
Accelerating exact schedulability analysis for
fixed-priority pre-emptive scheduling

Yin Hang, Zhou Jiale
Dep. Intelligent embedded systems

Mälardalen University (MDH)
P.O. Box 883, SE-721 23 Västerås, Sweden

hyn08001@student.mdh.se, zje08001@student.mdh.se

Uğur Keskin, Reinder J. Bril
Dep. Mathematics and Computer Science
Technische Universiteit Eindhoven (TU/e)

Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
U.Keskin@TUe.NL, R.J.Bril@TUe.NL

Abstract—The schedulability analysis for fixed-priority pre-
emptive scheduling (FPPS) plays a significant role in the real-time
systems domain. The so-called Hyperplanes Exact Test (HET) [1]
is an example of an exact schedulability test for FPPS. In this
paper, we aim at improving the efficiency of HET by combining
it with initial values for exact response time analysis (RTA). We
call the resulting improved test HETI and show by means of
simulations that HETI is more efficient than HET.

Index Terms—real-time, schedulability, workload, HET, HETI.

I. INTRODUCTION

Fixed-priority preemptive scheduling (FPPS) [2], [3] is
one of the main scheduling approaches in modern real-time
computing systems. To determine whether or not all tasks of
a task set are guaranteed to meet their deadlines, schedulability
analysis is used. Despite the fact that exact schedulability
tests for FPPS exist for over 25 years [4], there is still a
steady flow of new research results reporting improvements
in the efficiency of these tests. Today, the most common exact
schedulability test is based on Response Time Analysis (RTA),
and improvements of RTA mainly focus on new initial values
for worst-case response time (WCRT) calculations of tasks
[5]–[7], which can drastically accelerate these calculations.

Enrico Bini et al. [1] developed a so-called Hyperplanes
Exact Test (HET), which is also an exact schedulability test.
Unlike RTA, HET only provides boolean results, e.g. whether
a task is schedulable or not, and does not determine WCRTs.
Based on simulations, it is concluded in [1] that HET is
typically (considerably) more efficient than RTA. Conversely,
Davis et al. [7] infer from the data of execution time measure-
ments that, in practice, RTA generally outperforms HET and
by some significant margin in case of task sets with a broad
spread of task periods.

In this paper, we aim at improving the efficiency of HET by
combining it with initial values for RTA. We call the resulting
improved test HETI, and compare the efficiency of HETI and
HET by means of simulations.

The remainder of this paper is organized as follows. In
Section 2, we introduce our scheduling model for FPPS and
the notation used throughout the paper. We recapitulate HET
and RTA in Section 3. Section 4 explains how HET can be
improved by means of the initial values of RTA and presents

the resulting HETI. In Section 5, HETI is compared with HET
by means of simulations. In Section 6, we draw our conclusion.

II. SCHEDULING MODEL AND NOTATION

In this section, we introduce our scheduling model for FPPS
and the notation used throughout the paper. We consider a task
set Γn = {τ1, ..., τn}, where all tasks are (strictly) periodic
and independent, have unique priorities, and do not suspend
themselves. Tasks of Γn are indexed based on decreasing
priority, i.e. τ1 has highest and τn has lowest priority. A task
τi consists of a sequence of instances (or jobs), where instance
k is denoted as τik. A task instance has its own release time
rik and finalization time fik. Task τi of Γn is characterized
by an initial activation time Φi (or phasing), a worst-case
computation time Ci, a period Ti and a relative deadline Di no
greater than Ti. We assume arbitrary phasing for tasks. For a
task τi, the initial value for calculating its worst-case response
time Ri is denoted as ιi. The utilization of τi is represented by
Uτi = Ci/Ti, and the utilization of the first i tasks is presented

by Ui =
i∑

j=1

Uτj . Theoretically speaking, it is safe to say that

all the parameters are positive rational numbers, because the
rational numbers provide a dense time domain. For the sake
of simplicity, we use positive integers.

III. RECAPITULATION OF HET AND RTA

In this section, we briefly recapitulate HET and RTA. For
HET, we first present the underlying notions of C-space and
P set.

A. The P set in C-space

The essence of HET originates from the so-called C-space.
For a given task set Γn with periods from T1 to Tn, deadlines
from D1 to Dn and computation times from C1 to Cn, the
C-space Mn can be defined as:

Mn(T1, ..., Tn, D1, ..., Dn) = {(C1, ..., Cn) ∈ Rn+ :
Γn is schedulable by FP}.

(1)

Every coordinate of Mn is represented by the computation
time Ci of a task τi, hence C-space. Based on C-space, the
following theorem is presented in [1].



Theorem 1: The region of the schedulable task sets Mn,
as defined by (1), is given by

Mn(T1, ..., Tn, D1, ..., Dn) = {(C1, ..., Cn) ∈ Rn+ :∧
i=1...n

∨
t∈Pi−1(Di)

Ci +
i−1∑
j=1

⌈
t

Tj

⌉
Cj ≤ t},

(2)

where Pi(t) is defined by the following recurrent expression: P0(t) = {t}

Pi(t) = Pi−1

(⌊
t

Ti

⌋
Ti

)⋃
Pi−1(t) (3)

It is not hard to notice that the P set has a tree structure, where
each node has two children nodes and these two branches
could overlap. Apparently, each task is related to its own P
set values. In this paper, the P set of τi will be expressed as
Pi. P will be the set consisting of P set values of all the tasks
(from high priority to low priority) in a given task set. The
cardinality of (i.e. number of elements in the set) Pi and P
is denoted by NPi

and NP , respectively. The theorem above
together with the concept of P set represents the main thought
of HET.

B. HET based on P set

HET is tightly related to P . However, before we discuss
HET, it is necessary to know the concept of workload and ψ.
A job τik is said to be active at time t if rik < t < fik. The
processor is i-busy at time t if there exists a job of a task τi
in Γn active at t. The workload and ψ are defined as:

Definition 1: The worst-case workload Wi(b) of the i high-
est priority tasks in [0, b] is the total time the processor is
i-busy in [0, b]. By extension, W0(b) = 0 for all b.

Definition 2: Given the subset Γi of the i highest priority
tasks, ψi(b) is the last instant in [0, b] in which the processor
is not i-busy,that is:

ψi(b) = max{t ∈ [0, b] ∧ t /∈ Busy(Γi, b)}.

Theorem 1 can be directly applied to a schedulability
analysis, yet it is more efficient to convert it into the workload
form, even though they are essentially equivalent. In the
workload form, the schedulability condition in Theorem 1 can
be expressed as

∀i = 1...n Ci +Wi−1(Di) ≤ Di. (4)

As a result, the P set calculation is transformed into work-
load calculation. [1] has deduced the final form of workload
computation in a recurrent style:

Wi(b) = min{b− f(Ti −Ci) +Wi−1(fTi), cCi +Wi−1(b)}
(5)

where f =
⌊
b
Ti

⌋
and c =

⌈
b
Ti

⌉
.

Besides, the relationship between workload and ψ is also
deduced in [1]:

Wi(b) = min
t∈[0,b]

i∑
j=1

⌈
t

Tj

⌉
Cj + (b− t)

=
i∑

j=1

⌈
ψi(b)
Tj

⌉
Cj + (b− ψi(b)).

(6)

The schedulability test based on the recurrent form of (5) is
called Hyperplanes Exact Test (HET). Even though (5) seems
to be independent of P , yet P is implicitly generated during
the workload calculation (please note that fTi and b belong
to P ). The two branches of the workload are directly related
with the two branches of P . Since P can recursively produce
identical values from the two branches, the same is true of
workload. This can often reduce complexity and speed up
schedulability determination.

C. Initial values for RTA

The worst-case response time Ri of a task τi is determined
by means of an iterative procedure starting with a lower bound
as initial value, i.e.

R
(0)
i = ιi

R
(k)
i = Ci +

∑
j<i

⌈
R

(k−1)
i

Tj

⌉
Cj ,

(7)

where Ci is an appropriate value for ιi. The procedure
terminates when either R(k)

i = R
(k−1)
i or R(k)

i > Di. In the
former case, R(k)

i will be the WCRT and in the latter case
task τi is not schedulable. To reduce the number of required
iterations, the most straightforward way is to start with a higher
lower bound as initial value. An alternative initial value based
on [5] for parameters from the positive integers is given by

ιi =
⌈

Ci
1− Ui−1

⌉
. (8)

When response times are determined in priority order and
because ιi−1 +Ci is also an appropriate lower bound for Ri,
it is also possible to use

ιi = max
{⌈

Ci
1− Ui−1

⌉
, ιi−1 + Ci

}
(i > 1). (9)

Because we aim at improving HET by using ιi, values for ιi
that are based on Ri−1 fall outside the scope of this paper.

In the following sections, ιi will be derived using (9) and ι
will be the set of ιi for all tasks in Γn.

IV. P SET REDUCTION AND HETI
Let’s go back to Theorem 1 and see how P works in the

schedulability analysis. It is self-evident that the left part of
(2) looks similar to the right part of (7). In fact, Theorem 1
can even be translated into the schedulability analysis based
on both P and (7). For a task τi with corresponding Pi, what
we need to test is to put all the elements in Pi into (7) as
R

(k−1)
i . τi is schedulable if at least one element in Pi can

yield a R(k)
i that is no larger than itself through (7).



The highly correlated nature between Theorem 1 and (7)
enables ι to play a key role in pruning P , contributing faster
schedulability determination. In WCRT calculation, ιi draws a
lower bound of Ri, and any R(k−1)

i smaller than ιi will surely
yield a larger R(k)

i through (7). Likewise, for τi, elements in
Pi smaller than ιi can be pruned because we are sure that
they will not satisfy the condition in (2). Once Pi is pruned,
it will have fewer elements. According to Theorem 1, fewer
elements in Pi indicates that schedulability can be determined
faster. Through the rest of this paper, we define P ′i as the
pruned Pi and P ′ as the pruned P . Besides, NP ′

i
and NP ′

will be the cardinality of Pi and P ′ respectively.
Now let’s see how P set reduction can positively influence

HET. On the one hand, we already know that both the two
workload branches in (5) contain P set elements. On the other
hand, (6) implies ψi(b) in the interval [0, b] contributes to the
minimum Wi(b), which corresponds to the minimal branch
in (5) as the real workload. Furthermore, it has been proven
in [1] that for interval [0, b], ψi(b) ∈ Pi(b). Consequently, P
set reduction restricts the candidates of ψi(b) further to P ′i (b).
In other words, ψi(b) cannot be one of those P set elements
whose values are smaller than ιi. Thus we are sure that the
workload branches in (5) that contain P set values smaller than
ιi will never produce a workload value smaller than the other
workload branch and they should be pruned (Please note that
only the smaller workload branch is preserved in (5)). Once
those workload branches are pruned, schedulability will be
determined even faster. We call this resulting improved test
HETI.

V. SIMULATION

In this section, we will show how much P and Pi can be
pruned by ιi, and more importantly, how much HET can be
improved by HETI. To this end, we consider the number of

tasks, utility (
n∑
i=1

Ci
Ti

) and spread (lg(
Tn
T1

)). As we shall explain

in separate subsections, the performance is evaluated by P set
reduction ratio (RPn

and RP ) and workload reduction ratio
(RW ). In both cases, tasks to be tested are generated according
to the specified task number with uniform distribution of
utility and spread [6]. To guarantee accuracy, we repeat our
computation of RPn

, RP and RW 10000 times for each
combination of specified task number, utility and spread and
then calculate their average, i.e. Rave

Pn
, Rave

P and Rave
W . This

combination in our simulation is constrained to 3 and 10 tasks,
with utility ranging from 60% to 100% and spread ranging
from 0 to 4.

A. P set reduction ratio

We use P set reduction ratio, which consists of Pn reduction
ratio (RPn ) and P reduction ratio (RP ), to evaluate how much
the P set can be pruned by the initial value. For a task τi,
we define the Pi reduction ratio (RPi

) as (NPi
−NP ′

i
)/NPi

.
Higher RPi

for τi means that more Pi values can be pruned
by ιi. Due to the fact that τn (the task with the lowest
priority) is most likely to present high RPi , only RPn is tested.

(a) Rave
Pn

for 3 tasks (b) Rave
Pn

for 10 tasks

(c) Rave
P for 3 tasks (d) Rmax

P for 3 tasks

Fig. 1. RPn and RP test

Furthermore, to evaluate the overall performance, we define
the RP of an entire task set as (NP −NP ′)/NP . Apparently,
RP is influenced by the RPi

of all tasks.
The simulation results of Rave

Pn
for 3 tasks and 10 tasks

are displayed in Figure 1(a) and 1(b), indicating that Rave
Pn

increases for increasing task number and utility. For task sets
with a spread lower than 1, the increase of spread will also
lead to the increase of Rave

Pn
, which, however, will increase

fairly slowly when the spread is higher than 1.
We also tested the RP for all tasks in the same way. Figure

1(c) shows Rave
P for 3 tasks, from which we can conclude

that for a specified task set, compared with Rave
Pn

, Rave
P is

relatively lower. Moreover, it is also interesting to know the
maximal case. Figure 1(d) shows the maximal RP , i.e. Rmax

P ,
for 3 tasks, which does not change so radically with varying
utilization.

B. Workload reduction ratio

HETI has its advantage in fewer iterations by pruning
workload branches containing a Pi value that is smaller than
ιi. Its simulation is conducted in the same way as the P set
reduction ratio test. Let NHET and NHETI denote the number
of steps to calculate Wi−1(Ti) for τi for all tasks in the original
HET and HETI, respectively. The workload reduction ratio
RW is now defined as

RW = (NHET −NHETI)/NHET .

After defining RW , we try to find its relationship with number
of tasks, utility and spread. As is illustrated in Figure 2(a) and
2(b) for 3 and 10 tasks, the simulation result indicates that the



(a) Rave
W for 3 tasks (b) Rave

W for 10 tasks

(c) Rmax
W for 3 tasks (d) Rmax

W for 10 tasks

Fig. 2. RW test

average Rave
W increases for increasing utility, but decreases for

an increasing number of tasks. Moreover, the improvements
are not as remarkable as for Rave

P . The reason is that the
original HET keeps updating ψi(b), which is non-decreasing,
as the workload is calculated from the first task to the last task.
For instance, if we have got W1(T2) after testing τ2 with the
original HET, we will prune any workload branch with Wi(b)
where b ≤ T2. That is to say, ψi(b) must be non-decreasing
as its value is updated by HET of lower priority tasks. This
accumulative effect of updated ψi(b) has already been quite
effective to prune redundant workload branches, in the same
way as ιi does. HETI based on ιi is indeed better than the
original HET, yet apparently any substantial enhancement will
be rather challenging.

The maximal values for RW for 3 and 10 tasks are
illustrated in Figure 2(c) and 2(d). It is quite evident that
the maximal value is much higher than the average value,
almost 30% and 70% higher for 3 and 10 tasks respectively.
Different from the average case, the maximum value Rmax

W of
RW has an increasing trend as the number of tasks increases.
By observing Figure 2, we can also conclude that RW is fairly
independent of the spread of a task set, while task utility plays
a dominating role. The simulation result in maximal cases
suggests that it is certainly worthwhile to implement HETI
for schedulability analysis based on FPPS, even though the
enhancement on average is not so conspicuous.

VI. CONCLUSION

We have proposed HETI as an improvement of HET by
combining HET with initial values for exact response time

analysis. Using the initial value to determine the WCRT of
a task, we first studied the impact of pruning the P set for
that task by removing all values from P smaller than the
initial value. Based on our simulations, we conclude that
the P set can be reduced by pruning, and that the reduction
becomes more and more remarkable for increasing task set
utilizations. Next, we studied pruning workload branches for
values smaller than the corresponding initial value, being our
proposed improvement of HET. Although on average HETI
cannot speed up HET as much as the P set reduction, its
advantage is not negligible in best cases, especially for a large
number of tasks and high task set utilizations.

Because HETI does not significantly improve HET on
average, we expect that the conclusions for HET drawn in
[1], [7] will hardly change for HETI.

REFERENCES

[1] E. Bini and G. C. Buttazzo, “Schedulability analysis of periodic fixed
priority systems,” IEEE Transactions on Computers, vol. 53, no. 11, pp.
1462–1473, November 2004.

[2] M. Klein, T. Ralya, B. Polak, R. Obenza, and M. G. Harbour, A
practitioner’s Handbook for Real-Time Analysis-Guide to Rate Monotonic
Analysis for Real-Time Systems. Kluwer Academic Publishers, Boston,
1993.

[3] J. Liu, Real-Time Systems. Prentice Hall, 2000.
[4] P. Harter, “Response times in level-structured sys-

tems,” Department of Computer Science, University
of Colorado, USA, Tech. Rep. CU-CS-269-84, 1984,
http://www.cs.colorado.edu/department/publications/reports/docs/CU-
CS-269-84.pdf.

[5] M. Sjödin and H. Hansson, “Improved response-time analysis calcula-
tions,” Proc. 19th IEEE Real-Time Systems Symposium, pp. 399–409,
December 1998.

[6] R. J. Bril, W. F. Verhaegh, and E.-J. D. Pol, “Initial values for on-line
response time calculations,” Proc. 15th Euromicro Conference on Real-
Time Systems, pp. 13–22, July 2003.

[7] R. Davis, A. Zabos, and A. Burns, “Efficient exact schedulability tests
for fixed priority real-time systems,” IEEE Transactions on Computers,
vol. 57, no. 9, pp. 1261 –1276, September 2008.


