the derived models in static timing
analysis.

Lisper and Santos have developed a new regression
method, based on end-to-end measurements of programs,
where the resulting timing model is guaranteed to not un-
derestimate any observed execution times [21]. The tech-
nique works for binaries, identifying execution times for
basic blocks in specific programs, which is different from
our work. In [1], model identification via trace parsing
and machine learning is used to derive parametric loop-
bounds. The method is similar to ours but the aims are
totally different. In [13], the approach that has been pur-
sued here is outlined.

Finally, an approach similar to ours has been used to fit
energy consumption models for low-level code [20].

2

3. Identification of Linear Timing Models

Assume an abstract machine with virtual instructions
i1, . . . , in, modelling a source language. We assume that
a program in the source language is emulated by the ab-
stract machine, so that the execution of a program in the
source language corresponds to a trace of virtual instruc-
tions. For each virtual instructionik, the trace then con-
tainsck occurrences ofik (theexecution countof ik). A
linear timing modelfor the abstract machine computes the
execution timeT for a trace as

T = w0 +

n
∑

k=1

wkck (1)

Here,w0 is a constant startup time, andwk, k = 1, . . . , n
are constant execution times for the respective virtual in-
structions. If we assume thati1 is a virtual “startup” in-
struction, which occurs exactly once in each trace, then
(1) can be simplified to

T =

n
∑

k=1

wkck (2)

A linear timing model can predict the real execution time
for the compiled binary more or less well. Good linear
timing models can be expected to exist for code compiled
with non-optimizing compilers, and executing on simple
hardware without features such as pipelining or caches.
For more complex hardware architectures, with widely
varying instruction execution times, linear models will be
less accurate. The same is true if an optimizing compiler
makes heavy changes in the code structure. However, ap-
proximate models may be useful for early timing estima-
tion.

A common situation is that we want to find a “best”
model, i.e., an assignment of values to the instruction ex-
ecution timeswi that minimizes the overall deviation of
the predicted execution times from the real ones for a
number of observations. Each observationj consists of
a measured execution timetj for the compiled binary,
and an array(cj1, . . . , cjn) of execution counts for the
emulated source code executed with the same inputs as
the compiled binary. Assume we have madem observa-
tions. The model then predicts an arrayC ~w of execution
times, whereC is anm×n-matrix whose rows are the ob-
served arrays of execution counts, and~w = (w1, . . . , wn)
is an array of virtual instruction execution times. Let
~t = (t1, . . . , tm) be the array of measured execution times
for the different observations. Finding a “best” model then
amounts to finding a~w that minimizes the overall devia-
tion ofC ~w from~t.

There are different ways to define the overall deviation.
TheEuclidean distanceis often used for this purpose:

‖~x− ~y‖2 =

√

√

√

√

m
∑

j=1

(xj − yj)2

The well-known least-squares method(LSQ) [10] will
find a ~w that minimizes‖C ~w − ~t‖2. It is commonly used
for linear model identification, and has been used to iden-
tify linear timing models before [9, 11, 17].

In order to obtain a good linear timing model, the set
of observations must contain enough information to allow
for an accurate identification of eachwi. If there are lin-
ear dependencies in the observations between the execu-
tion counts for different virtual instructions (i.e., if there
are sets of linearly dependent column vectors inC), then
LSQ can yield multiple solutions. This can result in arbi-
trarily bad execution time predictions for other executions
for which the linear dependencies are not obeyed. Lin-
early independent but highly correlated virtual instruction
counts can also yield models with poor predictions. In
order to avoid this, the observations must contain enough
variation in the execution counts such that the linear de-
pendencies go away. This amounts to having a good
enough set of training programs, and test data. How-
ever, some linear dependencies might be inherent in the
trace structure: for instance, virtualCALL andRETURN
instructions can be expected to have the same execution
counts for any observation. Such a set of linearly depen-
dent instructions can always be replaced by a smaller set
of virtual “superinstructions” for which unique execution
times can be identified. In the example,CALL andRE-
TURNcan be replaced by a single superinstruction carry-
ing the sum of their execution times.

Even if linear dependencies are not present, it is not
certain that LSQ will yield a model that always predicts
execution times well for executions outside the set of ob-
servations used to identify the model. In practice, one
might want to use knowledge about what should be “rea-
sonable” instruction execution times to constrain the so-
lution. This motivates the use of other, more general
search or optimization methods for the model identifica-
tion. Such methods also make it possible to minimize
some other distance measure than the Euclidean distance.

4. Early-Timing Analysis Approach

An overview of our approach, and experimental setup,
is shown in Fig. 1. Once the training programs have been
designed (see Section 5) they are compiled and executed
on the target hardware, or a simulator for it. For conve-
nience we have used the SimpleScalar simulator [4] for
this purpose: SimpleScalar can be configured to simulate
architectures with a variety of different features, and it
records the number of cycles needed to execute the pro-
gram on the virtual hardware. These values form the vec-
tor~t.

In the next step, following [13], the training programs
are translated into the intermediate format ALF [15],
which provides the virtual instruction set. The C-2-ALF
translator that we have used produces ALF code that is
a faithful image of the C code, with preserved program

3

Table

<program, time>

[vector t]

Model identification

(we use

Least-squares and

Simulated Annealing)

1) SELECTION OF

TRAINING PROGRAMS

2) MEASURE TIME FOR

TRAINING PROGRAM
3) DERIVE COUNTS FOR

VIRTUAL INSTRUCTIONS

Table

<instr, approx. time>

[vector w]

Compile and link

4) LINEAR TIMING

MODEL IDENTIFICATION

Executable

Run on hardware

or simulator

(we use Simplescalar)

Translation to

virtual instruction

code format

virtual instruction

code (we use ALF)

Run on emulator

counting instructions

(we use SWEET)

Table

<program, <instr, count>>

[matrix C]

Program
ProgramTraining

program

program

Translation to

virtual instr. code

Static

WCET analysis

(we use SWEET)

5) SOURCE LEVEL TIMING ANALYSIS

Source level

WCET estimate

(valid for all paths)

Source level

timing estimate

(valid for one path)

Source-level

simulation

(we use SWEET)

virtual instruction

code (we use ALF)

Figure 1. Early-timing analysis approach.

flows2. A modified version of the WCET analysis tool
SWEET [5] interprets the ALF code, and records the ex-
ecution counts for the ALF instructions. These execution
counts form the matrixC.

Then the model is identified, i.e., the vector~w is de-
termined. We have tried the least-squares method, and
simulated annealing for this purpose, see Section 6.

The final step is to use the model for timing analysis.
This can be done either through simulation, or by a static
timing analysis. We have used SWEET to do both simula-
tion, and an approximate static WCET analysis on source
level using the timing models. For the simulation, we ex-
tended the interpretation mode of SWEET to provide tim-
ing estimates using ALF timing models. See further Sec-
tion 7.

As mentioned in Section 1, steps 1) – 4) can be done
once and for all for a given HW/compiler configuration. 5)
can then be performed repeatedly by the user to estimate
WCET’s on source code level.

5. Construction of Training Programs

The selection of training programs is of utmost im-
portance to the timing model identification. It has been
proposed to use a mix of codes from the intended ap-
plication domain [11]. A problem with this approach is
that it is not ensured that the mix of codes will provide
enough independence in the execution counts of different
virtual instructions to avoid problems with linear depen-
dencies, or high correlation between instruction counts.
We therefore advocate an approach with synthetic training
program suites,which allows more control over the virtual
instruction traces. The program suites can quite easily
be designed to avoid the problem of linearly dependent,
or highly correlated execution counts. We have designed
training program suites for two scenarios: simple archi-

2www.complang.tuwien.ac.at/gergo/melmac/

tectures without caches etc., where we can expect close to
constant instruction execution times, and advanced archi-
tectures with caches, pipelines, parallel functional units,
etc.

5.1. Training Programs for Simple Architectures
For simple architectures, where the execution times of

the instructions have low variability, the execution times
of virtual instructions can be estimated well regardless of
which other instructions are executed. Ideally then, one
would construct a single training program for each vir-
tual instruction executing that instruction once. Executing
each training program once would then yield an execution
count matrixC which is the identity matrix, and the vector
~w would equal the vector~t of observed execution times.
Of course, such a program suite is not possible since typi-
cally some instructions are needed in order to execute oth-
ers. But the idea can be used to construct a training pro-
gram suite where single instructions are isolated as far as
possible. Thus, our suite for simple architectures is con-
structed like this:

• The first program is the ”empty” program. Execution
yields the startup time for a program (i.e., , the time
for a virtualRUN PROGstatement):

int main() { }

This program is put first in the suite, as every emula-
tion of virtual instructions for a source program will
executeRUN PROG.

• Any nonempty C program must contain an assign-
ment. Such a program must execute at least one vir-
tualSTOREinstruction. Thus, the next program exe-
cutes exactly oneSTORE:

int main() { int j = 17; }

4

• Similarly, a third program executes aLOAD instruc-
tion in addition to aRUN PROGand aSTORE. The
program suite then continues with a series of sim-
ple programs, executing each remaining instruction
in turn, until the full set of instructions is covered. An
example is the training program for theINT MULT
instruction:

int main() { int j = 42; j = j*3; }

However, one dependency cannot be eliminated by this
regime. The number of executedRETURNinstructions
will always equal the number of function calls. But if
these instructions are replaced by a superinstruction car-
rying their added execution times, then this approach will
yield a lower-triangular execution count matrixC, with
nonzero diagonal entries. Such a matrix will never have
any linear dependencies between the column vectors.C

will furthermore be a quadratic matrix, since there is ex-
actly one program execution per instruction: then, the ab-
sence of linear dependencies implies thatC is invertible,
and the linear systemC ~w = ~t can be solved directly to
yield ~w such that‖C ~w − ~t‖2 = 0.

5.2. Training Programs for Advanced Architectures
For more advanced architectures, features such as

caches and pipelines will cause instructions to have highly
context-dependent execution times. This means that the
“real” instructions must be executed in a variety of con-
texts when identifying the timing model, in order to have
the model capturing the influence of these contexts on the
execution time. In particular, longer instruction sequences
must be executed in order to capture cache and pipelining
effects. One way to accomplish this is to introduce loops
in the code. Our “advanced architecture” test suite builds
on the suite for simple architectures, and extends the pro-
grams with loops executing the instruction under test a
number of times. This simple extension will not capture
more complex timing effects involving several different
instructions, but can still give reasonably good results as
we have verified in Section 7.1.

However, when introducing loops then some instruc-
tions will invariably be needed: aSTOREto initialize
the loop variable, some arithmeric operation to incre-
ment/decrement the loop counter, some test instruction to
decide the exit condition, aJUMP to return to the entry
point of the loop. Therefore, we cannot obtain a lower-
triangular execution count matrix any more. But the exe-
cution counts can be made linearly independent by intro-
ducing several loops executing different arithmetic opera-
tions to increment/decrement the loop counter, and differ-
ent test instruction to break the loop. A third part of the
code executes the loop body outside any loop, to break the
possible linear dependencies to instructions (likeJUMP)
that appear in all loops. If the training program is executed
a number of times, with the different loop bounds set in a
linearly independent fashion, then the linear dependencies

between any instructions will be broken, and in addition
the correlation can be brought down.

An example is the training program forINT MULT,
which consists of two independent loops, and a section
with straight-line code:

int main() {
int max1 = ...;
int max2 = ...;
int i,j;
for (i=1; i <= max1; i++) {
j = i; j = j*3;

}
for (i=max2; i > 0; i--) {
j = i; j = j*3;

}
j = i; j = j*3;

}

If only the first loop was present, thenINT MULT would
always be executed as many times as theADD that in-
crementsi, and the test operation that comparesi with
max1. This would create a linear dependency between
these execution counts. The second loop uses aSUB to
decrement the loop counter, and a different test operation.

Thus, a number of executions can be made where
max1 andmax2 are varied in such a way that the result-
ing execution counts for the involved virtual instructions
are linearly independent. However, both loops will still
have a singleJUMP instruction each: thus, the execution
counts forJUMP and INT MULT will still be the same
no matter whatmax1 andmax2 are. To break this lin-
ear dependency, the third appearance of the loop body is
added.

In our automated approach, in which the training pro-
grams are generated, the constantsmax1 andmax2 can
be varied (see Section 7.1).

6. Model Identification

We have tried out some different approaches to the
problem of choosing~w such that the resulting source level
timing model predicts the execution time well for the com-
piled binary, running on the chosen target platform. We
have LSQ (see Section 3) for this purpose, which always
gives the best fit for the set of training program runs as
defined by the Euclidean distance. However, this method
will blindly select real-valued weights to minimize this
distance, and so it can yield models that do not predict the
execution time well for programs outside the training set.
For instance, it may yield cycle counts for instructions that
are negative, and indeed this sometimes happened in our
experiments. It is clear that such execution times are un-
realistic in practice, and may yield very poor predictions
for programs that execute the instruction in question very
frequently relative to other instructions.

Thus, we have also used a more general search method
that allows more freedom in specifying constraints, and

5

objective function. Among the many approaches of this
kind we opted for simulated annealing [18] (SA): it is
relatively simple to implement, and compared to simple
greedy algorithms it is capable of overcoming local op-
tima.

By analogy with a physical process of cooling, each
step of the SA algorithm replaces the current solution by
a random solution from the neigbourhood. If better, the
new one is accepted. If not, it still might be accepted with
a probability that depends both on the difference between
the subsequent objective function values, and on a global
parameterT (the “temperature”). As the temperature is
decreased during the process, jumps leaving the local so-
lution space will become less and less likely, so eventually
the result will stabilise.

Adapting SA to minimize‖C ~w − ~t‖2 is easy, and it is
done according to the following:

• All elements in~w are initialised to zero.

• For producing a solution in the neigbourhood of~w,
its elements will be randomly incremented or decre-
mented by one, or kept as is (while upholding any
imposed constraints on the solution).

The rest remains as in the original SA algorithm. How-
ever, SA is very sensitive to its steering parameters, like
the temperature, and how it is reduced. Therefore we have
run SA several times, with varying parameters, and kept
the best result.

7. Experiments

We have evaluated the precision of the identified mod-
els, as well as the influence of the training program suite
on the result. We have used the two sets of training pro-
grams from Section 5.2 for this purpose, and we have tried
both LSQ and SA. The models were then evaluated using
a distinct set of programs, consisting of fifteen programs
from the Mälardalen WCET Benchmark Suite [14], see
Table 1. Table 1 gives some basic data about the programs,
including lines of C code (#LC), the number of functions
(#F), loops (#L), and conditional statements (#C).

We first compared predicted vs. real running time for
each benchmark and model, running each benchmark with
its specified input (all these benchmarks have their hard-
coded inputs). This gave an estimation of how well the
derived timing models predict real running times. We then
removed the hard-coded inputs for some selected bench-
marks, turning them into programs having different paths
through the code for different inputs. For each selected
benchmark, ranges were defined for the possible input val-
ues. To evaluate the precision of static timing analysis
based on the timing models, we finally performed a static
BCET/WCET analysis for these benchmarks taking their
input ranges into account. For each benchmark, these es-
timates were compared with the best/worst running times
obtained by an exhaustive search over the possible inputs.

We have used SWEET both for the single runs and the
static analysis. SWEET has a “single-path mode” that
can be used to emulate ALF code. We have extended
this mode to use ALF timing models, effectively turn-
ing SWEET into a source-level simulator estimating ex-
ecution times. We have also extended SWEET’s static
analysis to perform BCET analysis in addition to WCET
analysis, which is straightforward for simple timing mod-
els with constant execution times for basic blocks like the
ALF timing models considered here.

We have used the SimpleScalar simulator [4] as tar-
get architecture. Both the training programs, and the
benchmarks used for the evaluation were compiled using
sslittle-na-sstrix-gcc with no optimizations,
for sim-outorder executed with its standard config-
uration. With this configuration,sim-outorder simu-
lates a processor with out-of-order issues of instructions,
main memory latency 10 cycles for first access and 2 cy-
cles for next accesses, memory access bus width 64 bytes,
1KB L1 instruction cache (1 cycle, LRU), no data cache,
no L2 cache, no TLB’s, 1 integer ALU, 1 floating point
ALU, and fetch width 4 instructions. Branch prediction is
2-level with 1 entry in the L1-table, 4 entries in the L2-
table and history size of 2. Our benchmarks only use inte-
gers operations.

Since none of the selected benchmark programs use
any floating-point instructions the translated ALF pro-
grams use only 31 different ALF instructions, which
formed the virtual instruction set for the experiment.
These instructions include program flow control instruc-
tions, LOAD/STORE, and arithmetic/logical instructions
excluding floating-point arithmetics.

The experiments were run on a PC with a quad-core
2.53 GHz Intel processor, equipped with 4 GB memory,
running Linux with kernel 2.6.35-997-generic.

7.1. Training Programs
We first used the “simple” training program suite from

Section 5.1. For the set of benchmark programs in Table 1,
we obtained an average deviation of 29%. This rather poor
precision shows that this suite is not well suited to identify
models for architectures likesim-outorder.

For the “advanced architecture” suite we tried to vary
the number of iterations of the loops, to see whether
this would have an influence on the precision of the pre-
dicted execution times. Since architectural features like
caches, and branch predictors tend to yield shorter in-
struction execution times within loops, it seemed likely
that this could influence the identified model and its re-
sulting precision. To estimate this influence we used the
program suite instantiation “small” (loops iterating 7 - 17
times), “medium” extending “small” with instances of the
programs iterating up to 29 times, and “big” extending
“medium” with instances iterating up to 61 times. We
also tried adding the “simple” training program suite to
see what influence this would have on the precision. This
gave a total of six test cases with different variations of the

6

Program Description #LC #F #L #C
bs Binary search in an array of 15 integer elements. 114 2 1 3
cover Program with many paths (using loops and switches).640 4 3 6
edn Finite Impulse Response (FIR) filter calculations. 285 9 12 12
esab mod Loop with highly context-sensitive execution. 3064 11 1 292
fdct Fast Discrete Cosine Transform. 239 2 2 2
fibcall Iterative Fibonacci, used to calculate fib(30). 72 2 1 2
fir Finite impulse response filter (signal processing). 276 2 2 4
inssort10 Insertion sort on a reversed array of size 10. 92 1 2 2
inssort15 Insertion sort on a reversed array of size 15. 92 1 2 2
inssort20 Insertion sort on a reversed array of size 20. 92 1 2 2
inssort30 Insertion sort on a reversed array of size 30. 92 1 2 2
jcomplex Nested loop program. 64 2 2 4
loop3 Loops with context-sensitive execution behaviour 76 1 150 150
ns Search in a multi-dimensional array. 535 2 4 5
nsichneu Simulates an extended Petri net (many paths). 4253 1 1 253

Table 1. Benchmark programs
Training suite LSQ LSQ rounded SA SA ≥ 0 0≤ SA ≤ 2×
small 39% 34% 10% 10% 10%
medium 50% 45% 14% 12% 12%
big 64% 63% 16% 13% 13%
small+ simple 18% 17% 15% 10% 20%
medium+ simple 19% 15% 16% 10% 10%
big+ simple 17% 14% 16% 10% 10%

LSQ: standard least squares method,LSQ rounded: LSQ rounded to closest integer
SA: Simulated Annealing with no constraints on the solution

SA ≥ 0: SA restricted to nonnegative instruction times,0≤ SA ≤ 2×: SA additionally restricted from above

Table 2. Average deviation of predicted vs. real execution t imes for benchmarks with different
model identification methods

training program suite.

7.2. Model Identification Method
We tried different variations of LSQ and SA. For LSQ

we tried both the direct solution, where virtual instruction
execution times can be non-integers, and with instruction
execution times rounded to the closest integer. In both
cases, no further restrictions were made on the instruction
execution times: therefore, e.g., negative execution times
were possible and would indeed appear sometimes.

For SA, we used the Euclidean deviation‖C ~w−~t‖2 as
objective function. We used three variations. In the first,
SA was run without any constraints on the final solution.
For the second, we imposed the constraint that all virtual
instruction execution times be nonnegative. The rationale
for this was to see whether this “sanity” constraint would
yield better predictions overall.

In the third variation, we restricted the search space
size for SA by imposing also an upper limit on the vir-
tual instruction execution times. This is a way to curb po-
tentially long search times for SA, and we wanted to see
whether this would affect the precision in the identified
model adversely. In order to set the upper limit, we first
made a rough estimate using the “simple” training pro-
gram suite. As this suite has exactly one training program

per virtual instruction, its matrixC is invertible and the
equation systemC ~w = ~t can be solved exactly by stan-
dard methods, in very short time, to yield~wsimple forming
the rough estimate. We then restricted the SA solution~w

from above by2~wsimple .
Since SA was initialized with an integer vector, using

integer steps in the search, it would always return an inte-
ger vector as solution.

All the variations of LSQ and SA were tested with all
the six different training program suite combinations. The
results are shown in Table 2. In all cases, the relative av-
erage deviation of predicted running times from measured
running times are given in percent.

SA clearly outperforms LSQ in all examples. LSQ
performs poorly for the pure small/medium/big training
suites, but the results are significantly improved in all
cases if the simple training suite is added. Surprisingly,
rounding the LSQ solution to integers will not have an ad-
verse effect: rather, on the contrary. The consistently best
results are given by SA restricted to nonnegative values.
Restricting the search range from above did not have any
adverse effect at all, except for the small+ simple training
suite. The restriction resulted in faster convergence for SA
in all cases. In our experiments the time for performing a
full model identification never exceeded a couple of min-

7

Program Model Measured Diff Rel. diff
bs 274 317 -43 -13.6%
cover 3515 8388 -4873 -58.1%
edn 244189 232561 11628 5.0%
esab mod 698848 699934 -1086 -0.2%
fdct 9250 11294 -2044 -18.1%
fibcall 788 901 -113 -12.5%
fir 6973 8468 -1495 -17.7%
inssort10 3674 3529 145 4.1%
inssort15 549 579 -30 -5.2%
inssort20 729 759 -30 -4.0%
inssort30 1089 1119 -30 -2.7%
jcomplex 671 673 -2 -0.3%
loop3 11999 13371 -1372 -10.3%
ns 31897 33718 -1821 -5.4%
nsichneu 19744 18545 1199 6.5%

Table 3. Predicted vs. measured times for
single benchmark program runs

utes, for any combination of method and training suite, so
from that perspective faster convergence is not essential.
We do believe, however, that it can be a useful technique if
larger training suites are used since the solution space, and
thus the potential search time, grows quickly with each
new training case.

7.3. Results
Table 3 shows the deviations between measured and

predicted running time for the individual benchmark pro-
grams, for the best model obtained by SA≥ 0. All pro-
grams have deviations from close to zero up to about 20%
exceptcover, which is an extreme outlier with more than
50% underestimation. The reason for this underestima-
tion is that the virtual instruction set used in our experi-
ments has a single instruction forswitch, which there-
fore is assigned a constant cost. However, in reality the
cost also depends on the number of executedcase state-
ments. cover is an artificial program with very many
case statements, executing over 50case perswitch
on average. Since the execution times for thecase state-
ments are not accounted for in the model, the heavy un-
derestimation results. Clearly, a redesign of the virtual
instruction set to model thecase statements better would
allow for better timing models of this program.

The approximate source-level timing analysis was
evaluated using a subset of benchmark codes. These pro-
grams were selected since they are all multipath programs,
where the execution time varies with the inputs, and since
their worst- and best-case inputs are known. Thus, the
real BCET and WCET could be approximated by running
SimpleScalar with the proper inputs. (We do not know the
worst- and best case initial hardware states, so we cannot
guarantee that our values are the real BCET and WCET,
but we expect them to be close.)

The results of the analysis are shown in Table 5,
together with the corresponding measured BCET and
WCET recorded from SimpleScalar. The timing analy-
sis yields reasonable BCET and WCET estimates, with
precision comparable to the precision for predicting sin-
gle execution times. The estimates are not always safe,

Program Model Measured Diff Rel. diff
bs 130 184 -54 -29.3%
cover 1837 3605 -1768 -49.0%
edn 140136 119291 20845 17.5%
esab mod 368743 408076 -39333 -9.6%
fdct 4998 3940 1058 26.9%
fibcall 283 377 -94 -24.9%
fir 3923 4035 -112 -2.8%
inssort10 2094 1678 416 24.8%
inssort15 284 303 -19 -6.3%
inssort20 379 395 -16 -4.0%
inssort30 569 568 1 0.2%
jcomplex 282 307 -25 -8.1%
loop3 5017 6290 -1273 -20.2%
ns 18758 18725 33 0.2%
nsichneu 10969 10129 840 8.3%

Table 4. Predicted vs. measured times for
single benchmark program runs, advanced
architecture

due to the approximative nature of the timing model.
(In table 5, a positive Diff means that the corresponding
BCET/WCET estimation is safe, i.e.,BCETe ≤ BCETm

andWCETe ≥ WCETm .)

7.4. Advanced architecture
Our results were obtained for the default hardware con-

figuration ofsim-outorder, where it simulates a rela-
tively simple processor with only a small instruction cache
and no parallel integer functional units. To see whether
our method for model identification would yield reason-
able timing models also for a more advanced architecture,
we configuredsim-outorder to simulate a processor
with the following characteristics: out-of-order issues of
instructions, main memory latency 18 cycles for first ac-
cess and 2 cycles for next accesses, 8KB L1 data and in-
struction caches, respectively (1 cycle), 256KB L2 data
and instruction cache (6 cycles), all caches LRU, no TLB,
2 integer ALU’s, 2 floating-point ALU’s, fetch decode, is-
sue, and commit width all 4 instructions, perfect branch
prediction.

We then re-ran the model identification for this hard-
ware configuration. Again, the best models were obtained
by SA ≥ 0. We evaluated the precision of the timing
model using single benchmark program runs, correspond-
ing to Table 3. The deviations are in the range 0-30%,
rather than 0-20% for the simpler architecture, and the av-
erage deviation is 15% rather than 10%. The results per
benchmark run are shown in Table 4.

7.5. Discussion
The best combination of method and training suite is

medium/big+ simple and SA with nonnegative virtual in-
struction execution times. With this combination, we ob-
tained an average relative deviation of 10% for the single
runs of the selected benchmarks with results in the range
0-20%. For the BCET/WCET estimates, we obtained a
deviation from the real WCET in the range 0-25%. We
find these results surprisingly good, given the simplicity
of the model. For the advanced architecture the deviations

8

Program BCETm BCETe Diff Rel. Diff WCETm WCETe Diff Rel. Diff
jcomplex 78 65 13 16.7% 708 715 7 1.0%
inssort10 465 487 -22 -4.7% 3529 3682 153 4.3%
fibcall 79 71 8 10.1% 2861 2546 -315 -11.0%
edn 231825 243415 -11590 -5.0% 232561 244197 11636 5.0%
bs 154 117 37 24.0% 315 283 -32 -10.1%

BCETm/WCETm : measured BCET/WCET,BCETe/WCETe: estimated BCET/WCET
Table 5. BCET/WCET analysis results

are larger, but still the model makes reasonable predic-
tions.

Constraining instruction execution times to be nonneg-
ative is clearly beneficial for the precision of the models.
An advantage with search methods like SA is that they
allow a large freedom in choosing constraints and objec-
tive functions. In our experiments, the time to identify a
model by SA was not a big issue. Therefore, we believe
that search methods like SA is a good choice for source
level timing model identification.

Our training programs are small, with tight loops and
a high degree of data locality. This will of course yield a
high cache hit ratio. The models obtained can be expected
to give good predictions for code with similar cache hit ra-
tio. Indeed many of the benchmarks, although not all, are
small and have tight loops. It is, however, interesting to
note that we obtained models with better precision when
adding the “simple” training programs, which terminate
very quickly without looping and thus can be expected to
have a lower cache hit ratio. In general, the structure of
the training programs should match the structure of the ex-
pected mix of application programs – if the application do-
main programs contain, say, large loops with little cache
reuse, then the training programs should be designed in a
similar fashion. If they are synthetic, they can still be de-
signed to yield execution count matrices with good prop-
erties such as linearly independent column vectors having
a low degree of correlation.

We have obtained our results for unoptimized code. In
many safety-critical applications compiler optimizations
are disallowed: then, our method should work well. Op-
timizations can however be expected to lead to less accu-
rate source-level timing models, since the structure of the
binary will be less similar to the structure of the source.
We believe that the situation can be somewhat improved
by designing the training programs to allow “typical” op-
timization performed by compilers. This requires more
complex training programs than the ones described here.
Again, synthetic training programs can be designed to
yield execution count matrices with good properties.

Finally, it is worth noting that a static source-level tim-
ing analysis, using the timing models, usually can be done
with a high level of automation since source-level pro-
gram flow analysis typically is easier to do, with high pre-
cision, on source-level than for binary code. In our exper-
iments all the statically computed BCET and WCET esti-
mates in Table 5 were found by a fully automatic analysis,

without the need for any manual annotations constraining
the program flow.

8. Conclusions, and Further Research

We have shown that source-level timing analysis can
be done, with good accuracy, using an approach where
a source-level timing model is identified from executions
of training programs designed to allow fast identification
of accurate models. A static source-level timing analysis,
using the timing model, can compute approximate BCET
and WCET estimates with a high degree of automation.
These estimates can be used in early stage system devel-
opment for purposes like time budgeting, where they can
help making reasonable time budgets that likely can be
met. Using timing models for different combinations of
compilers and hardware, the method allows for rapid de-
sign space exploration to choose the best combination for
the application at hand.

We found that a general search method, like Simu-
lated Annealing, is suitable for the model identification
due to its robustness and the ability to impose different
constraints on the resulting model. It should be noted,
though, that algorithms for the Least-Squares method with
linear constraints exist [12] and could have been used to
impose the nonnegativity constraint in our experiments.
How to apply such methods to source-level timing analy-
sis remains a topic for further research.

Other topics for further research are how to build
source-level timing models that are more precise, as well
as how to find models that give reasonably good results in
situations with a more complex mix of programs, and opti-
mizing compilers. In [25], an approach to creating timing
models for optimized code using intermediate code was
developed, but this approach requires that the code com-
piles and is thus less applicable to early timing analysis.
A final issue for further investigation is whether our ap-
proach can be taken further to automatically identify tim-
ing models on model level, to be used in model-based de-
velopment.

9. Acknowledgments

This work was partially supported by VINNOVA
through the TIMMO-2-USE project, by VINNOVA and
Artemis through the CHESS project, and from the
European Commission through the Lifelong Learning

9

ERASMUS-Programme. This publication reflects the
views only of the author, and the Commission cannot be
held responsible for any use which may be made of the
information contained therein.

References

[1] M. Bartlett, I. Bate, and D. Kazakov. Guaranteed loop
bound identification from program traces for WCET. In
Proc. 15th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’09), pages 287–294,
San Francisco, CA, Apr. 2009. IEEE Computer Society.

[2] I. Bate, G. Bernat, G. Murphy, and P. Puschner. Low-
level Analysis of a Portable Java Byte Code WCET Anal-
ysis Framework. InProc. 7th International Confer-
ence on Real-Time Computing Systems and Applications
(RTCSA’00), pages 39–48, 2000.

[3] G. Bernat, A. Burns, and A. Wellings. Portable Worst-
Case Execution Time Analysis using Java Byte Code. In
Proc. 12th Euromicro Conference of Real-Time Systems,
(ECRTS’00), pages 81–88, Stockholm, 2000.

[4] D. Burger and T. M. Austin. The SimpleScalar tool set,
version 2.0.SIGARCH Comput. Archit. News, 25(3), 1997.

[5] A. Ermedahl.A Modular Tool Architecture for Worst-Case
Execution Time Analysis. PhD thesis, Uppsala Univer-
sity, Dept. of Information Technology, Uppsala University,
Sweden, June 2003.

[6] E. Erpenbach and P. Altenbernd. Worst-case execution
times and schedulability analysis of statecharts models. In
Proc. 11th Euromicro Conference of Real-Time Systems,
pages 70–77, 1999.

[7] C. Ferdinand and R. Heckmann. Worst-case execution
time – a tool provider’s perspective. InProc. 11th IEEE
Symposium on Object Oriented Real-Time Distributed
Computing (ISORC2008), pages 340–345, Orlando, Fl,
USA, May 2008.

[8] C. Ferdinand, R. Heckmann, and B. Franzen. Static mem-
ory and timing analysis of embedded systems code. In
3rd European Symposium on Verification and Validation
of Software Systems (VVSS’07), Eindhoven, The Nether-
lands, number 07-04 in TUE Computer Science Reports,
pages 153–163, Mar. 2007.

[9] B. Franke. Fast cycle-approximate instruction set simu-
lation. In H. Falk, editor,Proc. 11th International Work-
shop on Software and Compilers for Embedded Systems
(SCOPES’08), pages 69–78, Munich, Mar. 2008.

[10] C. F. Gauss.Theoria motus corporum coelestium: in sec-
tionibus conicis solem ambientium / auctore Carolo Frid-
erico Gauss. Sumtibus F. Perthes et I.H. Besser, Hamburg,
1809.

[11] P. Giusto, G. Martin, and E. Harcourt. Reliable estimation
of execution time of embedded software. InProc. Con-
ference on Design, Automation and Test in Europe (DAC
2001), Los Alamitos, CA, USA, 2001. IEEE Computer
Society.

[12] G. H. Golub and M. A. Sanders. Linear least squares and
quadratic programming. Technical Report CS 134, Com-
puter Science Department, Stanford University, May 1969.

[13] J. Gustafsson, P. Altenbernd, A. Ermedahl, and B. Lisper.
Approximate worst-case execution time analysis for early
stage embedded systems development. In S. Lee and
P. Narasimhan, editors,Proc. Seventh IFIP Workshop on

Software Technologies for Future Embedded and Ubiq-
uitous Systems (SEUS 2009), pages 308–319, Newport
Beach, CA, USA, Nov. 2009. Springer-Verlag.

[14] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The
Mälardalen WCET benchmarks – past, present and future.
In B. Lisper, editor,Proc. 10th International Workshop on
Worst-Case Execution Time Analysis (WCET’2010), pages
137–147, Brussels, Belgium, July 2010. OCG.

[15] J. Gustafsson, A. Ermedahl, B. Lisper, C. Sandberg, and
L. Källberg. ALF – a language for WCET flow analysis.
In N. Holsti, editor,Proc. 9th International Workshop on
Worst-Case Execution Time Analysis (WCET’2009), pages
1–11, Dublin, Ireland, June 2009. OCG.

[16] T. Harmon. Interactive Worst-case Execution Time Anal-
ysis of Hard Real-time Systems. PhD thesis, University of
California at Irvine, 2009.

[17] A. Holzer, V. Januzaj, S. Kugele, and M. Tautschnig.
Timely time estimates. In T. Margaria and B. Steffen, ed-
itors, Proc. 4th International Symposium on Leveraging
Applications of Formal Methods (ISOLA’10), Part I, vol-
ume 6415 ofLecture Notes in Comput. Sci., pages 33–46,
Heraclion, Crete, Oct. 2010. Springer-Verlag.

[18] S. Kirkpatrick. Optimization by simulated annealing:
Quantitative studies. Journal of Statistical Physics,
34:975–986, 1984. 10.1007/BF01009452.

[19] R. Kirner, R. Lang, G. Freiberger, and P. Puschner. Fully
automatic worst-case execution time analysis for Mat-
lab/Simulink models. InProc. 14th Euromicro Confer-
ence of Real-Time Systems, (ECRTS’02), Washington, DC,
USA, 2002.

[20] S. Lee, A. Ermedahl, S.-L. Min, and N. Chang. An Ac-
curate Instruction-Level Energy Consumption Model for
Embedded RISC Processor. InProc. ACM SIGPLAN
Workshop on Languages, Compilers and Tools for Embed-
ded Systems (LCTES’01), pages 1–10, 2001.

[21] B. Lisper and M. Santos. Model identification for WCET
analysis. InProc. 15th IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS’09),
pages 55–64, San Francisco, CA, Apr. 2009. IEEE Com-
puter Society.

[22] S. Nenova and D. Kästner. Source level worst case tim-
ing estimation and architecture exploration in early de-
sign phases. In N. Holsti, editor,Proc. 9th Interna-
tional Workshop on Worst-Case Execution Time Analysis
(WCET’2009), pages 12–22, Dublin, Ireland, June 2009.
OCG.

[23] P. Persson and G. Hedin. Interactive execution time pre-
dictions using reference attributed grammars. InProc. of
the 2:nd Workshop on Attribute Grammars and their Ap-
plications (WAGA’99), Netherlands, pages 173–184, Aug
1998.

[24] F. Stappert. From Low-Level to Model-Based and Con-
structive Worst-Case Execution Time Analysis. PhD the-
sis, Faculty of Computer Science, Electrical Engineering,
and Mathematics, University of Paderborn, 2004. C-LAB
Publication, Vol. 17, Shaker Verlag, ISBN 3-8322-2637-0.

[25] Z. Wang and A. Herkersdorf. An efficient approach for
system-level timing simulation of compiler-optimized em-
bedded software. InProc. 46th Design Automation Con-
ference (DAC 09), San Francisco, USA, July 2009.

10

