
Mälardalen University Licentiate Thesis
No.132

Design and Analysis Support
for Abstract Models of

Component-based Embedded
Systems

Jagadish Suryadevara

2011

School of Innovation, Design and Engineering

Copyright c© Jagadish Suryadevara, 2011
ISSN 978-91-7485-016-1
ISBN 1651-9256
Printed by Mälardalen University, Västerås, Sweden

Abstract

Developing industrial real-time software systems is challenging due to de-
mands on system safety and reliability, through stringent system requirements
in terms of functionality, timing, resource consumption etc. Due to this, the
system development needs to ensure predictabilitybefore the actual imple-
mentation, through reliable engineering methods. To address these challenges,
model-based engineering (MBE) combined with Component-based develop-
ment (CBD) has emerged as a feasible solution. MBE supports system model-
ing and formal analysis through the development phases suchas requirements,
specification, and design. CBD supports reusability of software parts leading to
faster development time, and reduced costs. However, an integrated approach
needs to deal with various abstractions of the system duringdifferent phases of
the development.

In this thesis, we present model-based techniques, for the development of
predictable, component-based designs of embedded systems. We consider Pro-
Com as the underlying component model and, as a first step, we define a for-
mal semantics for its architectural elements. The given semantics provides a
basis for developing analyzable embedded systems designs,associated analy-
sis techniques, model transformations etc. Next, we describe some commonly-
found behavioral patterns, in component-based designs. These patterns provide
an abstract, and reusable specification of a real-time components functional-
ity. Also, we define component-based design templates, intended to support
the systematic development of component-based designs from abstract system
models. Finally, we propose a formal framework to correlatestatemachine-
based system behavior with corresponding ProCom-based system designs. We
validate our research contributions using case-studies and examples, and also
by applying verification techniques, such as, model-checking.

i

Acknowledgements

I wish to thank my research advisors Paul Pettersson, and Cristina Seceleanu
for the continuous support and valuable suggestions throughout this research
work. It has been a great time of learning, and also fun working with you; and
also many moments to cherish for times to come.

I thank co-phd students of my research group; Stefan Björnander, Aida
Causevic, Leo Hatvani, and Aneta Vulgarakis for being helpful teammates and
also for stimulating research presentations and discussions. I would like to
thank Shuhao Li, for sharing interesting research thoughtsduring his work as
visiting phd student.

I thank Jan Carlson, and Eun-Young Kang for valuable contributions as
co-authors. I thank Thomas Nolte, Bernhard Schätz, and other anonymous
reviewers for providing valuable insights of this researchwork.

I would like to thank the professors in PROGRESS research project, Ivica
Crnkovic, Hans A. Hansson, Björn Lisper, Kristina Lundqvist, Sasikumar Pun-
nekkat, and Mikael Sjödin for the critical observations and valuable discussions
during project meetings and also at other occasions. Interacting with them has
always been a great experience.

I thank PROGRESS researchers, Radu Dobrin, Andreas Ermedahl, Rikard
Land, Frank Lüders, Dag Nyström, Daniel Sundmark, Jukka Mäki-Turja for
making the research progress, through inspiring work and helpfulness.

I thank IDT staff; Susanne Fronnå,Åsa Lundkvist, Malin Rosqvist, Carola
Ryttersson, and Gunnar Widforss, for making many things easier through their
support and lots of patience.

I thank Abhilash, Adnan, Ana, Andreas G., Andreas H., Andreas J., Anto-
nio, Barbara, Batu, Damir, Etienne, Farhang, Federico, Fredrik, Hang, Hongyu,
Hüseyin, Håkan, Juraj, Josip, Johan L., Johan K., Karin, Kathrin, Rafia, Rikard
Li., Saad, Shahina, Lars, Lilia, Luka, Mats, Mehrdad, Mikael, Mobyen, Moris,
Nikola, Nima, Peter, Sara, Séverine, Stefan (Bob), StefanC., Svetlana, Thomas

iii

iv

Le., Tiberiu (Tibi), Veronica, and Yue for all the fun and thegreat time together.
I am grateful to the Swedish Research Council (VR), and the Swedish

Foundation for Strategic Research (SSF) for funding this research work.
Last but not least, I would like to acknowledge the love and warmth of my

family for the success of all my efforts; my daughters Nandana, and Mahima
for all the fun; my wife Anuradha for being a wonderful companion.

Jagadish Suryadevara
Västerås, June 2011.

Publications

Included in the thesis

Paper A. “Analyzing a Pattern-Based Model of a Real-Time Turntable Sys-
tem”. Davor Slutej, John Håkansson, Jagadish Suryadevara, Cristina Sece-
leanu, and Paul Pettersson. In proceedings of the 6th International Workshop
on Formal Engineering approaches to Software Components and Architectures
(FESCA), pages 161-178, UK, March 2009.

Paper B. “Formal Semantics of the ProCom Real-Time Component Model”.
Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlson, Cristina Seceleanu, and
Paul Pettersson. In proceedings of the 35th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 478-485, Greece, Au-
gust, 2009.

Paper C. “Bridging the Semantic Gap between Abstract Models of Embed-
ded Systems”, Jagadish Suryadevara, Eun-Young Kang, Cristina Seceleanu,
Paul Pettersson, In proceedings of the 13th International Symposium on Com-
ponent Based Software Engineering (CBSE), Springer LNCS, vol 6092, pages
55 - 73, Czech, June, 2010.

Paper D. “Pattern-driven Support for Designing Component-based Archi-
tectural Models”, Jagadish Suryadevara, Cristina Seceleanu, Paul Pettersson,
In proceedings of the 18th IEEE International Conference on Engineering of
Computer-Based Systems (ECBS), USA, April, 2011.

v

vi

Other Publications
Not included in the thesis

A) Journal

• Jagadish Suryadevara, Lawrence Chung, Shyamasundar R.K,cmUML -
A UML based Framework for Formal Specification of Concurrent, Re-
active Systems, Journal of Object Technology (JOT), vol 7, nr 4, ETH,
Swiss Federal Institute of Technology, May, 2008.

• Jagadish Suryadevara, Shyamasundar RK,UML based Approach for Se-
cured, Fine-grained, Concurrent Access to Shared Variables, Journal of
Object Technology (JOT), vol 6, nr 1, p107-119, ETH, Swiss Federal
Institute of Technology, Zurich, January, 2007.

B) Conference/ Workshop

• Jagadish Suryadevaracm, Shyamasundar R.K.,UML - A Precise UML
for Abstract Specification of Concurrent Components, Parallel and Dis-
tributed Computing and Systems, p 141-146, ACTA Press, USA,Dallas,
Texas, USA, Editor(s): S. Q. Zheng, November, 2006.

• Jagadish Suryadevara, Paul Pettersson, Cristina Seceleanu, Validating
the Design Model of an Autonomous Truck System, Mälardalen Univer-
sity Software Enginnering Workshop (MUSE’09), Mälardalen Univer-
sity, Västerås, Sweden, November, 2009.

C) Technical Reports

• Jagadish Suryadevaracm, Aneta Vulgarakis, Jan Carlson, Cristina Sece-
leanu, Paul Pettersson,ProCom: Formal Semantics, MRTC report ISSN
1404-3041 ISRN MDH-MRTC-234/2009-1-SE, Mälardalen Real-Time
Research Centre, Mälardalen University, March, 2009.

Contents

I Thesis 1

1 Introduction 3
1.1 Thesis Contributions: Overview 5
1.2 Thesis Outline . 5

2 Background 7
2.1 Model-based Engineering . 7
2.2 Component-based Development 9
2.3 Formal Analysis . 11

3 Research Goals 15
3.1 Problem Description . 15
3.2 Research Questions . 16

4 Research Contributions 19
4.1 Formal Semantics of a Real-Time Component Model 19
4.2 Design Support for Component-based Development21
4.3 Relating Abstract Models of Embedded Systems 22
4.4 Research Questions - Revisited 24

5 Related Work 27
5.1 Formalizations of Real-time Component Models27
5.2 Design Support for Component-based Development29
5.3 Relating Abstract Models of Embedded Systems 31

6 Conclusions and Future Work 33
6.1 Summary and Discussion . 33
6.2 Future Work . 34

vii

viii Contents

7 Overview of Papers 37

Bibliography 41

II Included Papers 49

8 Paper A:
Analyzing a Pattern-Based Model of a Real-Time Turntable Sys-
tem 51
8.1 Introduction . 53
8.2 SaveCCM . 54
8.3 Component Modeling Patterns 56

8.3.1 Run-to-Completion Pattern 56
8.3.2 History Pattern . 58
8.3.3 Execution-Time Pattern 59

8.4 Turntable Production Cell . 60
8.4.1 System Design . 62
8.4.2 Modeling a Closed System 66
8.4.3 Requirements and Verification 69

8.5 Related Work . 71
8.6 Conclusion . 72
Bibliography . 75

9 Paper B:
Formal Semantics of the ProCom Real-Time Component Model 79
9.1 Introduction . 81
9.2 The Component Model . 82

9.2.1 ProCom . 82
9.2.2 Particularities of ProCom 84

9.3 Formal Semantics of Selected ProCom Architectural Elements 87
9.3.1 Formalism and Graphical Notation 87
9.3.2 Formal Semantics of the FSM Language 88
9.3.3 Overview of ProCom Formalization 89
9.3.4 Services . 90
9.3.5 Data and Trigger Connections 91
9.3.6 Component Hierarchy 92
9.3.7 Linking Passive and Active Components 93

9.4 Discussion and Related Work 95

Contents ix

9.5 Conclusions . 97
Bibliography . 98

10 Paper C:
Bridging the Semantic Gap between Abstract Models of Embedded
Systems 103
10.1 Introduction . 105
10.2 Abstract Models of Embedded Systems 106

10.2.1 Specification model of embedded systems 107
10.2.2 Design model of embedded systems 109

10.3 Case Study: Autonomous Truck 112
10.4 Methodology Description . 114

10.4.1 Specification simplification inference rules115
10.4.2 Design simplification inference rules 116
10.4.3 Rules for transforming the design model trajectories . 119
10.4.4 Applying the methodology 121

10.5 Related Work . 122
10.6 Conclusions and Future work 123
Bibliography . 127

11 Paper D:
Pattern-driven Support for Designing Component-based Architec-
tural Models 129
11.1 Introduction . 131
11.2 ProCom Component Model: An overview 132
11.3 Example: Temperature Control System (TCS) 134
11.4 Our Specification Language: Modemachine + Marte CCSL . .135

11.4.1 Modemachine Definition and Graphical Notation . . . 135
11.4.2 Modes, and Behaviors 135
11.4.3 Events, Triggers, and Timeouts 136
11.4.4 Mode constraints using UML/Marte CCSL 136
11.4.5 Example Specification: TCS Modemachine 138

11.5 Component Patterns . 139
11.5.1 Timer Pattern . 139
11.5.2 Discrete Clock Pattern 141
11.5.3 Periodic Behavior Pattern 142
11.5.4 Controller Pattern . 143

11.6 Pattern Verification . 145
11.6.1 Verification of periodic behavior pattern 145

x Contents

11.6.2 Verification of other Patterns 147
11.7 Temperature Control System: A Complete ProCom Design .. 147
11.8 Related work . 148
11.9 Conclusions . 150
Bibliography . 153

I

Thesis

1

Chapter 1

Introduction

In modern days, embedded systems have become an intrinsic part of human
life. These include highly critical systems in domains, such as, automotive,
avionics, and industrial automation. Embedded systems, inaddition to being
control-intensive and time critical, are increasingly becoming larger in size,
and complex in functionality. Most often, different aspects of embedded sys-
tem functionality are associated with hard real-time constraints, that is, the
respective functions should be completed by certain deadlines, or respect spe-
cific orders of execution, specified delays etc. Since real-time systems faults
may have serious consequences, possibly including loss of human life, their
predictability should be guaranteed at design time.

1: Follow

2: Turn 3: Find

Direction

Figure 1.1: An autonomous truck control system application.

Figure 1.1 presents an example embedded system, an autonomous truck
control system. It is part of a demonstrator project conducted at the PROGRESS

3

4 Chapter 1. Introduction

research centre1. The truck moves along a specified path, as illustrated in the
figure, according to the specified behavior in terms of the three operational
models, as described below.

• Follow: in which the truck follows the line (the thick line in Fig. 1.1)
using light sensors. When the end of the line is detected, it changes to
Turn mode.

• Turn: the truck turns right for a specified time duration, and thenchanges
to Find mode.

• Find: the truck searches for the line. When it is found, the truck returns
to Follow mode.

An embedded system interacts with its environment through sensors and
actuators. For the truck application described above, the path, as well as the
end of the path, are detected with the help of light sensors. The development of
an embedded system needs to establish the system predictability by ensuring
the system design and implementation follows the specified behavior.

Component- and model-based approaches are emerging as promising so-
lutions to cost-effective development of predictable embedded systems [1, 2].
Component-based approaches aim at increasing reusabilityof software “parts”
i.e.,components, andsub-systems, which is expected to lead to faster develop-
ment time, and reduced costs. Several component-based methodologies (see
Chapter 5) have been developed, for the design and analysis of embedded sys-
tems. On the other hand, the model-based approaches e.g., Unified Modeling
Language (UML) [3], support modeling and analysis of systems throughout the
development phases, such as, requirements, specification,and design. UML
contains several modeling views captured by composite diagrams, statema-
chines, sequence diagrams etc, for structural, and behavioral modeling of com-
plex systems. Such models facilitate both qualitative and quantitative analy-
sis during system development, by describing functional and possibly extra-
functional behavior, while omitting the implementation details. Hence, an in-
tegrated component- and model-based approach has become increasingly pop-
ular, as a high-level design solution for achieving predictability. In this thesis,
we adopt this combined approach, and contribute to it, as described in Chapter
3.

1For more information about PROGRESS, see http://www.mrtc.mdh.se/progress/

1.1 Thesis Contributions: Overview 5

1.1 Thesis Contributions: Overview

We present below an overview of the thesis contributions. Further details are
presented in following chapters. In this thesis, we have aimed at meeting the
following objectives:

• Analyzable component-based designs. We have defined a formal se-
mantics for the ProCom component model, facilitating the design of un-
ambiguous architectural models. Also, the semantics is described in an
intuitive formalism, by design, without restricting the capabilities for
formal analysis.

• Behavior modeling of components. We have proposed behavior pat-
terns to support component modeling. The patterns are basedon recur-
ring behavior of real-time components, and provide abstraction mecha-
nisms for increased reusability, and analyzability.

• Design support for Component-based development. We have pro-
posed a design methodology to transform abstract system models into
ProCom-based component designs. This is done by introducing component-
based design templates for transforming abstract features, such as, events,
triggers, timeouts, causality etc., into corresponding design elements.

• Formal correlation between models, and designs. We have developed
a formal framework to correlate ProCom-based designs, and statemachine-
based abstract specification models. This provides an important step in
bridging the semantic gap between the underlying formalisms of the cor-
responding models.

1.2 Thesis Outline

This thesis is divided into two parts. The first part is an overview of the re-
search work. In Chapter 1, we describe the background and motivation of the
research work underlying the thesis. In Chapter 3, we present the main research
goal, and related research questions. In Chapter 4, we discuss the thesis con-
tributions in terms of stated research questions. The related work is described
in Chapter 5. In Chapter 6, we summarize the thesis work, overa discussion
of the future work . Finally, in Chapter 7, we give an overviewof the included
papers in the second part of the thesis.

6 Chapter 1. Introduction

The second part of the thesis contains a collection of four peer-reviewed
conference and workshop papers that contain details of the underlying research
work of the thesis.

Chapter 2

Background

In this chapter, we overview notions of model-based, and component-based
development that are used in this thesis. Also, we briefly present the main
ideas and techniques of formal analysis of systems.

2.1 Model-based Engineering

Model-based (sometimes used as model-driven)engineering(MBE), has proven
to be an effective paradigm for developing complex systems.It facilitates sys-
tem modeling through multiple abstractions orviews, corresponding to its de-
velopment phases. This enables the seamless integration ofdesign and analysis
techniques and tools, otherwise pertaining to specific system features / behav-
iors, throughout the system development.

In a model-based engineering approach, the main development phases are
requirements, specification, and design. During the requirements phase, vari-
ous system properties, attributes, constraints etc are identified. These are also
categorized as functional, and extra-functional (timing,resource-efficient, per-
formance, reliability etc.). In the specification phase, abstract models of sys-
tem structure and behavior are developed. The structural models include high-
level system architecture diagrams or component-based designs. The behavior
models, if used at this phase, for e.g., statemachines or sequence diagrams,
are generally abstract, and describe the system-level behavior. For example,
Figure 2.1(b) presents a statemachine view of the application behavior of the
autonomous truck system (Figure 2.1(a)) as described in Chapter 1. These

7

8 Chapter 2. Background

1: Follow

2: Turn 3: Find

Direction

(a)

Follow

Turn

Find

e_o_l()

after(4 s)

line_found()

(b)

Figure 2.1: (a) Autonomous truck control system, and (b) an abstract specifi-
cation model of the system.

models are useful for the formal analysis or validation during early phases of
development with respect to the intended system properties, identified during
the requirements phase.

During system design, the specification models, such as, architectural and
behavioral descriptions are refined into detailed models, often hierarchical in
nature. Differentpartsof the system, that is, both large-grained (e.g., subsys-
tems), as well as small-grained (e.g., components), are integrated into precise
design models, by specifying detailed mechanisms for communication, syn-
chronization etc. Additionally, these models may be associated with deploy-
ment models, which specify the actual physical configuration of a system. The
detailed design, and deployment models provide the valuable opportunity to
verify critical timing properties, such as,end-to-endresponse time, or analyze
for the best and the worst-case resource usage etc.

One of the strong points of MBE is the possibility of carryingout model-
to-model transformations. This proves to be a powerful technique that enables
both qualitative and quantitative analysis of system properties, by integrating
existing methods, and tools. As a result, integrated development environments
(IDE) have become the development norm for all kinds of complex systems,
including real-time systems.

In support of MBE, the Unified Modeling Language (UML) [3, 4] has be-
come ade factoindustry standard modeling language for complex systems.
UML consists of many formalisms, successfully used in industry and academia.
Although UML lacks a unique precise semantics (as defined by OMG), several
researchers have proposed various semantics to UML constructs, which enable
rigorous reasoning [5, 6]. UML provides extension mechanisms to facilitate
its application in different domains, including real-timesystems, through cus-
tomized sub-languages called UMLprofiles. For instance, MARTE (Modeling

2.2 Component-based Development 9

and Analysis of Real-Time Systems) [7] UML profile is intended for modeling
and analysis of real-time systems. We have considered a subset of UML and
MARTE in the model-based techniques presented in this thesis.

2.2 Component-based Development

The most important goal of component-based development (CBD) [1] is to
tame the development of complex systems, by supporting reusability as a prin-
ciple, aiming at improving cost-effectiveness of development. This is achieved
through reuse of various system parts, such as,subsystems, andcomponents.
This may also include existing system models e.g., behaviormodels, when the
development is combined with model-based engineering, as described previ-
ously.

Figure 2.2 presents design layers or phases in a component-based devel-
opment. From a set of system requirements, higher-level system models, such
as, behavior specification can be derived. Also, an initial hardware architec-
ture may be obtained. These models are often input or provideguidance to
more detailed models, such as, analysis, design, deployment etc before the fi-
nal implementation phase. As shown in the figure, component-based software
designs, such as, high-levelSystem Software Design, Subsystem Design, and
Architectural Designcan be directly influenced or guided by a specification
model e.g., statemachine view of the system behavior.

In CBD approach, the central element is thecomponent model, for exam-
ple ProCom component model [8]. A component model describesthe syntax
and semantics of a component-based design. Acomponentencapsulates func-
tionality, paving the way for its reuse. A component can be hierarchical (made
of connected sub-components), or atomic / primitive (not containing any other
components). Further, a component may be large-grained andsystem level
e.g.,subsystemcomponents or small-grained components containing executa-
bles i.e., actualcode. This diversity of component characteristics serves the
purpose of reuse at different levels of granularity during design, but also the
need for addressing different issues during different phases of system develop-
ment. For example, ProCom consists of two sub-languages; ProSys for mod-
eling a system as a collection of communicatingsubsystemcomponents, while
ProSave is based onpipes-and-filtersarchitectural style.

Components communicate through ports. Ports are of different kinds e.g.,
message ports, data ports, control ports etc. Communication between compo-
nents can be synchronous or asynchronous. The detailed semantics of com-

10 Chapter 2. Background

Deployment Model

System Software
Design

Sub1

Sub2

Sub3

Subsystem Design

Component B Component A

Component C

Architectural Design

SW

OS/MW

SW SW SW

OS/MW

SW SW

SW

OS/MW

SW SW

HW
Architecture

Specification

S1

S2

S3

e1
e2

e3

System
Requirements

Figure 2.2: Design layers in component-based development.

ponent execution, communication etc, is given by the underlying component
model. For ProCom, the sub-languages are based on different communication
paradigms; while ProSys components are based on message passing, ProSave
components are based on explicit separation between data and control flow. A
component model defines the rules of execution behavior at the architectural
level, and it is therefore most important for carrying out formal verification of
components and global system properties.

CBD assumes the interleaving of system design with component devel-
opment, with one influencing the other. An initial configuration of a system
may be rapidly designed from existing fully-developed components, as well
as partially-developed components. In component development, components
may be created anew, or modified from those currently existing in the com-

2.3 Formal Analysis 11

C1
C2

Clock
10 Hz

Clock
50 Hz

Figure 2.3: A composite subsystem component with detailed functional com-
ponents (C1, C2).

ponentrepository. While components may be developed in parallel, a partial
system configuration provides a very useful context to conduct early analysis
and system validation. The early system analysis guides thecomponent selec-
tion during system development, might narrow the design space by ruling out
infeasible choices, and provides rough estimations of the system’s predictabil-
ity.

Component-based development is generally supported by a componentframe-
work consisting of a specific component model, corresponding component
technology, and a component repository. The framework may also include an
integrated development environment (IDE) for both system and component de-
velopment. Also, IDEs facilitate integration of other tools for system design,
analysis, as well as synthesis. The ProCom language and the corresponding
modeling framework constitutes the underlying context of this thesis work.
Specifically, as shown in Figure 2.2, we focus on linking behavior specifica-
tion models to architectural design in ProCom. However, thelater phases i.e.,
deployment or hardware architecture design are outside thescope of this thesis.

2.3 Formal Analysis

Analytic methods for real-time systems, e.g., schedulability analysis, perfor-
mance analysis are empirical methods based on various system parameters. On
the other hand, computational methods, commonly known as “formal meth-
ods” [9], such asmodel-checking, andtheorem proving, are based on exhaus-
tive analysis of system behavior, by computing all possibleexecution states
of a system representation. In this thesis, we focus on verification techniques
based on formal methods.

Applying formal methods requires that both the specification and the sys-

12 Chapter 2. Background

U

����� ��

�����	��

��

�����	�� �
�

����� � � ��� 	����

�����	�� �����

�����	�� �	�
��

������ ��	� 	���

�������� 	��

� �

� !

� "! #

� � $

% �&'(

%)&*+

'"! ,-'

l0

l1

l2

l0

l1

l0

l1

l2 l3

./ 0/

1.2 102 132

Figure 2.4: Examples of timed automata (TA) modeling; (a) A clock with pe-
riod T, and jitter J, (b) A computation occurring between Minand Max time
units, (c) Modeling urgent locations and priority-based synchronizations.

tem model are given in some precise mathematical notation.

• System model: a formal representation of system model in terms of
structure, and behavior. The example system models are statecharts,
timed automata etc.

• Specification: a formal description of the intended system behavior, or
system properties. Example specification formalisms are temporal log-
ics, statemachine, automata, etc. The important kinds of system proper-
ties that can be specified are functional, safety, liveness,timing etc.

Formal methods are applied to verify if the intended behavior or properties
of a specification hold on the corresponding design or implementation. The
specific formal technique that is applied, in general, is oneof following two
kinds: model-checking and theorem proving that we will briefly recall later in
this section.

Timed automata formalism: Formal methods based on timed automata [10]
are extensively used for modeling and analysis of real-timesystems [11, 12].
Timed automata supports modeling of real-time concepts, such as, periodicity,
jitter, timing, priority, urgency etc based on clock variables, and synchroniza-
tion channels, as shown in Figure 2.4. A timed automata consists of locations

2.3 Formal Analysis 13

Model-

checker

System

Specification

System Model Result

YES, if the model satisfies

the specification

Counter example, if not

Figure 2.5: A schematic view of model-checking based verification

and edges. An edge is taken from the current location if its associated guard
expression (e.g., ’y=T’ in Figure 2.4.(a)), if any, consisting of integer and data
variables becomes true. Further, edges are associated withupdate actions, and
clock resets (see Figure 2.4.(a)). Locations can beurgent (e.g., l0 in Figure
2.4.(c)) to disallow passing of time, or associated with invariant expression
(e.g.,l0 in Figure 2.4.(a)) to allow only the maximum delay of the specified
time units. Timed automata also supports priority-based channels for synchro-
nization. An urgent location e.g., at locationl1 in Figure 2.4.(c)) must be exited
with no time delay.

Model-checking: It is a formal technique for automatically, i.e., algorithmi-
cally, verifying correctness properties of a finite-state system. Given a model
of a system e.g., a finite state machine, sayM , model-checking verifies (see
figure 2.5) whether the model satisfies a given specification e.g. a temporal
logic formula, sayρ. This can be formally expressed as below.

M, s |= ρ that is, given model M, and initial state s,ρ holds.

In model-checking, the above problem reduces to a reachability problem or to
temporal logic verification i.e., of verifying if the expressionρ is satisfied by a
state inM , by algorithmically traversing the state transition graphof M . Fur-
ther, model-checking can produce a counter-example i.e., apartial execution
trace leading to a system state where the property is not satisfied by the model.
Example model-checking tools areSMV [13], SPIN [14], UPPAAL [15], TIMES
[16], and many others.

Thorem proving: It is an interactive formal technique, compared to model-
checking. In this approach, both a specification, and corresponding implemen-
tation are represented as logic descriptions e.g., using first- or higher-order
predicate logics. Then, a designer employs a theorem-proving tool through
partially guided, rigorous proof steps, to show that the implementationimplies

14 Chapter 2. Background

the logical specification. Example theorem proving or automated reasoning
tools arePVS [17], HOL [18], and many others.

Model-checking tools such asUPPAAL, andTIMES are based on extended
forms of timed automata, and enable verification of safety (e.g, something bad
never happens), liveness (e.g, something good eventually happens), and timing
properties of system models as well as schedulability analysis using precise
task models.

Application of formal methods, in general, require expertise in constructing
mathematical models, applying the corresponding analysistechniques, analyz-
ing the results, and improving the system design or implementation. However,
these tasks can be simplified by choosing suitable abstractions for both spec-
ification and system models, and corresponding tool supportthat hide the in-
tricacies of the underlying formalisms. Further, the higher level abstractions
facilitate increased understandability, reusability of system features.

While formal methods have been successfully applied in hardware design,
their application in system design, including software, has been only recently
increasing. This is mainly due to the reason that the applicability of formal
methods is constrained by the size, and complexity of the systems that can
be verified. However, the increasing demands for system predictability imply
the stronger need of applying formal, and systematic verification techniques.
This can be done through suitable abstraction techniques, compositional design
methodologies, and tailored verification techniques.

Chapter 3

Research Goals

In this chapter, we outline the scope of the research presented in this thesis. We
begin with the description of the overall research goal, within the context of
model- and component-based development of embedded systems. In relation
to this, we also present some specific research questions that are addressed in
the research work and are intended to serve the overall goal.

3.1 Problem Description

The combined component- and model-based approach is deemedfeasible for
ensuring reusability, maintainability and analyzabilityof predictable embedded
software designs. However, for most of integrated methodologies, it involves
different formalisms, languages, tools for system modeling across different
development phases, such as, requirements, specification,and design. These
paradigms address different concerns of a system behavior in terms of struc-
ture, functionality, timing etc, at various phases of development. The variety
of paradigms and views give rise to many challenges that needto be addressed,
with respect to the abstract system models, and the underlying formalisms with
varying semantics.

The overall objective of the research behind this thesis work is to develop
suitable methods for the design and analysis of component-based embedded
systems, based on abstract models for both system, and its components. Our
main research goal is to:

Develop suitable methods for designing and analyzing abstract

15

16 Chapter 3. Research Goals

models of embedded systems.

With respect to the above research goal, we present the following specific re-
search questions.

3.2 Research Questions

Research question 1 In a component-based development style, an embed-
ded software system is represented bycomponentsinter-connected using archi-
tectural elements, such as,ports, connections, andconnectors. A component
model for real-time systems, for example ProCom [8], contains many elements
with critical real-time features such as period, urgency, priority etc. To develop
unambiguous designs of a system, it is essential to associate the underlying
component model and its constructs with a formal semantics to which any de-
sign should conform. Also, to support rigorous analysis, the design elements
together with the underlying semantics should be easily transformed into es-
tablished verification frameworks, such as, UPPAAL-based model-checking.
Moreover, we would obtain an even higher gain if the formalization were in-
tuitive and easy-to-use. Such features would be beneficial to engineers using
the component model, as well as researchers developing analysis techniques,
model-transformation tools etc. Based on these arguments,we state our first
research question below.

How to formally describe the behavior of architectural elements
of a real-time component model such that we provide a basis for
rigorous analysis?

(Q1)

Research question 2 Abstract models, for example, statemachine-based be-
havior models are commonly used to represent system behavior during early
phases of the development. For embedded systems, such models are based on
features, such as, events, control states, timeouts, etc.,and also associated with
timing constraints, such as,end-to-endresponse time. However, these aspects
are often considered in a rather ad hoc way, while developinga component-
based system design. Applying a systematic approach in translating the above
system features to component-based designs is desirable, to preserve the be-
havioral properties when generating component-based designs from abstract
models of embedded systems. Also, in a related design aspect, that is, com-
ponent development, the functionality of components is often represented only

3.2 Research Questions 17

by code. This makes components difficult to understand and reuse.From this,
we state the next research question as below.

How to develop component-based designs from abstract system
models and component behaviors?

(Q2)

Research question 3 When embedded systems are designed using an MBE
approach, it is quite often the case that different formalisms are used for sys-
tem modeling during different phases of its development. These formalisms
are normally based on events, or time triggering, or dataflow, or even a com-
bination of these. These abstractions may be used within thesame, or across
different phases of system development, such as, requirements, specification,
and design. In order to ensure predictable behavior of the system, the different
abstractions used in development should be verified for behavior consistency.
Specifically, in a component-based development, the behavior of a component-
based design must be consistent with the system behavior specified using other
abstractions. From this, we state the next research question as below.

How to relate component-based system designs with the abstract
models of system behavior?

(Q3)

Chapter 4

Research Contributions

In this chapter, we give an overview of the thesis contributions with respect to
the research questions presented in the previous chapter.

4.1 Formal Semantics of a Real-Time Component
Model

Problem description. To achieve predictability of a component-based real-
time system, the designer needs a development framework equipped with anal-
ysis methods and tools. This foremost requires a formalization of the under-
lying component model, which will give unambiguous meaningto their con-
stituent elements, such that any claim regarding system andcomponent prop-
erties becomes refutable. However, the formalization of a real-time component
model needs to deal with issues like priority, urgency, timing etc. Further, it
would be effective to make the formalization as simple and intuitive as possi-
ble, such that, it can serve as a basis both for designers using the language, and
the researchers developing analysis techniques, model-transformation tools etc.
Coming up with such a formalization is no trivial job.

ProCom [8] is a component model for real-time systems (recently devel-
oped at Mälardalen University, within the PROGRESS research centre). To
address various modeling issues, ProCom consists of two distinct but related
layers. The upper layer, called ProSys, supports the modeling of an embed-
ded system as a collection of active and concurrent subsystems, communicat-
ing by message passing. The lower layer, ProSave, addressesthe internal de-

19

20 Chapter 4. Research Contributions

sign of a subsystem, down to primitive functional components implemented by
code. ProSave components are passive and the communicationbetween them is
based onpipes-and-filtersparadigm. However, ProCom has a number of mod-
eling characteristics that pose challenges to the system designer. For example,
bridging the semantic gap between the two communication paradigms is one
particular modeling challenge that needs to be addressed byany formalization.

Another distinguishing characteristic of ProCom is the possibility to model
both fully implemented components (described internally by code), and also
design-time components (possibly modeled as inter-connected ProSave com-
ponents), which might co-exist with the implemented components. The Pro-
Com language constructs include service interfaces, data and trigger ports, pas-
sive or active components, connections and connectors, hierarchies of compo-
nents, timing etc. Clearly, an intuitive formalization of the ProCom component
language is essential to support system designers, as well as researchers devel-
oping analysis techniques for predictability.

Solution. We describe the formal semantics of the ProCom component model
rigorously, as well as intuitively, using afinite state machine(FSM) formalism,
extended with notions of urgency, timing and priority. The formal semantics of
the FSM language itself is described usingtimed automatawith priorities [19]
and urgent transitions [20]. The FSM formalism is intended to provide a high-
level, abstract description of ProCom semantics,based on asmall semantic core
to which the synthesis of ProCom-based models need to conform. However,
the semantic descriptions focus only on describing the correct behavior of Pro-
Com architectural elements, such as,components, services, ports, connections,
connectorsetc, but do not target goals, such as, achieving efficiency informal
verification of the resulting models.

The FSM language builds on standard FSM, enriched with finite-domain
integer variables, guards and assignments on transitions,notions of urgency
and priority, and time delays in locations. The language assumes an implicit
notion of time, making it easy to integrate with various concurrency models
e.g., the synchronous/reactive concurrency model, or a discrete-event concur-
rency model [21]. The FSM language has a graphical appeal andit is simpler
than the corresponding TA model, as it abstracts from real-valued variables
and synchronization channels. However, the FSM models of ProCom-based
designs can be analyzed with timed automata tools likeUPPAAL [15].

The details of the above research work can be found in Paper B,which is
included in the second part of this thesis.

4.2 Design Support for Component-based Development 21

4.2 Design Support for Component-based Devel-
opment

Problem description. When developing real-time systems in a CBD fashion,
the state-of-practice is dominated by an ad-hoc mixture of methods and tools,
and system validation is mostly done by extensive testing after the implementa-
tion phase. In general, components are introduced asexecutablesoftware units
that can be deployed into a system. This makes both the designmodel, and
also individual components, incomprehensible and difficult to reuse. To sup-
port predictability, the system designs should reflect a clearly stated intent and
structure, besides containing reusable, analyzable, and understandable compo-
nent behaviors. Further, the structured design process should take into account
the two parallel, but related, work-flows of component-based development, that
is, the overall system-development, and component-development.

Solution. A general solution to the above demanding requirements is a struc-
tured, pattern-based design methodology for developing component-based em-
bedded systems. For the overall system-development, the abstract system mod-
els e.g., specification, requirements etc, can be considered to guide the com-
ponent based design process. In the parallel component-development activity,
behavior patterns based on the recurring behavior of individual components,
can be considered to support developing abstract, reusablecomponent behav-
iors.

For component-development, we have defined behavior modeling patterns
based on the common behaviors of real-time components. The patterns are
described in a finite-state-machine (FSM) notation that we call Pattern-FSM
(PFSM). The finite behaviors of components can be specified using two de-
sign patterns encodingrun − to − completion semantics, andhistorystates.
Timing is introduced using a third design pattern for specifying the response
time of components. These patterns can be easily transformed to fit into spe-
cific formal frameworks for verification. To show the usefulness of these pat-
terns, we have applied them in the component-based development of an in-
dustrial real-time turntable system [22]. The chosen analysis framework is the
Timed Automata (TA) language ofUPPAAL [23, 15]. Component behaviors
have been specified using the patterns and manually transformed into timed
automata models. Also, the complete design together with anenvironmental
model has been translated into timed automata for property verification using
UPPAAL.

22 Chapter 4. Research Contributions

In a related design activity, to support the transformationof abstract system
models into corresponding component-based designs, we have proposed com-
ponent design templates (referred as component patterns).The abstract system
model, which we refer to asmodemachinei.e. an extended form of UML
statemachine, represents the mode configurations of a system and correspond-
ing event-based mode changes. The constraints are specifiedusing UML/
MARTE Clock Constraint Specification Language (CCSL), based on physical
and logical clocks, and we also show how to specify periodic triggers, timeouts,
causality etc.

For a given system, the modemachine represents an abstract specification
of architectural features, while hiding the detailed internal behaviors. Based
on this, one can derive architectural or component-based designs that satisfy
the specified functional and timing constraints. To guide the transformation,
we have proposed several component patterns:timeoutpattern,discrete-clock
pattern,periodic-behaviorpattern, andcontroller pattern. While the first two
patterns model the timing aspects, the other patterns modelthe time- and event-
triggered executions of internal behaviors respectively.

The patterns are implemented within the ProCom framework, to support
the development of ProCom-based designs. Based on the formal semantics
of ProCom, the patterns are manually transformed into timedautomata frame-
work for verification of timing properties using UPPAAL model-checker.The
usefulness of these design patterns is demonstrated on a temperature control
system (TCS), for which we develop a ProCom-based design by applying our
patterns.

The details of the research described above can be found in both Paper A
and Paper D, included in the second part of the thesis.

4.3 Relating Abstract Models of Embedded Sys-
tems

Problem description. The predictable behavior of a real-time system can be
ensured through extensive modeling and analysis during development phases,
such as, specification and design. These phases are suitablefor applying early
predictability analysis techniques with respect to functionality, timing, resource
consumption etc., over different models of system structure, and behavior.
However, such models may use paradigms that cannot be immediately com-
pared and related, due to their apparently incompatible nature.

There exist several paradigms for the specification of embedded systems.

4.3 Relating Abstract Models of Embedded Systems 23

For example, statemachine-based approaches, such as UML statemachines [4],
are intended to specify system states and the correspondingsystem behavior
in these states. The timed UML state-machines add the possibility of repre-
senting timing aspects. Statemachines often use an aperiodic, event-triggered
representation of behavior, since such a paradigm facilitates easy changing of
a model’s configuration or set of events. On the other hand, design models i.e.
architectural/ structural models might use a different modeling paradigm e.g.,
a periodic,time-triggeredbehavioral description. With time-triggered commu-
nication, the data is read from a buffer according to a triggering condition gen-
erated by e.g., a periodic clock. Although these modeling capabilities, in isola-
tion, are invaluable to a mature development process tailored for predictability,
when applied to embedded system development, they need to beproven con-
sistent with each other.

Solution. In order to address the above goal of ensuring inter-model consis-
tency, we have defined a methodology for relating event-based abstract models
with time triggered, data-flow based design models. Such abstractions may be
used within the same or different phases of system development. Concretely,
we consider UML statemachines for modeling event-based system specifica-
tion, and the ProCom language as the basis for modeling the system’s archi-
tecture (the design model). Hence, the method may be only suitable for a
specific class of embedded systems, which employ the above mentioned for-
malisms. However, the underlying methodology can be generalized to include
other classes of systems.

The proposed approach of relating abstract models of embedded systems is
based on comparison of execution trajectories of system models. To be able to
carry out a meaningful comparison, the respective models need to rely on pre-
cise semantic grounds. To accomplish this, we define the formal semantics of
both kinds of models i.e., statemachines and ProCom-based designs is defined
in terms of the underlying state-transition systems. As theexecution trajecto-
ries generated by these models can be extremely large and incomprehensible,
they need to be reduced to more readable and analyzable forms. Consequently,
we define two sets of inference rules, one for simplifying thespecification tra-
jectories, and the other one for simplifying the design ones. Moreover, in order
to relate and compare the above two sets of simplified trajectories, we have also
proposed a set of transformation rules from time-triggeredto event-triggered
trajectories, and vice-versa. To summerize the steps for bridging the gap be-
tween the paradigms consists of the following five steps:

24 Chapter 4. Research Contributions

• given a specification trajectory, generate a correspondingdesign trajec-
tory by e.g, simulating the model

• simplify the specification trajectory (may be skipped)

• simplify the design trajectory

• transform the design trajectory into one comparable to the event-based
specification trajectory

• compare the reduced specification and design trajectories

The above described methodology, which relies on rules thatcan be auto-
mated, has however been manually applied to a representative design trajectory
suitable to demonstrate several simplification scenarios described previously.

Our initial experiences with applying the proposed technique to an au-
tonomous truck control system indicate that the design model trajectories can
sometimes be manually transformed into trajectories of thespecification model.
However, as this is not the case in general, the above framework should be ex-
tended with simulation relation checking methods, for proving conformance
between the respective trajectories.

The details of the above research work can be found in Paper C included in
the second part of this thesis.

4.4 Research Questions - Revisited

In this section, we discuss how the research contributions described in the pre-
vious sections correspond to the research questions presented in Chapter 3.
Details can be found in the corresponding research papers included in the sec-
ond part of this thesis.

Q1 How to formally describe the behavior of architectural elements of a real-
time component model such that we provide a basis for rigorous analysis?

The formalization described in Section 4.1, which resultedin Paper B, shows
a way of giving formal semantics to architectural elements of our real-time
component model ProCom. The given semantics not only follows an intuitive
approach but provides basis for easier translation of ProCom-based designs
into corresponding models in semantic domains, for exampletimed automata,
for formal verifications.

4.4 Research Questions - Revisited 25

Q2 How to develop component-based designs from abstract system models
and component behaviors?

The proposed approach as described in Section 4.2 has resulted in two research
papers, that is, Paper A, and D. These papers describe approaches for providing
design support for development of embedded systems. In Paper A, we have
proposed behavior modeling patterns for components and demonstrated their
usefulness by applying them to an example industrial turntable system. In
Paper D, we presented a few component-based design templates to develop
architectural designs from abstract system models. The approach is applied in
developing a component-based design of a temperature control system.

Q3 How to relate component-based system designs with the abstract models
of system behavior?

The proposed methodology as described in Section 4.3, has resulted in Paper
C. In this paper, we have defined a methodology based on inference rules for
simplifying, and comparing the execution trajectories of specification, and ar-
chitectural models. The approach is demonstrated by applying it on an example
autonomous truck system.

From the above, one can conclude that we have addressed the research ques-
tions to some extent. Although the research questions are much wider in scope,
we have chosen ProCom-based design framework for our research work. Con-
sequently, our work is not a general solution to the researchproblems, yet it
provides particular answers. We discuss the limitations ofour contributions,
along with possible future lines of research, in Chapter 6 .

Chapter 5

Related Work

In this chapter, we describe both the state-of-the-art related to the model- and
component-based development of embedded systems.

5.1 Formalizations of Real-time Component Mod-
els

In order to support the component-based development of embedded systems,
several researchers, as well as practitioners have deviseda variety of compo-
nent models and corresponding.development frameworks.

COMDES-II (Component-Based Design of Software for Distributed Em-
bedded Systems) [24] is a development framework in which thefunctional
units encapsulate one or more dynamically scheduled activities. Besides pro-
viding a clear separation of concerns (functional behaviorfrom real-time be-
havior) in modeling, COMDES-II also offers support for formal analysis, by
specifying the behavior in terms of hybrid state machines. The ProCom se-
mantics presented in this thesis does not focus on the transformational aspects
of component and system behavior, but more on the reactive and real-time as-
pects, while emphasizing the co-existence of black-box andfully implemented
components, via the component hierarchy.

The BIP (Behavior, Interaction, Priority) component framework, introduced
by Gößler and Sifakis [25, 26], has been designed to supportthe construction
of reactive systems. By separating the notions of behavior,interaction, and
execution model, it enables both heterogeneous modeling, and separation of

27

28 Chapter 5. Related Work

concerns. The semantics of BIP is given in terms of Timed Automata (TA), on
which priority rules are successively applied to enforce certain invariants of the
expected real-time behavior. As compared to our approach for ProCom formal
semantics, the BIP formalization targets directly the efficient verification of the
considered models.

In SOFA component model [27], the communication among components
can be captured formally, by traces, which are sequences of event tokens de-
noting the events occurring at the interface of a component.The behavior of
a SOFA entity (interface, frame or architecture) is the set of all traces, which
can be produced by the entity. Such a formalization can be hard to compre-
hend, but the proposed formalization of ProCom might, on theother hand, be
more difficult to implement and exploit towards efficient verification, due to its
higher-level of abstraction.

A process-algebraic approach to describing architecturalbehavior of com-
ponent models is advocated by Allen and Garlan [28], and Magee et al. [29],
who formalize the component behavior in CSP (CommunicatingSequential
Processes) and via a labeled transition system with a possibly infinite number
of states.

Koala [30] is a software component model, introduced by Philips Elec-
tronics, designed to build product families of consumer electronics. For Koala
compositions, the extra-functional information is exposed at the component’s
interface. The prediction of extra-functional propertiesis carried out by mea-
surements and simulations at the application level. In contrast, the ProCom
semantics sets the ground for achieving predictability viaformal verification
(by translating our FSMs into timed automata [31]), prior toimplementation.

ProCom’s precursor, SaveCCM, is also an analyzable component model for
real-time systems [32]. SaveCCM’s semantics is defined by a transformation
into timed automata with tasks, a formalism that explicitlymodels timing and
real-time task scheduling. The level of detail of such a formal model is higher
than in our FSM notation for ProCom semantics, making it moresuitable for
formal verification; however, the timed automata models of SaveCCM can be
cluttered with variables whose interpretation is not necessarily intuitive, which
makes the formal models less amenable to changes.

5.2 Design Support for Component-based Development 29

5.2 Design Support for Component-based Devel-
opment

The Statemate toolkit [33] is an early working environment for the develop-
ment of complex reactive systems. Modularity of the system development is
provided in terms of differentviews, such as, structure, functionality, and be-
havior. Our approach for behavior specification of components (modulesin
Statemate) is similar to the Statecharts [34], the behavioral language of State-
mate. Though not hierarchical, our FSM notation for component behaviors
(see Section 8.3), combined with the patterns proposed in this paper, is similar
to the Statechart features “run-to-completion” and “execution history”.

The BIP framework and the toolkit IF [35] are intended for predictable em-
bedded systems development by supportingcorrectness-by-constructionand
compositional verification. While BIP offers bottom-up design of systems, our
approach supports CBD in a bit more pragmatical traditionaltop-down design,
with support of modeling in Save-IDE [36] and formal verification using the
UppaalPort toolkit [37, 15].

The CHARON toolkit [38] supports modular specification of embedded
systems, based on the notions ofagentsandmodes, for architectural and be-
havioral specifications, respectively. Our behavioral specification language of
components shares some features of the modes in Charon, but without hierar-
chy, and in our approach the execution history of a componentis provided by
using a simple design pattern.

The case study of the Turntable production system, presented in this the-
sis, has previously been analyzed using different methods and tools. Bos and
Kleijn [39] have specified the turntable model inχ [40], a simulation language
for industrial systems, and translated into Promela, the input language of the
Spin model-checker to verify several properties of the model. Bortnik et al.
[41] have translated aχ model of the turntable system into the specification
languages of three model-checkers: CADP, Spin, and Uppaal comparing the
ease of conversion, the expressiveness of each of the specification languages,
and the abilities and performances of the respective model-checkers. Ke et
al. [42] have implemented the turntable production system in COMDES-II, a
component-based framework. They have developed a semantictransformation
of the COMDESS-II model into an UPPAAL timed automata model,allowing
for formal verification of a set of properties similar to those verified by Bortnik
et al [41].

In the domain of synchronous languages [43], mode automata and the no-

30 Chapter 5. Related Work

tion of running modes have been introduced, to reduce the gapbetween the ini-
tial design of a system and the program written for it. The formalism has been
proposed to support both dataflow, and imperative styles. The modemachine
proposed in this thesis corresponds to the event-based, hierarchical, high-level
control structure of the system and associated timing constraints.

Sandén proposes the “state-machine” pattern [44], for designing concur-
rent real-time software in Ada [45]. Many possible implementations of the
pattern, corresponding to concurrent, reactive, and time-triggered behaviors,
are described. Also, patterns for non-functional aspects such as resource us-
age, quality-of-service have been proposed [46]. However,such patterns focus
on the design or implementation phase of the system. The patterns proposed in
this thesis support the design process, by transforming thespecification aspects,
with associated timing constraints, into the corresponding design elements.

Maxwell et al. have proposed a formal framework [47] for heuristics-based
transformation of architectural designs. The authors capture heuristics in a
structured and formal manner, such that the architectural transformations can
be performed for optimizing the non-functional qualities of a system. Denford
et al. have proposed an architectural refinement method [48]that focuses on
non-functional requirements e.g., reliability, performance, while still address-
ing the functional requirements. While these works focus onnon-functional
aspects, such as, performance, we address architectural designs through timing
constraints of embedded systems.

The UML profile MARTE is extensively used in the context of AADL (Ar-
chitecture analysis and design language [49]) for component-based designs of
real-time, embedded systems [50, 51]. AADL supports the modeling of both
software components such asthread, subprogram, process, and platform com-
ponents, such as,bus, memory, processor, anddevice. However, AADL in-
troduces avoidable redundancies that obscure the model andmay even lead to
design inconsistency. To address this deficiency, the MARTEclock constraints
have been used [51] to precisely specify both event, and timetriggered commu-
nications for AADL models, and to compute end-to-end flow latency. While
these works focus on models related to software and platformmapping, in this
thesis, we address specification, design mappings and corresponding behavior
correlations.

EastADL [52] is a layered architecture language for model-based develop-
ment of automotive software. To address various concerns ofsystem’s life-
cycle development, it provides abstraction layers, such as, feature level, re-
quirements, analysis, design, and implementation. Malletet al. have described
MARTE specification of EastADL timing requirements [53]. This enables the

5.3 Relating Abstract Models of Embedded Systems 31

use of MARTE tools for timing verification of EastADL requirements.

5.3 Relating Abstract Models of Embedded Sys-
tems

The problem of relating design to specification models is a topic with a growing
interest in the research community.

For synthesizing executable programs from timed models, Krcal et al. [54]
have proposed a timed automata based semantic framework, relying on non-
instant observability of events. Time-triggered automata(TTA), a sub class
of timed automata (TA), is used to model finite state implementations of a
controller that services the request patterns specified by aTA. This technique
enables deciding whether a TTA correctly implements a TA specification. In
comparison, although ProCom oriented, our methodology canbe applied within
a generic component-based framework, and is not being tied to any particular
formal verification framework either.

Sifakis et al. propose a methodology for relating the abstractions of both
real-time application software and corresponding implementation [55]. The
related formal modeling framework integrates event-driven, and time triggered
paradigms by defininguntiming functions. Problems of correctness, timing
analysis, and synthesis are considered in the methodology.In contrast to our
approach, this one does not address the intermediate designlayer commonly
used in system development.

Plasil and Visnovsky describe a formal framework based onbehavior pro-
tocols, in order to formally specify the interplay between components [56].
This allows for formal reasoning about the correctness of the specification re-
finement and about the correctness of an implementation, in terms of the spec-
ification. Further, the framework is validated in the SOFA component model
environment [57]. While the approach provides much needed formal correct-
ness in component-based development, it does not address timing issues and
vertical layers of abstractions in real-time system development.

Schätz et al. [58] have described a model-transformation based approach
using constraints as transformation rules guiding a mechanized exploration of
possible design alternatives. The approach has been demonstrated for the in-
cremental deployment of logical architectures to hardwareplatforms.

Chapter 6

Conclusions and Future
Work

In this chapter, we present a summary of the thesis contributions, as well as cor-
responding limitations. Finally, we conclude the thesis work with presenting
possible lines of future work.

6.1 Summary and Discussion

In this thesis work, we have tackled some design challenges of the develop-
ment of real-time systems, in the context of model-based engineering (MBE)
and component-based development (CBD). While models provide very useful
abstractions and corresponding predictability analysis techniques, these how-
ever increase the development complexity due to multiplicity of models, un-
derlying formalisms, tools etc that are generally employed. Similarly, while
CBD enables faster development and reduced costs through reusability of sys-
tem designs, it provides limited capabilities regarding formal verification. We
have addressed some of these challenges in this thesis work.

As a first step, we have chosen the ProCom -based design framework as the
basis for developing real-time systems, due to its particular characteristics, on
the one hand useful for real-time design, yet on the other hand challenging to
formally analyze. The framework is associated with many directions of real-
time research, such as, software engineering, formal analysis, schedulability,
execution time analysis, etc. However, in the context of software engineering

33

34 Chapter 6. Conclusions and Future Work

and formal analysis, we have aimed at meeting the following objectives:

• Analyzable designs based on a formalized component model.

• Providing design support for behavior modeling of components.

• Providing design support for component-based development.

• Correlating specification models, and component-based designs.

Even if our work tackles some of the embedded system development chal-
lenges coined by the research questions, there certainly are limitations to our
work, which we present in the following. To begin with, the formalization of
ProCom has not been validated on a real-world example such that we could as-
sess its verification capabilities. Also, while the formalization clearly attempts
to avoid design ambiguities, by formalizing otherwise informal descriptions
of ProCom semantics, the resulting designs might still be incomplete due to
inherent limitations of the ProCom itself.

Even if the contribution with respect to the second objective, that is, our
proposed component behavior patterns have been applied on an industrial case
study, the turn-table system, further investigations would be useful. Also, the
proposed patterns may not be sufficient for the abstract specification of com-
plex functional behaviors of components. The same holds forthe pattern-based
design methodology for the overall system development.

Finally, the formal correlation framework proposed in the thesis has only
been manually applied on a simple case study. For complex systems, the man-
ual approach is clearly not feasible. Also, while the correctness of the inference
rules proposed has been informally checked, this should be formally verified,
for example, by logic-based reasoning.

The limited validations of the contributions made in the thesis are in the
spirit of providingproof-of-concepts; however, all our solutions requiring fur-
ther investigations and more extensive validation in orderto establish their
applicability, not to mention their potential benefits for the development of
component-based industrial real-time systems.

6.2 Future Work

The initial focus of the future work will be to address the limitations of the
contributions, as described in the previous section.

6.2 Future Work 35

Next, we plan to extend the pattern-based design methodology, proposed in
this thesis, for component development, as well as the complete system devel-
opment. Additional useful patterns will be investigated and integrated within
the design process. Also, the design methodology will be rigorously validated
by applying it to industrial-strength case studies.

Due to the timed automata-based semantics, the ProCom designs can be
analyzed in a dense-time underlying framework, as well as ina discrete-time
one, since timed automata has been given a sampled semantics[59]. Hence,
tools such as UPPAAL can be employed for early-stage verification of ProCom
models, whereas discrete-time model-checkers, such as DTSpin [60], could
be used for later-stage analysis, as a sampled time semantics is closer to the
actual software or hardware system with a fixed granularity of time. We plan
to consider these aspects for the future work related to formal verification of
ProCom-based system designs.

Last but not least, we plan to extend the inference-rule driven methodology
for relating abstract models towards verifying behavioralconsistency between
different embedded system abstractions. This involves applying simulation
relation checking to prove (or disprove) conformance between non-identical
trajectories. Further, we plan to investigate the integration of suitable proof
assistant tools to support the underlying formal techniques.

Chapter 7

Overview of Papers

In this chapter, we present an overview of the research papers included in the
second part of the thesis.

Paper A. “Analyzing a Pattern-Based Model of a Real-Time Turntable Sys-
tem”. Davor Slutej, John Håkansson, Jagadish Suryadevara, Cristina Sece-
leanu, and Paul Pettersson. In proceedings of the 6th International Workshop
on Formal Engineering approaches to Software Components and Architectures
(FESCA), pages 161-178, UK, March 2009.

Abstract: Designers of industrial real-time systems are commonly faced
with the problem of complex system modeling and analysis, even if a component-
based design paradigm is employed. In this paper, we presenta case-study in
for- mal modeling and analysis of a turntable system, for which the compo-
nents are described in the SaveCCM language. The search for general princi-
ples underlying the internal structure of our real-time system has motivated us
to propose three modeling patterns of common behaviors of real-time compo-
nents, which can be instantiated in appropriate design contexts. The benefits
of such reusable patterns are shown in the case-study, by allowing us to pro-
duce easy-to-read and manageable models for the real-time components of the
turntable system. Moreover, we believe that the patterns may pave the way to-
ward a generic pattern-based modeling framework targetingreal-time systems
in particular.

Contribution: This paper was written with equal contribution from all the

37

38 Chapter 7. Overview of Papers

authors. I specifically contributed to section three of the paper, proposing the
behavior modeling patterns for components and also partly in section four in
applying the proposed patterns to the case study.

Paper B. “Formal Semantics of the ProCom Real-Time Component Model”.
Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlson, Cristina Seceleanu, and
Paul Pettersson. In proceedings of the 35th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 478-485, Greece, Au-
gust, 2009.

Abstract:ProCom is a new component model for real-time and embedded
systems, targeting the domains of vehicular and telecommunication systems.
In this paper, we describe how the architectural elements ofthe ProCom com-
ponent model have been given a formal semantics. The semantics is given in
a small but powerful finite state machine formalism, with notions of urgency,
timing, and priorities. By defining the semantics in this way, we (i) provide
a rigorous and compact description of the modeling elementsof ProCom, (ii)
set the ground for formal analysis using other formalisms, and (iii) provide an
intuitive and useful description for both practitioners and researchers. To il-
lustrate the approach, we exemplify with a number of particularly interesting
cases, ranging from ports and services to components and component hierar-
chies.

Contribution:The core of the paper, that is, section three, was written with
equal contribution from the first two authors. I was the main author for the
corresponding extended version of this paper, published asa (MRTC) technical
report [61] .

Paper C. “Bridging the Semantic Gap between Abstract Models of Embed-
ded Systems”. Jagadish Suryadevara, Eun-Young Kang, Cristina Seceleanu,
and Paul Pettersson, In proceedings of the 13th International Symposium on
Component Based Software Engineering (CBSE), Springer LNCS, vol 6092,
Czech Republic, June, 2010.

Abstract: In the development of embedded software, modeling languages
used within or across development phases e.g., requirements, specification, de-
sign, etc are based on different paradigms and an approach for relating these is
needed. In this paper, we present a formal framework for relating specification
and design models of embedded systems. We have chosen UML statemachines

39

as specification models and ProCom component language for design models.
While the specification is event-driven, the design is basedon time triggering
and data flow. To relate these abstractions, through the execution trajectories
of corresponding models, formal semantics for both kinds ofmodels and a set
of inference rules are defined. The approach is applied on an autonomous truck
case-study.

Contribution: I was the main author of this paper.

Paper D. “Pattern-driven Support for Designing Component-based Archi-
tectural Models”, Jagadish Suryadevara, Cristina Seceleanu, Paul Pettersson,
In proceedings of the 18th IEEE International Conference on Engineering of
Computer-Based Systems (ECBS), USA, April, 2011.

Abstract:The development of embedded systems often requires the use of
various models such as requirements specification, architectural (component-
based), and deployment models, across different phases. However, there exists
little design support for obtaining suitable component-based designs that sat-
isfy specified requirements and timing constraints. In order to provide guided
support for the design process of embedded systems, we introduce several com-
ponent templates, referred as patterns, which we also formally verify against
relevant properties. To illustrate the usefulness of the approach, we have ap-
plied the proposed patterns to obtain a component-based design of a tempera-
ture control system.

Contribution: I was the main author of this paper.

Bibliography

[1] Ivica Crnkovic and Magnus Larsson.Building Reliable Component-
Based Software Systems. Artech House publisher, 2002.

[2] Clemens Szyperski.Component Software: Beyond Object-Oriented Pro-
gramming. ACM Press and Addison-Wesley, New York, NY, 1998.

[3] James Rumbaugh, Ivar Jacobson, and Grady Booch.Unified Modeling
Language Reference Manual, The (2nd Edition). Pearson Higher Educa-
tion, 2004.

[4] Object Management Group. UML 2.0 Superstructure Specification, The
OMG Final Adopted Specification, 2003.

[5] Michael von der Beeck. Formalization of uml-statecharts. In Proceed-
ings of the 4th International Conference on The Unified Modeling Lan-
guage, Modeling Languages, Concepts, and Tools, «UML»
’01, pages 406–421, London, UK, UK, 2001. Springer-Verlag.

[6] W. Damm and D. Harel. LSCs: Breathing life into message sequence
charts.Formal Methods in System Design, 19:1:45–80, 2001.

[7] Object Management Group. A UML Profile for MARTE, Beta 1, August
2007. Document number: ptc/07-08-04.

[8] T. Bureš, J. Carlson, I. Crnković, S. Sentilles, and A.Vulgarakis. ProCom
– the Progress Component Model Reference Manual, version 1.0. Tech-
nical Report MDH-MRTC-230/2008-1-SE, Mälardalen University, June
2008.

[9] P.E. Black, K.M. Hall, M.D. Jones, T.N. Larson, and P.J. Windley. A brief
introduction to formal methods [hardware design]. InCustom Integrated

41

42 Bibliography

Circuits Conference, 1996., Proceedings of the IEEE 1996, pages 377
–380, May 1996.

[10] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[11] Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and sym-
bolic model-checking of real-time systems. InIn Proc. of the 16th IEEE
Real-Time Systems Symposium, pages 76–87. IEEE Computer Society
Press, 1995.

[12] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis,and Sergio
Yovine. Symbolic model checking for real-time systems.Information
and Computation, 111:394–406, 1992.

[13] Kenneth Lauchlin McMillan.Symbolic model checking: an approach to
the state explosion problem. PhD thesis, Pittsburgh, PA, USA, 1992. UMI
Order No. GAX92-24209.

[14] G.J. Holzmann. The model checker spin.Software Engineering, IEEE
Transactions on, 23(5):279 –295, May 1997.

[15] K.G. Larsen, Paul Pettersson, and Yi. Wang. Uppaal in a nutshell. Int. J.
on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[16] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, andW. Yi. Times: a
tool for schedulability analysis and code generation of real-time systems.
In Proc. of 1st International Workshop on Formal Modeling and Analysis
of Timed Systems, Lecture Notes in Computer Science. Springer–Verlag,
2003.Springer-Verlag, 2003.

[17] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verifica-
tion system. In Deepak Kapur, editor,11th International Conference on
Automated Deduction (CADE), volume 607 ofLecture Notes in Artificial
Intelligence, pages 748–752, Saratoga, NY, jun 1992. Springer-Verlag.

[18] M. J. C. Gordon and T. F. Melham, editors.Introduction to HOL: a the-
orem proving environment for higher order logic. Cambridge University
Press, New York, NY, USA, 1993.

Bibliography 43

[19] Alexandre David, John Håkansson, Kim Guldstrand Larsen, and Paul Pet-
tersson. Model checking timed automata with priorities using DBM sub-
traction. In4th International Conference on Formal Modelling and Anal-
ysis of Timed Systems (FORMATS’06), pages 128–142. Springer-Verlag,
September 2006.

[20] Johan Bengtsson, W. O. David Griffioen, Kre J. Kristoffersen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Automated anal-
ysis of an audio control protocol usingUPPAAL. Journal of Logic and
Algebraic Programming, 52–53:163–181, July-August 2002.

[21] B. Lee and E. A. Lee. Interaction of finite state machinesand concurrency
models. In32nd Annual Asilomar Conference on Signals, Systems, and
Computers, November 1998.

[22] E. Bortnik, N. Trcka, A.J. Wijs, B. Luttik, J.M. van de Mortel-Fronczak,
J.C.M. Baeten, W.J. Fokkinkc, and J.E. Rooda. Analyzing a x model of
a turntable system using spin, cadp and uppaal.Journal of Logic and
Algebraic Programming, 65(2):51–104, November-December 2005.

[23] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on
UPPAAL. In Marco Bernardo and Flavio Corradini, editors,Formal Meth-
ods for the Design of Real-Time Systems: 4th International School on
Formal Methods for the Design of Computer, Communication, and Soft-
ware Systems, SFM-RT 2004, number 3185 in LNCS, pages 200–236.
Springer–Verlag, September 2004.

[24] X. Ke, K. Sierszecki, and C. Angelov. COMDES-II: A Component-Based
Framework for Generative Development of Distributed Real-Time Con-
trol Systems. InProceedings of the 13th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, pages
199–208. IEEE Computer Society, 2007.

[25] G. Gößler and J. Sifakis. Priority systems. InProceedings of FMCO’03,
volume LNCS 3188, pages 314–329. Springer-Verlag, 2004.

[26] G. Gößler and J. Sifakis. Composition for component-based modeling.
Science of Computer Programming, 55(1–3):161–183, 2005.

[27] T. Bureš, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing advanced
features in a hierarchical component model. InProceedings of SERA
2006, pages 40–48. IEEE CS, August 2006.

44 Bibliography

[28] R.J. Allen and D. Garlan. A formal basis for composing components.
ACM Transactions on SW Engineering and Methodology, 1997.

[29] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed
software architectures. InProceedings of the 5th European Software En-
gineering Conference, 1995.

[30] R. van Ommering, F. van der Linden, and J. Kramer. The Koala compo-
nent model for consumer electronics software. InIEEE Computer, pages
78–85. IEEE, March 2000.

[31] Alexandre David, John Håkansson, Kim Guldstrand Larsen, and Paul Pet-
tersson. Model checking timed automata with priorities using DBM sub-
traction. In4th International Conference on Formal Modelling and Anal-
ysis of Timed Systems (FORMATS’06), pages 128–142. Springer-Verlag,
September 2006.

[32] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson, J. Håkansson,
A. Möller, P. Pettersson, and M. Tivoli. The SAVE approach to
component-based development of vehicular systems.Journal of Systems
and Software, 80(5):655–667, May 2007.

[33] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli,Michal
Politi, Rivi Sherman, Aharon Shtull-trauring, and D Mark Trakhtenbrot.
Statemate: A working environment for the development of complex re-
active systems.IEEE Transactions on Software Engineering, 16, 1991.

[34] David Harel. Statecharts: A visual formalism for complex systems.Sci-
ence of Computer Programming, 8:231–274, 1987.

[35] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heteroge-
neous real-time components in BIP. InSEFM, pages 3–12, 2006.

[36] Sverine Sentilles, John Håkansson, Paul Pettersson,and Ivica Crnkovic.
Save-ide an integrated development environment for building predictable
component-based embedded systems. InProceedings of the 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2008), September 2008.

[37] John Håkansson, Jan Carlson, Aurelien Monot, Paul Pettersson, and Da-
vor Slutej. Component-based design and analysis of embedded systems

Bibliography 45

with uppaal port. In6th International Symposium on Automated Tech-
nology for Verification and Analysis, pages 252–257. Springer–Verlag,
October 2008.

[38] R. Alur, D. Thao, J. Esposito, H. Yerang, F. Ivancic, V. Kumar, P. Mishra,
G.J. Pappas, and O. Sokolsky. Hierarchical modeling and analysis of
embedded systems.Proceedings of the IEEE, 91(1):11–28, January 2003.

[39] V. Bos and J.J.T. Kleijn. Automatic verification of a manufacturing sys-
tem. Robotics and Computer Integrated Manufacturing, 17:185–198,
2001.

[40] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, and R.R.H. Schif-
felers. Syntax and consistent equation semantics of hybridchi. Journal
of Logic and Algebraic Programming, 68(1-2):129 – 210, 2006.

[41] E. Bortnik, N. Trčka, A.J. Wijs, S.P. Luttik, J.M. van de Mortel-Fronczak,
J.C.M. Baeten, W.J. Fokkink, and J.E. Rooda. Analyzing aχ model of
a turntable system using Spin, CADP and Uppaal.Journal of Logic and
Algebraic Programming, 65(2):51–104, 2005.

[42] Xu Ke, P. Pettersson, K. Sierszecki, and C. Angelov. Verification of
comdes-ii systems using uppaal with model transformation.Embedded
and Real-Time Computing Systems and Applications, 2008. RTCSA ’08.
14th IEEE International Conference on, pages 153–160, Aug. 2008.

[43] Florence Maraninchi and Yann Rémond. Mode-automata:a new domain-
specific construct for the development of safe critical systems.Sci. Com-
put. Program., 46:219–254, March 2003.

[44] Bo I. Sandén. The state-machine pattern. InProceedings of the confer-
ence on TRI-Ada ’96: disciplined software development withAda, pages
135–142, New York, NY, USA, 1996. ACM.

[45] A. Burns and A. Wellings.Concurrency in Ada. Cambridge University
Press, 1995.

[46] Joseph P. Loyall, Paul Rubel, Richard Schantz, MichaelAtighetchi, and
John Zinky. Emerging patterns in adaptive, distributed real-time, embed-
ded middleware. In9th Conference on Pattern Language of Programs,
September 2002.

46 Bibliography

[47] Cameron Maxwell, Tim O’Neill, and John Leaney. Formal architecture
transformation using heuristics. InEngineering of Computer-Based Sys-
tems, 2007. ECBS ’07. 14th Annual IEEE International Conference and
Workshops on the, pages 15 –24, March 2007.

[48] M. Denford, John. Leaney, and Tim. OŃeill. Non-functional refinement
of computer based systems architecture. InProceedings of the 11th IEEE
International Conference and Workshop on Engineering of Computer-
Based Systems, pages 168–, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[49] Society of Automotive Engineers (SAE). Architecture analysis and de-
sign language (AADL), June 2006.

[50] M. Faugere, T. Bourbeau, R. De Simone, and S. Gerard. MARTE: Also an
UML profile for modeling AADL applications. InEngineering Complex
Computer Systems, 2007. 12th IEEE International Conference on, pages
359 –364, 2007.

[51] F. Mallet, R. de Simone, and L. Rioux. Event-triggered vs. time-triggered
communications with UML MARTE. InSpecification, Verification and
Design Languages, 2008. FDL 2008. Forum on, pages 154 –159, 2008.

[52] ATESST (Advancing Traffic Efficiency through Software Technology).
East-ADL2 specification, March 2008.

[53] F. Mallet, M.-A. Peraldi-Frati, and C. Andre. Marte CCSL to execute
East-ADL timing requirements. InObject/Component/Service-Oriented
Real-Time Distributed Computing, 2009. ISORC ’09. IEEE International
Symposium on, pages 249 –253, March 2009.

[54] Pavel Krčál, Leonid Mokrushin, P.S. Thiagarajan, and Wang Yi. Timed
vs time triggered automata. In Philippa Gardner and Nobuko Yoshida, ed-
itors,Proc. of CONCUR’04., number 3170 in Lecture Notes in Computer
Science, pages 340–354. Springer–Verlag, 2004.

[55] Joseph Sifakis, Stavros Tripakis, and Sergio Yovine. Building models
of real-time systems from application software. InIn Proceedings of the
IEEE Special issue on modeling and design of embedded, pages 100–111.
IEEE, 2003.

[56] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software
components.IEEE Trans. Softw. Eng., 28(11):1056–1076, 2002.

[57] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Sofa2.0: Balancing
advanced features in a hierarchical component model. InSERA ’06: Pro-
ceedings of the Fourth International Conference on Software Engineering
Research, Management and Applications, pages 40–48, Washington, DC,
USA, 2006. IEEE Computer Society.

[58] Bernhard Schätz, Florian Hölzl, and Torbjörn Lundkvist. Design-space
exploration through constraint-based model-transformation. In Proceed-
ings of the 2010 17th IEEE International Conference and Workshops on
the Engineering of Computer-Based Systems, ECBS ’10, pages 173–182,
Washington, DC, USA, 2010. IEEE Computer Society.

[59] P. A. Abdulla, P. Krcal, and W. Yi. Sampled universalityof timed au-
tomata. In10th International Conference Foundations of Software Sci-
ence and Computational Structures, FOSSACS 2007, part of ETAPS
2007, volume LNCS 4423, pages 2–16. Springer-Verlag, 2007.

[60] Dragan Bošnački and Dennis Dams. Discrete-time Promela and Spin.
In FTRTFT ’98: Proceedings of the 5th International Symposiumon For-
mal Techniques in Real-Time and Fault-Tolerant Systems, pages 307–310.
Springer-Verlag, 1998.

[61] J. Suryadevara, A. Vulgarakis, J. Carlson, C. Seceleanu, and P. Pettersson.
ProCom: Formal semantics. Technical Report ISSN 1404-3041ISRN
MDH-MRTC-234/2009-1-SE, Mälardalen University, March 2009.

II

Included Papers

49

Chapter 8

Paper A:
Analyzing a Pattern-Based
Model of a Real-Time
Turntable System

Davor Slutej, John Håkansson, Jagadish Suryadevara, Cristina Seceleanu, Paul
Pettersson
In proceedings of the 6th International Workshop on Formal Engineering ap-
proaches to Software Components and Architectures (FESCA 2009), pages
161-178, March 2009.

51

Abstract

Designers of industrial real-time systems are commonly faced with the
problem of complex system modeling and analysis, even if a component-based
design paradigm is employed. In this paper, we present a case-study in for-
mal modeling and analysis of a turntable system, for which the components
are described in the SaveCCM language. The search for general principles
underlying the internal structure of our real-time system has motivated us to
propose three modeling patterns of common behaviors of real-time compo-
nents, which can be instantiated in appropriate design contexts. The benefits
of such reusable patterns are shown in the case-study, by allowing us to pro-
duce easy-to-read and manageable models for the real-time components of the
turntable system. Moreover, we believe that the patterns may pave the way to-
ward a generic pattern-based modeling framework targetingreal-time systems
in particular.

8.1 Introduction 53

8.1 Introduction

Developing industrial real-time systems is difficult and sets high requirements
to system safety and reliability. The short development cycles demand a reli-
able engineering method, with predictable costs. The state-of-the-art is dom-
inated by an ad-hoc mixture of methods and tools, and system validation is
mostly done by extensive testing at the implementation level. However, testing
is done already too late in the design process, and bugs may still exist even in
well-tested models. In this context, techniques for managing complexity and
ensuring critical system properties during design become anecessity.

A promising design approach is to employ aformal component-basedde-
velopment technique. In such an approach, components are introduced as exe-
cutable software units that can be deployed into a system. One of the key issues
of realizing the component-based software paradigm is to ensure that the sep-
arately specified components do not conflict with each other when composed,
resulting in blocking the system. A potential solution to this issue isformal
modular verificationof component-based software viamodel checking.

In this paper, we present a case-study in formal modeling andanalysis of
a real-time, component-based turntable system, for which the components are
described in the SaveCCM language [1]. For verification, we use an integrated
development environment for SaveCCM, connected via a plug-in with UPPAAL

PORT, an extension of the model-checker UPPAAL, which implements a partial
order reduction technique [2] for efficient model-checking. The technique ex-
ploits the topology of the network of components and consequently improves
the scalability of the verification method.

Our experience with this case-study and other similar examples is that, be-
side making the model-checking efficient, an as demanding task is to produce
manageable and easy-to-grasp design models for componentsand their compo-
sition. This has motivated us to try to extract some common behavioral patterns
that occur frequently in the design of real-time systems, and represent them in
a finite-state-machine like notation. Such notation lets usapply these patterns
at high-levels of software development, as shown in the paper, while simpli-
fying the produced models. We believe that employing patterns in designing
component-based systems might also help in documenting theassociated soft-
ware, through pattern-based reverse engineering. However, this is out of the
scope of this paper.

General purpose program design patterns are well-known in the object-
oriented design community for a while now [3]. Nevertheless, in the design
of component-based real-time systems, some different aspects might need to

54 Paper A

be represented in the modeling patterns; for instance, the semantics of our
SaveCCM components is aread-execute-write semantics, hence arun-to-
completion pattern can prove beneficial in the design. Similarly, the reusable
modeling of the sequence of visited states during the execution of a component,
or reducing the time-wise non-determinism of the real-timecomponent behav-
ior, by providing systematic means to associate adeadlinewith the behav-
ior, through a pattern, might also help the designer in the modeling phase. In
this paper, we introduce the just mentioned abstractions ofcommon real-time
component behaviors, as therun-to-completion, history, andexecution-time
patterns, respectively. Next, we apply them in modeling thecomponent-based
turntable production cell.

The remainder of the paper is organized as follows. In section 8.2, we
briefly recall the basics of the SaveCCM language used for modeling the com-
ponents in our case-study. The three modeling patterns are introduced and
described as finite state machines in section 8.3, after which we present the
real-time turntable production cell example, including the formal models of
the constituent components, in section 8.4. The system’s formal requirements
and verification results are displayed and discussed in sub-section 8.4.3. We
compare our approach to related ones, in section 8.5. Finally, section 11.9
concludes the paper and outlines possible directions for future work.

8.2 SaveCCM

In this section we briefly present the Save component modeling language [1],
which will be used in the case study of this paper. The language is part of a
larger framework, called SaveCCM, for component-based design of real-time
and embedded system [4]. The SaveCCM language consists of a graphical
syntax and an associated formal semantics. Due to space limitation, the pre-
sentation in this section is restricted to a short informal overview of SaveCCM.
For a complete description of the language we refer the reader to [1].

In SaveCCM, systems are built from interconnected components with well-
defined interfaces consisting of input and output ports. Thecommunication
style is based on the pipes-and-filters paradigm, but with anexplicit separation
of data transfer and control flow. The former is captured by connections be-
tweendata portswhere data of a given type can be written and read, and the
latter bytrigger portsthat control the activation of components. Figure 8.1(a)
shows an example of the graphical SaveCCM notation. Triangles and boxes
denote trigger ports and data ports, respectively.

8.2 SaveCCM 55

A

B

C

p1

p2

p3

p4

(a)

l0
y ≤ T

y = T
y := 0

l1 y ≤ J

lf
(b)

z := 0

l0 z ≤ Max

z ≥ Min

a := 1− a

lf

(c)

Figure 8.1: An example of(a) a composition where components A, B and C
are composed by connecting portp1 to p3, andp2 to p4, and timed behaviors:
(b) a clock with periodT and jitterJ, (c) a computation updating data variable
a after betweenMin andMax time units.

A component remains passive until all input trigger ports have been acti-
vated, at which point it first reads all its input data ports and then performs
the associated computations over this input and an internalstate. After this,
the component writes to its output data ports, activates theoutput trigger ports,
and returns to the passive state again. This strict “read-execute-write” seman-
tics ensures that once a component is triggered, the execution is functionally
independent of any concurrent activity.

Components are composed into more complex structures by connecting
output ports to input ports of other components. In additionto this “horizontal”
composition, components can be composed hierarchically byplacing a collec-
tion of interconnected components inside an enclosing component. From the
outside, such a composite component is indistinguishable from other compo-
nent where the behavior is given by a single model or piece of code.

To support analysis of SaveCCM models, it is required that each compo-
nent is associated with a behavioral model consisting of a timed automaton [5]
with a distinct exit location (see Figure 8.1(b-c)), and a mapping between com-
ponent data ports and the internal automata variables. Whena component is
triggered, the port values are copied to the internal variables of the timed be-
havior which then proceeds as specified in the timed automaton. Whenever it
reaches the exit location, variable values are copied to theoutput ports accord-
ing to the given mapping, and the output trigger port is activated.

The timed automata modeling language used in SaveCCM is based on the
language used in the UPPAAL tool [6]. It extends the timed automata language
originally introduced by Alur and Dill [5] with a number of features that will
be used in the case study, including: global and local bounded integer variables

56 Paper A

and arithmetic operations over such variables, arrays, anda small C-like pro-
gramming language that can be used to define functions and predicates. For a
detailed description of the timed automata language, we refer the reader to [7].

8.3 Component Modeling Patterns

A modeling pattern is a way of designing a model with a clearlystated intent
and structure. In this section, we propose three modeling patterns for common
behaviors of real-time components, in order to ultimately provide the designer
with useful abstraction mechanisms for the high-level modeling and analysis of
CB real-time systems. We chose to define the patterns by a finite-state-machine
like (FSM) notation, which we callPattern-FSM(or PFSM) in this paper. The
patterns can be instantiated, separately or in combination, in specific formal
frameworks, to increase the readability of the models and their suitability for
verification. To justify our claim, in section 8.4, we apply the proposed pat-
terns, as combinations, to the CB modeling of an industrial real-time turntable
system (see for instance Figure 8.10). The analysis framework is the Timed
Automata (TA) language of UPPAAL [7, 6].

Generic PFSM Definition and Graphical Notation. Let V be a set of data
variables,G be a set of boolean conditions (guards) overV , andA a set of
actions that update the variables. Then PFSM is a tuple〈S, start, exit, E,Att〉,
whereS is a set of states,start is theentry state,exit is theexit state,E ⊆
S×G×A×S is the set of transitions between states, andAtt is a set of timing
attributes, e.g. execution time, deadline, etc.

The execution of a PFSM starts in the special control statestart. At a
given state, an outgoing transition may be executed only if its associated guard
evaluates totrue; in this case we say that the transition isenabled. In case
more than one outgoing transitions are enabled, one can be executed non-
deterministically. A filled circle denotes thestart control state and a semi-
filled circle denotes theexit control state (see Figure 8.2). Different attributes
of a PFSM, e.g. execution time, deadline etc. can be added to the graphical
representation of a PFSM model (e.g. Figure 8.7).

8.3.1 Run-to-Completion Pattern

In the run-to-completion (RTC) execution model, the component is executing
in indivisible steps, without interruption from any concurrent activity. The
key advantage of the RTC semantics is simplicity and guaranteed absence of

8.3 Component Modeling Patterns 57

Figure 8.2: PFSM specification of a component behavior

start

l3

exit

l2
l1

x>5x<5

x==3 update()

x<=5 activate()x>=5 sense()

Figure 8.3: An equivalent timed automata model with run-to-completion pat-
tern

deadlocks. Another advantage is that it might prune away unnecessary inter-
leavings, thus speeding up formal verification and bringingthe model closer
to implementation. The pattern is commonly used in high-level behavioral
modeling languages like Statecharts and its variants [8, 9]. In Statecharts, the
events are handled in an RTC manner, along possibly compoundtransitions
(i.e., paths of adjacent arrows).

Pattern description. In this pattern, we assume that the component execution
proceeds with changing states by firing enabled transitionsuntil it reaches a
state for which no outgoing transitions are enabled. At sucha point, the execu-
tion terminates.

To implement the pattern, one needs to translate the corresponding PFSM
into a timed automaton (TA). Run-to-completion can be implemented by intro-
ducing new edges in the automaton, which describe termination of component
execution. LetL be the set of locationsli, i ∈ {1, .., n} in the corresponding
TA. For each locationli ∈ L, we assume thatgj , j ∈ {1, ..,m} are the guards
of the respective outgoing edges. The exit edge fromli connectsli with the
exit location. The guard of theli exit edge is¬(

∨

j gj).

Example. Figure 8.2 represents a PFSM specification of a simple compo-
nent behavior obeying our run-to-completion pattern. Figure 8.3 describes the
equivalent behavior as a timed automaton, which serves as the pattern imple-
mentation. The statesS1, S2, andS3 of the PFSM are mapped onto locations

58 Paper A

Figure 8.4: PFSM specification of a component behavior with history

l1, l2, andl3, respectively, in the equivalent TA.

8.3.2 History Pattern

Execution historyis a core feature of behavior modeling techniques [10, 8].
The history mechanism of a behavior remembers which state was last visited
during execution, before exiting. This state can then be re-entered next time the
execution re-starts. In the hierarchical state-machine modeling of Statecharts
[8], an inner state may be exited and re-entered directly, byusing the history
mechanism. A similar approach is adopted in CHARON, a formalmodeling
framework for hybrid systems [10].

Pattern description. The pattern provides a mechanism to remember the ex-
ecution history in the behavioral models of components. Assuming the exe-
cution as a sequence of states, the pattern has means of remembering the last
state, or a particular state for that matter, reached duringexecution. Hence,
the next time, the execution can resume from the state storedthrough the his-
tory mechanism. Similar to Statecharts, in a PFSM representation, the history
mechanism is denoted as anH within a circle, and acts as the start state.

The pattern is implemented as a TA, by using an integer variableH, which
is updated along each edge connecting any states different from thestart, and
exit states, with the corresponding location identifier. Special edges connect
the start state to each of the states of interest, while appropriatelytesting the
variableH. In addition, exit edges connect each state of interest to the exit

control state. VariableH can be re-initialized appropriately when entering a
specified final location.

Example. Figure 8.4 represents a component behavior with history pattern.
The history is denoted by the encircledH symbol, in the start state. In Fig-
ure 8.5, we give the equivalent behavioral model as a TA, which implements
the history pattern. The states in Figure 8.4 are mapped ontolocations1, 2,
3 in the TA. VariableH is initialized to an initial location, i.e.,H = 1. The

8.3 Component Modeling Patterns 59

exitstart

321

x==3 update()

H==2

H==1

x>=5 activate(),H=1x>=5 sense(),H=2

Figure 8.5: A timed automata behavior with history pattern

edges that connect thestart location to locations1, and2 are due to the pat-
tern, and are guarded by conditionsH==1, andH==2, respectively. Also, the
history variableH is updated with the location identifier along each edge enter-
ing that respective location (edges that leave and enter thesame location may
be skipped, e.g., location 2 in Figure 8.5). Finally,H is re-initialized at location
3 of Figure 8.5.

8.3.3 Execution-Time Pattern

For embedded and real-time systems, it is often interestingto specify and ana-
lyze the best or worst execution time of components. The variation in execution
time also gives rise to, e.g., non-deterministic timing, jitter, and varying end-
to-end timing, which represent phenomena that are important to analyze (and
master) at design time. In the following, we introduce a pattern for specifying
the best and worst execution times of components.

Figure 8.6: Annotation of time attributes on PFSM models forexecution-time
pattern

Pattern description. In this pattern, we assume that the total accumulated
time of executing a component is within an interval where thelower and up-
per bounds are the shortest and longest possible execution times, respectively.
Hence, the component will produce output (data and trigger)at some time in-
stance, in the interval.

60 Paper A

exit
start delay

exec<=m

l3l2l1

exec>=1

exec=0

x==3 update()

x>=5 activate()x>=5 sense()

Figure 8.7: A timed automata behavior with execution-time pattern

We also assume that the component is annotated with an interval specifying
the lower and upper bound on the execution time. To implementthe pattern,
we use a dedicated clock, sayexec, which is used to measure the time since
the component was triggered. The clock is reset on the edge outgoing from
locationstart. We further introduce a location, saydelay, and an edge from
locationdelay to the exit location. Locationdelay is annotated with an invariant
overexec, corresponding to the upper bound of the execution interval, whereas
the exit edge is decorated with a guard corresponding to the lower execution
bound.

Example. Figure 8.6 represents a PFSM specified using the execution time
pattern. Its execution time is in the (closed) interval[l,m]. Figure 8.7 shows a
timed automaton implementing the pattern. Note that when the exit location is
reached, the value of clockdelay is in the interval[l,m].

8.4 Turntable Production Cell

In industry automation, a production cell is a part of an overall production sys-
tem — a factory. In this section, we present a formal model of aturntable pro-
duction cell, previously described in [11, 12]. The case study is designed using
the component framework described in Section 8.2 and the patterns introduced
in Section 8.3. By employing the patterns, we get simple and understandable
component models for our case-study, as shown in the following subsections.

The turntable cell is illustrated in Figure 8.8. It consistsmainly of a rotary
disc with four product slots. A product isloadedinto a slot at position 0, and
is then rotated to position 1 where it isdrilled. It is then rotated into position 2
where it istested, and finally to position 3 where it isunloaded(or possibly left
to be redrilled in the next cycle). The positions are alignedwith various tools
for loading, drilling, testing, and unloading.

Drilling and testing are the most critical tool positions, as the overall pur-

8.4 Turntable Production Cell 61

456789:;<= >?@A>

>?@A>

Figure 8.8: Schematic diagram of a Turntable system

Figure 8.9: Software architecture design layout of Turntable system

pose of the production cell is the verified drilling of products that flow through
the cell. All slots of the rotary disc may be occupied at the same time, and
products are processed in parallel. When a cycle completes,meaning that all
positions complete their functionality, the rotary disc rotates 90 degrees thus
positioning the products for the next phase of processing. As the rotation is
initiated by signals from tools that are not time deterministic, there is no fixed
period between rotation of the slots.

62 Paper A

Table 8.1: Common interface for componentsLoader, Driller, Tester, and
Unloader

Port Data type Description

status int An input representing the current known status of the prod-
uct in the tool position (0 indicates an empty slot).

result int An output that holds the status of the product after process-
ing.

start bool An input that initiates tool processing.
finished bool An output that signals when the tool controlled by the com-

ponent has completed its processing.

8.4.1 System Design

Following the informal description of the system, we can identify the system
as consisting of five main software components:Turntable, Loader, Driller,
Tester, andUnloader, corresponding to the functionalities of the cell. The
components interact with several sensors and actuators, such as position sen-
sors, clamping, and drilling devices, which do not require explicit modeling.
Further, as we focus on modeling and analysis of the functional and timing be-
havior of the system, we make assumptions regarding error situations, e.g., no
fault situations like broken tools, etc. This simplifies thesystem model without
loss of generality.

We now describe in detail the software components in terms oftheir inter-
faces and behaviors. Figure 8.9 shows the software architecture of the turntable
system. An interface of a component defines the access point to its behavior,
in our case in terms of data ports and trigger ports. TheTurntable component
acts as a central controller in the system, and all other components are indepen-
dent of each other and have a similar interface withTurntable. The common
interface approach supports reuse, as well as the flexibility to extend or modify
the system architecture. We define a common interface for each component,
exceptTurntable, as shown in Table 8.1.

Data flow is defined by connections between data ports, withinthe common
interfaces and with external sensors and actuators. The control flow is modeled
separately from the data flow, by connections between triggering ports. As
illustrated by Figure 8.9, the flow starts from theClock component and ends at
theUnloader.

The component behaviors are modeled as finite state machinesunder the

8.4 Turntable Production Cell 63

assumption of the modeling patterns defined in previous section. The history
and the run-to-completion patterns are combined to achievethe modeled finite
state machine behavior of the components, eventhough the components will
be executed in a time-triggered fashion. The execution timepattern is applied
to model the time required to execute each component. As such, the models
present intuitive conceptual modeling retaining the analysis capability of the
underlying formalism, i.e., timed automata. The modeled behaviors execute
under the semantics of SaveCCM component model and the semantics of the
patterns. In the following, we describe each of the component behaviours along
with their associated functions and predicates, defined in terms of variables
associated with the data and trigger ports of the corresponding component.

The Turntable Component

The interface of the turntable controller consists of two trigger ports, a sensor
input, an actuator output, and four instances of thecommon interface. A clock
component generates trigger signals to periodically activateTurntable, which
in turn activates theLoader component. The actuator outputaRotate is con-
nected to a motor turning the rotary disc, and the sensor inputsRotated senses
when the rotation is completed. The behavior of theTurntable component
coordinates the rotation of the disc with the execution of other components.

Initially it rotates the disc, and sets ports of other components appropri-
ately. It then waits for the other components to signal that their processing has
stopped, before restarting the main loop by turning the discagain1. Starting
from an empty system, it will take at least four rotations forall components
to work in parallel. The first rotation only starts processing of theLoader,
which then loads the first product onto the table. In additionto controlling
the rotation of the disc, the component also maintains status information for
each position. The status information is shifted one step each time the table
rotates. The detailed behavior is modeled in Figure 8.10, interms of associ-
ated functions and predicates (listed in Figure 8.11). The internal variables
statusi, starti, finishedi, resulti represent the data values of the corresponding
commoninterface ports of positioni.

1Hence, even thoughTurntable is triggered periodically, the period of the rotation of thedisc
depends on the processing time in the four slots.

64 Paper A

Figure 8.10: Behavioural modelTurntable component.

rotateSlots() is
temp : int := status0
aRotate := true

status0 := status3 ; status3 := status2
status2 := status1 ; status1 := temp

end

startWork() is
for positions i do starti := true

end

getResult() is
for positions i do statusi := resulti

end

clear() is
for positions i do starti := false

end

allCompleted iff ∀i : finishedi

Figure 8.11: Functions and predicates used byTurntable.

The Loader Component

As mentioned,Loader shares a common interface with, and receives a trigger,
fromTurntable. It also has a trigger output to theDriller, sensor inputsLoaded,
and actuator outputaLoad. The behavioral model is shown in Figure 8.12.
When triggered the component checks the status of the slot atposition 0. If a
previous product is present, forwarded by theUnloader for reprocessing, the
product is left in the slot for repeated drilling. Otherwisea new product is
loaded into the slot, to be drilled in the next cycle.

The Driller Component

Figure 8.13 shows a model of theDriller component behavior, which interacts
with actuators and sensors for clamping and drilling the product. When trig-
gered the component checks the status of the slot at position1. If empty, the
driller does nothing, otherwise the product in the slot is fixated (clamped), the
drill starts spinning and is lowered. When the drilling is completed, the drill is

8.4 Turntable Production Cell 65

Figure 8.12: Behavioral model ofLoader component.

Figure 8.13: State machine model of theDriller component.

lifted and stopped, and the status of the slot is updated accordingly.

The Tester Component

The behavioral model ofTester is shown in Figure 8.14. Its input trigger is
received fromDriller, and its output trigger output is sent toUnloader. Similar
to the driller, it interacts with actuators and sensors to move a tool into the
product. The tool of the tester is a sensorsTesterDown, that measures the hole
within 2 time units since the beginning of the test process. When triggered the

Figure 8.14: State machine model of theTester component.

66 Paper A

Figure 8.15: State machine model of theUnloader component.

component checks the status of the slot at position 2. If empty, it does nothing,
otherwise it measures the hole drilled in the product, and updates the status
according to its verdict.

The Unloader Component

Figure 8.15 shows a model of theUnloader behavior. The status of the drilled
product at position 3 indicates the verdict determined by the previous tester
component. If the product was faultily drilled, it is not unloaded, otherwise,
the component activates an actuator to unload the product. If the slot is empty,
as in initial rotations, theUnloader does nothing.

8.4.2 Modeling a Closed System

For verification purposes we define a closed system, that is, asystem with no
inputs or outputs. A closed model of the turntable is createdby composing
the turntable controller software with an UPPAAL timed automata model of the
environment that is affected by actuators, and affects sensors. The software
architecture of the turntable controller is presented in Figure?? (as it appears
in the SaveCCM syntax in the Save-IDE). The behavior of each component, as
modeled in the previous section, is translated into TA, following the modeling
patterns presented in section 8.3.

The environment of the turntable control software is modeled with appro-
priate abstractions of the complex real world aspects, in such a way that the be-
havior (and timing) of the real physical environment is included in the model.
Further, as mentioned earlier, the model is done under the assumption of nor-
mal behavior, meaning no exception handling or error conditions such as faulty
sensors or actuators may occur. The environment of the turntable system is
modeled as timed automata (TA) in the UPPAAL tool. The environment essen-
tially consists of the actuators and sensors associated with the system and its
components. Due to space limitation, we leave out some of theenvironment

8.4 Turntable Production Cell 67

Figure 8.16: Control structure and system architecture of the turntable system
as modeled in Save-IDE.

68 Paper A

automata, and we refer the reader to our recent work [12] for amore detailed
environment model.

The communication interface between the system and its environment is
facilitated by shared variables. These variables correspond to the communica-
tion ports between the modeled system software and its sensors and actuators,
as well as test automata that drive the verification process.The interface, and
its initialization, is given in Table 8.2. To simplify the modeling process, and
reduce the state space of the model, all aspects of a system are not modeled
explicitly. Instead, models focus on critical aspects of the system. The envi-
ronment model used for the formal verification of the turntable consists of the
behaviorsDisc, Clamp, Drill, andTestTool.

The drilling tool is modeled in terms of its two controllableparts:Clamp

andDriller. The behavior of these environment models are presented in Fig-
ures 8.17 and 8.18, respectively. The function of the clamp is to lock the prod-
uct in place so that the drilling can be carried out. The timedautomaton is ini-
tially in the locationUnLocked, and transitions to the locationLocking when
the edge guardaClamp goes high (value becomes 1). It can remain in the loca-
tion Locking as long as the associated invariantclaCLK 6 ClampTime holds.
The same happens when the clamp is in locationUnLocking. This models the
continuous behavior of the Clamp.

The function ofDriller is to make holes in the product. The timed au-
tomaton (Figure 8.18) is initially in theDrillUp location, and transitions to
DrillerMovingDownwhen the guardaDrillMoveDown goes high. It can remain
in this location as long as the associated invariantdrillCLK 6 MaxDownTime

holds to model the maximum time the drilling can take place. The same hap-
pens when the drill is in locationDrillerMovingUp. The driller moves out from

Table 8.2: Interface of the environment components

TA Variables Data type Initially
Disc aRotate, sCompleted bool false

Clamp aClamp, bool false

sLocked, sUnlocked
Drill aDrillDown, aDrillUp bool false

sDrillDown, sDrillUp
TestTool aTesterDown, aTesterUp bool false

sTesterDown, sTesterUp

8.4 Turntable Production Cell 69

UnLocking

claCLK<=ClampTime Locked

Locking

claCLK<=ClampTime

UnLocked !aClamp
urgent
claCLK=0, sLocked=false

claCLK>=ClampTime
sUnlocked=true

claCLK>=ClampTime
sLocked=true

aClamp
urgent
claCLK=0, sUnlocked=false

Figure 8.17: Behavior of theClamp environment model.

DrillerMovingUp

drillCLK<=MaxUpTime DrillDown

DrillerMovingDown

drillCLK<=MaxDownTime

DrillUp aDrillUp
urgent
drillCLK=0, sDrillDown=true

drillCLK>=MinUpTime
sDrillUp=true

drillCLK>=MinDownTime
sDrillDown=true

aDrillMoveDown
urgent
drillCLK=0, sDrillUp=false

Figure 8.18: Behavior ofDrill of the environment model.

the continuous behavior of drilling down or drilling up after MinDownTime or
MinUpTime, respectively.

TheTestTool works similarly to the drill, moving down by command from
an actuator until a sensor is activated, and then moving up again by com-
mand from a different actuator until the corresponding sensor is activated.
Also Disc is modeled with two states,wait andturning. The transition from
wait to turning is initiated by the actuatoraRotate, clears the sensor value
sCompleted, and resets a clock ensuring the transition back towait within
TURN TIME time units, when the sensor valuesCompleted is also set.

8.4.3 Requirements and Verification

In this section, we present the verification aspects of the turntable system. The
work has been performed in the SAVE-IDE, an integrated development envi-
ronment for SaveCCM. For modeling, the Save-IDE provides graphical editors
for architectural and behavioral modeling. For system (symbolic) simulation
and verification by model-checking, the tool UPPAAL PORT[13, 2], an exten-
sion of UPPAAL [6], is integrated through a plug-in. The representation ofthe
system architecture and component behaviors is represented in the SaveCCM
XML file format [1], and the environment is stored in an UPPAAL XML file.
UPPAAL PORT connects system inputs and output to global variables in the
environment model.

70 Paper A

A set of properties concerning the safety and liveness of theTurntable con-
trol system have been verified. In UPPAAL, liveness properties can be specified
asleads toproperties in the formP P ′, meaning that if a system has reached
a state withP satisfied, it will eventually reach a state whereP ′ is satisfied.
We discuss a few representative properties below. The first property specified
is:

A�¬deadlock (8.1)

Property 8.1 is a safety property, specifying the absence ofdeadlock sit-
uations. A deadlock occurs when the system can not progress further. In a
real-time system, this is often caused by two tasks mutuallyexcluding each
other from acquiring a resource (e.g. semaphore). It can also be caused by a
fault in the environment model. The property is verified as listed above. The
A is a universal quantifier, and refers to the property to be verified on all ex-
ecution paths of the statespace. The box� is a universal quantifier over all
states in a path. The states are defined by values of all variables as well as lo-
cations of automata. The keyworddeadlockrepresents a state in the execution
where there is no outgoing (delay or action) transition. Theturntable system is
verified to bedeadlock free.

The absence of a deadlock does not mean that the system is guaranteed
to make progress. The control system could be continuing with the compo-
nent trigger without the components progressing through their respective finite
state machines. The following set of properties verify thatthe turntable system
is progressing. It checks that the central componentTurntable continuously
moves betweenIdle andTurning states. This is specified usingleads toproper-
ties. The diamond♦ is an existential quantifier over states in the path, meaning
that the property is eventually satisfied by a state in the path (all paths in this
case).

A♦Turntable.Turning Turntable.Turning Turntable.Idle (8.2)

Turntable.Idle Turntable.Turning

The properties 8.2 establishes that the componentTurntable always pro-
gresses. This is possible only when the individual components too are pro-
gressing following the design strategy. The progress of individual components
can be verified as below.

Loader.Ready Loader.Finished (8.3)

The above leads-to property 8.3 verifies thatLoader always progresses. We
can verify a similar property for all other components. Further, we verify an

8.5 Related Work 71

important safety property stating that when theTurntable component is exe-
cuting, no other components are executing:

A�(Turntable.Turning ⇒ (8.4)

(Loader.Ready ∧ Tester.Ready ∧ Unloader.Ready ∧ Driller.Ready))

Property 8.4 models the fact that while theTurntable is turning the other
components are just waiting in theirReady location, according to the design
strategy.

Property 8.5 establishes a state correspondence between anenvironment
component and the corresponding SaveCCM component. The property ensures
that whenever theTurntable is not turning, theDisc component is not turning
either:

A�(¬Turntable.Turning ⇒ ¬Disc.Turning) (8.5)

The next property (8.6) specifies that the control model never sends two
conflicting signals to its environment. Here, it checks thatthe system does not
activate both actuators associated with theDriller component, simultaneously,
as they move theDrill in opposite directions:

A�¬(Driller.aDrillDown ∧ Driller.aDrillUP) (8.6)

8.5 Related Work

There are a number of component based development (CBD) frameworks for
embedded systems described in the literature. The BIP framework and the
toolkit IF [14] are intended for predictable embedded systems development by
supportingcorrectness-by-constructionand compositional verification. While
BIP offers bottom-up design of systems, our approach supports CBD in a bit
more pragmatical traditional top-down design, with support of modeling in
Save-IDE [15] and formal verification using the UPPAAL PORTtoolkit [13, 6].

The Charon toolkit [10] supports modular specification of embedded sys-
tems, based on the notions ofagentsand modes, for architectural and be-
havioral specifications, respectively. Our behavioral specification language of
components shares some features of the modes in Charon, but without hierar-
chy, and in our approach the execution history of a componentis provided by
using a simple design pattern.

The Statemate toolkit [16] is an early working environment for the devel-
opment of complex reactive systems. Modularity of the system development

72 Paper A

is provided in terms of differentviews, such as structure, functionality, and
behavior. Our approach for behavior specification of components (modules in
Statemate) is similar to the Statecharts [17], the behavioral language of Statem-
ate. Though not hierarchical, our FSM notation for component behaviors (see
Section 8.3), combined with the patterns proposed in this paper, is similar to
the Statechart features run-to-completion and execution history.

The case study of Turntable production system, presented inthis paper, has
previously been analyzed using different methods and tools. In [18], a turntable
model is specified inχ [19], a simulation language for industrial systems, and
translated into Promela, the input language of the Spin model-checker to verify
several properties of the model. In [11], aχ model of the turntable system was
translated into the specification languages of three model-checkers: CADP,
Spin, and UPPAAL comparing both the ease of conversion, the expressiveness
of each of the specification languages, and the abilities andperformances of
the respective model-checkers. In [20], the turntable production system was
implemented in the COMDES-II component-based software framework. The
authors developed a semantic transformation of the COMDESS-II model into
an UPPAAL timed automata model, allowing for formal verification of a set of
properties similar to those in [11].

8.6 Conclusion

In this paper, we have presented how the SaveCCM component-based approach
for development of embedded systems has been applied in a case study, to
model and verify an industrial turntable production system. We have presented
a component-based system architecture model, as well as thedetailed behav-
ioral models of the system components. To produce a manageable and easy-to-
grasp design model of the turntable, we have used three simple, but useful, de-
sign patterns. The finite behaviors of components are specified in a finite state
machine notation, using two design patterns for encoding run-to-completion
semantics, and history states. Timing is introduced using athird design pattern
for specifying the execution time and order of components. We also describe
how the design specifications are syntactically transformed into the modeling
framework used in SaveCCM, for further analysis using UPPAAL PORT.

Throughout the case study, we have been using Save-IDE and its connec-
tion to UPPAAL PORT, for editing models, as well as for performing (symbolic)
simulation, and verification by model-checking. As a modeling result, we be-
lieve that we have produced a very intuitive component-based model of the

8.6 Conclusion 73

turntable system. As verification results, we have shown that the system model
satisfies all the requirements specified for the system, formalized as safety and
liveness properties in TCTL.

As future work, we intend to develop an enriched behavioral modeling lan-
guage and formal analysis support for the successor of SaveCCM, called Pro-
Com. The language will be based on the design patterns described in this pa-
per, and possibly on other newly developed, more involved patterns that might
prove useful in simplifying both the formal models and theirverification.

Bibliography

[1] J. Carlson, J. Håkansson, and P. Pettersson. SaveCCM: An analysable
component model for real-time systems. InProceedings of the 2nd Work-
shop on Formal Aspects of Components Software (FACS 2005), Electronic
Notes in Theoretical Computer Science. Elsevier, 2005.

[2] J. Håkansson and P. Pettersson. Partial order reduction for verification of
real-time components. InProc. of 1st International Workshop on Formal
Modeling and Analysis of Timed Systems, 2007.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison Wesley Profes-
sional Computing. AddisonWesley Publishing Company, Reading, Mas-
sachusetts, 1995.

[4] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
SAVE approach to component-based development of vehicularsystems.
Journal of Systems and Software, 80(5):655–667, May 2007.

[5] Rajeev Alur and David L. Dill. A theory of timed automata.Theoretical
Computer Science, 126(2):183–235, 1994.

[6] K.G. Larsen, Paul Pettersson, and Yi. Wang. Uppaal in a nutshell. Int. J.
on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[7] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on
UPPAAL. In Marco Bernardo and Flavio Corradini, editors,Formal Meth-
ods for the Design of Real-Time Systems: 4th International School on
Formal Methods for the Design of Computer, Communication, and Soft-
ware Systems, SFM-RT 2004, number 3185 in LNCS, pages 200–236.
Springer–Verlag, September 2004.

75

76 Bibliography

[8] D. Harel and E. Gery. Executable object modeling with statecharts.IEEE
Computer, 30(7):31–42, July 1997.

[9] Bran Selic. An efficient object-oriented variation of the statecharts for-
malism for distributed real-time systems. InProceedings of the 11th IFIP
International Conference on Computer Hardware Description Languages
and their Applications - CHDL ’93, volume A-32 ofIFIP Transactions,
pages 335–344. North-Holland, 1993.

[10] R. Alur, D. Thao, J. Esposito, H. Yerang, F. Ivancic, V. Kumar, P. Mishra,
G.J. Pappas, and O. Sokolsky. Hierarchical modeling and analysis of
embedded systems.Proceedings of the IEEE, 91(1):11–28, January 2003.

[11] E. Bortnik, N. Trčka, A.J. Wijs, S.P. Luttik, J.M. van de Mortel-Fronczak,
J.C.M. Baeten, W.J. Fokkink, and J.E. Rooda. Analyzing aχ model of
a turntable system using Spin, CADP and Uppaal.Journal of Logic and
Algebraic Programming, 65(2):51–104, 2005.

[12] Davor Slutej. Component-based modeling and analysis of embedded sys-
tems. Master’s thesis, Department of Computer Science and Engineering,
Mälardalen University, September 2008.

[13] John Håkansson, Jan Carlson, Aurelien Monot, Paul Pettersson, and Da-
vor Slutej. Component-based design and analysis of embedded systems
with uppaal port. In6th International Symposium on Automated Tech-
nology for Verification and Analysis, pages 252–257. Springer–Verlag,
October 2008.

[14] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heteroge-
neous real-time components in BIP. InSEFM, pages 3–12, 2006.

[15] Sverine Sentilles, John Håkansson, Paul Pettersson,and Ivica Crnkovic.
Save-ide an integrated development environment for building predictable
component-based embedded systems. InProceedings of the 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2008), September 2008.

[16] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli,Michal
Politi, Rivi Sherman, Aharon Shtull-trauring, and D Mark Trakhtenbrot.
Statemate: A working environment for the development of complex re-
active systems.IEEE Transactions on Software Engineering, 16, 1991.

[17] David Harel. Statecharts: A visual formalism for complex systems.Sci-
ence of Computer Programming, 8:231–274, 1987.

[18] V. Bos and J.J.T. Kleijn. Automatic verification of a manufacturing sys-
tem. Robotics and Computer Integrated Manufacturing, 17:185–198,
2001.

[19] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, and R.R.H. Schif-
felers. Syntax and consistent equation semantics of hybridchi. Journal
of Logic and Algebraic Programming, 68(1-2):129 – 210, 2006.

[20] Xu Ke, P. Pettersson, K. Sierszecki, and C. Angelov. Verification of
comdes-ii systems using uppaal with model transformation.Embedded
and Real-Time Computing Systems and Applications, 2008. RTCSA ’08.
14th IEEE International Conference on, pages 153–160, Aug. 2008.

Chapter 9

Paper B:
Formal Semantics of the
ProCom Real-Time
Component Model

Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlson, Cristina Seceleanu, Paul
Pettersson
In proceedings of the 35th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), pages 478-485, August, 2009.

79

Abstract

ProCom is a new component model for real-time and embedded systems, tar-
geting the domains of vehicular and telecommunication systems. In this paper,
we describe how the architectural elements of the ProCom component model
have been given a formal semantics. The semantics is given ina small but
powerful finite state machine formalism, with notions of urgency, timing, and
priorities. By defining the semantics in this way, we(i) provide a rigorous and
compact description of the modeling elements of ProCom,(ii) set the ground
for formal analysis using other formalisms, and(iii) provide an intuitive and
useful description for both practitioners and researchers. To illustrate the ap-
proach, we exemplify with a number of particularly interesting cases, ranging
from ports and services to components and component hierarchies.

9.1 Introduction 81

9.1 Introduction

Designing embedded systems (ES) in acomponent-basedfashion has become
an attractive approach for embedded software development.With benefits
ranging from simplification and parallel working to pluggable maintenance
and reuse, the financial gains are significant. In this context, systems con-
sist of identifiable, relatively independent and generallyreplaceable units of
composition, calledcomponents, which encapsulate complex functionality.

Once a component is defined, it can be distributed and used in other ap-
plications. Examples of component models include JavaBeans [1], Koala [2],
SOFA [3, 4], ProCom [5, 6] etc. Out of these, ProCom is a recently proposed
component model tailored for developingreal-time ES in the vehicular and
telecom domains.

To achievepredictability throughout the development of the ES, the de-
signer needs to employ a design framework equipped with analysis methods
and tools that can be applied at various levels of abstraction, in order to pro-
vide estimations and guarantees of relevant system properties. Usually, embed-
ded system designers deal with two kinds of requirements.Functionalrequire-
ments specify the expected services, functionality, and features, independent of
the implementation.Extra-functionalrequirements specify the use of available
resources. For the same functional requirements, extra-functional properties
can vary depending on a large number of factors and choices, including the
overall system architecture and the characteristics of theunderlying platform.
Consequently, ES modeling must deal with both computation and physical con-
straints, which calls for an underlying semantic frameworkthat abstracts away
from both physical notions of concurrency and from all physical constraints on
computation.

In this paper, we formalize the semantics of ProCom [5] architectural el-
ements, while identifying potential trouble spots in modeling, which we de-
scribe in detail in Section 9.2.2. To tackle the mentioned modeling issues of
ES, ProCom consists of two distinct, but related, layers, which expose a num-
ber of modeling characteristics that pose challenges to thesystem designer. The
upper layer, called ProSys, serves the modeling of the ES as anumber of active
and concurrent subsystems, communicating by message passing. The lower
layer, ProSave, addresses the internal design of a subsystem down to primitive
functional components implemented by code. ProSave components are passive
and the communication between them is based on a pipes-and-filters paradigm.
Bridging the semantic gap between the two communication paradigms is one
particular modeling challenge that we show how to solve within the proposed

82 Paper B

ProCom formalization.
Another distinguishing characteristic of ProCom is the possibility to model

both fully implemented components, described internally by code, and also
design-time components, possibly modeled internally as inter-connected ProSave
components that might co-exist with the implemented components.

In order to rigorously describe the above mentioned and all of the other be-
havioral features of ProCom models, and to provide support for formal analy-
sis, we use an underlyingfinite state machine(FSM) formalism, with notions of
urgency, timing and priority. The formal semantics of the FSM language, hence
of the architectural elements of our component model, is expressed in terms of
timed automatawith priorities [7] and urgent transitions [8]. However, inthe
following, we chose to present just some of the most interesting cases, like
the formal description of services, component hierarchy, and ProSys-ProSave
linking. The formalism is intended to provide a high-level,abstract representa-
tion of ProCom semantics, understandable and appealing to both formalists and
engineers. Our solution is based on a small semantic core to which the synthe-
sis of ProCom-based models of real-time embedded systems should conform.
Note that, although it sets the grounds for formal verification, our semantic
descriptions focus only on describing the correct behaviorof ProCom archi-
tectural elements, without consideration for efficiency informal verification of
the resulted models.

The remainder of the paper is organized as follows. In Section 9.2, we
briefly recall the ProCom component model and identify some of its partic-
ularities. Section 9.3 presents our underlying formal notation and the actual
formalization of the selected ProCom architectural elements. The compari-
son to related work is carried out in Section 9.4, whereas in Section 10.6, we
conclude the paper.

9.2 The Component Model

9.2.1 ProCom

The ProCom component model [6] is specifically developed to address the par-
ticularities of the embedded systems domain, including resource limitations
and requirements on safety and timeliness.

To achieve efficiency, ProCom components are design-time entities that
can comprise information about interfaces, internal structure, code, models,
attributes, etc., rather than discernable, concrete unitsin the final system. Ap-

9.2 The Component Model 83

plications are build as a collection of interconnected components, and in the
later stages of development this component-based design istransformed into
executable units, such as tasks that can be handled by traditional real-time op-
erating systems.

Another basis of the ProCom development approach is that various types
of analysis are carried out throughout the development process, in order to
ensure that the application will meet requirements on resource usage, safety
and timeliness. Early analysis is particularly emphasized, as it allows potential
problems to be discovered when the cost of resolving them is relatively low.
At early stages, analysis is mainly based on models and estimates, and in later
stages on, for example, source code and concrete design parameters. A key
concern is to provide means to perform analysis on systems where fully de-
veloped parts, for example reused components, co-exist with parts in an early
stage of development.

To address the different concerns that exist on different levels of granular-
ity, spanning from the overall architecture of a distributed embedded system, to
the details of low-level control functionality, ProCom is organized in two dis-
tinct, but related, layers: ProSys and ProSave. In additionto the difference in
granularity, the layers differ in terms of architectural style and communication
paradigm.

In ProSys, the top layer, a system is modeled as a collection of communicat-
ing subsystemsthat execute concurrently, and communicate by asynchronous
messages sent and received at typed output and inputmessage ports.

Contrasting this, the lower lever, ProSave, consists of passive units, and
is based on a pipes-and-filters architectural style with an explicit separation
between data and control flow. The former is captured bydata portswhere
data of a given type can be written or read, and the latter bytrigger portsthat
control the activation of components. Data ports always appear in a group
together with a single trigger port, and the ports in the samegroup are read and
written together in a single atomic action.

Figure 11.1 (a) shows the graphical representation of a ProSys subsystem
with one input port and two output ports, and (b) shows a simple ProSave
component with one input port group and two output port groups. Triangles
and boxes denote trigger- and data ports, respectively.

In addition to simple connections from output- to input ports, ProSave con-
tainsconnectorsthat provide detailed control over the data- and control flow,
including forking, joining and dynamically changing connection patterns.

Both layers are hierarchical, meaning that subsystems as well as compo-
nents can be nested. The way in which the two layers are linkedtogether is that

84 Paper B

Figure 9.1: A ProSys subsystem and a simple ProSave component.

a primitive ProSys subsystem (i.e., one that is not composedof other subsys-
tems) can be further decomposed into ProSave components. Atthe bottom of
the hierarchy, the behavior of a primitive ProSave component is implemented
as a C function.

For the purpose of analysis, it is possible to associate attributes with compo-
nents and subsystems to specify different functional and non-functional char-
acteristics. Some attributes can be represented by a singlenumber, e.g., worst-
case execution time or static memory usage, but in the case ofmore com-
plex functional and extra-functional behavior (such as timing and resource
consumption), a dense time state-based hierarchical modeling language called
REMES [9] is used.

9.2.2 Particularities of ProCom

The ProCom component model imposes restrictions on the behavior of its con-
structs, which should be addressed and formally specified, in order to achieve
predictable behavior. This section recalls the informal behavioral semantics
of specific modeling constructs in ProCom: services, connections, component
hierarchy and building active subsystems out of passive components.

The functionality of a ProSave component is captured by a setof services.
The services of a component are triggered individually and can execute con-
currently, while sharing only data. A service consists of one input port group
and zero or more output port groups, and each port group consists of one trig-
ger port and a number of data ports. An input port group may only be accessed

9.2 The Component Model 85

at the very start of each invocation, and the service may produce parts of the
output at different points in time. The input ports are read in one atomic step,
and then the service switches to an executing state, where itperforms internal
computations and writes at its output port groups. The data and triggering of
an output group of a service are always produced at the same time. Before
the service returns to idle, each of the associated output port groups must have
been activated exactly once. This restriction serves for tight read-execute-write
behavior of a service. Since a service is a complex concept, its formalization
is highly needed.

In the ProCom language,connectionsandconnectorsdefine how data and
control can be transferred between ProSave components. Since ProSave com-
ponents can not be distributed, the migration of data or trigger over a con-
nection is loss-less and atomic. However, the trigger signals are not allowed
to arrive to any port before all data have arrived to all end destinations. This
should hold also in case when the data passes through a connector. ProSave
follows a push model for data transfer, so whenever there is data produced on
an output port, it is forwarded by the connection to the inputdata port and
stored there. In case more data (trigger) connections are enabled at the same
time, the order in which they are taken is non-deterministic. Let us assume the
following modeling scenario: three components A, B and C, are interconnected
via a Data-Fork connector (see Figure 9.2). The Data-Fork connector is used
to split data connections, so data written to the input data port is forwarded
to the output ports. When component A has finished executing,component
B should start executing. However, since the input trigger port of component
B is directly connected to the output trigger port of component A, while the
data is not transferred directly, but via a connector, thereis a risk that the trig-
ger signal may reach component B before the data has arrived.Hence, such a
scenario in which trigger might arrive before data should beprohibited by the
formalization.

Internally, a ProSave component may be described by code or other inter-
connected sub-components. When a trigger of an output groupis activated
internally, all the data (assuming it is ready internally) and the trigger are
atomically transferred to the corresponding output port groups of the enclosed
component. This contributes to the fact that, externally, there is no difference
between components, which allows the coexistence of fully developed compo-
nents and early design units.

ProSys systems are active entities that communicate via message passing.
In contrast, the communication between ProSave componentsis based on the
pipes-and-filters paradigm. Internally, a ProSys system can be built out of other

86 Paper B

A

B

Data

Fork

C
...

Figure 9.2: Example of a critical modeling of data and trigger transfer in Pro-
Com.

ProSys (sub)systems. At the lowest level of ProSys hierarchy, a subsystem
can be internally modeled by ProSave components. In order tobuild active
subsystems out of passive components, we useclocks. A clock is a special type
of construct that has one output trigger port, which is activated periodically at
a given rate. Clocks are not allowed to drift, but it is not assumed that all
clocks are initially synchronized. Additionally, a mapping is needed between
the message passing in ProSys and the trigger/data communication used in
ProSave.

Given the above, we identify the following issues that have motivated our
formalism and that we show how to solve in Section 9.3:

• The data and triggering of an output group of a service must always be
produced atomically, and each of the service output port groups must
have been activated exactly once before the service returnsto idle state.

• All the data must arrive to its end destinations before the trigger signal.
This rule should also hold in cases when data is transferred through a
connector.

• Coexistence of both fully implemented components having well known
inner structure, and early design black box components, should be sup-
ported.

• Bridging the two communication paradigms: message passingin ProSys
and pipes-and-filters in ProSave.

9.3 Formal Semantics of Selected ProCom Architectural Elements 87

9.3 Formal Semantics of Selected ProCom Archi-
tectural Elements

To describe the behavioral semantics of ProCom architectural elements, we in-
troduce a high-level formalism as an extension of finite state machine (FSM)
notation and semantics. Our FSM formalism is enriched with additional no-
tions of urgency, priority and implicit timing, necessary for modeling seman-
tics of component-based architectures of real-time systems. The formalism
is small, but powerful enough to grasp all the information that is needed for
proper formalization of ProCom. In addition, we believe that the language is in-
tuitive enough to be used by developers/engineers, but alsoformalists/researchers.
Yet this has to be proved by experiments that we leave for future work.

The FSM formalism and related graphical notation are introduced formally
below.

9.3.1 Formalism and Graphical Notation

Let V be a set of variables,G a set of boolean conditions (orguards) overV ,
B the set of booleans,A a set of variable updates, andI a set of intervals of
the form [n1, n2], wheren1 ≤ n2 andn1, n2 are natural numbers. Our FSM
language is a tuple〈S, s0, T,D〉, whereS is a set of states,s0 ∈ S is the initial
state,T ⊆ S ×G×B ×B ×A× S is the set of transitions between states, in
whichB×B represent priority and urgency (described below), andD : S → I

is a partial function associating delay intervals with states.
The FSM language relies on a graphical representation that consists of the

usual graphical elements, that is, states and transitions labeled with guards,
priority, urgency, and updates, see first two columns of Figure 9.3. A transi-
tion can be eitherurgentor non-urgent, and it can havepriority or no priority.
As shown in Figure 9.3, a transition may be decorated with thenon-urgency
symbol *, and/or the priority symbol↑. Note that, a transition that is not anno-
tated with * is urgent. A state can be associated with a delay interval, which is
graphically located within the state circle.

Intuitively, the execution of an FSM starts in the initial state. At a given
state, an outgoing transition may be taken only if it isenabled, i.e., its associ-
ated guard evaluates totrue for the current variable values. If from the current
state, more than one outgoing transition is enabled, one of them is taken non-
deterministically, and prioritized transitions are preferred over non-prioritized
transitions. In case all enabled outgoing transitions of a state are non-urgent,
it is possible to delay in the state. On the other hand, if there are any outgoing

88 Paper B

Informal FSM TA

non-urgent transition
c?

a?

b?

d?

urgent transition

urgent transition with priority

non-urgent transition with priority

state with delay interval [n1,n2]

clki n2

clki n1

≤

≥clki 0=
[n1,n2]

∗

↑

∗ ↑

initial state

state

urgent transition with guard

x==5 and update x=x+1
x==5 x=x+1 x==5 a? x=x+1

Figure 9.3: The graphical notation of the FSM elements and their translation
into TA.

urgent enabled transitions, one of them must be taken immediately. Thus, the
notions of priority and urgency avoid unnecessary non-determinism among en-
abled transitions, clarifying the modeling aspects and possibly improving the
performance of formal analysis. A state that is associated with a delay interval
[n1, n2] may be left anytime betweenn1 andn2 time units after it is entered.

In order to form a system, FSMs may be composed in parallel. The seman-
tic state of the composed system is the combined states and variable values of
the FSMs. The notions of urgency and priority are applied globally, and time
is assumed to progress with the same rate in all FSMs.

9.3.2 Formal Semantics of the FSM Language

In this section, we formally define the semantics of our FSM language using
timed automata (TA) [10] with priorities [7] and urgent transitions [8] as a
semantic domain. The translation of each FSM element to TA isdepicted in

9.3 Formal Semantics of Selected ProCom Architectural Elements 89

Figure 9.3. The FSM language has four kinds of transitions: urgent transition,
urgent transition with priority, non-urgent transition, and non-urgent transition
with priority. In TA we introduce four channels:a, b, c, andd. Channelsa and
b are urgent, and channelsb andd have higher priority than channelsa andc.
Accordingly we map the transitions of FSMs into TA edges labeled with the
appropriate channels, as defined in Figure 9.3. The translated TA edges need
a timed automaton offering synchronization on the complementary channels
(e.g.,a! complementary toa?), depicted in Figure 9.4.

Each FSM state results into a TA location. For every FSM with delay states,
a clockclki is introduced. Accordingly, an FSM state with delay interval [n1,
n2] is translated into a corresponding TA location with invariant clk i ≤ n2.
The clock is reset on all ingoing edges and the guards of all outgoing edges are
conjuncted withclk i ≥ n1.

The system represented by a composition of FSMs can be translated into a
network of TA in two steps. First, each FSM is translated intoa timed automa-
ton and then all TA are composed into a network together with the automaton
of Figure 9.4.

a
! b!

d!

c!

chan c,d;

urgent chan a,b;

priority a,c < b,d

Figure 9.4: The automaton used for synchronization.

9.3.3 Overview of ProCom Formalization

In the formalization, each data and message port is represented by a variable
with the same type as the port. The variables are storing the latest value written
to the ports, respectively. Likewise, a trigger port is represented by a boolean
variable determining the activation of that port. Ports of composite components
are represented by two variables, corresponding to the portviewed from outside
and from inside. Accordingly, in the ProCom formalization we assume the
following set of shared variables through which the FSMs communicate:

90 Paper B

• vdi
: variable associated with a data portdi of corresponding type.

• vti : boolean variable associated with a trigger portti indicating whether
the port is triggered, default false.

• vmi
: variable associated with a message portmi of corresponding type.

• v′di
andv′ti : internal variables for ports of composite components, corre-

sponding to port variablesvdi
andvti , respectively.

Additionally, we letε be the null value of any type indicating that no data
is present on a data or message port.

The complete formalization of ProCom is available in [11]. The semantics
of all ProCom elements is defined as a translation to the FSM language, and the
semantics of an entire ProCom system is defined by the parallel composition
of FSMs for the individual constructs.

In the following, we chose the most representative, and semantically chal-
lenging, architectural elements of ProCom, and present their formalization.
The elements are: services, connections, components, clocks and message
ports.

9.3.4 Services

Assume a ProSave component with one service, sayS1 and letS1 consist of
one input port group and two output port groups (Figure 9.5 (a)). The infor-
mal semantics of a service in ProSave is described in Section9.2. The formal
semantics of a service, in this case,S1, is described below and shown in Fig-
ure 9.5 (b).

Letw1 andw2 be boolean variables corresponding to the output port groups,
respectively; the variables indicate whether the respective group has been acti-
vated or not. By associating boolean variables with the output port groups, we
ensure that the groups are written only once during an execution instance of
a service. While being in anExecute state a service may yield into two error
scenarios:

• A service might try to go back to theIdle state before all output groups
have been activated. In the formal semantics of a service this is depicted
by the stateError 1.

• During execution, a service might try to activate an alreadyactivated
output port group. This problem is captured by the stateError 2.

9.3 Formal Semantics of Selected ProCom Architectural Elements 91

(b)

Service

S1

d2

d3

t1

d4

d0

d1

t0

t2

(a)

 w1=true

v´t1=false

vt1=v´t1

vd3=v´d3

vd2=v´d2

vt0

(w
1

 /\ w
2

) /\ (¬
 v

´
t0)

Execute

(¬ (w
1 /\ w

2)) /\ (¬ v´
t0)

Error 1

vt0=false

w2=false

w1=false

v´t0=vt0

v´d1=vd1

v´d0=vd0

(¬ w1) /\ v´t1

w2=true

v´t2=false

vt2=v´t2

vd4=v´d4

(¬ w2) /\ v´t2

Error 2

Idle

(w

1
/\

 v
´ t1

) \
/ (

w
2

/\
v´

t2
)

Figure 9.5: (a) A ProSave serviceS1 and (b) its formal semantics.

As such, the formal semantics, ensures the informal semantics described in
Section 9.2 i.e., the triggering and data of a service is always produced atomi-
cally and each of the service output groups is activated exactly once before the
service returns to theIdle state.

9.3.5 Data and Trigger Connections

We will now focus on the ProSave connections between two dataportsd0 and
d1 and two trigger portst0 andt1. The formal semantics of ProSave connec-
tions is presented in Figure 9.6, for data connection, and inFigure 9.7, for
trigger connection.

To ensure that data is transferred prior to trigger, and to avoid undesirable
consequences otherwise, the transitions in the FSM formalism (Figure 9.6) are
associated with priority in the case of data connections. This is also the case in
the semantics of all connectors that forward data (detailedin [11]).

92 Paper B

DataInTransit

(b)

vd1=temp

d0 d1

(a)

↑ε

↑

temp=vd0 vd0 = vd0 != ε

Figure 9.6: (a) A ProSave data connection and (b) its formal semantics.

9.3.6 Component Hierarchy

ProCom is a hierarchical component model, with each component being a par-
allel composition of services, executing concurrently andsharing data. The
functionality of a ProSave component can be implemented by asingle C func-
tion (primitive component) or by inter-connected internalcomponents (com-
posite component).

In early stages of development, a component may still be a black box with
known behavior, but unknown inner structure. Later on, the component may
be detailed and in the end implemented. However, all components follow the
same execution semantics. In an early stage of development,when only the
behavior of the component is assumed to be known, it is the responsibility
of the behavior model to signal the end of execution, and to take care of the
internal variables (data and trigger) of a component accordingly. In a later stage
of development, when the inner structure of a composite component is known,
its formalization is handled by the inter-connected subcomponents. In this
case, we assume that there is a virtual controller in charge of signaling when the
internal trigger of a component has become false i.e., all subcomponents have
returned to the idle state. Consequently, in both cases, theinternal variables are
left to be modified by the behavior, code or inner realization, but the external
variables of a component are always handled by the semanticsof a service
(defined in Section 9.3.4). This emphasizes the fact that, from an external

9.3 Formal Semantics of Selected ProCom Architectural Elements 93

(b)

TriggerInTransit
vt1=true

vt0

(a)

t0 t1

vt0=false

Figure 9.7: (a) A ProSave trigger connection and (b) its formal semantics.

observer’s point of view, there is no difference between early design black box
components and fully implemented components.

9.3.7 Linking Passive and Active Components

By definition, ProSave components are passive and they communicate via data
exchange and triggering. ProSave components can be used to define the in-
ternals of an active ProSys subsystem with some additional connector types:
clocks(see Figure 9.9 (a)) andinput- andoutput message ports(see Figure 9.10
(a) and Figure 9.11 (a), respectively). These connectors are not allowed inside
a ProSave component, so the coupling between ProSave and ProSys is done
only at the top level in ProSave. The use of these connectors is exemplified in
Figure 9.8.

A clock serves for generating periodic triggers. A ProSave component can
be activated by receiving a periodic trigger with appropriate period. The formal
semantics of a ProSave clock with period P is shown in Figure 9.9 (b). Thus,
the formal semantics complies to the informal semantics of aclock, described
in Section 9.2.

Message ports bridge the gap between the two communication paradigms:
pipes and filters in ProSave and message passing in ProSys. Each message port
acts as a connector with a trigger and data port that may be connected to other
ProSave elements. Whenever a message is received, the inputmessage port

94 Paper B

C1
C2

Clock
10 Hz

Clock
50 Hz

Figure 9.8: A ProSys subsystem internally modelled by ProSave.

vt0=trueClock t0

(a)

[0,P] [P,P]

(b)

∗

∗

Figure 9.9: (a) A ProSave clock with periodP and (b) its formal semantics.

writes this message data to the output data port, and activates the output trigger.
Similarly, whenever the trigger from an output message portis activated, the
output message port sends a message with the data currently present on its
input data port.

We assume the following:

• todata(): is a function that translates messages into data.

• tomessage(): is a function that translates data into messages.

Given the above, the formal semantics of an input message port and an
output message port can be described as in Figure 9.10 (b) andFigure 9.11 (b),
respectively.

9.4 Discussion and Related Work 95

vd0=todata(vm0)

vt0=true

(a) (b)

 vm0 !=

d0

m0

t0

ε

Figure 9.10: (a) A ProSave input message port and (b) its formal semantics.

vm0= tomessage(vd0)

vt0=false

(a) (b)

vt0

d0

m0

t0

Figure 9.11: (a) A ProSave output message port and (b) its formal semantics.

9.4 Discussion and Related Work

As shown previously, the formalization of the relevant ProCom architectural
elements can be subsumed by a small and simple FSM-like language, ex-
tended with an abstract representation of clocks, and also urgency and priority
on transitions. To place our contribution in the right context and emphasize
its strengths and weaknesses, in the following, we review some of the related
work to which ours can compare.

The BIP (Behavior, Interaction model, Priority) componentframework in-
troduced by Gößler and Sifakis [12, 13] has been designed tosupport the con-
struction of reactive systems. By separating the notions ofbehavior, interaction
model, and execution model, it enables both heterogeneous modeling, and sep-
aration of concerns. The semantics of BIP is given in terms ofTimed Automata

96 Paper B

(TA), on which priority rules are successively applied to enforce certain invari-
ants of the expected real-time behavior. As opposed to our formal semantics,
the BIP formalization targets directly the efficient verification of the considered
models.

COMDES-II (Component-Based Design of Software for Distributed Em-
bedded Systems) [14] is a development framework in which thefunctional
units encapsulate one or more dynamically scheduled activities. Besides pro-
viding a clear separation of concerns (functional behaviorfrom real-time be-
havior), in modeling, COMDES-II also offers support for formal analysis, by
specifying the activity behavior in terms of hybrid state machines. The Pro-
Com semantics presented in this paper does not focus on the transformational
aspects of component and system behavior, but more on the reactive and real-
time aspects, while emphasizing the co-existence of black-box and fully im-
plemented components, via the component hierarchy.

The communication among SOFA components [3] can be capturedfor-
mally, by traces, which are sequences of event tokens denoting the events oc-
curring at the interface of a component. The behavior of a SOFA entity (in-
terface, frame or architecture) is the set of all traces, which can be produced
by the entity. Such a formalization can be hard to comprehend, but the pro-
posed formalization of ProCom might, on the other hand, be more difficult to
implement and exploit towards efficient verification, due toits higher-level of
abstraction.

A process-algebraic approach to describing architecturalbehavior of com-
ponent models is advocated by Allen and Garlan [15], and Magee et al. [16],
who formalize the component behavior in CSP (CommunicatingSequential
Processes) and via a labeled transition system with a possibly infinite number
of states.

Koala [2] is a software component model, introduced by Philips Electron-
ics, designed to build product families of consumer electronics. For Koala
compositions, the extra-functional information is exposed at the component’s
interface. The prediction of extra-functional propertiesis carried out by mea-
surements and simulations at the application level. In contrast, the ProCom
semantics sets the ground for achieving predictability viaformal verification
(by translating our FSMs into timed automata [7]), prior to implementation.

ProCom’s precursor, SaveCCM, is also an analyzable component model for
real-time systems [17]. SaveCCM’s semantics is defined by a transformation
into timed automata with tasks, a formalism that explicitlymodels timing and
real-time task scheduling. The level of detail of such a formal model is higher
than in our FSM notation, making it more suitable for formal verification; how-

9.5 Conclusions 97

ever, the timed automata models of SaveCCM can be cluttered with variables
whose interpretation is not necessarily intuitive, which makes the formal mod-
els less amenable to changes.

9.5 Conclusions

In this paper, we have presented the overall ideas and some lessons learned
from defining a formal semantics of the ProCom component modeling lan-
guage. The ProCom language is structured in two layers, and equipped with
a rich set of design elements aimed to primarily support the application area
of embedded systems. The ProCom language constructs include service inter-
faces, data and trigger ports, passive or active components, connections and
connectors, hierarchies of components, timing, etc.

Clearly, a formalization of the language needs to deal with all concepts of
the modeling language. Additionally, it has been our goal tomake the for-
malization as simple and intuitive as possible, so that it can serve as a basis
both for engineers using ProCom, as well as researchers developing analysis
techniques, model-transformation tools, etc., within theProCom framework.
In order to meet these sometimes contradicting goals, we have used a small
but powerful FSM language, in which the semantics of each ProCom element
is described. The FSM language builds on standard FSM, enriched with finite
domain integer variables, guards and assignments on transitions, notions of ur-
gency and priority, as well as time delays in locations. The language assumes
an implicit notion of time, making it easy to integrate with various concurrency
models (e.g., the synchronous/reactive concurrency model, or a discrete-event
concurrency model) [18]. Its formal semantics is expressedin terms of TA with
priorities and urgent transitions, as shown in Section 9.3.2. The FSM language
has graphical appeal and it is simpler than the corresponding TA model, as it
abstracts from real-valued variables and synchronizationchannels. Moreover,
thanks to the TA formal semantics, the FSM models of ProCom systems can
be analyzed in a dense-time underlying framework, as well asin a discrete-
time one, since TA has been recently given a sampled semantics [19]. Hence,
tools such as UPPAAL can be employed for early-stage verification of ProCom
models, whereas discrete-time model-checkers, such as DTSpin [20], could be
used for later-stage analysis, as a sampled time semantics is closer to the actual
software or hardware system with a fixed granularity of time,and can become
appealing at later stages of design.

To illustrate our approach, we describe in detail how the design constructs

98 Paper B

for services, data and trigger connections, component hierarchies, and passive
and active components of ProCom have been formalized in thismanner. These
elements are deliberately chosen, since they represent thedifferent types of
design elements in the language, and expose the encoding techniques used in
the ProCom-FSM translation.

As future work, we plan to develop support for model-based analysis tech-
niques such as model-checking, based on the formalization given in this paper.
In particular, we plan to integrate our recent work on modeling and analysis of
embedded resources and the associated modeling language REMES [9] with
the formal semantics of ProCom given in this paper.

Bibliography

[1] R. Englander.Developing Java Beans. O’Reilly, 1997.

[2] R. van Ommering, F. van der Linden, and J. Kramer. The Koala compo-
nent model for consumer electronics software. InIEEE Computer, pages
78–85. IEEE, March 2000.

[3] T. Bureš, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing advanced
features in a hierarchical component model. InProceedings of SERA
2006, pages 40–48. IEEE CS, August 2006.

[4] F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture for com-
ponent trading and dynamic updating. InProceedings of ICCDS 98. IEEE
CS, May 1998.

[5] T. Bureš, J. Carlson, I. Crnković, S. Sentilles, and A.Vulgarakis. ProCom
– the Progress Component Model Reference Manual, version 1.0. Tech-
nical Report MDH-MRTC-230/2008-1-SE, Mälardalen University, June
2008.

[6] T. Bureš, J. Carlson, S. Sentilles, and A. Vulgarakis. Acomponent model
family for vehicular embedded systems. InProceedings of the Third In-
ternational Conference on Software Engineering Advances. IEEE, Octo-
ber 2008.

[7] Alexandre David, John Håkansson, Kim Guldstrand Larsen, and Paul Pet-
tersson. Model checking timed automata with priorities using DBM sub-
traction. In4th International Conference on Formal Modelling and Anal-
ysis of Timed Systems (FORMATS’06), pages 128–142. Springer-Verlag,
September 2006.

99

100 Bibliography

[8] Johan Bengtsson, W. O. David Griffioen, Kre J. Kristoffersen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Automated anal-
ysis of an audio control protocol usingUPPAAL. Journal of Logic and
Algebraic Programming, 52–53:163–181, July-August 2002.

[9] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson. REMES: A
resource model for embedded systems. InProceedings of the 14th IEEE
International Conference on Engineering of Complex Computer Systems
(ICECCS 2009). IEEE Computer Society, 2009.

[10] R. Alur and D. L. Dill. A theory of timed automata.Theoretical Computer
Science, 126(2):183–235, 1994.

[11] J. Suryadevara, A. Vulgarakis, J. Carlson, C. Seceleanu, and P. Pettersson.
ProCom: Formal semantics. Technical Report ISSN 1404-3041ISRN
MDH-MRTC-234/2009-1-SE, Mälardalen University, March 2009.

[12] G. Gößler and J. Sifakis. Priority systems. InProceedings of FMCO’03,
volume LNCS 3188, pages 314–329. Springer-Verlag, 2004.

[13] G. Gößler and J. Sifakis. Composition for component-based modeling.
Science of Computer Programming, 55(1–3):161–183, 2005.

[14] X. Ke, K. Sierszecki, and C. Angelov. COMDES-II: A Component-Based
Framework for Generative Development of Distributed Real-Time Con-
trol Systems. InProceedings of the 13th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, pages
199–208. IEEE Computer Society, 2007.

[15] R.J. Allen and D. Garlan. A formal basis for composing components.
ACM Transactions on SW Engineering and Methodology, 1997.

[16] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed
software architectures. InProceedings of the 5th European Software En-
gineering Conference, 1995.

[17] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson, J. Håkansson,
A. Möller, P. Pettersson, and M. Tivoli. The SAVE approach to
component-based development of vehicular systems.Journal of Systems
and Software, 80(5):655–667, May 2007.

[18] B. Lee and E. A. Lee. Interaction of finite state machinesand concurrency
models. In32nd Annual Asilomar Conference on Signals, Systems, and
Computers, November 1998.

[19] P. A. Abdulla, P. Krcal, and W. Yi. Sampled universalityof timed au-
tomata. In10th International Conference Foundations of Software Sci-
ence and Computational Structures, FOSSACS 2007, part of ETAPS
2007, volume LNCS 4423, pages 2–16. Springer-Verlag, 2007.

[20] Dragan Bošnački and Dennis Dams. Discrete-time Promela and Spin.
In FTRTFT ’98: Proceedings of the 5th International Symposiumon For-
mal Techniques in Real-Time and Fault-Tolerant Systems, pages 307–310.
Springer-Verlag, 1998.

Chapter 10

Paper C:
Bridging the Semantic Gap
between Abstract Models of
Embedded Systems

Jagadish Suryadevara, Eun-Young Kang, Cristina Seceleanu, Paul Pettersson

In proceedings of the 13th International Symposium on Component Based
Software Engineering (CBSE), pages 55-73, June, 2010.

103

Abstract

In the development of embedded software, modeling languages used within
or across development phases e.g., requirements, specification, design, etc are
based on different paradigms and an approach for relating these is needed.
In this paper, we present a formal framework for relating specification and
design models of embedded systems. We have chosen UML statemachines
as specification models and ProCom component language for design models.
While the specification is event-driven, the design is basedon time triggering
and data flow. To relate these abstractions, through the execution trajectories
of corresponding models, formal semantics for both kinds ofmodels and a set
of inference rules are defined. The approach is applied on an autonomous truck
case-study.

10.1 Introduction 105

10.1 Introduction

Embedded systems (ES) are increasingly becoming control intensive, and time
sensitive. To ensure predictable behaviors, the development phases of an ES re-
quire extensive modeling and analysis. These development phases/ abstraction
layers e.g., requirements, specification, design, and implementation, provide
opportunities for applying different predictability analysis techniques. Such
models have to be precise enough to support formal analysis,and must ensure
inter-operability during design. However, they may use paradigms for describ-
ing behavior that cannot be immediately compared and related, due to their
apparently incompatible nature.

There exist several paradigms for behavior specification ofembedded sys-
tems. For example, statemachine based approaches, such as UML statema-
chines [1], are intended to specify timed aspects of computation and commu-
nication, besides functionality. They often use an aperiodic, event-triggered
representation of behavior, since such a paradigm facilitates easy changing of
a model’s configuration or set of events. On the other hand, behavior models
might use a different modeling paradigm, e.g., a periodic,time-triggeredbe-
havioral description, instead of an event-triggered representation. With time-
triggered communication, the data is read from a buffer, according to a trig-
gering condition generated by, e.g., a periodic clock. Although these modeling
capabilities are invaluable to obtaining a mature ES development process tai-
lored for predictability, in order to ensure the correctness of the process, one
needs to guarantee that the behavioral models are indeed consistent.

In this paper, we present a formal framework and a methodology for relat-
ing event-based and time triggered, data-flow driven modelsof behavior, which
may be used at the same abstraction layer, e.g., at specification level, or across
various layers of abstraction, from specification, to, e.g., the design level of
embedded system development. Concretely, we consider UML statemachines
[1] for event-based specification models and the ProCom component language
[2] for design models. Hence, as it stands now, the frameworkis tailored to a
specific class of embedded systems, which employ the above mentioned for-
malisms for modeling behavior. However, the framework and the method-
ology could be generalized to include other similar classesof systems (e.g.,
component based systems) and other behavioral paradigms (e.g., finite state
machines).

The proposed framework is based on comparison of execution trajectories
of corresponding behavior models. To accomplish this, the formal semantics
of both kinds of models is defined in terms of underlying transition systems.

106 Paper C

As the execution trajectories generated by above describedmodels can be ex-
tremely large and incomprehensible, they need to be reducedto more readable
and analyzable forms. Hence, we propose two sets of inference rules, one for
simplification of specification trajectories and other for simplification of design
trajectories. Moreover, in order to be able to relate and compare the above two
sets of simplified trajectories, we introduce a set of transformation rules that
lets one relate an event-triggered trajectory with corresponding time-triggered
one.

We apply our approach on an autonomous truck system, by comparing
some trajectories of its specification with those of corresponding component-
based design model. By virtually simulating the models, we show a “run” of
each model, respectively, by outlining corresponding setsof representative tra-
jectories. Then, we show that, by applying our rules, we can first simplify the
design model trajectory and then transform it into a trajectory equivalent to
the one generated by the specification model. The timing aspects of both runs
are also apparent in the respective trajectories, hence we show how to relate
them too. For creating the truck’s design model, we use the development en-
vironment of SaveIDE [3], an integrated design environmentfor ES. SaveIDE
is developed as part of the PROGRESS project [4] for component-based de-
velopment of predictable ES in the vehicular domain. It supports the subset of
ProCom modeling language used for the case study design of the paper.

The rest of the paper is organized as follows. In Section 10.2, we describe
event-based, and time triggered formalisms for modeling embedded systems.
Corresponding to these formalisms we formally define semantics of a subset of
both UML statemachines and ProCom design languages. In Section 10.3, we
present the case study details. In Section 10.4, we describeour methodology,
and introduce three sets of inference rules for simplification and comparison of
trajectories of specification and design models. Some related work is discussed
in Section 11.8. In section 10.6, we make conclusions and some aspects of the
future work of the paper.

10.2 Abstract Models of Embedded Systems

In this section, we define the modeling formalisms for model-based specifi-
cation and design of embedded systems used in this paper. As specification
language, we will consider UML statemachine notation with timing annota-
tions [1], and for design models, we will use the ProCom component modeling
language [5].

10.2 Abstract Models of Embedded Systems 107

10.2.1 Specification model of embedded systems

We specify embedded systems using the UML statemachine notation [1]. In
order to model timing, we will use the notion of timeouts provided in UML.
An example of a UML statemachine is shown in Fig. 10.1. We now give a
formal definition of the model:

Statemachine SyntaxA statemachine is a tuple〈L, l0, A,E, M〉 where

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• A = {a0, ..., an, tm} is a set of events, where

– ai is an external event with zero or more parameters,

– tm is a timeout representing the expiry of a timer, and

• M : L → {ε} ∪ N is a mapping from locations to the natural numbers
(including zero), orε denoting absence of timeout,

• E ⊆ L×A× L is a set of edges.

Fig. 10.1 shows a UML statemachine with the three locationsFollow, Turn,
andFind. The edges fromFollow to Turn and fromFind to Follow are labeled
with the external eventse o l() andline found(), respectively. The edge from
Turn to Find is labeled with eventafter(4), intuitively denoting a timeout that
expires after four time units1.

We now give the semantics of a UML statemachine specificationmodel
defined in terms of a finite state transition system.

Statemachine SemanticsThe semantics of a statemachine is defined as a tran-
sition system〈S, s0, T 〉 where

• S is a finite set of states of form〈l,m〉 with l ∈ L andm ∈ {ε} ∪N,

• s0 ∈ S is the initial state〈l0,M(l0)〉,

• T ⊆ S × A ∪ {tick} × S wheretick is a periodic internal event, is a
transition relation such that

1In the figures, we use timeout events of the formafter(n), wheren ∈ N, instead of annotat-
ing the source location (e.g., locationTurn in Fig. 10.1) with timeout valuen.

108 Paper C

Follow

Turn

Find

e_o_l()

after(4)

line_found()

Figure 10.1: A UML statemachine specification model of the autonomous
truck.

– 〈l,m〉
ai−→ 〈l′,m′〉 if 〈l, ai, l′〉 ∈ E, andm′ = M(l′)

– 〈l,m〉
tick
−−→ 〈l′,m′〉 if l = l′,m 6= 0, andm′ =

{

ε if m = ε

m− 1 otherwise

– 〈l,m〉
tm
−−→ 〈l′,m′〉 if 〈l, tm, l′〉 ∈ E, m = 0, andm′ = M(l′)

Intuitively, the initial state represents the initial location, and its timeout value,
in the statemachine. The first rule describes the state change when an exter-
nal event specified over an edge from current location, and inthe current state,
occurs. By second rule, if a timeout is defined at current location, the current
value of the timeout decreases in steps of one correspondingto each occur-
rence of an internal periodictick event. Thetick event is ignored in the current
state if no timeout is associated with the corresponding location. The third rule
describes the occurrence of timeout event, and hence the location and corre-
sponding state change, when the timeout duration associated with the current
location expires i.e. becomes zero.

A trajectoryof a UML specification model is an infinite sequence

τ = 〈l0,m0〉
λ0−→ 〈l1,m1〉

λ1−→ 〈l2,m2〉 ...

where〈l0,m0〉 is the initial state, and〈li,mi〉
λi−→ 〈li+1,mi+1〉 ∈ T and

λi ∈ {a0, ..., an, tick, tm} for all i ∈ N.

10.2 Abstract Models of Embedded Systems 109

10.2.2 Design model of embedded systems

As design modeling language we will use ProCom [5], a component model
for embedded systems. It consists of the two sub-languages:ProSys, which is
designed to model systems at high level (i.e., in terms of large-grained compo-
nents calledsubsystems), and ProSave [2] which is designed to model detailed
functionality of the subsystems. In this paper, we will focus on the ProSave
model as it is better suited for our purposes. A ProSave modelconsists of
atomic or composite components connected through ports (divided into input
and output ports), and connections. Ports and connections represent data flow
between components.

Component Syntax A componentC is a tuple〈I, O, P, in, out, f, e〉, where

• I, O, and P are mutually disjoint sets of input, output, and private vari-
ables respectively,

• in : I → Bool is a boolean expression over input variablesI that trig-
gers the execution of the component,

• out : O → Bool is a boolean expression over output variablesO that
indicates that the component has completed its execution,

• f : I × P → P × O is a function that maps input and private values to
the private and output values, and

• e ∈ N is a constant representing the execution time of the component.

We denote byX = I ∪ O ∪ P the set of all variables with size|X | = |I| +
|O| + |P |. We will further useC.n to denote the elements of a component,
hence e.g.,C.I denotes the input variables of componentC. We now introduce
the formal syntax of the ProSave model.

ProSave SyntaxA ProSave design model is a tuple〈C,→〉, where

• C = {C0, ..., Cn} is a set of components,

• →⊆ C×C is a set of component connections, such that output variables
Ci.O may be connected to input variablesCj .I

110 Paper C

SystemClock
(sc)

Sensor
(se)

Follow
 (fo)

Turn
(tu)

Find
(fi)

Controller
(co)

Actuator
(ac)

40 10

10

10

10

10

10

trig

sl, sr sl,
 sr

, fo

sl, s
r, t

u

sl, sr, fi

FBfo

FBtu

FBfi

tfo

ttu

tfi

Figure 10.2: Schematic view of a ProSave design model of the autonomous
truck.

We will write Ci.Om → Cj .In to represent the connection from output vari-
ablem of componentCi to input variablen of componentCj .

A ProSave system is typically driven by a periodic clock which periodically
generates a control (or trigger) signal. A clock component is defined as follows:

Clock Component A componentC = 〈I, O, P, in, out, f, e〉 is a clock com-
ponent with period p iff| I |=| O |= 1, e = p, andC.O → C.I.

Fig. 10.2 shows a ProSave design model consisting of seven components (de-
picted as boxes) interconnected by data and control flow connections (depicted
as solid arrows indicating the flow direction). ComponentSystemClock is a
clock component with period 40. The other six components have execution
time 10. Their internal behavior may be specified using a formalism based on
statecharts [6] or timed automata [7], which we are not explicitly concerned
with in this paper. A component starts execution when it receives control in-
put. It then reads its input and proceeds with internal computation. When the
internal execution is completed, data and control output isgenerated for other
components.

We will now give the formal semantics of the subset of ProSaveused in
this paper. For the semantics of the full ProCom language, werefer the reader
to [2].

For a ProSave model consisting of componentsC0, ..., Cn, we useV to
denote the set of all variables in a model, i.e.,V = X0 ∪ ... ∪ Xn. The
semantics is defined using valuationsα mapping each variable inV to values
in the type (or domain)2 of V , and vectors̄β of βi ∈ {0, ..., ei,⊥} representing

2We assume all variables inV are of type Boolean or finite domained integers.

10.2 Abstract Models of Embedded Systems 111

the remaining execution time of all componentsCi.
We usefi(α) to denote the valuationα′ in which α′(xi) for eachxi ∈

Pi ∪ Oi is the value obtained by applying the functionCi.f in the valuation
α, andα′(x′) = α(x′) for all other variablesx′. To update the execution time
vectorβ̄ we useβ̄[βi := n] to denote thēβ′ in whichβ′

i = n andβ′

j = βj for
all j 6= i, and we writeβ̄ ⊖ n to denote thēβ′ in which β′

i := βi − n for all
βi ≥ n.

ProSave SemanticsThe semantics of a ProSave design model〈{C0, ..., Cn},→
〉 is defined as a transition system〈Σ, σ0, T 〉 where

• Σ is a set of states of the form of a pair〈α, β̄〉,

• σ0 ∈ Σ is the initial state〈α0, β̄0〉 which is such thatα0 |= Ci.in for all
clock componentsCi andα0 |= ¬Cj .in for all other componentCj , and
β̄0 = ⊥̄,

• T ⊆ Σ × {CDi, CSi, TP} × Σ is a set of transitions such that the
following conditions hold:

– (component start)〈α, β̄〉
CSi−−→ 〈α′, β̄′〉 if (Ci.in ∧ (βi = ⊥)),

β̄′ = β̄[βi := ei], and for alli 6= j : βj 6= 0,

– (component done)〈α, β̄〉
CDi−−−→ 〈α′, β̄′〉 if βi = 0, α′ = fi(α), and

β̄′ = β̄[βi := ⊥],

– (time passing)〈α, β̄〉
TP
−−→ 〈α′, β̄′〉 if for all i : ¬(Ci.in ∧ (βi =

⊥)) andβi 6= 0, β̄′ = β̄ ⊖ 1, and(α′ = α).

whereCSi ∈ {CS0, ..., CSn} andCDi ∈ {CD0, ..., CDn}.

Intuitively, in the initial state only the clock componentsare triggered and the
remaining execution time of all components are undefined. The “component
start” rule describes how components are started. A component Ci may start
its execution provided that all completed components have written their out-
put. WhenCi starts, its execution time is set toei. The “component done” rule
describes that when a componentCi completes its execution, its output values
are generated and mapped to the input values of the connectedcomponents ac-
cording to connection relation→, and its remaining execution time is updated
to ⊥ to reflect that it is inactive. Rule “time passing” describeshow time pro-
gresses in the design model. As time progresses the remaining execution time
βi of each active componentCi is decremented by 1.

112 Paper C

Figure 10.3: Path of the truck movement.

A trajectoryof a design model is an infinite sequence

π = 〈α0, β0〉
γ0

−→ 〈α1, β1〉
γ1

−→ 〈α2, β2〉 ...

where〈α0, β0〉 ∈ σ0 is an initial state, and〈αi, βi〉
ai−→ 〈αi+1, βi+1〉 ∈ T is a

transition such thatγi ∈ {CDi, CSi, TP} for all i ∈ N.

10.3 Case Study: Autonomous Truck

The autonomous truck is part of a demonstrator project conducted at the Progress
research centre3. The truck moves along a specified path (as illustrated in Fig.
10.3), according to a specified application behavior. In this section we give
an overview of the truck application followed by a specification, and a design
model, described in the modeling languages introduced in the previous section.

We will study a simplified version of the case study, in which the truck
should simply follow a line. When it reaches the end of the line, it should try
to find back to the line, follow the line again in the opposite direction, and
repeat its behavior. The truck will have the following operational modes (see
also Fig. 10.1):

• Follow: in which the truck follows the line (the thick line of Fig. 10.3)
using light sensors. When the end of the line is detected, it changes to
Turn mode.

• Turn: the truck turns right for a specified time duration, and thenchanges
to Find mode.

3For more information about Progress, seehttp://www.mrtc.mdh.se/progress/.

10.3 Case Study: Autonomous Truck 113

Figure 10.4: The design model of the autonomous truck in SaveIDE.

• Find: the truck searches for the line. When it is found, the truck returns
to Follow mode.

A specification model of the case study is given in Fig. 10.1. It starts in
locationFollow. The end of the line is modeled using external evente o l().
In locationTurn, it turns for four seconds, and then proceeds to locationFind
when the timer expires. The external eventline found() models that the line is
found and control switches back to the initial locationFollow.

The schematic view of a ProSave deign model of the case study is given
in Fig. 10.2. The original model (as shown in Fig. 10.4) was developed using
SaveIDE [3], an integrated development environment supporting the subset of
ProSave used in this paper. As shown in Fig. 10.2, the design model consists
of componentsSystemClock (a periodic clock),Sensor, Controller, Follow,
Turn, Find and Actuator. ComponentSystemClock triggers the complete
model periodically through the componentSensor which reads the light sen-
sors of the truck. The sensor values (left, right) are communicated through the

114 Paper C

data portssl andsr. Note, a connection between two components as shown
in Fig. 10.2, denotes a collection of independent port connections between
corresponding data or trigger ports of the components. ComponentController
acts as a control switch for triggering the componentsFollow, Turn, andFind
selectively , through control portsfo, tu, fi respectively, which contain the func-
tionality of the corresponding modes of the truck behavior.The completion of
execution of each operational mode (the corresponding component) is indi-
cated by data (port) valuesFBfo, FBtu, andFBfi respectively. Component
Actuator, triggered by control porttfo, ttu, or tfi, actuates the corresponding
hardware to cause the physical activity of the truck movement. As discussed
previously, the periodicity of theSystemClock is 40 time units and the execu-
tion times of each of other components is 10 time units.

10.4 Methodology Description

In Section 10.2, we have described the syntax and semantics of two models
used in the development of embedded system software: the event-based model
of UML statemachines, and the time-triggered and data-flow oriented model of
ProCom. These are examples of modeling languages that are aimed at provid-
ing different views of embedded systems, used in different stages or at different
abstraction levels during system development. The common use of different
models creates a need for comparing descriptions of systemsmade in different
modeling languages.

In this section, we propose a method for comparing event-based and time-
triggered models of embedded systems. The method will be described and il-
lustrated on UML statemachines and ProCom models of the autonomous truck
case study described in the previous section. Constructinga semantic bridge
between the two models requires a series of steps that need tobe systematically
applied. Our methodology for bridging the gap between the paradigms consists
of the following five steps:(i) given a specification trajectory, generate a cor-
responding design trajectory by e.g, simulating the model;(ii) simplify the
specification trajectory (can be omitted);(iii) simplify the design trajectory;
(iv) transform the design trajectory into one comparable to the event-based
specification trajectory;(v) compare the reduced specification and design tra-
jectories.

To support above described steps(ii) to (iv) of the method we will present
in Sections 4.1 to 4.3 a number of inference rules for simplifying specification
and design trajectories, and for transforming between the two. In the latter

10.4 Methodology Description 115

transformation step, we need to take two crucial steps. One is to relate events
in the UML statemachine model to the data-flow of the ProCom model. This is
done by mapping events observed in the specification trajectories to predicates
over the data variables used in the design model. We expect that a designer will
easily be able to provide this mapping based on his insights and knowledge
in the models. For the autonomous truck system, we can assumea mapping
given in Table 10.4.2 in section 10.4.2. A second important step in relating
two models of embedded systems regards the different time scales that may be
used. We take a rather straightforward approach and assume aδ, as defined
in section 10.4.3, for characterizing the sampling period in design models, in
comparison to the time base used in the specification model.

10.4.1 Specification simplification inference rules

In the following rules, we denote bysi ∈ S, i ∈ N, the states of an arbitrary
specification model trajectory.

Skip time rule. This rule states that a sequence oftick transitions correspond-
ing to a location without an associated timeout can be ignored.

si
tick
−−→ si

tick
−−→ . . .

tick
−−→ si

si
(skip)

By applying this rule to the original specification trajectory of the Autonomous
truck (omitted due to space limitations), we get the simplified trajectory shown
in Fig. 5.(a).

Time passing rule. The intuition behind this rule is that one can collapse a
sequence oftick transitions corresponding to a timeout location in the specifi-
cation model, into a single transition that collects all theticks. Consequently,
the intermediate states generated by the individual ticks become hidden.

si
tick
−−→ si+1

tick
−−→ . . .

tick
−−→ si+n

si
n.tick
−−−−→ si+n

(n tick)

To show the rule at work, we have used it to reduce the sequenceof tick tran-
sitions (s1 to s5) displayed in Fig. 5.(a), to the corresponding sequence in Fig.
5.(b).

116 Paper C

Timeout start rule. Here, we introduce the virtual eventtm−start needed
to distinguish the transition leading to the correspondingtimeout annotated
location, from the one fired when the timeout countdown starts. Although not
a simplification rule by itself, its usefulness is shown in the rulesskip and
n TP, presented later.

si
event

−
label

−−−−−−−→ si+1 m = value m′ 6= ε ∧m′ 6= 0

si
event

−
label

−−−−−−−→ si+1
tm

−
start

−−−−−−→ si+2

(tm start)

In the above rule,value ∈ {0, ε}. In casevalue = 0, that is,m = 0, it follows
thatevent−label = tm; on the other hand, ifvalue = ε, that is,m = ǫ, then
event−label = a.

Timeout rule. A sequence ofn-tick transitions beginning at a location having
timeoutn that is then followed by a timeout transition can be reduced to a
single transition denoted bytm(n), as shown below:

si
n.tick
−−−−→ si+1

tm
−−→ si+2

si
tm(n)
−−−−→ si+2

(tm)

After applying the timeout rule, the sequence of the4-tick transitions (s1 to s5)
followed by thetm transition (s5 to s6), depicted in Fig. 5.(b), is reduced to
transition (s1 to s6), as in Fig. 5.(c).

10.4.2 Design simplification inference rules

As already mentioned, in order to be able to relate the specification and design
models formally, we require the detailed mapping of the external and timeout
events of the specification model onto predicates over data values of the cor-
responding design model. In addition to the observable events, such mapping
should also include the virtual timeout start event,tm start. We assume that
such a mapping is provided by the ProSave designer, as he/she“implements”
the specification model. For the current design model of the autonomous truck,
one such mapping is given in Table 10.4.2.

Below, we denote byσi ∈ Σ, i ∈ N, the states of an arbitrary design
model trajectory. In Fig. 10.6, we give an excerpt of a designtrajectory of
the autonomous truck, and, on the right-hand side of the figure, we explain the
used notation in terms of Definition 10.2.2 of Section 10.2.

10.4 Methodology Description 117

s0<Follow, >

e_o_l

s1<Turn, 4>

tick

tick

tick

s4<Turn, 1>

tick

line_found

s2<Turn, 3>

s3<Turn, 2>

s6<Find, >

s7<Follow, >

s0<Follow, >

e_o_l

s1<Turn, 4>

4. tick

s5<Turn, 0>

tm

line_found

s6<Find, >

s7<Follow, >

s0<Follow, >
e_o_l

s1<Turn, 4>
tm(4)

line_found

s6<Find, >

s7<Follow, >

(a) (b) (c)

n_tick

tm

s5<Turn, 0>

tm

Figure 10.5: Examples of specification trajectories simplifications of the au-
tonomous truck.

Skip time rule. This rule states that a sequence of TP-transitions from states
that do not satisfy the predicate corresponding to the virtual eventtm start can
be ignored. Such transitions correspond to time passing in the design trajectory,
which are of no interest, that is, not related to observable timeout events.

σi
TP
−−→ σi+1 σi 2 Predtm start

σi

(Skip)

We apply the skip time rule on a design trajectory of the autonomous truck
(see Fig. 10.7), and, as a result, we simplify the trajectoryby reducing states
σ1, σ2, σ3, andσ4, to stateσ1 only. The complete trajectory is given in the
Appendix.

Hide CS rule. By this rule, a CS-transition, hence the target state, can always
be ignored.

σi
CSi−−→ σi+1

σi

(hide CS)

Assuming a design trajectory of our case-study, the application of the above
rule on this trajectory is shown in Fig. 10.8.

118 Paper C

Events Predicates

e 0 l sl ∧ sr ∧ FBfo

line found (sl ∨ sr) ∧ FBfi

tm(timeout event) FBtu

tm start ttu

Table 10.1: Events and corresponding predicates of the autonomous truck mod-
els.

B0 <sc.in, CD>

B1 <-, CEFGH>

CSsc

B3 <-, CEFGI>

TP

B4 <sc.in,sr.in, ->

CDsc

CSsc

B2 <-, CEFGJ>

TP

..

.

KD LMNOPQ POROS MNOPQ TUVWM PQ KDS XQW CD PM YTR PQPYPXV ZXV[XYPUQ U\C

K] M̂NOPQ XQW XVMU QU UYTR_ `_RWPNXYRM TUVW PQ K]

KaGK] XQW bcdC O ceCEF CafcgGC]fcg XQW CafCEFgGJ

KhGKa XQW bcdC O ceCEF CafcgGC]fcg XQWCafCEFgGI

Ki LMNOPQ j M_OPQ XQWCi= Ch

:

:

:

:

:

Figure 10.6: Interpretation of example design trajectory notation w.r.t. Defini-
tion 10.2.2.

Hide CD rule. This rule stipulates that a CD-transition and the correspond-
ing source state can be ignored if the target state does not satisfy any event
occurrence predicate.

σi
CDi−−−→ σi+1 ∀a ∈ A · σi 2 Preda

σi+1
(hide CD)

An example application of the above rule is given in Fig. 10.8.

Time passing rule. A sequence of TP transitions starting in a state satisfying
the predicate corresponding totm start, and ending in a state where the cor-
responding timeout occurs, can be collected into a single transition, while the

10.4 Methodology Description 119

k0 <sc.in, lm> k1 <-, lnopq>CSsc

k5 <-, lnrps>

k6 <sc.in,sr.in, ->

CDsc

CSsc

TP k2 <-, lnopt> TP

k3 <-, lnopu> TP k4 <-, lnopv> TP

...

k0 <sc.in, lm> k1 <-, lnopq>CSsc k6 <sc.in,sr.in, ->CDsc CSsc ...

skip

Figure 10.7: Application ofskip ruleon a design trajectory of the autonomous
truck model.

intermediate states are ignored.

σi
TP
−−→ σi+1...

TP
−−→ σi+n

CDj

−−−→ σi+n+1 σi |= Predtm start σi+n+1 |= Predtm

σi
n.TP
−−−→ σi+n+1

(n TP)
We have applied the above rule on a design trajectory of our Autonomous
Truck, in Fig. 10.8. The rule works on the statesσ42, σ46, σ50, σ53, σ55 and
σ56.

Precedence of inference rules. In order to get the correct simplified design
trajectory, we assume the following precedence rule when applying the above
inference rules over design trajectories (rulehide CS binds the strongest):

hide CS precedeshide CD precedesn TP precedesSkip

10.4.3 Rules for transforming the design model trajectories

The following rules let one obtain design trajectories thatare comparable to the
event-based specification model trajectories. The first rule focuses on relating
the time scales in both models; in order to achieve the goal, we assume a fixed
quanta of time (number of time units), calledδ, which can be viewed as the
minimum amount of time guaranteed to be free of events. Then,this smallest
amount of time becomes the basic time-unit that all time-related elements in
both trajectories can be expressed by.

TimeOut Rule. We assume that aTP-transition “consumes”δ time units,
the time duration associated with atick event is(m* δ)(m ∈ N), and an ‘n’
time units timeout in a specification trajectory,tm(n), equals (n* tick). Then,

120 Paper C

w41 <-, xyz{|}x~�{�> CDtu w42 <ac.in, xyz{|> CSac w43 <-, xyz{|}x�z{|> TP

w44 <-, xyz{�}x�z{�> CDac CSsc

w47 <-, xyz{�> w49 <-, xyz{�}xy�{�>TP

w50 <ct.in, xyz{�>

CDsr

CSct w51 <-, xyz{�}xz~{|> TP w52 <-, xyz{�}xz~{�> CDct

w53 <tu.in, xyz{�> CS tu w54 <-, xyz{�}x~�{|> TP w55 <-, xyz{|}x~�{�> CDtu

w56 <FBtu, xyz{|> TP

w41 <-, xyz{|}x~�{�> CDtu w42 <ac.in, xyz{|> TP w44 <-, xyz{�}x�z{�> CDac

w46 <sc.in,sr.in, -> w49 <-, xyz{�}xy�{�>TP

w50 <ct.in, xyz{�>

CDsr

TP w52 <-, xyz{�}xz~{�> CDct w53 <tu.in, xyz{�> TP

w55 <-, xyz{|}x~�{�> CDtu w56 <FBtu, xyz{|> TP

w42 <ac.in, xyz{|> TP w46 <sc.in,sr.in, -> TP

w50 <ct.in, xyz{�> TP w53 <tu.in, xyz{�> TP w55 <-, xyz{|}x~�{�> CDtu

w56 <FBtu, xyz{|> TP

w42 <ac.in, xyz{|> 4.TP w56 <FBtu, xyz{|> TP

hide_CS

hide_CD

n_TP

a)

b)

c)

d)

...

...

...

...

CDac w46 <sc.in,sr.in, ->

CSsr w48 <-, xy�{|>

w45 <-, xyz{�>

CDacw45 <-, xyz{�>

w41 <-, xyz{|}x~�{�> CDtu

w41 <-, xyz{|}x~�{�> CDtu

Figure 10.8: (a) a partial design trajectory of the autonomous truck, and (b) to
(d) corresponding reduced trajectories after applicationof the inference rules
of Section 10.4.2.

it follows that ann.m.TPtransition in the design trajectory is equivalent to the
‘n’ timeout event,tm(n):

∃ σk, σk+1 . σi
n.m.TP
−−−−−→ σi+1

∃ sk, sk+1 . sk
tm(n)
−−−−→ sk+1

(TO)

EventOccur Rule. An event occurrence in a specification trajectory corre-
sponds to a CD-transition in the design trajectory, such that the predicate asso-
ciated to the event holds in the target state of the design trajectory.

∃ σi, σi+1 . σi

CDj

−−−→ σi+1 σi+1 |= Preda

∃ sk, sk+1 . sk
a
−→ sk+1

(EO)

Next, we apply the above rules on a (simplified) design trajectory of our exam-
ple, in order to obtain a trajectory comparable to the corresponding specifica-

10.4 Methodology Description 121

tion trajectory.

�0 <sc.in, ��>
CDfo

�30 <sl, sr, FBfo, �����>

4.TP

�56 <FBtu, �����>

CDfi

�82 <sl, FBfi, �����>

...

s0<Follow, >

e_o_l

s1<Turn, 4>
tm(4)

line_found

s5<Find, >

s6<Follow, >

(b)(a)

...
EO

tm(4)

EO

Figure 10.9: Comparison of completely reduced trajectories of (a) the design
model, and (b) the specification model, of the autonomous truck.

10.4.4 Applying the methodology

Here, we show our methods at work, on the Autonomous Truck case study, pre-
sented in Section 10.3. We do this by transforming a trajectory of the design
model (Fig. 10.2), which we present in the Appendix, into onethat is com-
parable to the corresponding specification model (Fig. 10.1) trajectory. First,
the design trajectory is simplified by applying the inference rules introduced in
section 10.4.1. Similarly, a trajectory of the specification model is then simpli-
fied to a minimal form by applying inference rules in 10.4.2. Both simplified
trajectories are shown in Fig. 10.9. Next, we relate these trajectories by using
the inference rules of transformation (section 10.4.3), asfollows:

• by EO rule, theCDfo-transition to stateσ30 corresponds to the occur-
rence of evente o l, since the(e o l) predicate, that is,FBfo ∧ sl ∧ sr,
holds in the target stateσ30. Further,σ30 corresponds to the completion
of theFollow mode of the truck behavior, asFBfo holds (by design).

• similarly, by EO rule, theCDfi-transition to stateσ82 corresponds to the
occurrence of eventline found, sincePredline found, that is,FBfi ∧
sl, holds in the target stateσ82. Further,σ82 corresponds to the comple-
tion of theFind mode of the truck behavior, asFBfi holds (by design).

• by TO rule, the timeout event,tm(4), between specification statess2
ands6 corresponds to the4.TP -transition between design statesσ30 and
σ56 that satisfyPredtm start, andPredtm, respectively. Further,σ56

122 Paper C

corresponds to the completion of theTurn mode, asFBtu holds (by
design).

By applying the rules on the truck example, we have shown that, at least with
respect to this example, it is possible to transform and compare a simplified de-
sign model trajectory of the Autonomous Truck with a simplified specification
model trajectory. The transformation correlates also the time scales in both
models. In this particular case, we have reduced the design model trajectory to
an event-based trajectory identical to the specification one.

The above steps are necessary in proving the correctness of design with
respect to specification, however they are not sufficient. Toget closure, one
has to first consider all possible design behaviors for transformation, and then
possibly apply refinement techniques to prove that the design does implement
the functional and timing requirements represented by the specification model
(see Section 10.6).

10.5 Related Work

The problem of relating design to specification models is a topic with a growing
interest in the research community. For synthesizing executable programs from
timed models, a timed automata [7] based semantic framework, relying on
non-instant observability of events is proposed [8]. Time-triggered automata
(TTA) - a sub class of timed automata (TA) - are used to model finite state
implementations of a controller that services the request patterns specified by
a TA. This technique enables deciding whether a TTA correctly implements a
TA specification. In comparison, although ProCom oriented,our methodology
can be applied within a generic component-based framework,and is not being
tied to any particular formal verification framework either.

Sifakis et al. propose a methodology for relating the abstractions of both
real-time application software and corresponding implementation [9]. The re-
lated formal modeling framework integrates event-driven,and time triggered
paradigms by defininguntiming functions. Problems of correctness, timing
analysis, and synthesis are considered in the methodology.In contrast to our
approach, this one does not address the intermediate designlayer commonly
used in system development.

In recent years, component and architecture based developments have been
recognized as a viable way of building software systems [10]. Plasil and Vis-
novsky describe a formal framework based onbehavior protocols, in order to

10.6 Conclusions and Future work 123

formally specify the interplay between components [11]. This allows for for-
mal reasoning about the correctness of the specification refinement and about
the correctness of an implementation, in terms of the specification. Further,
the framework is validated in the SOFA component model environment [12].
While the approach provides much needed formal correctnessin component-
based development, it does not address timing issues and vertical layers of
abstractions in real-time system development.

UML has emerged as an industrial standard notation in systemdevelopment
and provides various sub-languages namely statemachines,sequence diagrams,
etc [1]. For specification and design of real-time systems, asub-language
called UML/MARTE has been proposed [13]. In [14], the expressiveness of
MARTE for event-triggered, and time-triggered communication is described.
MARTE-based approaches facilitate various analytical methods for analysis,
e.g., schedulability, system performance analysis; however, it falls short in pro-
viding formal support for comparing models at different abstraction levels.

Egyed, A. et al. [15] develop a methodology to mainly bridge the infor-
mation gap created by heterogeneous models across the software life-cycle by
transforming architecture description into (high-level)UML designs. The lat-
ter are then further refined into lower level designs. In contrast to our approach,
their work does not provide details on the behavioral transformations. Indeed,
a formal approach for establishing the semantic links between different termi-
nologies and concepts across an architectural and a number of design models
is not sufficiently addressed during the transformation.

10.6 Conclusions and Future work

In this paper, we have presented a formal approach for relating system models
used in different design stages of embedded systems. For theearly specifica-
tion phases, we chose the UML statemachine language in whichsystem behav-
iors are described in terms of abstract states, event triggered state changes, and
timeouts relating to the external system and timing behavior. For the later de-
sign stages, we use the ProCom component design model in which systems are
specified using data-flow connectors and time-triggered component behaviors
closer to the timing granularity and behavior exhibited on the target platform.

As a main result, we have described a formal way of comparing behavioral
models of a system modeled in the two different languages. The solution is
based on a set of inference rules that can be applied to gradually transform
trajectories of a ProCom design model into a trajectory of a UML specification

124 Paper C

model. This enables a designer to make sure that a component-based and time-
triggered ProCom design model implements the behavior of a more abstract
and event-triggered UML specification of the same system.

Our initial experiences from applying the proposed technique to a truck
control system, indicates that the design model trajectories can often be man-
ually transformed into trajectories of the specification model. However, as this
is not the case in general, we plan as future work to apply simulation relation
checking to the specification trajectories, to prove (or disprove) conformance
between non-identical trajectories. We will apply proof assistant tools to sup-
port these techniques.

�0 <sc.in, ��>

�1 <-, �����>

CSsc

�5 <-, �����>

4.TP

�6 <sc.in,sr.in, ->

CDsc

CSsc,CSsr

�8 <-, �����������>

�9 <-, �����������>

TP

�10 <ct.in, �����>

CDsr

CSct

�11 <-, �����������>
TP

�12 <-, �����������>

CDct

�13 <fo.in, �����>
CSfo

�14 <-, �����������>

TP

�15 <-, �����������>

CDfo

�16 <ac.in, �����>

CSac

�17 <-, �����������>

TP

�18 <-, �����������>

CDsc,CDac

�20 <sc.in,sr.in, ->

CSsc,CSsr

�22 <-, �����������>

�23 <-, �����������>

TP

�24 <ct.in, �����>

CDsr

CSct

�25 <-, �����������>
TP

�26 <-, �����������>
CDct

�27 <fo.in, �����>
CSfo

�28 <-, �����������>

TP

�29 <-, �����������>

CDfo

�30 <sl, sr, FBfo, �����>

TP

�31 <-, �����>

CDsc

�32 <sc.in,sr.in, ->

CSsc,CSsr

�34 <-, �����������>

�35 <-, �����������>

TP

�36 <ct.in, �����>

CDsr

CSct

�37 <-, �����������>

TP

�38 <-, �����������>

CDct

�39 <tu.in, �����>
CStu

�40 <-, �����������>
TP

�41 <-, �����������>
CDtu

�42 <ac.in, ttu, �����>
CSac

�43 <-, �����������>

TP

�44 <-, �����������>

CDsc,CDac

�46 <sc.in,sr.in, ->

CSsc,CSsr

�48 <-, �����������>

�49 <-, �����������>

TP

�50 <ct.in, �����>

CDsr

CSct

�51 <-, �����������>

TP

�52 <-, �����������>
CDct

�53 <tu.in, �����>

CStu

�54 <-, �����������>

TP

�55 <-, �����������>
CDtu

�56 <FBtu, �����>

TP

�57 <-, �����>
CDsc

�58 <sc.in,sr.in, ->
CSsc,CSsr

�60 <-, �����������>

�61 <-, �����������>

TP

�62 <ct.in, �����>

CDsr

CSct

�63 <-, �����������>

TP

�64 <-, �����������>

CDct

�65 <fi.in, �����>
CSfi

�66 <-, �������� ��>
TP

�67 <-, �������� ��>
CDfi

�68 <ac.in, �����>

CSac

�69 <-, �����������>

TP

�70 <-, �����������>

CDsc,CDac

�72 <sc.in,sr.in, ->

CSsc,CSsr

�74 <-, �����������>

�75 <-, �����������>

TP

CDsr

�76 <ct.in, �����>

CSct

�77 <-, �����������>

TP

�78 <-, �����������>
CDct

�79 <fi.in, �����>
CS fi

�80 <-, �������� ��>
TP

�81 <-, �������� ��>

CDfi

�82 <sl,FBfi, �����>
TP

�83 <-, �����>
CDsc

�84 <sc.in,sr.in, ->
CSsc,CSsr

�86 <-, �����������>

�88 <-, �����������>

TP

CDsr

�89 <ct.in, �����>

CSct

�90 <-, �����������>
TP

�91 <-, �����������>

CDct

�92 <fo.in, �����>

CSfo

�93 <-, �����������>
TP

Appendix

Figure 10.10: An execution trajectory of the design model ofthe autonomous
truck.

Bibliography

[1] James Rumbaugh, Ivar Jacobson, and Grady Booch.Unified Modeling
Language Reference Manual, The (2nd Edition). Pearson Higher Educa-
tion, 2004.

[2] Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlson, Cristina Seceleanu,
and Paul Pettersson. Formal semantics of the procom real-time compo-
nent model. In35th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), August 2009.

[3] Sverine Sentilles, Anders Pettersson, Dag Nyström, Thomas Nolte, Paul
Pettersson, and Ivica Crnkovic. Save-IDE - a tool for design, analysis and
implementation of component-based embedded systems. InProceedings
of the Research Demo Track of the 31st International Conference on Soft-
ware Engineering (ICSE), May 2009.

[4] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
SAVE approach to component-based development of vehicularsystems.
Journal of Systems and Software, 80(5):655–667, May 2007.

[5] Tomas Bures, Jan Carlson, Ivica Crnkovic, Sverine Sentilles, and Aneta
Vulgarakis. ProCom - the progress component model reference man-
ual, version 1.0. Technical Report ISSN 1404-3041 ISRN MDH-MRTC-
230/2008-1-SE, Mälardalen University, June 2008.

[6] Davor Slutej, John Håkansson, Jagadish Suryadevara, Cristina Seceleanu,
and Paul Pettersson. Analyzing a pattern-based model of a real-time
turntable system. In Barbora Zimmerova Jens Happe, editor,6th Inter-
national Workshop on Formal Engineering approaches to Software Com-
ponents and Architectures(FESCA), ETAPS’09, York, UK, March, pages

127

161–178. Electronic Notes in Theoretical Computer Science(ENTCS),
Vol 253, Elsevier, September 2009.

[7] Rajeev Alur and David L. Dill. A theory of timed automata.Theoretical
Computer Science, 126(2):183–235, 1994.

[8] Pavel Krčál, Leonid Mokrushin, P.S. Thiagarajan, andWang Yi. Timed
vs time triggered automata. In Philippa Gardner and Nobuko Yoshida, ed-
itors,Proc. of CONCUR’04., number 3170 in Lecture Notes in Computer
Science, pages 340–354. Springer–Verlag, 2004.

[9] Joseph Sifakis, Stavros Tripakis, and Sergio Yovine. Building models
of real-time systems from application software. InIn Proceedings of the
IEEE Special issue on modeling and design of embedded, pages 100–111.
IEEE, 2003.

[10] Ivica Crnkovic and Magnus Larsson.Building Reliable Component-
Based Software Systems. Artech House publisher, 2002.

[11] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software
components.IEEE Trans. Softw. Eng., 28(11):1056–1076, 2002.

[12] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Sofa2.0: Balancing
advanced features in a hierarchical component model. InSERA ’06: Pro-
ceedings of the Fourth International Conference on Software Engineering
Research, Management and Applications, pages 40–48, Washington, DC,
USA, 2006. IEEE Computer Society.

[13] Object Management Group. A UML Profile for MARTE, Beta 1,August
2007. Document number: ptc/07-08-04.

[14] Frédéric Mallet, Robert de Simone, and Laurent Rioux. Event-triggered
vs. time-triggered communications with UML Marte. InFDL, pages 154–
159, 2008.

[15] Nenad Medvidovic, Paul Grünbacher, Alexander Egyed,and Barry W.
Boehm. Bridging models across the software lifecycle.J. Syst. Softw.,
68(3):199–215, 2003.

Chapter 11

Paper D:
Pattern-driven Support for
Designing Component-based
Architectural Models

Jagadish Suryadevara, Cristina Seceleanu, Paul Pettersson

In proceedings of the 18thIEEE International Conference on Engineering of
Computer-Based Systems (ECBS), April 2011.

129

Abstract

The development of embedded systems often requires the use of various mod-
els such as requirements specification, architectural (component-based), and
deployment models, across different phases. However, there exists little de-
sign support for obtaining suitable component-based designs that satisfy spec-
ified requirements and timing constraints. In order to provide guided support
for the design process of embedded systems, we introduce several component
templates, referred as patterns, which we also formally verify against relevant
properties. To illustrate the usefulness of the approach, we have applied the
proposed patterns to obtain a component-based design of a temperature con-
trol system.

11.1 Introduction 131

11.1 Introduction

To achieve behavioral predictability of an embedded system, one might need to
use, during system development phases, extensive modelingand analysis, prior
to the actual system implementation. In general, these phases rely on various
models, such as, requirements specification, design, and deployment models,
before the implementation stage. As different models are based on different
semantics, and focus on different aspects of the system, a guided design process
from one phase to another is needed. Further, the design process should ensure
that the system aspects, such as, functional requirements,timing constraints
etc, are met by all system models, from any design phase to thesubsequent
ones.

Designing an embedded system in acomponent-basedstyle has become
an attractive approach. With benefits ranging from simplification and parallel
working to pluggable maintenance and reuse, the advantagesare significant. In
this context, an embedded system consists of identifiable, relatively indepen-
dent and generally replaceable units of composition, called components, which
encapsulate complex functionality. Acomponent modeldefines syntax and
semantics of a component language through its architectural level elements,
such as, components, ports, connections, and connectors tobuild system parts
and their compositions. There exist several component models such as Jav-
aBeans [1], Koala [2], SOFA [3, 4], and ProCom [5, 6], to name afew.

In this paper, we present a pattern-based design process to develop com-
ponent based designs of an embedded system that preserve thespecified func-
tional requirements and related timing constraints. We propose a set of compo-
nent templates, called component patterns in this paper, totransform a spec-
ification model together with functional and timing constraints, into a cor-
responding component design. The proposed patterns are described in Pro-
Com [5, 6], a language for component-based design of embedded systems.
Further, the patterns are formally verified to satisfy relevant timing properties.
This is done by translating the pattern specifications in ProCom, into corre-
sponding timed automata models, and model-check the resulting models using
UPPAAL [7].

To specify the functional requirements, and related timingconstraints of
a system, we use an extended form of UML statemachines [8] together with
UML/Marte timing profile [9], as the specification models (also referred as
modemachinesin this paper). The timing constraints are specified using the
standard constructs of Marte CCSL (Clock Constraints Specification Language).

Finally, to illustrate the applicability of our approach, we apply the patterns

132 Paper D

in the development of a ProCom based component design for a Temperature
Control System (TCS).

The rest of the paper is organized as follows. In Section 11.2, we present an
overview of the ProCom component language. As a running example, we de-
scribe a Temperature Control System (TCS), in Section 11.3.In Section 11.4,
we present the specification language for modeling the functionality, and tim-
ing constraints of an embedded system. In Section 11.5, we propose a set
of component patterns for modeling “timers”, “clocks”, “controllers”, as well
as the periodic and sequential behaviors. Also, the formal verification of the
patterns with respect to relevant properties is described in Section 11.6. In
Section 11.7, a complete ProCom design of TCS is presented. Related work is
discussed in Section 11.8. Finally, in Section 11.9, we conclude the paper with
future directions of work.

11.2 ProCom Component Model: An overview

In this section, we present an overview of ProCom1 [5, 6], a recently developed
component model for designingreal-timeembedded systems in the vehicular
and telecom domains. To address the different concerns thatexist on different
levels of granularity or various phases of system development, ProCom is or-
ganized into two distinct layers: ProSys and ProSave. The layers also differ in
terms of architectural style and communication paradigm. In ProSys, a system
is modeled as a collection of communicatingsubsystemsthat execute concur-
rently, and communicate by asynchronous messages sent and received at typed
output and inputmessage ports.

On the other hand, the lower layer, i.e., ProSave consists ofpassive units,
and is based on a pipes-and-filters architectural style withan explicit separa-
tion between data and control flow. The former is captured bydata portswhere
data of a given type can be written or read, and the latter bytrigger portsthat
control the activation of components. Data ports always appear in a group to-
gether with a single trigger port, and the ports in the same group are read and
written together in a single atomic action. In addition to simple connections
from output- to input ports, ProSave containsconnectorsthat provide detailed
control over the data- and control flow, including forking, joining and dynami-
cally changing connection patterns. For detailed description of these elements,
we refer to ProCom language reference manual [5].

1Developed at MRTC, Mälardalen University, Sweden.

11.2 ProCom Component Model: An overview 133

Figure 11.1: a) A ProSys subsystem and b) A ProSave component.

Fig. 11.1 (a) shows the graphical representation of a ProSyssubsystem
with one input port and two output ports, and (b) shows a simple ProSave
component with one input port group and two output port groups. Triangles
and boxes denote trigger- and data ports, respectively.

ProCom arcitectural elements have a precise formal semantics [10]. The
semantics is described in terms of finite state machines extended with notions
of urgency, timing, and priorities. Below, we informally describe the semantics
of ProSave elements used in this paper. For through details,we refer the reader
to [11].

• Components: internally, a ProSave component may be described by
code or other inter-connected sub-components. The functionality of a
component is captured by a set of services.

• Services: the services of a component are triggered individually and
can execute concurrently, while sharing only data. A service consists of
one input port group and zero or more output port groups, and each port
group consists of one trigger port and a number of data ports.When trig-
gered, the input ports are read in one atomic step, and then the service
switches to an executing state, where it performs internal computations
and writes (atomically) at its output port groups. Before the service re-
turns to idle, each of the associated output port groups musthave been
activated exactly once. This restriction serves for tight read-execute-
write behavior of a service.

• Connections: the migration of data or trigger over a ProSave connec-
tion is loss-less, atomic, and follows a push model. However, the trigger
signals are not allowed to arrive to any port before all data have arrived

134 Paper D

to all end destinations. This should hold also in case when data passes
through a connector. In case more data (trigger) connections are enabled
at the same time, the order is non-deterministic.

• Connectors: together with connections, connectors can be used to de-
fine complex data and control flow for a ProSave composition. ProSave
defines different kinds of connectors such asdata fork, control fork, data
or, control or, control joinandselection. A connector is a stateless com-
ponent and executes atomically.

• Clocks: it is a special type of construct that has one output triggerport,
which is activated periodically at a given rate. Clocks are not allowed to
drift, but it is not assumed that all clocks are initially synchronized.

Both layers of the ProCom are hierarchical, meaning that subsystems as
well as components can be nested. The way in which the two layers are linked
together is that a primitive ProSys subsystem (i.e., one that is not composed of
other subsystems) can be further decomposed into ProSave components. Thus,
a mapping has been defined between the message passing in ProSys and the
trigger/data communication used in ProSave. At the bottom of the hierarchy,
the behavior of a primitive ProSave component is implemented as a C function.

11.3 Example: Temperature Control System (TCS)

As the running example of the paper, we consider a Temperature Control Sys-
tem (TCS), for a heat producing reactor [12]. It has a collection of control rods
that can be inserted into the core of the reactor, to control the heat producing
(chain) reaction. If inserted, a control rod absorbs neutrons and consequently
the reaction is slowed down, with the temperature inside thecore decreasing
at a fixed rate, depending on the rod inserted. When pulled out, the reaction
speeds up, and temperature increases in the core. The main functionality of the
TCS is to maintain the temperature in the reactor between thespecifiedMIN
andMAX values. However, when a rod has been used for cooling for a fixed
duration, say “T” time units, it is then unavailable for a certain time duration,
proportional to T.

In the next section, we propose a language for specification of functional,
and timing properties of an embedded system. We use the language to specify
the functionality, and timing constraints of the TCS system.

11.4 Our Specification Language: Modemachine + Marte CCSL 135

11.4 Our Specification Language: Modemachine
+ Marte CCSL

A specification is a way of explicitly stating system requirements and behav-
ior. In this section, we propose a language for the abstract specification of
system functionality, and related timing constraints of anembedded system.
We use an extended form of statemachines that we callModemachines(see
Fig. 11.2). A modemachine adds to the original statemachinethe system be-
havior, defined externally, which could be in turn a finite statemachine, a timed
automaton etc. Also, in a modemachine, one can specify clockconstraints,
by using UML/Marte CCSL (Clock Constraint Specification Language) [9].
Graphically, a Modemachine is similar to UML statemachines[8].

11.4.1 Modemachine Definition and Graphical Notation

A modemachineis a tuple〈M,B, T , C,A,s〉, whereM is a set ofmodes, s is
theentrymode,B is a set of externally definedbehaviors, A is a set ofevents,
T ⊆ M × A × M is the set of transitions betweenmodes, andC is a set of
clock constraints.

If a mode contains other modes, it is called acompositemode. A mode with
no internal modes is called anatomicmode. The elements of a modemachine
are further described below, informally.

11.4.2 Modes, and Behaviors

A mode consists of a set ofbehaviors, where abehaviordenotes the specific
functionality of the system. A mode instance is the set of active behaviors at a
particular instance of time. Behaviors can be externally specified, for example
using external modeling tools such as Matlab/Simulink, UMLRhapsody, etc,
or denote the reusable code of system functionalities. Within a mode or sub-
mode, behaviors execute concurrently, sequentially, or periodically, based on
the associated mode constraints. Mode changes occur when a corresponding
event or timeout occurs, or implicitly when all behaviors inthe mode termi-
nate. Further, an enabled mode change due to a timeout, has higher precedence
over other simultaneously enabled mode changes, if any.

136 Paper D

Figure 11.2: Modemachine specification of a temperature control system.

11.4.3 Events, Triggers, and Timeouts

The execution of a behavior is triggered by the occurrence ofan external event
or time event. For an embedded system, the externaleventsare generated by its
environmentconsisting of sensors and actuators. Atrigger denotes a periodic
time event, and it is usually generated by “system clocks” (e.g., IdealClock
in UML/Marte, for measurement of discrete chronometric time). Triggers can
be used to specify periodic behaviors within a mode. Atimeoutdenotes the
expiry of the specified amount of (discrete) time duration. Timeouts are use-
ful to model delays associated with an embedded system. A timeout can be
associated with atomic modes, making them delay in particular states of the
system model. The expiry of a timeout is denoted by the internally signaled
sigTimeOut event.

11.4.4 Mode constraints using UML/Marte CCSL

The recently adopted UML Profile for Modeling and Analysis ofReal-Time
and Embedded systems (MARTE)[9] provides necessary and relevant features
for modeling software of the real-time and embedded domain.Further, it aims
at bringing interoperability between existing languages and formalisms of the
real-time embedded domain. MARTE defines an expressiveTime-Modelfor

11.4 Our Specification Language: Modemachine + Marte CCSL 137

a generic timed interpretation of UML models. CCSL is a language annexed
to MARTE specification. It is a declarative language that specifies constraints
imposed on the clocks, i.e., both physical and logical, denoting the activation
conditions of a model. Some of the constraints used in the paper are briefly
discussed below:

• discretizedBy: specifies a discrete clock from a dense chronometric
clock (e.g.,IdealClockdefined in Marte Time package). Expression
(11.1) below defines a clock, whose period is 0.01s, wheres is the
time unit of the IdealClock.

IdealClock discretizedBy 0.01 (11.1)

• isPeriodicOn: specifies a discrete clock from another discrete clock
of finer granularity (or faster clock). Expression (11.2) below defines a
discrete clock that ticks 10 times slower than C (a tick of C’ comes with
every 10th tick of C):

C′ isPeriodicOn C period 10 (11.2)

• alternatesWith: implies causality between two clocks. Expression
(11.3) states that each instance of clock C precedes and causes the cor-
responding instance of clock C’.

C alternatesWith C′ (11.3)

• NFP duration: supports the description of duration values with respect
to an ideal chronometric clock. ANFP Durationvalue is defined, in the
non-functional types model library in Marte (i.e., MARTE::BasicNFPTypes),
as a tuple containing a real value and a time unit.

Marte constraints in (11.1) and (11.2) are related to the basic synchronous con-
straintcoincidesWith (also denoted by “=”) which can also be used in
specifying a mode constraint. The Marte constraintalternatesWith (see
(11.3) above), is useful to specify constraints over logical clocks (e.g., non-
periodic event occurrences, beginning and termination of behavior paths, etc),
for instance, to specify causality dependencies between behavioral paths. An-
other useful Marte constraint for component models isdelayedFor(e.g., “a
delayedFor n on b”, i.e., everynth tick of b following a tick of a). To-
gether withprecedesrelation (�), it can be used to specify complex timing

138 Paper D

constraints of particular behaviors, like timing relationships between the start
and the end of a behavior (e.g., B1.finish� (B1.startdelayedFor 3 on C)).

11.4.5 Example Specification: TCS Modemachine

A modemachinespecification of TCS is given in Fig. 11.2. At the top level,
it contains two composite modesTempControl, andCooling. Transitions be-
tween the modes are enabled with occurrence of eventsRod inserted, and
Rod deleted.

The composite modeTempControl contains two atomic submodesMea-
sureTemp, andSelectAndInsertRod. Further, the submodeMeasureTemp
contains a periodic behavior as specified by the associated Marte constraint
discretizedBy. Also, the sequential dependency i.e., causality between
behaviors ofMeasureTemp, andSelectAndInsertRod is specified by the
Marte constraintalternatesWith. SelectAndInsertRod contains the de-
tailed behavior based on the data inputs received, for e.g.,a rod selection and
insertion is skipped when the current temperature value, communicated by the
MeasureTemp component, is within the specified intervalMIN andMAX, as
described in Section 11.3.

The duration of the delay is specified using the Marte NFPduration prop-
erty. For instance, the composite modeCooling contains adelaymodeDelay
characterized by a duration of 150 sec. When the timeout expires, it triggers
the atomic modeDeleteRod.

Now let us assume a repository of ProCom components, which should be
used for the architectural design of the TCS. Therefore, we will transform the
above modemachine into a component-based design. To accomplish this, we
need to tackle the following design issues/challenges:

• How to transform a composite mode with periodic, and sequential be-
haviors, into a component-compliant description?

• How to transform the control structure of a modemachine e.g.event, and
signal based transitions?

• How to represent timeout in a component based-design?

• How to integrate different design aspects into a complete system design?

In order to address the above design issues, we introduce a set of com-
ponent patterns that guides a designer in transforming a modemachine-based

11.5 Component Patterns 139

specification, e.g, the specification model of the temperature control system
(TCS) in Fig. 11.2, into a corresponding ProCom based architectural design.
The patterns are described in the next section.

11.5 Component Patterns

The component patterns, proposed in this section, provide simple mechanisms
for modeling the time, and event based executions of systembehaviorsthrough
reusable, easy to understand component designs. The patterns are described in
ProCom component language (see Section 11.2). To illustrate our approach,
we apply the proposed pattern-based support, in transforming the elements of
themodemachinespecification of the TCS system (see Fig. 11.2), into a corre-
sponding design aspects in ProSave.

For ProCom-based pattern descriptions, we assume that the components
are triggered, where necessary, by a clock, sayMainClock, of fixed periodic-
ity, say “P”. In turn, theMainClock itself can be defined by the clock pattern
(described below) using theIdealClockfrom the Marte time library. TheMain-
Clock is denoted by the conventional clock-icon symbol in the pattern descrip-
tions below. Further, we specify additional constraints onthe resulting designs
(referred as “pattern constraints”), if any, by the patterndescription (in a dotted
text box, e.g., Fig. 11.3).

The set of patterns proposed below, address the design issues identified
earlier, in the previous section: the “Timer Pattern” characterizes a time out in
a component based design; the “Discrete Clock Pattern” addresses the clock
synchronization problem between clocks of different granularity; the “Peri-
odic Behavior Pattern” represents the design of periodically executed compo-
nents; finally the “Controller Pattern” addresses event-triggered executions in
a component-based design, and the development of a completesystem design.

11.5.1 Timer Pattern

Timers, and timeouts constitute important aspects of an embedded system be-
havior. The pattern models a timeout (or delay) behavior of asystem or its
parts. It is triggered by a discrete, chronometric clock e.g., theIdealClock
in UML/Marte time package. When triggered, time is internally measured (us-
ing a state variable) until the specified duration/delay units are expired. The
output, i.e., the timeoutsigTimeOut, is indicated as both data and control.
This facilitates using the timeout as either sampled data orreactive trigger (de-

140 Paper D

Figure 11.3: The timer pattern in ProSave.

sign choice based on the specified timing constraints). Further, the pattern
specifies the timer mechanismset to assign the timer value (the value itself
can be assigned statically or dynamically).

A ProSave description of the pattern is given in Fig. 11.3. The component
Timer contains two servicesset, andtick. The serviceset, when triggered,
sets the timer value (based on the statically assigned duration value through
corresponding data port). The servicetick, the periodic behavior triggered by
theMainClock, decrements the timer value, if set, during each execution cycle
and generates a timeout (denoted bysigTimeOut) when the value becomes
zero. The connectorsSelect, DataFork are required to differentiate the final
timeout output from trigger outputs corresponding to individual executions of
Timer component (due to the semantics of a ProSave component).

The timer pattern corresponds to the Marte clock constraintin (11.4) below,
wheren is a natural number, ands is the time unit. However, the timer pattern
suffers from ajitter of one period of the triggering clock i.e., theMainClock
(as verified in Section 11.6). This implies the need for choosing a suitable
granularity for theMainClock. Further, this should be taken into consideration
while evaluating other timing aspects of the design, such as, end-to-end latency.

NFP duration = n s (11.4)

Application of the timer pattern to TCS : The pattern can be applied to
transform adelaymode (i.e. an atomic mode with NFPduration value) of
a modemachine into a corresponding design in ProSave. For example, in TCS
specification, the internal modeDelay (within the composite modeCooling,
see Fig. 11.2), is translated into a ProSave design, as shownin Fig. 11.4. Fur-
ther, if the delay mode is not connected by a transition to anyother internal

11.5 Component Patterns 141

Figure 11.4: Transformation of the composite modeCooling of TCS into a
ProSave Design, by applying the timer pattern.

mode, its timeout i.e.,sigTimeOut is communicated to the controller (de-
scribed below, by thecontroller pattern) of a containing composite mode. For
TCS, thetime-outfrom Delay mode triggers the modeDeleteRod.

11.5.2 Discrete Clock Pattern

Clocks are central to embedded system behavior. The patternmodels a coarse-
grained discrete clock (i.e., a slower clock) triggered by afiner-grained clock
(e.g., theMainClock). Also, the pattern facilitates the synchronization of vari-
ous clocks within a component-based design.

The pattern is similar to the timer pattern described above,but does not
require aset operation (as the state variable is simply incremented, when trig-
gered). Further, unlike the timer pattern, the output of a discrete clock pattern
is always a trigger rather than data as this is justified by thefact that clock
ticks represent causality, between the clock and the triggered component, in a
component-based design.

A ProSave description of the pattern is given in Fig. 11.5. The service
tick, when triggered by the finer-grained clock, e.g.,MainClock, increments
the value of the state variable, modulom (see the associated pattern constraint).
The connectorSelect is needed to output the trigger only when the specified
period expires, indicated by the associated boolean data output port. Hence,
the final output trigger corresponds to atick for everym ticks of the triggering
clock.

The discrete clock pattern corresponds to the following Marte clock con-
straints as shown in (11.5), (11.6) below. Except for the initial tick, the discrete
clock pattern does not suffer from anyjitter (as verified in Section 11.6). This
is consistent with the ProSave clock semantics.

MainClock discretizedBy n (11.5)

142 Paper D

<<ProSave-DiscreteClock Pattern>>

¡¡ProSave¢¢

Clock

{value:=m}

service tick

Period of Clock, n = m. P where mєN

Select

Figure 11.5: The discrete clock pattern in ProSave.

isPeriodicOn MainClock Period P (11.6)

Application of the discrete clock pattern to TCS: The pattern can support
the design of periodic behaviors in a component-based design, also described
by the following patterns below. Additionally, it can be used to synchronize
different clocks in a design. This not only simplifies the design, increasing its
readability, and understandability, but avoids clock jitters and corresponding
unpredictable delays, if any, which can be caused by different clocks. In the
case of TCS component-based design, as shown in Fig. 11.11, the MainClock
triggers both theController component, and theTimer component. Addition-
ally, it could also trigger theClock component, which instead is triggered by
theController, for further simplification of the design.

11.5.3 Periodic Behavior Pattern

An embedded system is commonly described as a collection of periodicbehav-
iors. The pattern describes twobehaviors, sayB1, andB2, where the periodic
behaviorB1 triggers the execution ofB2. This causality makes the behavior
B2 sequential, and also periodic. However, it is generally important for behav-
ior B2 to act on the output generated fromB1, which entails the constraint that
“B2 must beat idle state whenB1 completes the execution”.

In Fig. 11.6, we give the ProSave description of this pattern. The compo-
nentB1 (containing thebehaviorB1) is triggered by a clock of corresponding
periodicity (can be designed using the discrete clock pattern described above).
Further, the output ofB1 triggers the component containing thebehaviorB2.
However, the design must ensure that the specified pattern constraint is pre-
served. That is,B2 must beidle, whenB1 completes its execution. The formal

11.5 Component Patterns 143

Figure 11.6: The periodic behavior pattern in ProSave.

verification of the pattern (see Section 11.6), verifies the conditions for the con-
straint to hold, in terms of the period ofB1, and also the end-to-end response
time ofB1, andB2.

The pattern corresponds to the following Marte clock constraint in (11.7)
below.

B1.finish alternatesWith B2.start (11.7)

Application of the periodic behavior pattern to TCS: The pattern can be
used in transforming a mode with periodic behaviors into corresponding component-
based design. In the TCS modemachine (Fig. 11.2), the composite mode
TempControl contains atomic submodes with periodic, and sequential behav-
iorsMeasureTemp, SelectAndInsertRod, respectively. Thus, the composite
modeTempControl can be translated into a ProSave design as shown in Fig.
11.7. The Clock component is designed by the application of the discrete clock
pattern, and based on the periodicity ofMeasureTemp mode behavior (repre-
sented byTempControl component), as specified by the corresponding timing
constraint (see Fig. 11.2). When triggered by theClock component periodi-
cally, theTempControl executes by reading the temperature data and provides
output, temperature deviation within the allowed interval. This value is read
by SelectAndInsertRod component to determine if a control rod is required
to be inserted or not.

11.5.4 Controller Pattern

The behavior of an embedded system consists mainly of event-, or time-triggered
behaviors. We have already covered the time-triggered behaviors by the pat-
terns described above. Here, we introduce the controller pattern, to describe
the event triggered execution of systembehaviors. This corresponds to the
reactive part of the system behavior.

144 Paper D

Figure 11.7: Transformation of composite modeTempControl of TCS into a
ProSave design, by applying the periodic behavior pattern.

In principle, a component-based design is based on time-triggered, and
control-, data-flow semantics. Hence, the pattern transforms event-based exe-
cution of modebehaviorsinto the executions based on sampling of the environ-
ment data corresponding to sensors, and actuators. Within acomponent-based
design, events can be represented by pre-defined predicatesover the environ-
ment data [13]. When triggered by a system clock (e.g., theMainClockdis-
cussed previously), the data is sampled to determine the occurrence of events,
through the evaluation of corresponding predicates.

Fig. 11.8 shows the ProSave design of the pattern. TheController com-
ponent is triggered by a system clock, e.g.,MainClock, periodically (in an
implementation, the controller thus becomes a periodic task in the system).
The periodicity of the clock is to be determined by the periodicity of data oc-
currences or their criticality. Also, there can exist multiple clocks of different
periodicity (can be or-ed using ProSave connectorControlOr). Further, the
controller implements the mode change behavior of a modemachine(e.g., Fig.
11.2). It also implements a datastructure representing thepredicate-event map-
ping ([13]) described above. The controller can be triggered by internal signals
i.e., sigTimeOut, when the signal represents a trigger rather than data (as
described in the Timer pattern previously).

Application of the controller pattern to TCS : The pattern can be used in
transforming the control structure of a modemachine specification into cor-
responding component-based design. For example, the event-based transitions
corresponding to the top-level control structure of the TCSmodemachine spec-
ification (Fig. 11.2), is transformed into the corresponding component-based
design in Fig. 11.9. When triggered, theController evaluates the predicates
corresponding to the event occurrenceRod inserted, andRod deleted, re-
spectively. In this case, no timeout is communicated to the controller, hence
using the control-or connector, shown in the pattern, is notrequired.

11.6 Pattern Verification 145

Controller

<<ProSave>>

sigTimeOut

Control

Or

<<ProSave-ControllerPattern>>

Selection

Figure 11.8: The controller pattern in ProSave

Figure 11.9: Transformation of the top level mode transitions of TCS into a
ProSave design, by applying the controller pattern.

11.6 Pattern Verification

In this section, we describe the formal verification with respect to component
patterns, presented in the previous section. The approach is based on the formal
semantics of the architectural elements of the ProSave language [10, 11]. The
formal semantics is based on an extension of finite state machine formalism
with the notions of urgency, priority etc. The semantics of the formalism itself
was given in terms of timed automata (TA) [14]. This providesa mechanism
to formally verify ProSave designs using UPPAAL, the timed automata based
model-checker [7] .

For formal verification, a component pattern is translated into the corre-
sponding network of timed automata, based on the underlyingsemantics of
constituting ProSave elements.

11.6.1 Verification of periodic behavior pattern

For periodic behavior pattern (in Fig. 11.6), the corresponding network of
timed automata is given in Fig. 11.10. Each of the timed automataClockTA,

146 Paper D

Figure 11.10: Translation of the periodic behavior patternin ProSave into the
corresponding network of timed automata.

ClockToB1, B1, B1ToB2, B2 correspond to the periodic trigger toB1, trig-
ger connection toB1, componentB1, trigger connection fromB1 to B2, and
componentB2, respectively. Also, the end-to-end response time (say, R)of
componentsB1, B2 are modeled in corresponding TA (3, 4 in this example).
ChannelsTA denotes the timed automaton that contains complementary chan-
nels, corresponding to urgent channels A, B of other TA.

On the above models, we have verified with UPPAAL [7], that thefollow-
ing properties are satisfied by the periodic behavior pattern:

A[] not deadlock (11.8)

A[] B1.trigOut imply (not B2.InExecution) (11.9)

Property (11.8) states that there is no deadlock in the pattern. Though ba-
sic, this is a very important model feasibility property. Property (11.9) verifies
the main constraint of the pattern i.e., that B2 is idle, thatis, ready to begin
execution, whenever B1 terminates its execution. However,it is observed that
this property is satisfied, provided that the following conditions hold:

Periodicity of B1=

{

≤ EB1 if EB1 > EB2

> EB2 if EB2 > EB1

where

11.7 Temperature Control System: A Complete ProCom Design 147

EB1, EB2 denote the response time of B1, B2 respectively.

11.6.2 Verification of other Patterns

In addition to “no deadlock”, we have verified other properties like the ones
expressed by (10 - 12), this time for the Timer pattern (see Fig. 11.3). Ex-
pression (11.10) describes a liveness property (also called leads to, or response
property [7]), as follows: when the timer is set, it eventually performs a time-
out. Formulae (11.11), (11.12), verified to be satisfied by the pattern, indicate
that the timer duration has a jitter of one period of theMainClock.

timerV alue == Set.N timerV alue == 0 (11.10)

A[] (T imeOut imply (obsClk >= (m− 1) ∗ P)) (11.11)

A[] (T imeOut imply (obsClk <= (m+ 1) ∗ P)) (11.12)

For the discrete clock pattern, we have model-checked the corresponding
network of automata against the following properties: deadlock freedom, live-
ness (as given by (11.10)), and jitter freedom (see (11.13)). The latter means
that theClock discretizes theMainClockperfectly, without any jitter, unlike
the timeout duration of the timer pattern:

A[] T imeOut imply (obsClk = m ∗ P) (11.13)

11.7 Temperature Control System: A Complete
ProCom Design

In this section, we complete the approach introduced in sections 11.4 and 11.5,
by describing the final steps leading to a complete ProCom system design.

We have applied theTimer pattern, of the Fig. 11.3, to transform the
composite modeCooling of the TCS specification (Fig. 11.2), which con-
tains the delay modeDelay, and an atomic modeDeleteRod with its cor-
respondingbehavior. The expiration of the timeout, signaled by the event
sigTimeOut from theTimer component, triggers the execution of thebe-
havior in DeleteRod.

148 Paper D

To recall, Fig. 11.5 presents a ProSave design corresponding to the com-
posite modeTempControl in the TCS specification. The corresponding design
in ProSave, is obtained by applying the discrete clock pattern to the composite
mode.

Also, the top level control structure, corresponding to thereactive behavior
of the TCS modemachine (Fig. 11.2), with respect to the eventsRod inserted,
andRod deleted is translated into the corresponding ProSave design in Fig.
11.8, through the controller pattern.

The complete ProCom design of the TCS is presented in Fig. 11.11. For
simplicity, the complete system is represented as a single ProSys subsystem
(see Section 11.2). For integrating different design parts, for instance, those
described above, the following design steps are applied:

• Synchronize the clocks using discrete clock pattern: different clocks in
the component-based design can be synchronized by applyingthe dis-
crete clock pattern, and a finest-grained clock, e.g., theMainClock. This
not only simplifies the component design, but also minimizesclock jit-
ters, if any. For TCS, the different clocks, due to Controller, Period-
icBehavior, and Timer patterns, are synchronized using theMainClock.

• Interconnect ProSys message ports with ProSave ports: the system can
be designed as a basic ProSys system (also called ProSave Subsystem)
by connecting message ports to ProSave control, and data ports (as shown
in Figure 11.11). Sensor and other data values, received as messages
through ProSys message ports are forwarded to the internal ProSave
components through their ports.

11.8 Related work

In the domain of synchronous languages [15], mode automata and the notion
of running modes have been introduced, to reduce the gap between the initial
design of a system and the program written for it. The formalism has been
proposed to support both dataflow, and imperative styles. The modemachine
described in this paper corresponds to the event-based, hierarchical, high-level
control structure of the system and associated timing constraints.

11.8 Related work 149

Figure 11.11: The Temperature Control System in ProCom: a ProSys compo-
nent made of ProSave components.

Sandén proposes the “state-machine” pattern [16], for designing concur-
rent real-time software in Ada [17]. Many possible implementations of the
pattern, corresponding to concurrent, reactive, and time-triggered behaviors,
are described. Also, patterns for non-functional aspects such as resource us-
age, quality-of-service have been proposed [18]. However,such patterns focus
on the design or implementation phase of the system. The patterns proposed
in this paper support the design process, by directly mapping the specifica-
tion aspects, with associated timing constraints, into thecorresponding design
elements.

Maxwell et al. have proposed a formal framework [19] for heuristics-based
transformation of architectural designs. The authors capture heuristics in a
structured and formal manner, such that the architectural transformations can
be performed for optimizing the non-functional qualities of a system. Denford
et al. have proposed an architectural refinement method [20]that focuses on
non-functional requirements e.g., reliability, performance, while still address-
ing the functional requirements. While these works focus onnon-functional
aspects such as performance, we address architectural designs through timing
constraints of embedded systems. However, this is done by including the func-
tional requirements also.

UML/Marte profile is extensively used in the context of AADL (Archi-
tecture analysis and design language [21]) for component-based designs of
real-time, embedded systems [22, 23]. AADL supports the modeling of both
software components such as thread, subprogram, process, and platform com-
ponents, e.g., bus, memory, processor, and device. However, AADL introduces

150 Paper D

avoidable redundancies that obscure the model and may even lead to design in-
consistence. To address this deficiency, the Marte clock constraints have been
used [23] to precisely specify both event, and time triggered communications
for AADL models, and to compute end-to-end flow latency. These works focus
on models related to software and platform mapping. In this paper, we offer
formally verified support for component-based system design, in the form of
patterns based on timing constraints.

EastADL [24] is a layered architecture language for model-based develop-
ment of automotive software. To address various concerns ofsystem’s life-
cycle development, it provides abstraction layers such as feature level, require-
ments, analysis, design, and implementation. Mallet et al.have described
Marte CCSL specification of EastADL timing requirements [25]. This enables
the use of Marte tools for timing verification of EastADL requirements. The
work is similar to model driven aspects underlying the proposed patterns in this
paper.

11.9 Conclusions

In this paper, we have proposed a set of component based patterns for devel-
oping embedded system designs. The patterns are based on thespecification
of reactive, and time-triggered behaviors of an embedded system. An extended
form of statemachine, referred as modemachine, combined with UML/Marte
clock constraints is used as the specification language. We have proposed com-
ponent patterns for clocks, timers, periodic, and reactivebehaviors. Also, we
have described the implementation of the proposed patternsin the ProCom
language, in order to support the design process based on thespecification of
functionality, and timing constraints. Further, we have described the corre-
spondence of the proposed patterns with related UML/Marte clock constraints.

To guarantee timing correctness aspects, we have formally verified our pat-
terns, by model checking their corresponding timed automata models, in UP-
PAAL. This facilitates the development of component based-design models
with precise timing aspects. We have demonstrated the approach, by trans-
forming the modemachine specification of an example temperature control sys-
tem, into a corresponding design in ProCom component model.The explicit
representation of running modes in the design, by application of the proposed
patterns, may be useful for developing efficient deploymentmodels. However,
this requires further validation. Also, we intend to extendthe approach to other
Marte constraints, and validate the approach with complex systems. Further,

11.9 Conclusions 151

we plan to work on the compositional verification of timing properties of the
resulting component-based system designs.

Bibliography

[1] R. Englander.Developing Java Beans. O’Reilly, 1997.

[2] R. van Ommering, F. van der Linden, and J. Kramer. The Koala compo-
nent model for consumer electronics software. InIEEE Computer, pages
78–85. IEEE, March 2000.

[3] T. Bureš, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing advanced
features in a hierarchical component model. InProceedings of SERA
2006, pages 40–48. IEEE CS, August 2006.

[4] F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture for com-
ponent trading and dynamic updating. InProceedings of ICCDS 98. IEEE
CS, May 1998.

[5] T. Bureš, J. Carlson, I. Crnković, S. Sentilles, and A.Vulgarakis. ProCom
– the Progress Component Model Reference Manual, version 1.0. Tech-
nical Report MDH-MRTC-230/2008-1-SE, Mälardalen University, June
2008.

[6] T. Bureš, J. Carlson, S. Sentilles, and A. Vulgarakis. Acomponent model
family for vehicular embedded systems. InProceedings of the Third In-
ternational Conference on Software Engineering Advances. IEEE, Octo-
ber 2008.

[7] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1–2):134–152,
October 1997.

[8] Object Management Group. UML 2.0 Superstructure Specification, The
OMG Final Adopted Specification, 2003.

153

154 Bibliography

[9] Object Management Group. A UML Profile for MARTE, Beta 1, August
2007. Document number: ptc/07-08-04.

[10] Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlson,Cristina Seceleanu,
and Paul Pettersson. Formal semantics of the procom real-time compo-
nent model. In35th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), August 2009.

[11] Jagadish Suryadevara, Aneta Vulgarakis, Jan Carlson,Cristina Seceleanu,
and Paul Pettersson. ProCom: Formal semantics. Technical Report ISSN
1404-3041 ISRN MDH-MRTC-234/2009-1-SE, Mälardalen University,
March 2009.

[12] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson. REMES: A
REsource Model for Embedded Systems. InIn Proc. of the 14th IEEE
International Conference on Engineering of Complex Computer Systems
(ICECCS 2009). IEEE Computer Society, June 2009.

[13] Jagadish Suryadevara, Eun-Young Kang, Cristina Seceleanu, and Paul
Pettersson. Bridging the semantic gap between abstract models of em-
bedded systems. In Lars Grunske and Ralf Reussner, editors,13th Inter-
national Symposium on Component Based Software Engineering (CBSE).
Springer LNCS, vol 6092, June 2010.

[14] R. Alur and D. L. Dill. A theory of timed automata.Theoretical Computer
Science, 126(2):183–235, 1994.

[15] Florence Maraninchi and Yann Rémond. Mode-automata:a new domain-
specific construct for the development of safe critical systems.Sci. Com-
put. Program., 46:219–254, March 2003.

[16] Bo I. Sandén. The state-machine pattern. InProceedings of the confer-
ence on TRI-Ada ’96: disciplined software development withAda, pages
135–142, New York, NY, USA, 1996. ACM.

[17] A. Burns and A. Wellings.Concurrency in Ada. Cambridge University
Press, 1995.

[18] Joseph P. Loyall, Paul Rubel, Richard Schantz, MichaelAtighetchi, and
John Zinky. Emerging patterns in adaptive, distributed real-time, embed-
ded middleware. In9th Conference on Pattern Language of Programs,
September 2002.

[19] Cameron Maxwell, Tim O’Neill, and John Leaney. Formal architecture
transformation using heuristics. InEngineering of Computer-Based Sys-
tems, 2007. ECBS ’07. 14th Annual IEEE International Conference and
Workshops on the, pages 15 –24, March 2007.

[20] M. Denford, John. Leaney, and Tim. OŃeill. Non-functional refinement
of computer based systems architecture. InProceedings of the 11th IEEE
International Conference and Workshop on Engineering of Computer-
Based Systems, pages 168–, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[21] Society of Automotive Engineers (SAE). Architecture analysis and de-
sign language (AADL), June 2006.

[22] M. Faugere, T. Bourbeau, R. De Simone, and S. Gerard. MARTE: Also an
UML profile for modeling AADL applications. InEngineering Complex
Computer Systems, 2007. 12th IEEE International Conference on, pages
359 –364, 2007.

[23] F. Mallet, R. de Simone, and L. Rioux. Event-triggered vs. time-triggered
communications with UML MARTE. InSpecification, Verification and
Design Languages, 2008. FDL 2008. Forum on, pages 154 –159, 2008.

[24] ATESST (Advancing Traffic Efficiency through Software Technology).
East-ADL2 specification, March 2008.

[25] F. Mallet, M.-A. Peraldi-Frati, and C. Andre. Marte CCSL to execute
East-ADL timing requirements. InObject/Component/Service-Oriented
Real-Time Distributed Computing, 2009. ISORC ’09. IEEE International
Symposium on, pages 249 –253, March 2009.

