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Abstract

In this paper, we propose the use of product line architectures in order to shorten time to market,
cut cost, and to reduce maintenance when developing embedded real-time systems. A
development process that supports such an approach, taking the temporal domain into account is
also outlined. Moreover, a case study was performed in cooperation with the automotive industry
where the product-line architecture approach has been successfully applied. Although the
architectural language used was sufficient for their specific product-line, considerations about
future development indicate that the description language must support more flexible
constructions. We suggest several mechanisms for modeling functional, as well as temporal
flexibility in the architectural description.

1 Introduction

Today the trend in computer-based products, such as cars and mobile phones, is shorter and shorter
lifecycles. As a consequence, time spent on development of new products or new versions of a
product must be reduced. One solution to this emerging problem is to reuse code and architectural
solutions within a product family. Besides shortening development time, properly handled reuse will
also improve the reliability since code is executed for longer time and in different contexts [15].
However, reuse is not trivial when applying it to real-time systems since both functional behavior as
well as the temporal behavior must be considered.

In this paper we describe how to employ the concept of product line architectures in order to
shorten the development time, cut cost, and reduce maintenance for a specific class of systems,
embedded real-time systems [1][2][3]. The use of the product line concept in the context of control
systems for construction equipment vehicles has been studied. Since several different models of each
family of construction equipment vehicles exist, architectural solutions and components may
potentially be reused among different models

We define a product line as a set of software products that share a common technology platform as
well as having common functionality. A software architecture that constitutes the base on which all
products in the line are built, is called a product line architecture (PLA). For each product a product
architecture (PA) is derived from the PLA upon product instantiation. When instantiating a product,
the PLA is tailored via different techniques such as parameterization, and by populating the
architecture with components. The PLA approach has been used for soft real-time systems [4], where
the timeliness is of less, or no, importance compared to real-time systems in general. However, in
systems where the temporal correctness is of vital importance for the reliability of the product, the
temporal requirements and the temporal behavior must be included in the PLA. These temporal
requirements must not be violated when instances of products are created.

We propose a design process suitable for developing product lines for real-time systems. The
process starts in a requirement-capturing phase where the requirements from all products in the line
are collected. Communalities in functional- and temporal requirements among the products will be
considered when the actual PLA is designed. The PLA is then analyzed. The objective of analyzing
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the PLA is to gain confidence in that the PLA is flexible enough to be a base on which all products
can be realized without violating any temporal constraints.

To enable the use of a PLA and derivation of product architectures from the PLA we need a design
language. Such a language is often called architecture description language (ADL) [3][5]. The ADL
should have a precise syntax and semantics to enable architectural analysis, including analysis of, for
instance, performance, maintainability, flexibility, and temporal properties. Moreover, the ADL must
facilitate constructions for modeling of flexible components. The flexibility mechanisms specified on
components constitutes the variation points that are used when product architectures are derived from
the PLA, i.e. when the PLA is tailored for a particular product

David Stewart et al has addressed the area of reusable components for embedded systems and how
to create a framework for building systems based on components [13][14]. They have introduced a
component model that provides flexibility in component behavior, hence reusability, through
parameterization. In this paper, component reuse is accomplished by using additional techniques, not
only through parameterization.

The contributions of this paper with respect to embedded real-time systems are:

• An outline of a development process, focusing on the special considerations that must be taken
into account when designing a PLA for embedded real-time systems

• An industrial case study of the use of a PLA for construction equipment.

• Constructions that must be supported by an ADL in order to be suitable for describing product
line architectures for embedded real-time systems.

The rest the paper is organized as follows. Section 2 discusses the development of a PLA for
embedded systems. In Section 3 we present a case study from the automotive industry where the PLA
approach has been used. Furthermore, in Section 4 we discuss mechanisms providing specification of
flexible architectures. Finally we conclude the paper in Section 5.

2 Product line based development

In this section we discuss the development process in which a PLA for embedded real-time products
is constructed. The process is iterative and includes architectural analysis of properties that are of
vital importance for a PLA, e.g. flexibility. Moreover, the derivation of products from a PLA is dealt
with. The design process proposed in this paper is shown in Figure 1 where the process is divided
into requirements capturing, PLA development, and product development. The proposed design
process will be further described in this section.
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Figure 1 The process of developing a product line based on a PLA.

2.1 Developing a product line architecture

Developing a PLA is done either in an evolutionary or revolutionary way [2]. The evolutionary
approach to PLA design is conducted by a generalization of existing products, whereas in the
revolutionary approach, the common architecture is developed, rather than extracted from existing
implementations. Independent of whether the evolutionary or the revolutionary approach is taken, the
first step when developing a PLA is to capture the requirements for every product in the product line.
One way to do this is to organize and group required functionality into features. We consider features
to be functional entities seen from a stakeholder’s perspective. For instance, the function for adding
items to an address book in an ordinary cellular phone can be a feature. A feature typically groups a
set of requirements and therefore it also simplifies the requirements handling. At this point, we must
consider all features in the product line. The products and their features make up a matrix, the feature
matrix for the product line. The feature matrix shown in Table 1 has m features distributed over n
products. A position in the matrix marked with X indicates that the feature in that column is present
in the product of that line.
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Feature 1 Feature 2 Feature 3 Feature m

Product 1 X X X

Product 2 X X X

Product 3 X

Product n X X

Table 1 A feature matrix

Features are rarely independent from each other. A feature can for instance depend on other
features in order to deliver the desired functionality. Another example of a relation between features
is the mutually exclusive relation, implying that only one of the related features can appear in the
final product. If mutually exclusive features must co-exist in the product, effort has to be made to
resolve the conflict. Features in real-time systems will also exhibit dependencies related to the
temporal domain. For instance, consider the lock-free break feature and the anti-slid feature in
automotive vehicles. Both features need information about the wheels’ velocity, thereby having a
shared temporal dependency related to the freshness of the sensor data. Such relations on features are
specified in a feature graph. In Figure 2, a feature graph with three features and two relations is
depicted.
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Figure 2 A feature graph

The feature matrix and the feature graph constitute the basis for deciding what features to include
in the PLA. Typically, features that are common among a majority of the products in the product line
are included. Consequently, the PLA may provide features that are superfluous for a specific product.
Identifying the commonality among the features for real-time systems is more complicated since we
also have to take the temporal domain into consideration.

The features that are not part of the PLA are considered product specific. However, the PLA must
be flexible enough to incorporate product specific features upon product instantiation. Note that a
PLA for real-time systems must provide sufficient flexibility in the temporal domain as well. The
features that have been chosen to be part of the PLA are documented in a PLA feature graph. The
PLA feature graph is an aid for the product instantiation process, discussed in Section 2.3, as well as
in evolutionary design of the products and for maintenance of the PLA itself.

When the scope for the PLA has been decided, the features should be mapped to components that,
together with their interrelations, constitute the actual architecture. This part of the development
process is referred to as functional design.

When performing functional design of a PLA, the designer must take into consideration that
features may have different implementations for different products. Depending on how
implementations differ, the correct mechanisms for obtaining the desired flexibility must be selected.
In Section 4, some mechanisms for flexible architectures are discussed. For real-time systems we also
have to consider temporal behavior. A typical example of how the temporal requirements influence
the functional design is the following. Consider features that are functionally equivalent between a set
of products. If these products will run on different infrastructures, i.e. operating system and hardware
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platform, the functionality may be partitioned among components in different ways to fulfill the
timing requirements. In the high-end product we can partition a feature in such a way that it will be
easy to maintain while in a low-end product we have to make an architecture that is focused on
performance to be able to fulfill the timing requirements.

After the functional design the PLA must be analyzed in order to secure that the architecture is
flexible enough to facilitate all products in the product line. If not sufficiently flexible the architecture
must be transformed. Thus, iterations between analysis and functional design are required. Since our
focus is on real-time systems we would like to gain confidence in that the architecture is sufficiently
flexible to be used in all products in the product line without violating the temporal constraints.

2.2 Product line architecture analysis

Architectural properties that typically can be analyzed are performance, reliability, temporal,
maintainability, reusability, and testability [6]. In this section we will focus on early analysis of
temporal properties of an architecture. Discovering that the real-time requirements cannot be fulfilled
in a late stage of a product development often implies a delay in the release of the product on the
market. Furthermore, such problems are often handled by ad-hoc optimizations, which in turn
decreases maintainability and reusability. Positive experiences from making early analysis of
temporal behavior using architectural descriptions and estimates of temporal properties have been
reported in [7].

By making early analysis of the temporal behavior, for each product, based on the PLA and the
product specific features, we can extract the following information.

• Traditional real-time measurements such as system utilization, response time for each feature,
distribution of response times for a specific feature, and jitter information for features. However,
this information is not only used for schedulability analysis, it is also used for analyzing the
flexibility of the PLA with respect to implementation constraints. For example what will happen
if a non-implemented component will use more resources than estimated in the architectural
design.

• Robustness with respect to internal errors and erroneous assumptions about the environment.
Typical analysis is based on “what if”-questions, examples include:

- What will happen if a specific component slightly overruns its time budget?

- What will happen if events from the environment are generated in a higher frequency
than assumed?

To facilitate temporal analysis on the level of abstraction provided by the PLA, we must have
information about the temporal behavior of the components that define the PLA. Information about
the temporal behavior can in principle be attained in two different ways, namely by earlier
implementations of the same or similar functions or by intelligent guesses of the temporal attributes
for completely new components. Examples of temporal attributes are execution times of components
and period times. The execution time for a component is normally measured on the implemented
component while the period time for a component is derived from the requirements. However, if we
do not know the execution time for a component an estimate has to be made. This estimate is later
used as an additional implementation requirement for the component.

The closer we get to the architecture for the specific products, the more confidence we get in the
predictions. Depending on the confidence in the temporal information, different types of analysis can
be performed, such as:

• Simulation, which can be used for exploring the system behavior when the confidence for the
different parameters are low or when the system will operate in dynamic environment where the
load is hard to estimate [8].
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• Mathematical analysis which can be used when the product line architecture or parts of it has
estimates of execution times, temporal properties such as period time, and the synchronization
between the components specified. Mathematical analysis that can be used includes fixed
priority scheduling [9][10] and pre-run-time scheduling [11] theory. Especially different kinds of
sensitivity analysis are of interest to predict the remaining capacity for product specific features
[12].

Based on the result of the temporal analysis of the system different actions may be taken. If the
analysis indicates that the requirements are fulfilled then the PLA is accepted. On the other hand, if
the analysis indicates that the requirements cannot be fulfilled we have several options. The options
are listed in the order of increasing cost, i.e., the required effort for applying them:

• Modify the derived temporal attributes, e.g., deadline and period time. There are many ways to
derive the temporal attributes of the PLA from the requirements, which may give different
analysis results.

• Transform the architecture. For example, an architecture that is designed for portability could
experience a trade-off situation, where we have to decrease the portability to gain real-time
performance.

• Renegotiate the requirements. If none of the options above are possible we have to renegotiate
the requirements with the stakeholders.

   So far the analysis provides a rough foundation for deciding whether the PLA can be used or not.
The next step is to derive product architectures from the PLA and analyze each product architecture,
in order to assure that all products fulfill their temporal requirements.

2.3 Product design based on a Product Line Architecture

Requirements for the PA have already been addressed during the construction of the PLA.
However, at that point the focus was on the commonality between several products belonging to the
product family. The process of developing a product focuses on product specific requirements and
functionality not covered in the PLA, i.e., the PLA must be tailored to cover the requirements of the
product at hand.

The first step is to merge the product specific features with the features provided by the PLA
consistently, i.e. merging the product and the PLA feature graphs. In this process conflicts can occur,
e.g. overlapping features, superfluous features, temporal discrepancies [2].

When the feature conflicts have been resolved, the concrete product architecture can be derived
from the PLA.  The derivation involves architecture pruning, i.e. removing superfluous parts of the
architecture and extending the architecture with product specific components. Although architectural
analysis has been performed at the PLA level, the resulting product architecture provides more
details. Thus we can make a more detailed analysis of the architecture with respect to, for instance,
the temporal correctness.

The remaining step until we can release the product is to implement the components that make up
the architecture in such a way that the temporal requirements are fulfilled. This step also includes
component testing, integration, and verification of the integration, which have been covered
elsewhere when considering temporal estimates [7].

3 Case study: Volvo Construction Equipment

Volvo CE has built a distributed real-time system to control mainly the automatic gearbox, the brakes
and the hydraulic systems in a product line of construction equipment. This section describes this
existing product line architecture, together with some reflections.
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3.1 Method and system description

There are five products in the product line and each product has five computer nodes. All the five
products are different sized construction equipment vehicles.

The requirements for a new generation product line were brought to the development department.
These requirements were evaluated to derive the wanted features and the temporal requirements. The
construction of the PLA was in this case done strictly in an evolutionary way. There was products
and application knowledge already at the scene. Because of this, the process of extracting the features
was quite painless. The feature matrix did to some extent exist already in the minds of some of the
experienced developers. Examples of features in this product line are the control of brake fluid
pressure and automatic shifting of gears. The development process was essentially equivalent to the
process proposed in Figure 1.

The mapping of features onto components, and the temporal attributes, is specified in
configuration files.  A configuration tool uses the configuration files in order to schedule the system
and produce configuration data for the operating system. Moreover, the synchronization and
communication between components are specified in these files. Thus, the configuration files
constitutes the architectural description.

In order to implement components with a correct temporal behavior, time budgets were estimated.
A time budget is a specified maximum time that a component can execute to perform its function.
The fact that this was done before the actual code implementation could have been a problem, but
based on experiences from earlier products the estimates turned out to be quite good.

Each node has separate configuration files and source code files. These files, however, are
common between products in the product line. All products have identical hardware and software
architecture and accordingly the configuration and source code files are identical for the products.
Hence, the executable for each product is identical to its product sisters. This can be done since the
nodes have identical computer hardware.

The unique behavior of each product is instead defined by datasets. A dataset is simply a set of
parameters that control the program flow. The program then checks the parameter values and
calculates output accordingly. There could, for instance, be a conditional invocation of a function
depending on a parameter value.

The temporal properties of this PLA would require great effort to test if we had to test each
product/node independent of the next. We would then have to test all the nodes in all the products and
see that all temporal constraints are intact. By designing the system in a certain way, the tests could
be simplified. The system was constructed by starting with the most advanced model. The most
advanced model is assumed to conform a superset of the functions of all systems, i.e. its tasks should
be the hardest to schedule. Successful testing of the most “advanced” model indicates that the simpler
models also will perform correctly time wise. Note that this does not cover the testing of the systems
functionality. Functionality was tested separately.

3.2 Turn out

One benefit from designing the system to run the same executable for different products is that the
whole product line needs to be scheduled only once. This could, however, also be a drawback, if we
have a wider span of functionality between low- and high-end products. The low-end product would
have to include hardware capable of executing the high-end program, even if most of the
functionality is disabled. Given enough separation between low- and high-end products, this could
prove costly in terms of memory, I/O and CPU. This could also be too expensive in product lines
where large amounts of units will be produced or even in small series products where system
resources are scarce. For instance, mobile phones are large series products where it would prove to



8

expensive to include even the least unnecessary hardware. For a PLA of quite similar products, these
extra resources would probably be acceptable.

The PLA in this case is the set of five different construction equipment products. Ideally, one
would want to include other products or product lines to be able to reuse components that have
already been developed.

In this respect, the mentioned method might not be perfect. The method is inflexible when we
want to add products that include more functionality than the most advanced product in the product
line.
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Figure 3 The relation between the functional sets of PLA and PA respectively

Our PLA of construction equipment can be illustrated by the leftmost figure in Figure 3. All
product architectures are derived within the boundaries that the PLA define. That gives the
advantages, discussed above, when testing the temporal behavior of the products. On the other hand
we are somewhat limited to in developing new products. The PLA must be changed altogether if a
product with more features is to be developed.

The ADL used in this project only allows parameter-based derivation of PA’s. This requires a very
homogenous product line. Instead, a design language with support for greater flexibility in expressing
differences in different products is desirable.

4 Mechanisms providing Flexible Architectures

As discussed in Section 3.2, we need mechanisms, apart from parameterization, to obtain flexible
architectures. Consequently, we need a design language that supports flexibility in component
behavior, as well as flexibility in the systems architecture. We will refer to flexibility as optionability
and variability. Optionability is the absence or presence of functionality, whereas variability is the
possible variation in functionality. In real-time systems, there is also a need for variation of the
temporal behavior, e.g. the period time of a control-loop might vary between products in the same
line.

An architectural description language (ADL), for product line architectures should not only have
language primitives necessary for describing the structure of a software system. Such a language
must also restrict, and guide the process in which an actual product is instantiated, to make sure that
the PLA is not corrupted during implementation. Consequently, the primitives that describe the
functional- and temporal variations must have a well-defined semantics. In Section 4.1 we propose
language primitives needed for an architectural description language in order to describe variability
and optionability in architectures for real-time systems.

4.1 Language primitives for variability and optionability

In this section, language primitives supporting the specification of variability and optionability for
product lines architectures for real-time system is discussed. The primitives that will be discussed are
components, interfaces, and tasks.



9

A component  is a computational unit having a data interface and a control interface. Moreover,
several components can be composed to a composite component. The interface of a component
should be a separate language primitive so a specific interface can be used for different components
as long as each component implementing the interface conforms to it.

The data interface of a component represents the data-flow to- and from the component and the
control interface represents the control-flow. The control flow is defined by associating one or more
tasks to a component. A task provides the thread of execution of a component. Further, one task can
control several components, which is beneficial when for example two components should be
executed serially, and several tasks can control one composite component which includes several
parallel sub-components. A task also defines the temporal behavior of a component and can be either
periodic or aperiodic.

The temporal parameters in the control interface are of two kinds; the ones derived from the
requirements such as deadline and release time of the task controlling the component, and the
execution time of the components controlled by the task. However, the execution time of a
component has to be specified for the component implementing the functionality and for a specific
hardware platform. Such specification can either be based on real assessments or by intelligent
guesses, as discussed earlier. In the latter case an intelligent guess becomes an implementation
requirement of the component.

Furthermore, specification of synchronization can be achieved by using semaphores for mutual
exclusion relationship between different components and signals can be used to trigger the execution
of another component.

In the control interface of a composite component the temporal parameters that can be altered. As
an example consider an interface for a multirate feedback controller component, composed by a
sampler component, a controller component, and an actuator component. Such an interface can
specify period times for each of the different sub-components as well as control jitter constraints.

When defining an interface for a component that is not yet implemented, and for which we suspect
that the implementation can include several sub-components, we can specify a utilization bound for
each platform it shall run on.

In Figure 4, χA and χB are components and ι is an interface for a component that, at least, must
produce the output that χB requires. Two tasks, τA and τB, control the execution of the components.
Task τA is periodic and executes χA and χB in a predefined order whereas τB is aperiodic and controls
the execution of the component that implement the interface ι.
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Figure 4 An example of our architecture description

4.2 Variability

Product-line architectures for real-time systems can be varied functionally and temporally.
Variations in component behavior and the systems architecture itself constitute the functional
variation, whereas the point of variation in the temporal behavior is tasks and their temporal
attributes.

We have identified three possible techniques for obtaining variability on components. Basically,
the techniques describe how interfaces and implementations alters a components behavior between
products:

• The same interface, but different implementation

• Different interface and implementation

• The same interface and the implementation is varied by parameterization

In order to describe the techniques listed above, we use the language primitives discussed in
Section 4.1, i.e. components and interfaces. To model a construction having the same interface but
different implementations, we use the interface language primitive. Thus, in the architectural
description only the interfaces are present. Each product instance of the architecture then has to
implement the behavior by providing one or more components that comply with the given interface
description.

If parts of the interface, as well as the implementation of the interface are different between
products in the product line, we cannot describe this with the interface language primitive.  For this
purpose, we introduce a language primitive called abstract component . An abstract component
indicates that the implementation of the component is tailored for each product. Note that, although
the component is abstract, several products, but not all, can share the same implementation of it.

The last identified technique for obtaining variation in components is parameterization. Here the
same implementation is used throughout the complete product line, but the components’ behavior is
controlled by parameters. Consequently, the implementation must take all possible behaviors into
account when the component is designed. Different behaviors are not necessarily equivalent with
different control-flow in the implementation; it can also be related to constants used in the
calculations. For instance, a PID controller component could be provided with the proportional gain,
the integration time, and the derivative time constants upon instantiation.
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When the systems architecture is varied between product instances, the product-line architecture
describes how the system is to be organized. As an example, consider a fire-alarm system where the
number of smoke detectors varies depending on the size of the building in which the system resides.
The smoke detectors in a product-line architecture for the fire-alarm system are described as a
multiple component, i.e. the exact number of smoke detectors is decided upon instantiation of the
product. In Figure 5, the sensor is a multiple component that represents one, up to n instances
connected to the control component.
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Figure 5 A Multiple component

As discussed in the ingress of this section, real-time systems can also be varied through their
temporal behavior. The control interface of components provides this variability. By changing the
tasks that control a component through the control interface, the temporal behavior of that component
is varied. For instance, the execution strategy and temporal attributes such as the period time can be
altered. If such changes are made to a task, the temporal correctness of the system must be re-
verified.

4.3 Optionability

Optionability is concerned with the absence or the presence of functionality in a system. We define
components to be the smallest software entity subject to optionability, i.e. we can only add or remove
complete components. Components in our description language that, for some products in the line,
can be removed have a property called optional. The removal of a component could result in partial
use of an interface in the product-line architecture. As a consequence of adding or removing
components, the temporal domain is affected. For instance, tasks are removed, added, etc.

5 Conclusion

In this paper, we propose the use of product line architectures in order to shorten time to market,
cut cost, and to reduce maintenance when developing embedded real-time systems. A development
process that supports such an approach, taking the temporal domain into account is also outlined.
Moreover, a case study was done in the automotive industry where the product-line architecture
approach has been successfully applied. Although the architectural language used was sufficient for
their specific product-line, considerations about future development indicate that the description
language must support more flexible constructions. We suggest several mechanisms for modeling
functional, as well as temporal variability in the architectural description. Thus the architectural
description language must define language primitives that model the mechanisms.

As future work we will formally define a component model that complies with the product-line
architecture concept. Such a component model is a necessary prerequisite in order to construct a
complete description language for product-lines. Moreover, the description language must facilitate
the specification of architectural flexibility, temporal requirements, communication and
synchronization with well-defined semantics. If such a language exists, we can develop automatic
and semi-automatic methods for architectural analyses. Besides analyzing the temporal properties we
are also interested in other quality attributes and especially how they relate to the temporal domain.
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