Malardalen University Licentiate Thesis
No0.132

Design and Analysis Support
for Abstract Models of
Component-based Embedded
Systems

Jagadish Suryadevara

2011

VA
\ V' 4

MALARDALEN UNIVERSITY
SWEDEN

School of Innovation, Design and Engineering

Copyright(© Jagadish Suryadevara, 2011

ISSN 978-91-7485-016-1

ISBN 1651-9256

Printed by Malardalen University, Vasteras, Sweden

Abstract

Developing industrial real-time software systems is @raing due to de-
mands on system safety and reliability, through stringgsiiesn requirements
in terms of functionality, timing, resource consumption.ebDue to this, the
system development needs to ensure predictalilitfiprethe actual imple-
mentation, through reliable engineering methods. To axddieese challenges,
model-based engineering (MBE) combined with Componesetalevelop-
ment (CBD) has emerged as a feasible solution. MBE suppgstersa model-
ing and formal analysis through the development phasesasidguirements,
specification, and design. CBD supports reusability ofigarfe parts leading to
faster development time, and reduced costs. However, agrated approach
needs to deal with various abstractions of the system ddiffeyent phases of
the development.

In this thesis, we present model-based techniques, fordtelobment of
predictable, component-based designs of embedded sydf¢emonsider Pro-
Com as the underlying component model and, as a first stepgefireeca for-
mal semantics for its architectural elements. The givenasgics provides a
basis for developing analyzable embedded systems desigssgiated analy-
sis techniques, model transformations etc. Next, we dessome commonly-
found behavioral patterns, in component-based desigreselatterns provide
an abstract, and reusable specification of a real-time cape functional-
ity. Also, we define component-based design templatesndiets to support
the systematic development of component-based desigmsaibstract system
models. Finally, we propose a formal framework to correltsemachine-
based system behavior with corresponding ProCom-basezhsgesigns. We
validate our research contributions using case-studidseaamples, and also
by applying verification techniques, such as, model-chegki

Acknowledgements

I wish to thank my research advisors Paul Pettersson, arstir2riSeceleanu
for the continuous support and valuable suggestions thnmuigthis research
work. It has been a great time of learning, and also fun warkiith you; and
also many moments to cherish for times to come.

| thank co-phd students of my research group; Stefan Bjitea Aida
Causevic, Leo Hatvani, and Aneta Vulgarakis for being héligfammates and
also for stimulating research presentations and disaoassid would like to
thank Shuhao Li, for sharing interesting research thouditisg his work as
visiting phd student.

| thank Jan Carlson, and Eun-Young Kang for valuable coutitins as
co-authors. | thank Thomas Nolte, Bernhard Schatz, andrahonymous
reviewers for providing valuable insights of this reseancitk.

I would like to thank the professors in PROGRESS researcjegtrdvica
Crnkovic, Hans A. Hansson, Bjorn Lisper, Kristina LundstySasikumar Pun-
nekkat, and Mikael Sjodin for the critical observationd &aluable discussions
during project meetings and also at other occasions. letiagawith them has
always been a great experience.

| thank PROGRESS researchers, Radu Dobrin, Andreas Erh&dkérd
Land, Frank Luders, Dag Nystrom, Daniel Sundmark, JuklékiM urja for
making the research progress, through inspiring work atpfiilaess.

| thank IDT staff; Susanne FronnAsa Lundkvist, Malin Rosqvist, Carola
Ryttersson, and Gunnar Widforss, for making many thingee#srough their
support and lots of patience.

| thank Abhilash, Adnan, Ana, Andreas G., Andreas H., AndraAnto-
nio, Barbara, Batu, Damir, Etienne, Farhang, FedericaikgHang, Hongyu,
Huseyin, Hakan, Juraj, Josip, Johan L., Johan K., Karathkin, Rafia, Rikard
Li., Saad, Shahina, Lars, Lilia, Luka, Mats, Mehrdad, Mikdobyen, Moris,
Nikola, Nima, Peter, Sara, Séverine, Stefan (Bob), St€faBvetlana, Thomas

Le., Tiberiu (Tibi), Veronica, and Yue for all the fun and tipeat time together.
| am grateful to the Swedish Research Council (VR), and thedsst
Foundation for Strategic Research (SSF) for funding trésaech work.
Last but not least, | would like to acknowledge the love andmth of my
family for the success of all my efforts; my daughters Narsjamd Mahima
for all the fun; my wife Anuradha for being a wonderful comjman

Jagadish Suryadevara
Vasteras, June 2011.

Publications

Included in the thesis

Paper A. “Analyzing a Pattern-Based Model of a Real-Time Turntable-S
tem”. Davor Slutej, John Hakansson, Jagadish Suryade@istina Sece-
leanu, and Paul Pettersson. In proceedings of therGernational Workshop
on Formal Engineering approaches to Software Componedt8mhitectures
(FESCA), pages 161-178, UK, March 2009.

Paper B. “Formal Semantics of the ProCom Real-Time Component Model”
Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlsortjr@riSeceleanu, and
Paul Pettersson. In proceedings of th&3suromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 488-&reece, Au-
gust, 2009.

Paper C. “Bridging the Semantic Gap between Abstract Models of Embed
ded Systems”, Jagadish Suryadevara, Eun-Young Kang,ir@riSeceleanu,
Paul Pettersson, In proceedings of th&lIBternational Symposium on Com-
ponent Based Software Engineering (CBSE), Springer LNGS092, pages
55 - 73, Czech, June, 2010.

Paper D. “Pattern-driven Support for Designing Component-basechiAr
tectural Models”, Jagadish Suryadevara, Cristina Senale@aul Pettersson,
In proceedings of the 18 IEEE International Conference on Engineering of
Computer-Based Systems (ECBS), USA, April, 2011.

vi

Other Publications
Not included in the thesis

A) Journal

e Jagadish Suryadevara, Lawrence Chung, ShyamasundaciRUKVIL -
A UML based Framework for Formal Specification of Concuryde-
active Systemslournal of Object Technology (JOT), vol 7, nr 4, ETH,
Swiss Federal Institute of Technology, May, 2008.

e Jagadish Suryadevara, ShyamasundarlB®¥|. based Approach for Se-
cured, Fine-grained, Concurrent Access to Shared Vargtdleurnal of
Object Technology (JOT), vol 6, nr 1, p107-119, ETH, Swisdédtal
Institute of Technology, Zurich, January, 2007.

B) Conference/ Workshop

e Jagadish Suryadevaracm, Shyamasundar RIKIL. - A Precise UML
for Abstract Specification of Concurrent ComponeRrallel and Dis-
tributed Computing and Systems, p 141-146, ACTA Press, IE#as,
Texas, USA, Editor(s): S. Q. Zheng, November, 2006.

e Jagadish Suryadevara, Paul Pettersson, Cristina Seuebaidating
the Design Model of an Autonomous Truck Systdidardalen Univer-
sity Software Enginnering Workshop (MUSE’09), Malardaldniver-
sity, Vasteras, Sweden, November, 2009.

C) Technical Reports

e Jagadish Suryadevaracm, Aneta Vulgarakis, Jan Carls@stiarSece-
leanu, Paul PetterssaAroCom: Formal Semantic8#RTC report ISSN
1404-3041 ISRN MDH-MRTC-234/2009-1-SE, Malardalen REate
Research Centre, Malardalen University, March, 2009.

Contents

I Thesis 1
1 Introduction 3
1.1 Thesis Contributions: Overview 5
1.2 ThesisOutline., 5
2 Background 7
2.1 Model-based Engineering 7
2.2 Component-based Development 9
23 FormalAnalysis. 11
3 Research Goals 15
3.1 ProblemDescription L. 15
3.2 ResearchQuestions 16
4 Research Contributions 19
4.1 Formal Semantics of a Real-Time Component Model 19
4.2 Design Support for Component-based Development 21
4.3 Relating Abstract Models of Embedded Systems 22
4.4 Research Questions-Revisited 24
5 Related Work 27
5.1 Formalizations of Real-time ComponentModels. 27
5.2 Design Support for Component-based Development 29
5.3 Relating Abstract Models of Embedded Systems 31
6 Conclusions and Future Work 33
6.1 SummaryandDiscussion 33
6.2 FutureWork 34

Vii

viii Contents

7 Overview of Papers 37
Bibliography 41
I Included Papers 49
8 PaperA:
Analyzing a Pattern-Based Model of a Real-Time Turntable Sg-
tem 51
8.1 Introduction 53
8.2 SaveCCM 54
8.3 Component Modeling Patterns 56
8.3.1 Run-to-CompletionPattern 56
8.3.2 HistoryPattern 58
8.3.3 Execution-TimePattern 59
8.4 Turntable ProductionCell 60
8.4.1 SystemDesign 62
8.4.2 ModelingaClosed System 66
8.4.3 Requirements and Verification 69
85 RelatedWork 71
8.6 Conclusion 72
Bibliography 75
9 PaperB:
Formal Semantics of the ProCom Real-Time Component Model 79
9.1 Introduction 81
9.2 The ComponentModel 82
9.21 ProCom 82
9.2.2 Particularitesof ProCom 84
9.3 Formal Semantics of Selected ProCom Architectural Ergsn 87
9.3.1 Formalism and Graphical Notation 87
9.3.2 Formal Semantics of the FSM Language 88
9.3.3 Overview of ProCom Formalization 89
9.34 Services 90
9.3.5 Data and Trigger Connections 91
9.3.6 ComponentHierarchy 92
9.3.7 Linking Passive and Active Components. 93

9.4 DiscussionandRelatedWork 95

Contents ix

10

11

95 Conclusions 97
Bibliography 98
Paper C:
Bridging the Semantic Gap between Abstract Models of Embeded
Systems 103
10.1 Introduction 105
10.2 Abstract Models of Embedded Systems 106
10.2.1 Specification model of embedded systems 107
10.2.2 Design model of embedded systems 109
10.3 Case Study: Autonomous Truck 112
10.4 Methodology Description 114
10.4.1 Specification simplification inferencerules 115
10.4.2 Design simplification inferencerules. 611
10.4.3 Rules for transforming the design model trajectorie 119
10.4.4 Applying the methodology 121
10.5 RelatedWorko 122
10.6 Conclusionsand Futurework 123
Bibliography 127
Paper D:
Pattern-driven Support for Designing Component-based Arabitec-
tural Models 129
11.1 Introduction 131
11.2 ProCom Component Model: An overview 132
11.3 Example: Temperature Control System (TCS) 341

11.4 Our Specification Language: Modemachine + Marte CCSL 135
11.4.1 Modemachine Definition and Graphical Notation . . .5 13

11.4.2 Modes, and Behaviors 135
11.4.3 Events, Triggers, and Timeouts. 136
11.4.4 Mode constraints using UML/Marte CCSL 136
11.4.5 Example Specification: TCS Modemachine 138
115 ComponentPatterns, 139
11.5.1 TimerPattern 139
11.5.2 Discrete Clock Pattern 141
11.5.3 Periodic Behavior Pattern 142
11.5.4 ControllerPattern. 143
11.6 Pattern Verification 145

11.6.1 Verification of periodic behavior pattern 451

X

Contents

11.6.2 \rification of otherPatterns 147
11.7 Temperature Control System: A Complete ProCom Design147
11.8 Relatedwork o 148
11.9 Conclusions e 150

Bibliography 153

Thesis

Chapter 1

Introduction

In modern days, embedded systems have become an intrinsiofgauman
life. These include highly critical systems in domains,sas, automotive,
avionics, and industrial automation. Embedded systemagldlition to being
control-intensive and time critical, are increasingly d&ing larger in size,
and complex in functionality. Most often, different aspeof embedded sys-
tem functionality are associated with hard real-time caists, that is, the
respective functions should be completed by certain deesllior respect spe-
cific orders of execution, specified delays etc. Since liesd-systems faults
may have serious consequences, possibly including lossrofh life, their
predictability should be guaranteed at design time.

I2: Tum N 3:Find
\ \
\\ \
1: Follow - I =~

— Y

Tectiop, \\)
/
~— 4

Figure 1.1: An autonomous truck control system application

Figure 1.1 presents an example embedded system, an autosdraok
control system. Itis part of a demonstrator project coneldiat the PROGRESS

4 Chapter 1. Introduction

research centte The truck moves along a specified path, as illustrated in the
figure, according to the specified behavior in terms of thedhwperational
models, as described below.

e Follow: in which the truck follows the line (the thick line in Fig. 1.
using light sensors. When the end of the line is detectediahges to
Turn mode.

e Turn: the truck turns right for a specified time duration, and tbleanges
to Find mode.

e Find: the truck searches for the line. When it is found, the trietkms
to Follow mode.

An embedded system interacts with its environment throwgisars and
actuators. For the truck application described above, #tle, @s well as the
end of the path, are detected with the help of light sensdrs.development of
an embedded system needs to establish the system prelitictapiensuring
the system design and implementation follows the specifddbior.

Component- and model-based approaches are emerging asipgpB0-
lutions to cost-effective development of predictable eddssl systems [1, 2].
Component-based approaches aim at increasing reusalisibftware “parts”
i.e.,componentsandsub-systemsvhich is expected to lead to faster develop-
ment time, and reduced costs. Several component-baseddodties (see
Chapter 5) have been developed, for the design and anafyesisheedded sys-
tems. On the other hand, the model-based approaches eifigdModeling
Language (UML) [3], support modeling and analysis of syst#imoughout the
development phases, such as, requirements, specificatidngesign. UML
contains several modeling views captured by compositeraiag, statema-
chines, sequence diagrams etc, for structural, and beladmodeling of com-
plex systems. Such models facilitate both qualitative amantjtative analy-
sis during system development, by describing functiondl possibly extra-
functional behavior, while omitting the implementatiortaiks. Hence, an in-
tegrated component- and model-based approach has becomasimgly pop-
ular, as a high-level design solution for achieving preahidity. In this thesis,
we adopt this combined approach, and contribute to it, axrithes! in Chapter
3.

1For more information about PROGRESS, see http://www. mdb.se/progress/

1.1 Thesis Contributions: Overview 5

1.1 Thesis Contributions: Overview

We present below an overview of the thesis contributionsthien details are
presented in following chapters. In this thesis, we havesdiat meeting the
following objectives:

e Analyzable component-based designsWe have defined a formal se-
mantics for the ProCom component model, facilitating theigle of un-
ambiguous architectural models. Also, the semantics isrdesl in an
intuitive formalism, by design, without restricting thepedilities for
formal analysis.

e Behavior modeling of components We have proposed behavior pat-
terns to support component modeling. The patterns are lmasescur-
ring behavior of real-time components, and provide abstraenecha-
nisms for increased reusability, and analyzability.

e Design support for Component-based developmentWe have pro-
posed a design methodology to transform abstract systenelsodo
ProCom-based componentdesigns. This is done by introgaoimponent-
based design templates for transforming abstract feasuwek as, events,
triggers, timeouts, causality etc., into correspondirgjgleelements.

e Formal correlation between models, and designdNVe have developed
a formal framework to correlate ProCom-based designs,tatehsachine-
based abstract specification models. This provides an tapostep in
bridging the semantic gap between the underlying formalighthe cor-
responding models.

1.2 Thesis Outline

This thesis is divided into two parts. The first part is an wiew of the re-
search work. In Chapter 1, we describe the background andationh of the
research work underlying the thesis. In Chapter 3, we ptésemain research
goal, and related research questions. In Chapter 4, wesdisbe thesis con-
tributions in terms of stated research questions. Theaghabrk is described
in Chapter 5. In Chapter 6, we summarize the thesis work, adscussion
of the future work . Finally, in Chapter 7, we give an overviefthe included
papers in the second part of the thesis.

6 Chapter 1. Introduction

The second part of the thesis contains a collection of foer-peviewed
conference and workshop papers that contain details ofttierlying research
work of the thesis.

Chapter 2

Background

In this chapter, we overview notions of model-based, andpmmmant-based
development that are used in this thesis. Also, we brieflggmethe main
ideas and techniques of formal analysis of systems.

2.1 Model-based Engineering

Model-based (sometimes used as model-driven) engine@iBg), has proven
to be an effective paradigm for developing complex systdtriacilitates sys-
tem modeling through multiple abstractionsviews corresponding to its de-
velopment phases. This enables the seamless integrati@sigh and analysis
techniques and tools, otherwise pertaining to specifiesyseatures / behav-
iors, throughout the system development.

In a model-based engineering approach, the main develdgheses are
requirements, specification, and design. During the requénts phase, vari-
ous system properties, attributes, constraints etc andifidel. These are also
categorized as functional, and extra-functional (timimegource-efficient, per-
formance, reliability etc.). In the specification phasestedect models of sys-
tem structure and behavior are developed. The structurdétaanclude high-
level system architecture diagrams or component-baségides he behavior
models, if used at this phase, for e.g., statemachines aleseg diagrams,
are generally abstract, and describe the system-levelvlmehdor example,
Figure 2.1(b) presents a statemachine view of the appicdtehavior of the
autonomous truck system (Figure 2.1(a)) as described ipt€hd. These

8 Chapter 2. Background

7 & e ol()
‘. \ - Follow
- =@ -

h 4 \I line_found()
N

(@) (b)

Figure 2.1: (a) Autonomous truck control system, and (b)!lastract specifi-
cation model of the system.

models are useful for the formal analysis or validation dgrearly phases of
development with respect to the intended system propertiestified during
the requirements phase.

During system design, the specification models, such akitactural and
behavioral descriptions are refined into detailed moddtendierarchical in
nature. Differenpartsof the system, that is, both large-grained (e.g., subsys-
tems), as well as small-grained (e.g., components), aggrated into precise
design models, by specifying detailed mechanisms for comication, syn-
chronization etc. Additionally, these models may be asgediwith deploy-
ment models, which specify the actual physical configuredita system. The
detailed design, and deployment models provide the vatuapportunity to
verify critical timing properties, such asnd-to-endesponse time, or analyze
for the best and the worst-case resource usage etc.

One of the strong points of MBE is the possibility of carryiogt model-
to-model transformations. This proves to be a powerfulnéple that enables
both qualitative and quantitative analysis of system pridg® by integrating
existing methods, and tools. As a result, integrated deveémt environments
(IDE) have become the development norm for all kinds of caxpglystems,
including real-time systems.

In support of MBE, the Unified Modeling Language (UML) [3, 4dbe-
come ade factoindustry standard modeling language for complex systems.
UML consists of many formalisms, successfully used in indusnd academia.
Although UML lacks a unique precise semantics (as definedM@] several
researchers have proposed various semantics to UML cetsstwhich enable
rigorous reasoning [5, 6]. UML provides extension mechasiso facilitate
its application in different domains, including real-tirmgstems, through cus-
tomized sub-languages called UNpkofiles For instance, MARTE (Modeling

2.2 Component-based Development 9

and Analysis of Real-Time Systems) [7] UML profile is intedder modeling
and analysis of real-time systems. We have considered @tsabsML and
MARTE in the model-based techniques presented in thisghesi

2.2 Component-based Development

The most important goal of component-based developmenDjGH] is to
tame the development of complex systems, by supportingbditg as a prin-
ciple, aiming at improving cost-effectiveness of develemm This is achieved
through reuse of various system parts, suchsabsystemsandcomponents
This may also include existing system models e.g., behavaztels, when the
development is combined with model-based engineeringeasribed previ-
ously.

Figure 2.2 presents design layers or phases in a compoasattuevel-
opment. From a set of system requirements, higher-levédsysmodels, such
as, behavior specification can be derived. Also, an initsablvare architec-
ture may be obtained. These models are often input or prayiddance to
more detailed models, such as, analysis, design, depldyetehefore the fi-
nal implementation phase. As shown in the figure, compobhaséd software
designs, such as, high-leveystem Software DesigBubsystem Desigand
Architectural Designcan be directly influenced or guided by a specification
model e.g., statemachine view of the system behavior.

In CBD approach, the central element is t@mponent modgfor exam-
ple ProCom component model [8]. A component model descthesyntax
and semantics of a component-based desigooiponenéencapsulates func-
tionality, paving the way for its reuse. A component can legdrichical (made
of connected sub-components), or atomic / primitive (nottaming any other
components). Further, a component may be large-grainedygstdm level
e.g.,subsystensomponents or small-grained components containing eaecut
bles i.e., actuatode This diversity of component characteristics serves the
purpose of reuse at different levels of granularity duriegign, but also the
need for addressing different issues during different pha$ system develop-
ment. For example, ProCom consists of two sub-languageSyBrfor mod-
eling a system as a collection of communicatiudpsystersomponents, while
ProSave is based guipes-and-filterarchitectural style.

Components communicate through ports. Ports are of difféiads e.g.,
message ports, data ports, control ports etc. Communichétween compo-
nents can be synchronous or asynchronous. The detailechBesnaf com-

10 Chapter 2. Background

— v 1
System % HW H
Requirements \ Architecture |
System Software b ——-!
Design
NI E™
Specification \,
Subsystem Design
o
e3,

Architectural Design

\

Deployment Model

—

(_osimw_) (_osimw)
I I ==

1
..SW ..SW ..SW

Figure 2.2: Design layers in component-based development.

ponent execution, communication etc, is given by the updegicomponent
model For ProCom, the sub-languages are based on different camation

paradigms; while ProSys components are based on messaijegp@dyoSave
components are based on explicit separation between déizoatrol flow. A

component model defines the rules of execution behavioreaatthitectural
level, and it is therefore most important for carrying ounnfal verification of

components and global system properties.

CBD assumes the interleaving of system design with compotevel-
opment, with one influencing the other. An initial configimatof a system
may be rapidly designed from existing fully-developed comgnts, as well
as partially-developed components. In component devetopnecomponents
may be created anew, or modified from those currently exjstinthe com-

2.3 Formal Analysis 11

Figure 2.3: A composite subsystem component with detailedtfonal com-
ponents (C1, C2).

ponentrepository While components may be developed in parallel, a partial
system configuration provides a very useful context to cahdarly analysis
and system validation. The early system analysis guidesdimponent selec-
tion during system development, might narrow the desigeeiy ruling out
infeasible choices, and provides rough estimations ofystem’s predictabil-

ity.

Component-based developmentis generally supported by pagenframe-
work consisting of a specific component model, correspondingpoomant
technology, and a component repository. The framework nsyiaclude an
integrated development environment (IDE) for both systath@mponent de-
velopment. Also, IDEs facilitate integration of other tedbr system design,
analysis, as well as synthesis. The ProCom language andthesponding
modeling framework constitutes the underlying contextto$ thesis work.
Specifically, as shown in Figure 2.2, we focus on linking hédraspecifica-
tion models to architectural design in ProCom. However|dler phases i.e.,
deployment or hardware architecture design are outsidecthyge of this thesis.

2.3 Formal Analysis

Analytic methods for real-time systems, e.g., schedutgtahalysis, perfor-
mance analysis are empirical methods based on variousspst@ameters. On
the other hand, computational methods, commonly known @&l meth-
ods” [9], such asnodel-checkingandtheorem provingare based on exhaus-
tive analysis of system behavior, by computing all posséxXecution states
of a system representation. In this thesis, we focus on eatifin techniques
based on formal methods.

Applying formal methods requires that both the specificatiod the sys-

12 Chapter 2. Background

dock y; cock z; int a=0; urgent chan ab;
constant T 10; constant Min 5; priority a<b
constant J1; constant Max 10;
lo z<Max
z>Min
a=1-a
4
(@) (b) (c)

Figure 2.4: Examples of timed automata (TA) modeling; (a)ldck with pe-
riod T, and jitter J, (b) A computation occurring between Mimd Max time
units, (c) Modeling urgent locations and priority-basedayonizations.

tem model are given in some precise mathematical notation.

e System model: a formal representation of system model imgesf
structure, and behavior. The example system models arecktats,
timed automata etc.

e Specification: a formal description of the intended systehdvior, or
system properties. Example specification formalisms arpteal log-
ics, statemachine, automata, etc. The important kindssiésy proper-
ties that can be specified are functional, safety, livertasg)g etc.

Formal methods are applied to verify if the intended behasi@roperties
of a specification hold on the corresponding design or implaiation. The
specific formal technique that is applied, in general, is oh®llowing two
kinds: model-checking and theorem proving that we will tiyieecall later in
this section.

Timed automata formalism: Formal methods based on timed automata [10]
are extensively used for modeling and analysis of real-8gstems [11, 12].
Timed automata supports modeling of real-time concepts) as, periodicity,
jitter, timing, priority, urgency etc based on clock vatied) and synchroniza-
tion channels, as shown in Figure 2.4. A timed automata stmef locations

2.3 Formal Analysis 13

System Model Result

YES, if the model satisfies
the specification

Model-
checker

Figure 2.5: A schematic view of model-checking based vetifon

System
Specification 7

Counter example, if not

and edges. An edge is taken from the current location if ¥®eiated guard
expression (e.g.y'=T'in Figure 2.4.(a)), if any, consisting of integer and data
variables becomes true. Further, edges are associatedpdtte actions, and
clock resets (see Figure 2.4.(a)). Locations camutgent(e.g.,lo in Figure
2.4.(c)) to disallow passing of time, or associated withanant expression
(e.g.,ly in Figure 2.4.(a)) to allow only the maximum delay of the dped
time units. Timed automata also supports priority-baseshobls for synchro-
nization. An urgentlocation e.g., at locatinin Figure 2.4.(c)) must be exited
with no time delay.

Model-checking It is a formal technique for automatically, i.e., algorith
cally, verifying correctness properties of a finite-statstem. Given a model
of a system e.g., a finite state machine, 8dy model-checking verifies (see
figure 2.5) whether the model satisfies a given specificatign a temporal
logic formula, sayp. This can be formally expressed as below.

M, s = pthatis, given model M, and initial statesholds.

In model-checking, the above problem reduces to a readtygiibblem or to
temporal logic verification i.e., of verifying if the expisgen is satisfied by a
state inM, by algorithmically traversing the state transition graph/. Fur-
ther, model-checking can produce a counter-example ijgarial execution
trace leading to a system state where the property is nsfisdtby the model.
Example model-checking tools ag®V [13], SPIN [14], UPPAAL [15], TIMES
[16], and many others.

Thorem proving: It is an interactive formal technique, compared to model-
checking. In this approach, both a specification, and cpoeding implemen-
tation are represented as logic descriptions e.g., usiaty br higher-order
predicate logics. Then, a designer employs a theorem-pgawiol through
partially guided, rigorous proof steps, to show that thelemgentatiorimplies

14 Chapter 2. Background

the logical specification. Example theorem proving or awtad reasoning
tools arePVs [17], HOL [18], and many others.

Model-checking tools such a®PAAL, andTIMES are based on extended
forms of timed automata, and enable verification of safety, @mething bad
never happens), liveness (e.g, something good eventugllydns), and timing
properties of system models as well as schedulability aislysing precise
task models.

Application of formal methods, in general, require exserin constructing
mathematical models, applying the corresponding anagsimiques, analyz-
ing the results, and improving the system design or imple¢atem. However,
these tasks can be simplified by choosing suitable absirector both spec-
ification and system models, and corresponding tool sugpatthide the in-
tricacies of the underlying formalisms. Further, the higlesel abstractions
facilitate increased understandability, reusabilityydtem features.

While formal methods have been successfully applied invaare design,
their application in system design, including softwares baen only recently
increasing. This is mainly due to the reason that the appuligaof formal
methods is constrained by the size, and complexity of théesys that can
be verified. However, the increasing demands for systemiqiedlity imply
the stronger need of applying formal, and systematic vatifio techniques.
This can be done through suitable abstraction techniqoespasitional design
methodologies, and tailored verification techniques.

Chapter 3

Research Goals

In this chapter, we outline the scope of the research predémthis thesis. We
begin with the description of the overall research goalhinithe context of
model- and component-based development of embedded systenelation

to this, we also present some specific research questionarthaddressed in
the research work and are intended to serve the overall goal.

3.1 Problem Description

The combined component- and model-based approach is dfeastle for
ensuring reusability, maintainability and analyzabitifypredictable embedded
software designs. However, for most of integrated methmgles, it involves
different formalisms, languages, tools for system modgebeross different
development phases, such as, requirements, specificatidmjesign. These
paradigms address different concerns of a system behawterms of struc-
ture, functionality, timing etc, at various phases of depahent. The variety
of paradigms and views give rise to many challenges that todleel addressed,
with respect to the abstract system models, and the undgrfigimalisms with
varying semantics.

The overall objective of the research behind this thesikwsoto develop
suitable methods for the design and analysis of comporasgchembedded
systems, based on abstract models for both system, andhifgacents. Our
main research goal is to:

Develop suitable methods for designing and analyzing abstr

15

16 Chapter 3. Research Goals

models of embedded systems.

With respect to the above research goal, we present thevialipspecific re-
search questions.

3.2 Research Questions

Research question 1 In a component-based development style, an embed-
ded software system is representeatbgnponentsiter-connected using archi-
tectural elements, such gmrts connectionsandconnectors A component
model for real-time systems, for example ProCom [8], carganany elements
with critical real-time features such as period, urgendgrfiy etc. To develop
unambiguous designs of a system, it is essential to assdtiatunderlying
component model and its constructs with a formal semardieghich any de-
sign should conform. Also, to support rigorous analysis, dasign elements
together with the underlying semantics should be easilystamed into es-
tablished verification frameworks, such as, UPPAAL-based @hchecking.
Moreover, we would obtain an even higher gain if the fornatian were in-
tuitive and easy-to-use. Such features would be benefii@hgineers using
the component model, as well as researchers developingsi#chniques,
model-transformation tools etc. Based on these argumemrtstate our first
research question below.

How to formally describe the behavior of architectural etmts
of a real-time component model such that we provide a basis fo
rigorous analysis?

(Q1)

Research question 2 Abstract models, for example, statemachine-based be-
havior models are commonly used to represent system beahdwimg early
phases of the development. For embedded systems, suchsanedlased on
features, such as, events, control states, timeoutsaattalso associated with
timing constraints, such asnd-to-endesponse time. However, these aspects
are often considered in a rather ad hoc way, while developingmponent-
based system design. Applying a systematic approach islatamg the above
system features to component-based designs is desiralpegderve the be-
havioral properties when generating component-basedmie$iom abstract
models of embedded systems. Also, in a related design aspatis, com-
ponent development, the functionality of components isrofepresented only

3.2 Research Questions 17

by code. This makes components difficult to understand amsktErom this,
we state the next research question as below.

How to develop component-based designs from abstractnsyste
models and component behaviors?
(Q2)

Research question 3 When embedded systems are designed using an MBE
approach, it is quite often the case that different formadisre used for sys-
tem modeling during different phases of its developmentesehformalisms
are normally based on events, or time triggering, or datafboveven a com-
bination of these. These abstractions may be used withisah®, or across
different phases of system development, such as, requitsirepecification,
and design. In order to ensure predictable behavior of thesy, the different
abstractions used in development should be verified forieheonsistency.
Specifically, in a component-based development, the behai’a component-
based design must be consistent with the system behavicifispeusing other
abstractions. From this, we state the next research quesgibelow.

How to relate component-based system designs with theaabstr
models of system behavior?
(Q3)

Chapter 4

Research Contributions

In this chapter, we give an overview of the thesis contridmsgiwith respect to
the research questions presented in the previous chapter.

4.1 Formal Semantics of a Real-Time Component
Model

Problem description. To achieve predictability of a component-based real-
time system, the designer needs a development framewoieglwith anal-
ysis methods and tools. This foremost requires a formé&braif the under-
lying component model, which will give unambiguous meartogheir con-
stituent elements, such that any claim regarding systentamgonent prop-
erties becomes refutable. However, the formalization ebétime component
model needs to deal with issues like priority, urgency, tignetc. Further, it
would be effective to make the formalization as simple anditive as possi-
ble, such that, it can serve as a basis both for designers tisrianguage, and
the researchers developing analysis techniques, madeftrmation tools etc.
Coming up with such a formalization is no trivial job.

ProCom [8] is a component model for real-time systems (réyeievel-
oped at Malardalen University, within the PROGRESS radeaentre). To
address various modeling issues, ProCom consists of tinctibut related
layers. The upper layer, called ProSys, supports the nmagleli an embed-
ded system as a collection of active and concurrent submgstsommunicat-
ing by message passing. The lower layer, ProSave, addibssedernal de-

19

20 Chapter 4. Research Contributions

sign of a subsystem, down to primitive functional compoeémplemented by
code. ProSave components are passive and the communicatieeen them is
based omipes-and-filterparadigm. However, ProCom has a number of mod-
eling characteristics that pose challenges to the systaigrtky. For example,
bridging the semantic gap between the two communicatioadigms is one
particular modeling challenge that needs to be addressadybformalization.

Another distinguishing characteristic of ProCom is thegimiity to model
both fully implemented components (described internajhycbde), and also
design-time components (possibly modeled as inter-caadderoSave com-
ponents), which might co-exist with the implemented comgis. The Pro-
Com language constructs include service interfaces, dat&igger ports, pas-
sive or active components, connections and connectorsrbiées of compo-
nents, timing etc. Clearly, an intuitive formalization btProCom component
language is essential to support system designers, asswels@archers devel-
oping analysis techniques for predictability.

Solution. We describe the formal semantics of the ProCom componentimod
rigorously, as well as intuitively, usingfanite state machin@=SM) formalism,
extended with notions of urgency, timing and priority. Tbetfial semantics of
the FSM language itself is described ustimged automatavith priorities [19]
and urgent transitions [20]. The FSM formalism is intendedrovide a high-
level, abstract description of ProCom semantics,basedorall semantic core
to which the synthesis of ProCom-based models need to confblowever,
the semantic descriptions focus only on describing theecbtrehavior of Pro-
Com architectural elements, such@smponentsservicesports connections
connectoretc, but do not target goals, such as, achieving efficienégrmal
verification of the resulting models.

The FSM language builds on standard FSM, enriched with fohit@ain
integer variables, guards and assignments on transitiigmns of urgency
and priority, and time delays in locations. The languagemss an implicit
notion of time, making it easy to integrate with various ammency models
e.g., the synchronous/reactive concurrency model, oraetes-event concur-
rency model [21]. The FSM language has a graphical appeait @dimpler
than the corresponding TA model, as it abstracts from rahled variables
and synchronization channels. However, the FSM models eE&m-based
designs can be analyzed with timed automata toolsui&LAL [15].

The details of the above research work can be found in PapehBh is
included in the second part of this thesis.

4.2 Design Support for Component-based Development 21

4.2 Design Support for Component-based Devel-
opment

Problem description. When developing real-time systems in a CBD fashion,
the state-of-practice is dominated by an ad-hoc mixture ethwds and tools,
and system validation is mostly done by extensive testiteg tfe implementa-
tion phase. In general, components are introducesesutableoftware units
that can be deployed into a system. This makes both the dewigiel, and
also individual components, incomprehensible and diffitureuse. To sup-
port predictability, the system designs should reflect artyestated intent and
structure, besides containing reusable, analyzable, mterstandable compo-
nent behaviors. Further, the structured design processdstake into account
the two parallel, but related, work-flows of component-lobdevelopment, that
is, the overall system-development, and component-dpustat.

Solution. A general solution to the above demanding requirementstisie-s
tured, pattern-based design methodology for developingpoment-based em-
bedded systems. For the overall system-development, fimabsystem mod-
els e.g., specification, requirements etc, can be considerguide the com-
ponent based design process. In the parallel componertegeaent activity,

behavior patterns based on the recurring behavior of iddalicomponents,
can be considered to support developing abstract, reusabiponent behav-
iors.

For component-development, we have defined behavior mmggdpéitterns
based on the common behaviors of real-time components. atterps are
described in a finite-state-machine (FSM) notation that aleRattern-FSM
(PFSM). The finite behaviors of components can be specifiedyus/o de-
sign patterns encodingin — to — completion semantics, antistorystates.
Timing is introduced using a third design pattern for spgni the response
time of components. These patterns can be easily transfbtonii into spe-
cific formal frameworks for verification. To show the usefedis of these pat-
terns, we have applied them in the component-based develupoh an in-
dustrial real-time turntable system [22]. The chosen asisifyamework is the
Timed Automata (TA) language @fPPAAL [23, 15]. Component behaviors
have been specified using the patterns and manually tramsfbinto timed
automata models. Also, the complete design together withn@ironmental
model has been translated into timed automata for properification using
UPPAAL.

22 Chapter 4. Research Contributions

In a related design activity, to support the transformatibabstract system
models into corresponding component-based designs, wegraposed com-
ponent design templates (referred as component patf€hesbstract system
model, which we refer to amodemachinée. an extended form of UML
statemachine, represents the mode configurations of arsgstd correspond-
ing event-based mode changes. The constraints are speasiiegl UML/
MARTE Clock Constraint Specification Language (CCSL), lolase physical
and logical clocks, and we also show how to specify periadigers, timeouts,
causality etc.

For a given system, the modemachine represents an abgtesification
of architectural features, while hiding the detailed intdrbehaviors. Based
on this, one can derive architectural or component-bassigiae that satisfy
the specified functional and timing constraints. To guide tlansformation,
we have proposed several component pattarmeoutpatterndiscrete-clock
pattern,periodic-behaviompattern, andontroller pattern. While the first two
patterns model the timing aspects, the other patterns ntogléine- and event-
triggered executions of internal behaviors respectively.

The patterns are implemented within the ProCom framewarlsupport
the development of ProCom-based designs. Based on the Ifeemmeantics
of ProCom, the patterns are manually transformed into timedmata frame-
work for verification of timing properties using UPPAAL mdeshecker.The
usefulness of these design patterns is demonstrated onpeigture control
system (TCS), for which we develop a ProCom-based desigmpplyiag our
patterns.

The details of the research described above can be foundlinfaper A
and Paper D, included in the second part of the thesis.

4.3 Relating Abstract Models of Embedded Sys-
tems

Problem description. The predictable behavior of a real-time system can be
ensured through extensive modeling and analysis duringldement phases,
such as, specification and design. These phases are stiaafplying early
predictability analysis techniques with respect to funredlity, timing, resource
consumption etc., over different models of system stregtand behavior.
However, such models may use paradigms that cannot be irategdcom-
pared and related, due to their apparently incompatiblgreat

There exist several paradigms for the specification of emiéedystems.

4.3 Relating Abstract Models of Embedded Systems 23

For example, statemachine-based approaches, such as dtdinsichines [4],
are intended to specify system states and the correspoagatgm behavior
in these states. The timed UML state-machines add the plitysis repre-
senting timing aspects. Statemachines often use an aperweént-triggered
representation of behavior, since such a paradigm faeilitaasy changing of
a model’s configuration or set of events. On the other hargigdenodels i.e.
architectural/ structural models might use a different sliog) paradigm e.g.,
a periodictime-triggeredbehavioral description. With time-triggered commu-
nication, the data is read from a buffer according to a triggecondition gen-
erated by e.qg., a periodic clock. Although these modelipgbdities, in isola-
tion, are invaluable to a mature development process &allfor predictability,
when applied to embedded system development, they needpmben con-
sistent with each other.

Solution. In order to address the above goal of ensuring inter-modedise
tency, we have defined a methodology for relating eventéalsstract models
with time triggered, data-flow based design models. Suctradigons may be
used within the same or different phases of system developn@oncretely,
we consider UML statemachines for modeling event-basetgisyspecifica-
tion, and the ProCom language as the basis for modeling #tersis archi-
tecture (the design model). Hence, the method may be ontgldeifor a
specific class of embedded systems, which employ the aboméaned for-
malisms. However, the underlying methodology can be gdimedhto include
other classes of systems.

The proposed approach of relating abstract models of eneoexidtems is
based on comparison of execution trajectories of systenetao@o be able to
carry out a meaningful comparison, the respective modeld teerely on pre-
cise semantic grounds. To accomplish this, we define thedbsamantics of
both kinds of models i.e., statemachines and ProCom-basegIts is defined
in terms of the underlying state-transition systems. Asetkexution trajecto-
ries generated by these models can be extremely large aochjprehensible,
they need to be reduced to more readable and analyzable fGonsequently,
we define two sets of inference rules, one for simplifyingspecification tra-
jectories, and the other one for simplifying the design oisreover, in order
to relate and compare the above two sets of simplified tr@jes, we have also
proposed a set of transformation rules from time-triggeceevent-triggered
trajectories, and vice-versa. To summerize the steps fdgimg the gap be-
tween the paradigms consists of the following five steps:

24 Chapter 4. Research Contributions

e given a specification trajectory, generate a correspondisign trajec-
tory by e.g, simulating the model

o simplify the specification trajectory (may be skipped)
o simplify the design trajectory

e transform the design trajectory into one comparable to temtebased
specification trajectory

e compare the reduced specification and design trajectories

The above described methodology, which relies on rulesciate auto-
mated, has however been manually applied to a represendstign trajectory
suitable to demonstrate several simplification scenamggsribed previously.

Our initial experiences with applying the proposed techeio an au-
tonomous truck control system indicate that the design mogiectories can
sometimes be manually transformed into trajectories afpieeification model.
However, as this is not the case in general, the above frankeshould be ex-
tended with simulation relation checking methods, for jmgwonformance
between the respective trajectories.

The details of the above research work can be found in Papeei@ded in
the second part of this thesis.

4.4 Research Questions - Revisited

In this section, we discuss how the research contributiessribed in the pre-
vious sections correspond to the research questions peesenChapter 3.
Details can be found in the corresponding research papdtslied in the sec-
ond part of this thesis.

Q1 How to formally describe the behavior of architectural edens of a real-
time component model such that we provide a basis for rigoamalysis?

The formalization described in Section 4.1, which resuiteBaper B, shows
a way of giving formal semantics to architectural elemeritewr real-time
component model ProCom. The given semantics not only fallawintuitive
approach but provides basis for easier translation of ProBased designs
into corresponding models in semantic domains, for exaripled automata,
for formal verifications.

4.4 Research Questions - Revisited 25

Q2 How to develop component-based designs from abstractnsysiedels
and component behaviors?

The proposed approach as described in Section 4.2 hasesutivo research
papers, thatis, Paper A, and D. These papers describe appsdar providing
design support for development of embedded systems. InrPapee have
proposed behavior modeling patterns for components anadusmnated their
usefulness by applying them to an example industrial titataystem. In
Paper D, we presented a few component-based design tempatievelop
architectural designs from abstract system models. Theaph is applied in
developing a component-based design of a temperatureotepstem.

Q3 How to relate component-based system designs with thesabstodels
of system behavior?

The proposed methodology as described in Section 4.3, bakae in Paper
C. In this paper, we have defined a methodology based on indenailes for
simplifying, and comparing the execution trajectoriesmddfication, and ar-
chitectural models. The approach is demonstrated by appitdn an example
autonomous truck system.

From the above, one can conclude that we have addressedstarale ques-
tions to some extent. Although the research questions acé migler in scope,
we have chosen ProCom-based design framework for our rseark. Con-

sequently, our work is not a general solution to the reseprohlems, yet it
provides particular answers. We discuss the limitationswfcontributions,
along with possible future lines of research, in Chapter 6 .

Chapter 5

Related Work

In this chapter, we describe both the state-of-the-artedlto the model- and
component-based development of embedded systems.

5.1 Formalizations of Real-time Component Mod-
els

In order to support the component-based development of édeoksystems,
several researchers, as well as practitioners have dexigsadety of compo-
nent models and corresponding.development frameworks.

COMDES-II (Component-Based Design of Software for Disttédd Em-
bedded Systems) [24] is a development framework in whichftinetional
units encapsulate one or more dynamically scheduled tietviBesides pro-
viding a clear separation of concerns (functional behafrimn real-time be-
havior) in modeling, COMDES-II also offers support for faatanalysis, by
specifying the behavior in terms of hybrid state machineke ProCom se-
mantics presented in this thesis does not focus on the tianafional aspects
of component and system behavior, but more on the reactieesat-time as-
pects, while emphasizing the co-existence of black-boxXalhdimplemented
components, via the component hierarchy.

The BIP (Behavior, Interaction, Priority) component framoek, introduced
by GoRler and Sifakis [25, 26], has been designed to supip@rtonstruction
of reactive systems. By separating the notions of behairiteraction, and
execution model, it enables both heterogeneous modelimdyseparation of

27

28 Chapter 5. Related Work

concerns. The semantics of BIP is given in terms of Timed Matia (TA), on
which priority rules are successively applied to enforatede invariants of the
expected real-time behavior. As compared to our approadhrisCom formal
semantics, the BIP formalization targets directly the edficverification of the
considered models.

In SOFA component model [27], the communication among campts
can be captured formally, by traces, which are sequenceseot éokens de-
noting the events occurring at the interface of a compon€hé behavior of
a SOFA entity (interface, frame or architecture) is the $etliaraces, which
can be produced by the entity. Such a formalization can be teacompre-
hend, but the proposed formalization of ProCom might, orother hand, be
more difficult to implement and exploit towards efficientifieation, due to its
higher-level of abstraction.

A process-algebraic approach to describing architechatahvior of com-
ponent models is advocated by Allen and Garlan [28], and Magel. [29],
who formalize the component behavior in CSP (Communica8aguential
Processes) and via a labeled transition system with a ppésfimite number
of states.

Koala [30] is a software component model, introduced byiphiElec-
tronics, designed to build product families of consumectetmics. For Koala
compositions, the extra-functional information is expbaethe component’s
interface. The prediction of extra-functional properigsarried out by mea-
surements and simulations at the application level. Inreshtthe ProCom
semantics sets the ground for achieving predictabilityferanal verification
(by translating our FSMs into timed automata [31]), priomgplementation.

ProCom'’s precursor, SaveCCM, is also an analyzable conmpomedel for
real-time systems [32]. SaveCCM’s semantics is defined bgrestormation
into timed automata with tasks, a formalism that explicitipdels timing and
real-time task scheduling. The level of detail of such a farmodel is higher
than in our FSM notation for ProCom semantics, making it nswigable for
formal verification; however, the timed automata modelsafe&CM can be
cluttered with variables whose interpretation is not neagly intuitive, which
makes the formal models less amenable to changes.

5.2 Design Support for Component-based Development 29

5.2 Design Support for Component-based Devel-
opment

The Statemate toolkit [33] is an early working environmenrtthe develop-
ment of complex reactive systems. Modularity of the systeavetbpment is
provided in terms of differentiews such as, structure, functionality, and be-
havior. Our approach for behavior specification of comptsiémodulesin
Statemate) is similar to the Statecharts [34], the behalianguage of State-
mate. Though not hierarchical, our FSM notation for commorehaviors
(see Section 8.3), combined with the patterns proposeddip#per, is similar
to the Statechart features “run-to-completion” and “execuhistory”.

The BIP framework and the toolkit IF [35] are intended forgictable em-
bedded systems development by supportingectness-by-constructicand
compositional verification. While BIP offers bottom-up d@gsof systems, our
approach supports CBD in a bit more pragmatical traditito@ldown design,
with support of modeling in Save-IDE [36] and formal veritica using the
UppaalPort toolkit [37, 15].

The CHARON toolkit [38] supports modular specification of leedded
systems, based on the notionsagfentsand modes for architectural and be-
havioral specifications, respectively. Our behavioratfjmation language of
components shares some features of the modes in Charonitbatthierar-
chy, and in our approach the execution history of a compoisgrbvided by
using a simple design pattern.

The case study of the Turntable production system, predémtihis the-
sis, has previously been analyzed using different methnds@ols. Bos and
Kleijn [39] have specified the turntable modelitr{40], a simulation language
for industrial systems, and translated into Promela, tpatitanguage of the
Spin model-checker to verify several properties of the rho@®rtnik et al.
[41] have translated & model of the turntable system into the specification
languages of three model-checkers: CADP, Spin, and Uppmaaparing the
ease of conversion, the expressiveness of each of the spéoifi languages,
and the abilities and performances of the respective mduetkers. Ke et
al. [42] have implemented the turntable production syste@OMDES-II, a
component-based framework. They have developed a seniamsformation
of the COMDESS-II model into an UPPAAL timed automata mod#égwing
for formal verification of a set of properties similar to tieogerified by Bortnik
et al [41].

In the domain of synchronous languages [43], mode autonmatahee no-

30 Chapter 5. Related Work

tion of running modes have been introduced, to reduce thbgmaeen the ini-
tial design of a system and the program written for it. Thefalism has been
proposed to support both dataflow, and imperative style®e mMidbdemachine
proposed in this thesis corresponds to the event-basedrdtiécal, high-level
control structure of the system and associated timing cainss.

Sandén proposes the “state-machine” pattern [44], foigdasy concur-
rent real-time software in Ada [45]. Many possible implernaions of the
pattern, corresponding to concurrent, reactive, and tinggered behaviors,
are described. Also, patterns for non-functional aspaath ss resource us-
age, quality-of-service have been proposed [46]. Howeueth patterns focus
on the design or implementation phase of the system. Therpatproposed in
this thesis support the design process, by transforminggéeification aspects,
with associated timing constraints, into the correspogdiesign elements.

Maxwell et al. have proposed a formal framework [47] for hstizs-based
transformation of architectural designs. The authorswapheuristics in a
structured and formal manner, such that the architecttaakformations can
be performed for optimizing the non-functional qualitiésasystem. Denford
et al. have proposed an architectural refinement methodtfé8lfocuses on
non-functional requirements e.g., reliability, perfommaa, while still address-
ing the functional requirements. While these works focusion-functional
aspects, such as, performance, we address architectsighd¢hrough timing
constraints of embedded systems.

The UML profile MARTE is extensively used in the context of ARDAr-
chitecture analysis and design language [49]) for compBbased designs of
real-time, embedded systems [50, 51]. AADL supports theetiod of both
software components suchtisead subprogramprocessand platform com-
ponents, such afus memory processor anddevice However, AADL in-
troduces avoidable redundancies that obscure the mod@hapaven lead to
design inconsistency. To address this deficiency, the MABI®EK constraints
have been used [51] to precisely specify both event, andttiggeered commu-
nications for AADL models, and to compute end-to-end flovetaty. While
these works focus on models related to software and platioapping, in this
thesis, we address specification, design mappings andspomding behavior
correlations.

EastADL [52] is a layered architecture language for modedeal develop-
ment of automotive software. To address various concerrsystem’s life-
cycle development, it provides abstraction layers, sucHesdure level, re-
quirements, analysis, design, and implementation. Matlat. have described
MARTE specification of EastADL timing requirements [53]. i$lenables the

5.3 Relating Abstract Models of Embedded Systems 31

use of MARTE tools for timing verification of EastADL requirents.

5.3 Relating Abstract Models of Embedded Sys-
tems

The problem of relating design to specification models igp&ctwith a growing
interest in the research community.

For synthesizing executable programs from timed modelsalkat al. [54]
have proposed a timed automata based semantic framewlbyikgren non-
instant observability of events. Time-triggered autom@tA), a sub class
of timed automata (TA), is used to model finite state impletagons of a
controller that services the request patterns specified . & his technique
enables deciding whether a TTA correctly implements a TAcHjgation. In
comparison, although ProCom oriented, our methodologyeapplied within
a generic component-based framework, and is not beingdiedy particular
formal verification framework either.

Sifakis et al. propose a methodology for relating the abstas of both
real-time application software and corresponding impletaon [55]. The
related formal modeling framework integrates event-drjand time triggered
paradigms by definingintiming functions. Problems of correctness, timing
analysis, and synthesis are considered in the methodologyontrast to our
approach, this one does not address the intermediate daggncommonly
used in system development.

Plasil and Visnovsky describe a formal framework basebteamavior pro-
tocols in order to formally specify the interplay between compusdg56].
This allows for formal reasoning about the correctness efecification re-
finement and about the correctness of an implementatioarimstof the spec-
ification. Further, the framework is validated in the SOFAN@Dnent model
environment [57]. While the approach provides much neededl correct-
ness in component-based development, it does not addngsg tissues and
vertical layers of abstractions in real-time system dgweient.

Schatz et al. [58] have described a model-transformatimet approach
using constraints as transformation rules guiding a meezhdrexploration of
possible design alternatives. The approach has been d&atedsor the in-
cremental deployment of logical architectures to hardvetaforms.

Chapter 6

Conclusions and Future
Work

In this chapter, we present a summary of the thesis conioifisitas well as cor-
responding limitations. Finally, we conclude the thesigkveith presenting
possible lines of future work.

6.1 Summary and Discussion

In this thesis work, we have tackled some design challengédseodevelop-
ment of real-time systems, in the context of model-baseéhergng (MBE)
and component-based development (CBD). While models geoxéry useful
abstractions and corresponding predictability analysitiniques, these how-
ever increase the development complexity due to multiglicf models, un-
derlying formalisms, tools etc that are generally employ8anilarly, while
CBD enables faster development and reduced costs throughlyiity of sys-
tem designs, it provides limited capabilities regardingrfal verification. We
have addressed some of these challenges in this thesis work.

As afirst step, we have chosen the ProCom -based design fiainasithe
basis for developing real-time systems, due to its padicctharacteristics, on
the one hand useful for real-time design, yet on the othed lchallenging to
formally analyze. The framework is associated with mangdions of real-
time research, such as, software engineering, formal sisalychedulability,
execution time analysis, etc. However, in the context ofvearfe engineering

33

34 Chapter 6. Conclusions and Future Work

and formal analysis, we have aimed at meeting the followhjgaiives:
e Analyzable designs based on a formalized component model.
e Providing design support for behavior modeling of compadsen
e Providing design support for component-based development
e Correlating specification models, and component-basdadmes

Even if our work tackles some of the embedded system devedopahal-
lenges coined by the research questions, there certaialynaitations to our
work, which we present in the following. To begin with, therfwlization of
ProCom has not been validated on a real-world example satlw#hcould as-
sess its verification capabilities. Also, while the formation clearly attempts
to avoid design ambiguities, by formalizing otherwise mmfi@l descriptions
of ProCom semantics, the resulting designs might still memmplete due to
inherent limitations of the ProCom itself.

Even if the contribution with respect to the second objegtihat is, our
proposed component behavior patterns have been appliatiodustrial case
study, the turn-table system, further investigations \@dé useful. Also, the
proposed patterns may not be sufficient for the abstractfgqaion of com-
plex functional behaviors of components. The same holdhéopattern-based
design methodology for the overall system development.

Finally, the formal correlation framework proposed in thedis has only
been manually applied on a simple case study. For complégragsthe man-
ual approachis clearly not feasible. Also, while the camess of the inference
rules proposed has been informally checked, this shouldtmedily verified,
for example, by logic-based reasoning.

The limited validations of the contributions made in thesikeare in the
spirit of providingproof-of-conceptshowever, all our solutions requiring fur-
ther investigations and more extensive validation in otdeestablish their
applicability, not to mention their potential benefits ftwetdevelopment of
component-based industrial real-time systems.

6.2 Future Work

The initial focus of the future work will be to address the iiations of the
contributions, as described in the previous section.

6.2 Future Work 35

Next, we plan to extend the pattern-based design methoggdogposed in
this thesis, for component development, as well as the catapl/stem devel-
opment. Additional useful patterns will be investigated amegrated within
the design process. Also, the design methodology will beragsly validated
by applying it to industrial-strength case studies.

Due to the timed automata-based semantics, the ProComndesigp be
analyzed in a dense-time underlying framework, as well asdiiscrete-time
one, since timed automata has been given a sampled sem&8ficdHience,
tools such as UPPAAL can be employed for early-stage vetificaf ProCom
models, whereas discrete-time model-checkers, such apiBT&0], could
be used for later-stage analysis, as a sampled time sem@ntitoser to the
actual software or hardware system with a fixed granulafityjnee. We plan
to consider these aspects for the future work related to dbxerification of
ProCom-based system designs.

Last but not least, we plan to extend the inference-ruleedrimethodology
for relating abstract models towards verifying behaviamaisistency between
different embedded system abstractions. This involvedyagpsimulation
relation checking to prove (or disprove) conformance betweon-identical
trajectories. Further, we plan to investigate the intégnabf suitable proof
assistant tools to support the underlying formal techrséque

Chapter 7

Overview of Papers

In this chapter, we present an overview of the research papeuded in the
second part of the thesis.

Paper A. “Analyzing a Pattern-Based Model of a Real-Time Turntable-S
tem”. Davor Slutej, John Hakansson, Jagadish Suryade@istina Sece-
leanu, and Paul Pettersson. In proceedings of theréernational Workshop
on Formal Engineering approaches to Software Componedt8mhitectures
(FESCA), pages 161-178, UK, March 2009.

Abstract: Designers of industrial real-time systems are commonlgdac
with the problem of complex system modeling and analysisnéia component-
based design paradigm is employed. In this paper, we praseage-study in
for- mal modeling and analysis of a turntable system, foralvtthe compo-
nents are described in the SaveCCM language. The searchriera princi-
ples underlying the internal structure of our real-timetsgshas motivated us
to propose three modeling patterns of common behaviorsabftirme compo-
nents, which can be instantiated in appropriate desigregtsit The benefits
of such reusable patterns are shown in the case-study, dwiad us to pro-
duce easy-to-read and manageable models for the real-tmpanents of the
turntable system. Moreover, we believe that the patternspasge the way to-
ward a generic pattern-based modeling framework targe¢ialgtime systems
in particular.

Contribution: This paper was written with equal contribution from all the

37

38 Chapter 7. Overview of Papers

authors. | specifically contributed to section three of tapgy, proposing the
behavior modeling patterns for components and also parthection four in
applying the proposed patterns to the case study.

Paper B. “Formal Semantics of the ProCom Real-Time Component Model”
Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlsortjr@riSeceleanu, and
Paul Pettersson. In proceedings of th&3suromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 488-&reece, Au-
gust, 2009.

Abstract: ProCom is a new component model for real-time and embedded
systems, targeting the domains of vehicular and teleconwation systems.
In this paper, we describe how the architectural elementissoProCom com-
ponent model have been given a formal semantics. The sarmastjiven in
a small but powerful finite state machine formalism, withioo$ of urgency,
timing, and priorities. By defining the semantics in this ywase (i) provide
a rigorous and compact description of the modeling elemai®soCom, (ii)
set the ground for formal analysis using other formalisms, @i) provide an
intuitive and useful description for both practitionerslaesearchers. To il-
lustrate the approach, we exemplify with a number of paldidy interesting
cases, ranging from ports and services to components anpgar@nt hierar-
chies.

Contribution: The core of the paper, that is, section three, was writteh wit
equal contribution from the first two authors. | was the maithar for the
corresponding extended version of this paper, publishad BRTC) technical
report [61] .

Paper C. “Bridging the Semantic Gap between Abstract Models of Embed
ded Systems”. Jagadish Suryadevara, Eun-Young Kang,r@riSeceleanu,
and Paul Pettersson, In proceedings of the 18ternational Symposium on
Component Based Software Engineering (CBSE), Springer$N@I 6092,
Czech Republic, June, 2010.

Abstract: In the development of embedded software, modeling langiage
used within or across development phases e.g., requirepspetcification, de-
sign, etc are based on different paradigms and an approaciditing these is
needed. In this paper, we present a formal framework fotingl@pecification
and design models of embedded systems. We have chosen Utdinatzhines

39

as specification models and ProCom component language $ardmodels.

While the specification is event-driven, the design is basetime triggering

and data flow. To relate these abstractions, through theuéradrajectories
of corresponding models, formal semantics for both kindsioflels and a set
of inference rules are defined. The approach is applied ont@namous truck
case-study.

Contribution: | was the main author of this paper.

Paper D. “Pattern-driven Support for Designing Component-basechiAr
tectural Models”, Jagadish Suryadevara, Cristina Senale@aul Pettersson,
In proceedings of the 18 IEEE International Conference on Engineering of
Computer-Based Systems (ECBS), USA, April, 2011.

Abstract: The development of embedded systems often requires thed use o
various models such as requirements specification, acthitd (component-
based), and deployment models, across different phaseseudo there exists
little design support for obtaining suitable componergdthdesigns that sat-
isfy specified requirements and timing constraints. In otderovide guided
support for the design process of embedded systems, wdirteseveral com-
ponent templates, referred as patterns, which we also fiyrwexify against
relevant properties. To illustrate the usefulness of th@ra@gch, we have ap-
plied the proposed patterns to obtain a component-baséghdefsa tempera-
ture control system.

Contribution: | was the main author of this paper.

Bibliography

[1] Ivica Crnkovic and Magnus LarssonBuilding Reliable Component-

Based Software Systenfsrtech House publisher, 2002.

[2] Clemens SzyperskiComponent Software: Beyond Object-Oriented Pro-

gramming ACM Press and Addison-Wesley, New York, NY, 1998.

[3] James Rumbaugh, Ivar Jacobson, and Grady Boautified Modeling

[4]

[5]

[6]

[7]

(8]

(9]

Language Reference Manual, The (2nd EditidP¢arson Higher Educa-
tion, 2004.

Object Management Group. UML 2.0 Superstructure Spetifin, The
OMG Final Adopted Specification, 2003.

Michael von der Beeck. Formalization of uml-statecharin Proceed-
ings of the 4th International Conference on The Unified MiogeLan-
guage, Modeling Languages, Concepts, and Taisl 71;UML»
'01, pages 406-421, London, UK, UK, 2001. Springer-Verlag.

W. Damm and D. Harel. LSCs: Breathing life into messaggusace
charts.Formal Methods in System DesigiD:1:45-80, 2001.

Object Management Group. A UML Profile for MARTE, Beta 1ydust
2007. Document number: ptc/07-08-04.

T. Bures, J. Carlson, |. Crnkovi€, S. Sentilles, and/algarakis. ProCom
— the Progress Component Model Reference Manual, versiorirgch-
nical Report MDH-MRTC-230/2008-1-SE, Malardalen Unsigy, June
2008.

P.E. Black, K.M. Hall, M.D. Jones, T.N. Larson, and P.dndley. A brief
introduction to formal methods [hardware design]duastom Integrated

41

42 Bibliography

Circuits Conference, 1996., Proceedings of the IEEE 198@es 377
—380, May 1996.

[10] Rajeev Alur and David L. Dill. A theory of timed automataéheoretical
Computer Sciengd 26(2):183-235, 1994.

[11] Kim G. Larsen, Paul Pettersson, and Wang Yi. Compasiti@and sym-
bolic model-checking of real-time systems. linProc. of the 16th IEEE
Real-Time Systems Symposjymages 76—87. IEEE Computer Society
Press, 1995.

[12] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakend Sergio
Yovine. Symbolic model checking for real-time systemaformation
and Computation111:394-406, 1992.

[13] Kenneth Lauchlin McMillan.Symbolic model checking: an approach to
the state explosion proble®hD thesis, Pittsburgh, PA, USA, 1992. UMI
Order No. GAX92-24209.

[14] G.J. Holzmann. The model checker spiBoftware Engineering, IEEE
Transactions on23(5):279 —295, May 1997.

[15] K.G. Larsen, Paul Pettersson, and Yi. Wang. Uppaal intahell. Int. J.
on Software Tools for Technology Transfe¢l-2):134-152, 1997.

[16] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, @hdi. Times: a
tool for schedulability analysis and code generation oftie@e systems.
In Proc. of 1st International Workshop on Formal Modeling anmbysis
of Timed Systems, Lecture Notes in Computer Science. 8pfiaglag,
2003.Springer-Verlag, 2003.

[17] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototypsfica-
tion system. In Deepak Kapur, editdrlth International Conference on
Automated Deduction (CADEJolume 607 ol ecture Notes in Artificial
Intelligence pages 748—-752, Saratoga, NY, jun 1992. Springer-Verlag.

[18] M. J. C. Gordon and T. F. Melham, editorsitroduction to HOL: a the-
orem proving environment for higher order logi€ambridge University
Press, New York, NY, USA, 1993.

Bibliography 43

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

Alexandre David, John Hakansson, Kim Guldstrand earand Paul Pet-
tersson. Model checking timed automata with prioritiesg€dBM sub-
traction. In4th International Conference on Formal Modelling and Anal-
ysis of Timed Systems (FORMATS Q§ges 128-142. Springer-Verlag,
September 2006.

Johan Bengtsson, W. O. David Griffioen, Kre J. Kristodfen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Aated anal-
ysis of an audio control protocol usingePAAL. Journal of Logic and
Algebraic Programming52-53:163-181, July-August 2002.

B. Lee and E. A. Lee. Interaction of finite state machiaed concurrency
models. In32nd Annual Asilomar Conference on Signals, Systems, and
ComputersNovember 1998.

E. Bortnik, N. Trcka, A.J. Wijs, B. Luttik, J.M. van de Mtl-Fronczak,
J.C.M. Baeten, W.J. Fokkinkc, and J.E. Rooda. Analyzing aoxl@hof
a turntable system using spin, cadp and uppdalurnal of Logic and
Algebraic Programming65(2):51-104, November-December 2005.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. Aotial on
UPPAAL. In Marco Bernardo and Flavio Corradini, editofeymal Meth-
ods for the Design of Real-Time Systems: 4th Internatioobb8l on
Formal Methods for the Design of Computer, Communicatiom, Soft-
ware Systems, SFM-RT 2Q0#umber 3185 in LNCS, pages 200-236.
Springer—Verlag, September 2004.

X. Ke, K. Sierszecki, and C. Angelov. COMDES-II: A Compent-Based
Framework for Generative Development of Distributed REate Con-
trol Systems. IrProceedings of the 13th IEEE International Conference
on Embedded and Real-Time Computing Systems and Apptisgtages
199-208. IEEE Computer Society, 2007.

G. GoRler and J. Sifakis. Priority systems.HArmoceedings of FMCO’03
volume LNCS 3188, pages 314-329. Springer-Verlag, 2004.

G. Goller and J. Sifakis. Composition for componeasdd modeling.
Science of Computer Programmirigh(1-3):161-183, 2005.

T. Bure§, P. Hnetynka, and F. Plasil. SOFA 2.0: Balagcadvanced
features in a hierarchical component model. Fimceedings of SERA
2006 pages 40-48. IEEE CS, August 2006.

44 Bibliography

[28] R.J. Allen and D. Garlan. A formal basis for composingngmnents.
ACM Transactions on SW Engineering and Methodala§@7.

[29] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Spegifyistributed
software architectures. Broceedings of the 5th European Software En-
gineering Conference 995.

[30] R. van Ommering, F. van der Linden, and J. Kramer. Thel&oampo-
nent model for consumer electronics softwarelHEE Computerpages
78-85. IEEE, March 2000.

[31] Alexandre David, John Hakansson, Kim Guldstrand earsnd Paul Pet-
tersson. Model checking timed automata with prioritiesg€dBM sub-
traction. In4th International Conference on Formal Modelling and Anal-
ysis of Timed Systems (FORMATS Qf9ges 128-142. Springer-Verlag,
September 2006.

[32] M. Akerholm, J. Carlson, J. Fredriksson, H. Hansson, J. Hésam
A. Moller, P. Pettersson, and M. Tivoli. The SAVE approach t
component-based development of vehicular systelmstnal of Systems
and Softwarg80(5):655-667, May 2007.

[33] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnudiichal
Politi, Rivi Sherman, Aharon Shtull-trauring, and D Markakhtenbrot.
Statemate: A working environment for the development of plex re-
active systemslEEE Transactions on Software Engineerii§, 1991.

[34] David Harel. Statecharts: A visual formalism for coexkystemsSci-
ence of Computer Programming:231-274, 1987.

[35] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modéiieteroge-
neous real-time components in BIP. $&FM pages 3-12, 2006.

[36] Sverine Sentilles, John Hakansson, Paul Petterssuh|vica Crnkovic.
Save-ide an integrated development environment for mglgredictable
component-based embedded systems. Ptaceedings of the 23rd
IEEE/ACM International Conference on Automated Softwargifeer-
ing (ASE 2008)September 2008.

[37] John Hakansson, Jan Carlson, Aurelien Monot, PaiéPson, and Da-
vor Slutej. Component-based design and analysis of embesidtems

Bibliography 45

(38]

(39]

[40]

[41]

[42]

(43]

[44]

[45]

[46]

with uppaal port. In6th International Symposium on Automated Tech-
nology for Verification and Analysigpages 252—-257. Springer—Verlag,
October 2008.

R. Alur, D. Thao, J. Esposito, H. Yerang, F. Ivancic, \ridar, P. Mishra,
G.J. Pappas, and O. Sokolsky. Hierarchical modeling antysinaof
embedded systemBroceedings of the IEE®1(1):11-28, January 2003.

V. Bos and J.J.T. Kleijn. Automatic verification of a mdacturing sys-
tem. Robotics and Computer Integrated Manufacturirig:185-198,
2001.

D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, an&Ri. Schif-
felers. Syntax and consistent equation semantics of hyiidJournal
of Logic and Algebraic Programmin@8(1-2):129 — 210, 2006.

E. Bortnik, N. Trcka, A.J. Wijs, S.P. Luttik, J.M. varedMortel-Fronczak,
J.C.M. Baeten, W.J. Fokkink, and J.E. Rooda. Analyzingraodel of
a turntable system using Spin, CADP and Uppdalurnal of Logic and
Algebraic Programming65(2):51-104, 2005.

Xu Ke, P. Pettersson, K. Sierszecki, and C. Angelov. ifidation of

comdes-ii systems using uppaal with model transformatiémbedded
and Real-Time Computing Systems and Applications, 200BSRT08.

14th IEEE International Conference ppages 153-160, Aug. 2008.

Florence Maraninchi and Yann Rémond. Mode-autoneatew domain-
specific construct for the development of safe criticalesyst. Sci. Com-
put. Program, 46:219-254, March 2003.

Bo I. Sandén. The state-machine patternPtaceedings of the confer-
ence on TRI-Ada '96: disciplined software development Wil pages
135-142, New York, NY, USA, 1996. ACM.

A. Burns and A. Wellings.Concurrency in Ada Cambridge University
Press, 1995.

Joseph P. Loyall, Paul Rubel, Richard Schantz, Micldiglhetchi, and
John Zinky. Emerging patterns in adaptive, distributedHtieae, embed-
ded middleware. I®th Conference on Pattern Language of Programs
September 2002.

46 Bibliography

[47] Cameron Maxwell, Tim O'Neill, and John Leaney. Formadtatecture
transformation using heuristics. Engineering of Computer-Based Sys-
tems, 2007. ECBS '07. 14th Annual IEEE International Cazriee and
Workshops on theages 15 —24, March 2007.

[48] M. Denford, John. Leaney, and TimR@ill. Non-functional refinement
of computer based systems architecturePioceedings of the 11th IEEE
International Conference and Workshop on Engineering ofnfSater-
Based Systemgages 168—, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[49] Society of Automotive Engineers (SAE). Architectumeadysis and de-
sign language (AADL), June 2006.

[50] M. Faugere, T. Bourbeau, R. De Simone, and S. Gerard. MARIso an
UML profile for modeling AADL applications. IfEngineering Complex
Computer Systems, 2007. 12th IEEE International Conferemcpages
359 364, 2007.

[51] F. Mallet, R. de Simone, and L. Rioux. Event-triggeredtime-triggered
communications with UML MARTE. IrSpecification, Verification and
Design Languages, 2008. FDL 2008. Forum pages 154 —159, 2008.

[52] ATESST (Advancing Traffic Efficiency through Softwarechnology).
East-ADL?2 specification, March 2008.

[53] F. Mallet, M.-A. Peraldi-Frati, and C. Andre. Marte CC$% execute
East-ADL timing requirements. I®bject/Component/Service-Oriented
Real-Time Distributed Computing, 2009. ISORC '09. IEEE/n&tional
Symposium grpages 249 —253, March 2009.

[54] Pavel Krcal, Leonid Mokrushin, P.S. Thiagarajand aang Yi. Timed
vs time triggered automata. In Philippa Gardner and Nobudghida, ed-
itors, Proc. of CONCUR’04.number 3170 in Lecture Notes in Computer
Science, pages 340-354. Springer—\Verlag, 2004.

[55] Joseph Sifakis, Stavros Tripakis, and Sergio Yovinauilding models
of real-time systems from application software.lfrProceedings of the
IEEE Special issue on modeling and design of embeqrepges 100-111.
IEEE, 2003.

[56] Frantisek Plasil and Stanislav Visnovsky. Behaviartpcols for software
componentslEEE Trans. Softw. Eng28(11):1056-1076, 2002.

[57]

(58]

[59]

[60]

(61]

Tomas Bures, Petr Hnetynka, and Frantisek Plasil. 3dfaBalancing
advanced features in a hierarchical component mod&8ERA '06: Pro-
ceedings of the Fourth International Conference on So#iargineering
Research, Management and Applicatigmsges 40—48, Washington, DC,
USA, 2006. IEEE Computer Society.

Bernhard Schatz, Florian Holzl, and Torbjorn Lurdk. Design-space
exploration through constraint-based model-transfoionatin Proceed-
ings of the 2010 17th IEEE International Conference and \8loolps on
the Engineering of Computer-Based Systda@BS '10, pages 173-182,
Washington, DC, USA, 2010. IEEE Computer Society.

P. A. Abdulla, P. Krcal, and W. Yi. Sampled universaldftimed au-
tomata. In10th International Conference Foundations of Software Sci
ence and Computational Structures, FOSSACS 2007, part 6PET
2007, volume LNCS 4423, pages 2-16. Springer-Verlag, 2007.

Dragan Bo3nacki and Dennis Dams. Discrete-time Rianand Spin.
In FTRTFT '98: Proceedings of the 5th International Symposiumfor-
mal Techniques in Real-Time and Fault-Tolerant Systeages 307-310.
Springer-Verlag, 1998.

J. Suryadevara, A. Vulgarakis, J. Carlson, C. Secelgamd P. Pettersson.
ProCom: Formal semantics. Technical Report ISSN 1404-38&N
MDH-MRTC-234/2009-1-SE, Malardalen University, March(®.

Included Papers

49

Chapter 8

Paper A:

Analyzing a Pattern-Based
Model of a Real-Time
Turntable System

Davor Slutej, John Hakansson, Jagadish Suryadevargin@receleanu, Paul
Pettersson

In proceedings of the'6 International Workshop on Formal Engineering ap-
proaches to Software Components and Architectures (FESI®)2 pages
161-178, March 2009.

51

Abstract

Designers of industrial real-time systems are commonlgdawith the
problem of complex system modeling and analysis, even inapmment-based
design paradigm is employed. In this paper, we present astady in for-
mal modeling and analysis of a turntable system, for whighdbmponents
are described in the SaveCCM language. The search for demearaiples
underlying the internal structure of our real-time systess motivated us to
propose three modeling patterns of common behaviors oftireal compo-
nents, which can be instantiated in appropriate desigregsit The benefits
of such reusable patterns are shown in the case-study, dwiad us to pro-
duce easy-to-read and manageable models for the real-tmpanents of the
turntable system. Moreover, we believe that the patternspasge the way to-
ward a generic pattern-based modeling framework targe¢ialgtime systems
in particular.

8.1 Introduction 53

8.1 Introduction

Developing industrial real-time systems is difficult antsdgigh requirements
to system safety and reliability. The short developmentesydemand a reli-
able engineering method, with predictable costs. The-stiathe-art is dom-
inated by an ad-hoc mixture of methods and tools, and systdidation is
mostly done by extensive testing at the implementatiorl lé¥ewever, testing
is done already too late in the design process, and bugs riflaxtt even in
well-tested models. In this context, techniques for mamggomplexity and
ensuring critical system properties during design becomecassity.

A promising design approach is to emplojosimal component-basese-
velopment technique. In such an approach, componentstaodirced as exe-
cutable software units that can be deployed into a systera.obihe key issues
of realizing the component-based software paradigm is sorerthat the sep-
arately specified components do not conflict with each othEmwcomposed,
resulting in blocking the system. A potential solution tdsttssue isformal
modular verificatiorof component-based software vigodel checking

In this paper, we present a case-study in formal modelingaaradiysis of
a real-time, component-based turntable system, for wiiielcobmponents are
described in the SaveCCM language [1]. For verification, aeean integrated
development environmentfor SaveCCM, connected via a plugth UPPAAL
PORT, an extension of the model-checkepkhAL, which implements a partial
order reduction technique [2] for efficient model-checkii@e technique ex-
ploits the topology of the network of components and coneatiyimproves
the scalability of the verification method.

Our experience with this case-study and other similar exesrip that, be-
side making the model-checking efficient, an as demandsligisato produce
manageable and easy-to-grasp design models for compamehtiseir compo-
sition. This has motivated us to try to extract some commdrabieral patterns
that occur frequently in the design of real-time systemd,r@present them in
a finite-state-machine like notation. Such notation letap@y these patterns
at high-levels of software development, as shown in the payple simpli-
fying the produced models. We believe that employing pastén designing
component-based systems might also help in documentirgstariated soft-
ware, through pattern-based reverse engineering. Howhigris out of the
scope of this paper.

General purpose program design patterns are well-knowherobject-
oriented design community for a while now [3]. Neverthelésshe design
of component-based real-time systems, some differencespeght need to

54 Paper A

be represented in the modeling patterns; for instance, ehestics of our
SaveCCM components is read-execute-write semantics, hence mn-to-
completion pattern can prove beneficial in the design. Similarly, thesable
modeling of the sequence of visited states during the ei@tat a component,
or reducing the time-wise non-determinism of the real-taomponent behav-
ior, by providing systematic means to associatéeadlinewith the behav-
ior, through a pattern, might also help the designer in theeting phase. In
this paper, we introduce the just mentioned abstractiom®afmon real-time
component behaviors, as then-to-completion, history, andexecution-time
patterns, respectively. Next, we apply them in modelingddvaponent-based
turntable production cell.

The remainder of the paper is organized as follows. In sedi@, we
briefly recall the basics of the SaveCCM language used foratimggithe com-
ponents in our case-study. The three modeling patternsnéneduced and
described as finite state machines in section 8.3, afterhmie present the
real-time turntable production cell example, including flormal models of
the constituent components, in section 8.4. The systemsdbrequirements
and verification results are displayed and discussed irseaben 8.4.3. We
compare our approach to related ones, in section 8.5. firsdttion 11.9
concludes the paper and outlines possible directions fardwork.

8.2 SaveCCM

In this section we briefly present the Save component magléimguage [1],
which will be used in the case study of this paper. The langusgart of a
larger framework, called SaveCCM, for component-basedjdexf real-time
and embedded system [4]. The SaveCCM language consists miphical
syntax and an associated formal semantics. Due to spadatloni, the pre-
sentation in this section is restricted to a short infornvalrgiew of Save CCM.
For a complete description of the language we refer the readg].

In SaveCCM, systems are built from interconnected compisiveith well-
defined interfaces consisting of input and output ports. ddr@munication
style is based on the pipes-and-filters paradigm, but witkxaticit separation
of data transfer and control flow. The former is captured byneztions be-
tweendata portswhere data of a given type can be written and read, and the
latter bytrigger portsthat control the activation of components. Figure 8.1(a)
shows an example of the graphical SaveCCM notation. Tréanghd boxes
denote trigger ports and data ports, respectively.

8.2 SaveCCM 55

z2:=0
A s y<T
A S WO/ "1 1 © 7 <Max
y=0 > Min
! <J =
! Y= a:=1—a
B P>
l
6 f
(@) (b) (©)

Figure 8.1: An example ofa) a composition where components A, B and C
are composed by connecting ppktto ps, andp, to py, and timed behaviors:
(b) a clock with periodl and jitterJ, (c) a computation updating data variable
a after betweemin andMax time units.

A component remains passive until all input trigger portgehbeen acti-
vated, at which point it first reads all its input data portsl éimen performs
the associated computations over this input and an intstatd. After this,
the component writes to its output data ports, activatestitygut trigger ports,
and returns to the passive state again. This strict “readtdr-write” seman-
tics ensures that once a component is triggered, the eredstfunctionally
independent of any concurrent activity.

Components are composed into more complex structures byecting
output ports to input ports of other components. In additiothis “horizontal”
composition, components can be composed hierarchicalpfdnmng a collec-
tion of interconnected components inside an enclosing corept. From the
outside, such a composite component is indistinguishabha bther compo-
nent where the behavior is given by a single model or piecedéc

To support analysis of SaveCCM models, it is required thah&mmpo-
nent is associated with a behavioral model consisting ahadiautomaton [5]
with a distinct exit location (see Figure 8.1(b-c)), and gpiag between com-
ponent data ports and the internal automata variables. \@remponent is
triggered, the port values are copied to the internal végbf the timed be-
havior which then proceeds as specified in the timed autamaithenever it
reaches the exit location, variable values are copied toutgut ports accord-
ing to the given mapping, and the output trigger port is attd.

The timed automata modeling language used in SaveCCM gl lmasthe
language used in theRpAAL tool [6]. It extends the timed automata language
originally introduced by Alur and Dill [5] with a number of &ures that will
be used in the case study, including: global and local bodiivdeger variables

56 Paper A

and arithmetic operations over such variables, arraysaasmall C-like pro-
gramming language that can be used to define functions adécptes. For a
detailed description of the timed automata language, v thé reader to [7].

8.3 Component Modeling Patterns

A modeling pattern is a way of designing a model with a cleatited intent
and structure. In this section, we propose three modelittgnms for common
behaviors of real-time components, in order to ultimatetype the designer
with useful abstraction mechanisms for the high-level niageand analysis of
CB real-time systems. We chose to define the patterns by e-Btate-machine
like (FSM) notation, which we calPattern-FSM(or PFSM) in this paper. The
patterns can be instantiated, separately or in combinaitiospecific formal
frameworks, to increase the readability of the models aed guitability for
verification. To justify our claim, in section 8.4, we apphetproposed pat-
terns, as combinations, to the CB modeling of an industealtime turntable
system (see for instance Figure 8.10). The analysis frameigdhe Timed
Automata (TA) language of BPAAL [7, 6].

Generic PFSM Definition and Graphical Notation. Let V' be a set of data
variables,G be a set of boolean conditionguardg over V', and A a set of
actions that update the variables. Then PFSM is a t{fletart, exit, E, Att),
where S is a set of statestart is theentry state,exit is the exit state, & C
S x G x A x S isthe set of transitions between states, Attds a set of timing
attributes, e.g. execution time, deadline, etc.

The execution of a PFSM starts in the special control state. At a
given state, an outgoing transition may be executed onty d$sociated guard
evaluates tdrue; in this case we say that the transitioneisabled In case
more than one outgoing transitions are enabled, one can d=itd non-
deterministically. A filled circle denotes theeart control state and a semi-
filled circle denotes thexit control state (see Figure 8.2). Different attributes
of a PFSM, e.g. execution time, deadline etc. can be addduetgraphical
representation of a PFSM model (e.g. Figure 8.7).

8.3.1 Run-to-Completion Pattern

In the run-to-completion (RTC) execution model, the cormgrdris executing
in indivisible steps, without interruption from any conoemt activity. The
key advantage of the RTC semantics is simplicity and guaeghabsence of

8.3 Component Modeling Patterns 57

RT-C [x==3]
update()
S3
@ [x>=5] sense() 52 [x<=5] act'\zateﬁ%

Figure 8.2: PFSM specification of a component behavior

x==3 update()

x>=5 sense() é:‘: x<=5 activate()
Y

start

exit

Figure 8.3: An equivalent timed automata model with rurséoapletion pat-
tern

deadlocks. Another advantage is that it might prune awaycessary inter-
leavings, thus speeding up formal verification and bringhrg model closer
to implementation. The pattern is commonly used in higleléehavioral
modeling languages like Statecharts and its variants [nStatecharts, the
events are handled in an RTC manner, along possibly compwansitions
(i.e., paths of adjacent arrows).

Pattern description. In this pattern, we assume that the component execution
proceeds with changing states by firing enabled transition# it reaches a
state for which no outgoing transitions are enabled. At suphint, the execu-
tion terminates.

To implement the pattern, one needs to translate the camespy PFSM
into a timed automaton (TA). Run-to-completion can be impated by intro-
ducing new edges in the automaton, which describe termimaficomponent
execution. Letl be the set of locations, ¢ € {1,..,n} in the corresponding
TA. For each locatiof; € L, we assume that;, j € {1,..,m} are the guards
of the respective outgoing edges. The exit edge ftpoonnectd; with the
exit location. The guard of thi exit edge isﬁ(\/j 95)-

Example. Figure 8.2 represents a PFSM specification of a simple compo-
nent behavior obeying our run-to-completion pattern. Fég13 describes the
equivalent behavior as a timed automaton, which serveseagattern imple-
mentation. The statesl, S2, andS3 of the PFSM are mapped onto locations

58 Paper A

[x»=5] sense()

Figure 8.4: PFSM specification of a component behavior wigtohy

11, 12, andI3, respectively, in the equivalent TA.

8.3.2 History Pattern

Execution historyis a core feature of behavior modeling techniques [10, 8].
The history mechanism of a behavior remembers which stasdasga visited
during execution, before exiting. This state can then bentered next time the
execution re-starts. In the hierarchical state-machindeting of Statecharts
[8], an inner state may be exited and re-entered directlydigg the history
mechanism. A similar approach is adopted in CHARON, a formadieling
framework for hybrid systems [10].

Pattern description. The pattern provides a mechanism to remember the ex-
ecution history in the behavioral models of components.uAsag the exe-
cution as a sequence of states, the pattern has means of bemegrthe last
state, or a particular state for that matter, reached dwigution. Hence,
the next time, the execution can resume from the state stbredgh the his-
tory mechanism. Similar to Statecharts, in a PFSM reprasient the history
mechanism is denoted as Hrwithin a circle, and acts as the start state.

The pattern is implemented as a TA, by using an integer viartdjowhich
is updated along each edge connecting any states diffemntthestart, and
exit states, with the corresponding location identifier. Spemilges connect
thestart state to each of the states of interest, while appropriaésiyng the
variableH. In addition, exit edges connect each state of interestdasth
control state. Variablél can be re-initialized appropriately when entering a
specified final location.

Example. Figure 8.4 represents a component behavior with histortepat
The history is denoted by the encircledlsymbol, in the start state. In Fig-
ure 8.5, we give the equivalent behavioral model as a TA, whitplements
the history pattern. The states in Figure 8.4 are mapped|oo&tionsl, 2,

3 in the TA. VariableH is initialized to an initial location, i.eH = 1. The

8.3 Component Modeling Patterns 59

Xx==3 update()

x>=5 sense(),H=2 ;: : x>=5 activate(),H=1 3

< <

=]

start exit

Figure 8.5: A timed automata behavior with history pattern

edges that connect thseart location to locationd, and2 are due to the pat-
tern, and are guarded by conditiods=1, andH==2, respectively. Also, the
history variableH is updated with the location identifier along each edge enter
ing that respective location (edges that leave and entesaime location may
be skipped, e.g., location 2 in Figure 8.5). Finalhis re-initialized at location

3 of Figure 8.5.

8.3.3 Execution-Time Pattern

For embedded and real-time systems, it is often interestisgecify and ana-
lyze the best or worst execution time of components. Thetiari in execution
time also gives rise to, e.g., non-deterministic timingeji and varying end-
to-end timing, which represent phenomena that are impottasnalyze (and
master) at design time. In the following, we introduce agratfor specifying

the best and worst execution times of components.

Figure 8.6: Annotation of time attributes on PFSM modelseiogcution-time
pattern

Pattern description. In this pattern, we assume that the total accumulated
time of executing a component is within an interval whereltdveer and up-
per bounds are the shortest and longest possible execumties, respectively.
Hence, the component will produce output (data and triggiespme time in-
stance, in the interval.

60 Paper A

x==3 update()

x>=5 sense() ;:\; x>=5 activate()

@ @,

lexec=0

exit exec>=1
start

exec<=m

Figure 8.7: A timed automata behavior with execution-tiratigrn

We also assume that the component is annotated with anahggrecifying
the lower and upper bound on the execution time. To implertrenpattern,
we use a dedicated clock, sayec, which is used to measure the time since
the component was triggered. The clock is reset on the edgmiog from
locationstart. We further introduce a location, salglay, and an edge from
locationdelay to the exit location. Locatiodelay is annotated with an invariant
overexec, corresponding to the upper bound of the execution intewiaéreas
the exit edge is decorated with a guard corresponding toctiverl execution
bound.

Example. Figure 8.6 represents a PFSM specified using the execution ti
pattern. Its execution time is in the (closed) interyah]. Figure 8.7 shows a
timed automaton implementing the pattern. Note that wherekit location is
reached, the value of cloclelay is in the intervall, m].

8.4 Turntable Production Cell

In industry automation, a production cell is a part of an allggroduction sys-
tem — a factory. In this section, we present a formal modeltofatable pro-
duction cell, previously described in [11, 12]. The caselgis designed using
the component framework described in Section 8.2 and therpatintroduced
in Section 8.3. By employing the patterns, we get simple amtktstandable
component models for our case-study, as shown in the faligwiibsections.

The turntable cell is illustrated in Figure 8.8. It consistainly of a rotary
disc with four product slots. A product isadedinto a slot at position 0, and
is then rotated to position 1 where itdsilled. It is then rotated into position 2
where it istested and finally to position 3 where it ishloadedor possibly left
to be redrilled in the next cycle). The positions are alignéth various tools
for loading, drilling, testing, and unloading.

Drilling and testing are the most critical tool positions,the overall pur-

8.4 Turntable Production Cell 61

RotaryDisc SLOTS

stots

1 Envi ronment
<<SaveComp>> . (uppaal)

owerface |] unloader

<<SaveComps>x> <<SaveComp>>

Driller Tester

Figure 8.9: Software architecture design layout of Turlgalgstem

pose of the production cell is the verified drilling of prodithat flow through
the cell. All slots of the rotary disc may be occupied at thmedime, and
products are processed in parallel. When a cycle completeaning that all
positions complete their functionality, the rotary distates 90 degrees thus
positioning the products for the next phase of processing th& rotation is
initiated by signals from tools that are not time deterntinjghere is no fixed
period between rotation of the slots.

62 Paper A

Table 8.1: Common interface for componehtsader, Driller, Tester, and
Unloader

| Port | Datatype| Description |

status int An input representing the current known status of the prpd-
uct in the tool position (0 indicates an empty slot).

result int An output that holds the status of the product after process-
ing.

start bool An input that initiates tool processing.

finished | bool An output that signals when the tool controlled by the com-
ponent has completed its processing.

8.4.1 System Design

Following the informal description of the system, we camiify the system
as consisting of five main software componentsrntable, Loader, Driller,
Tester, and Unloader, corresponding to the functionalities of the cell. The
components interact with several sensors and actuatars,asuposition sen-
sors, clamping, and drilling devices, which do not requixplieit modeling.
Further, as we focus on modeling and analysis of the funatiand timing be-
havior of the system, we make assumptions regarding etr@t®ins, e.g., o
fault situations like broken tools, etc. This simplifies #ystem model without
loss of generality.

We now describe in detail the software components in terntisesf inter-
faces and behaviors. Figure 8.9 shows the software artinigsaf the turntable
system. An interface of a component defines the access poaitst behavior,
in our case in terms of data ports and trigger ports. Tirtable component
acts as a central controller in the system, and all other coripts are indepen-
dent of each other and have a similar interface Witlintable. The common
interface approach supports reuse, as well as the fleyitiliextend or modify
the system architecture. We define a common interface fdr eamponent,
exceptTurntable, as shown in Table 8.1.

Data flow is defined by connections between data ports, witléicommon
interfaces and with external sensors and actuators. Theotflow is modeled
separately from the data flow, by connections between tringeorts. As
illustrated by Figure 8.9, the flow starts from tlck component and ends at
theUnloader.

The component behaviors are modeled as finite state maadhinks the

8.4 Turntable Production Cell 63

assumption of the modeling patterns defined in previoussectThe history
and the run-to-completion patterns are combined to achievenodeled finite
state machine behavior of the components, eventhough thearents will

be executed in a time-triggered fashion. The execution fiattern is applied
to model the time required to execute each component. As $etmodels
present intuitive conceptual modeling retaining the asialgapability of the
underlying formalism, i.e., timed automata. The modeledabv@rs execute
under the semantics of SaveCCM component model and the semahthe

patterns. In the following, we describe each of the compbibehnaviours along
with their associated functions and predicates, define@rimg of variables
associated with the data and trigger ports of the correspgrdmponent.

The Turntable Component

The interface of the turntable controller consists of twgger ports, a sensor
input, an actuator output, and four instances ofadbeamon interfaceA clock
component generates trigger signals to periodically atiVurntable, which
in turn activates thé.oader component. The actuator outpRotate is con-
nected to a motor turning the rotary disc, and the sensotdRptated senses
when the rotation is completed. The behavior of thentable component
coordinates the rotation of the disc with the execution beotomponents.

Initially it rotates the disc, and sets ports of other comgrar appropri-
ately. It then waits for the other components to signal thairtprocessing has
stopped, before restarting the main loop by turning the dgairt. Starting
from an empty system, it will take at least four rotations &ircomponents
to work in parallel. The first rotation only starts procegsuf the Loader,
which then loads the first product onto the table. In additmrontrolling
the rotation of the disc, the component also maintains statiormation for
each position. The status information is shifted one steh ¢iane the table
rotates. The detailed behavior is modeled in Figure 8.1@erims of associ-
ated functions and predicates (listed in Figure 8.11). Ternal variables
status;, start;, finished;, result; represent the data values of the corresponding
commorinterface ports of position

IHence, even thougfurntable is triggered periodically, the period of the rotation of ttisc
depends on the processing time in the four slots.

64 Paper A

time € [1,1] R-T-C
rotateslots(); [sCompleted] startWork()
Ready

[AllCempleted]

® - clear(); getResult{)

Figure 8.10: Behavioural modé&lrntable component.

rotateSlots() is
temp : int := statusp
aRotate := true

getResult() is
for positions i do status; := result;

end
statusg := statuss ; statuss := status:z
statusg := status; ; status; := tem .
2 ! ! P clear() is
end . .
for positions i do start; := false
end

startWork() is
for positions i do start; := true

allCompleted iff Vi : finished;
end

Figure 8.11: Functions and predicates used tmntable.

The Loader Component

As mentionedloader shares a common interface with, and receives a trigger,
from Turntable. It also has a trigger output to tiikiller, sensor inputLoaded,

and actuator outputLoad. The behavioral model is shown in Figure 8.12.
When triggered the component checks the status of the spatsition 0. If a
previous product is present, forwarded by théoader for reprocessing, the
product is left in the slot for repeated drilling. Otherwigenew product is
loaded into the slot, to be drilled in the next cycle.

The Driller Component

Figure 8.13 shows a model of tieiller component behavior, which interacts
with actuators and sensors for clamping and drilling thedpod. When trig-
gered the component checks the status of the slot at poditishempty, the
driller does nothing, otherwise the product in the slot iatied (clamped), the
drill starts spinning and is lowered. When the drilling isrgaeted, the drill is

8.4 Turntable Production Cell 65

time € [1,1] | R-T-C |

[start]
s

CheckStatus

[status== EMPTY] aload=true;
Loading

o [status!=EMPTY]
finished=true; [sLoaded]
result=Loaded; finished=true;
Finished -
Figure 8.12: Behavioral model @bader component.
time€[1,1] | R-T-C

[status I=EMPTY] [sLocked]

aClamp=true; aDrillDown=true;
Clamping,

[sUnLocked] finished=true; [sDrillup]

result=DRILLED aClamp=false;
Unclamping

Figure 8.13: State machine model of théller component.

[sDrillDawn]

[status==EMPTY]
aDrillUP=true;

finished=true;

lifted and stopped, and the status of the slot is updated-dicagy.

The Tester Component

The behavioral model ofester is shown in Figure 8.14. Its input trigger is
received fromDriller, and its output trigger output is sentltmloader. Similar
to the driller, it interacts with actuators and sensors tovena tool into the
product. The tool of the tester is a sensdesterDown, that measures the hole
within 2 time units since the beginning of the test proceskeWtriggered the

time € [1,1] R-T-C
[status |=DRILLED] [sTesterDown]
aTesterDown=true; timer=0; aDrillDown=true;

TesterDown

[timers2] aTesterUp=true;
result=TESTGOOD;

[status==EMPTY]
finished=true;

[timer>2]
aTesterUp=true;
result=TESTBAD;

[sTesterUp]
finished=true;

Figure 8.14: State machine model of fhester component.

[start] [status ==TESTGOOD] aUnload=true;
Ready > Checkstatus > Unloading
[status ==EMPTY]
finished=true;
|sUnloaded] result=EMPTY; finished=true;

Figure 8.15: State machine model of theloader component.

component checks the status of the slot at position 2. If gnitgtoes nothing,
otherwise it measures the hole drilled in the product, andbtgs the status
according to its verdict.

The Unloader Component

Figure 8.15 shows a model of tlinloader behavior. The status of the drilled
product at position 3 indicates the verdict determined ey ghevious tester
component. If the product was faultily drilled, it is not oaded, otherwise,
the component activates an actuator to unload the prodube klot is empty,
as in initial rotations, thé&nloader does nothing.

8.4.2 Modeling a Closed System

For verification purposes we define a closed system, thatsigstem with no
inputs or outputs. A closed model of the turntable is credgdomposing
the turntable controller software with arPBAAL timed automata model of the
environment that is affected by actuators, and affectsgensThe software
architecture of the turntable controller is presented guFe?? (as it appears
in the SaveCCM syntax in the Save-IDE). The behavior of eachponent, as
modeled in the previous section, is translated into TApfeihg the modeling
patterns presented in section 8.3.

The environment of the turntable control software is mod&é&h appro-
priate abstractions of the complex real world aspects,¢h suway that the be-
havior (and timing) of the real physical environment is irdzd in the model.
Further, as mentioned earlier, the model is done under thexgstion of nor-
mal behavior, meaning no exception handling or error cémstsuch as faulty
sensors or actuators may occur. The environment of theaimsystem is
modeled as timed automata (TA) in thekhAL tool. The environment essen-
tially consists of the actuators and sensors associatédtingt system and its
components. Due to space limitation, we leave out some oémlvéonment

8.4 Turntable Production Cell 67

dtstat
dtStart
dtResuit
dtFinished

55 b

51_Start

ished S1_Finished

5 = B
3|5 |23

Dilllp

Figure 8.16: Control structure and system architecturé@tarntable system
as modeled in Save-IDE.

68 Paper A

automata, and we refer the reader to our recent work [12] fooee detailed
environment model.

The communication interface between the system and its@nwient is
facilitated by shared variables. These variables cormdpmthe communica-
tion ports between the modeled system software and its seasd actuators,
as well as test automata that drive the verification process.interface, and
its initialization, is given in Table 8.2. To simplify the rdeling process, and
reduce the state space of the model, all aspects of a systenoamodeled
explicitly. Instead, models focus on critical aspects & siystem. The envi-
ronment model used for the formal verification of the turfgatonsists of the
behaviordisc, Clamp, Drill, andTestTool.

The drilling tool is modeled in terms of its two controllatgarts: Clamp
andDriller. The behavior of these environment models are presenteijin F
ures 8.17 and 8.18, respectively. The function of the clap lock the prod-
uct in place so that the drilling can be carried out. The timetbmaton is ini-
tially in the locationUnLocked, and transitions to the locatidrocking when
the edge guardClamp goes high (value becomes 1). It can remain in the loca-
tion Locking as long as the associated invarialatCLK < ClampTime holds.
The same happens when the clamp is in locatiehocking. This models the
continuous behavior of the Clamp.

The function ofDriller is to make holes in the product. The timed au-
tomaton (Figure 8.18) is initially in th®rillUp location, and transitions to
DrillerMovingDown when the guardDrillMoveDown goes high. It can remain
in this location as long as the associated invardaif C L K < MaxDownTime
holds to model the maximum time the drilling can take placke $ame hap-
pens when the drill is in locatioRrillerMovingUp. The driller moves out from

Table 8.2: Interface of the environment components

TA Variables Data type Initially

Disc aRotate, sCompleted bool false

Clamp aClamp, bool false
sLocked, sUnlocked

Drill aDrillDown, aDrillUp bool false
sDrillDown, sDrillUp

TestTool aTesterDown, aTesterUp bool false

sTesterDown, sTesterUp

8.4 Turntable Production Cell 69

Locking

claCLK>=ClampTime

claCLK=0, sUnlocked=false sLocked=true

urgent
aClamp

claCLK<=ClampTime

UnLCocked Locked

claCLK<=ClampTime TaClamp

urgent
UnLocking claCLK=0, sLocked=false

claCLK>=ClampTime
sUnlocked=true

Figure 8.17: Behavior of th€lamp environment model.

DrillerMovingDown

drillCLK=0, sDrillUp=false
urgent
aDrillMoveDown

drillCLK>=MinDownTime
sDrillDown=true

drillCLK<=MaxDownTime

drillCLK<=MaxUpTime DrillDown

Drillup aDrillup

drill CLK>=MinUpTime urgent
sDrillUp=true DrillerMovingUp drillCLK=0, sDrillDown=true

Figure 8.18: Behavior dDrill of the environment model.

the continuous behavior of drilling down or drilling up aftdinDown Time or
MinUpTime, respectively.

TheTestTool works similarly to the drill, moving down by command from
an actuator until a sensor is activated, and then moving @nagy com-
mand from a different actuator until the corresponding sems activated.
Also Disc is modeled with two statesyait andturning. The transition from
wait to turning is initiated by the actuatosRotate, clears the sensor value
sCompleted, and resets a clock ensuring the transition backviit within
TURN_TIME time units, when the sensor vals@mpleted is also set.

8.4.3 Requirements and Verification

In this section, we present the verification aspects of thedble system. The
work has been performed in the SAVE-IDE, an integrated agraknt envi-
ronment for Save CCM. For modeling, the Save-IDE providaphical editors

for architectural and behavioral modeling. For system (giic) simulation
and verification by model-checking, the toobBAAL PORT[13, 2], an exten-
sion of UPPAAL [6], is integrated through a plug-in. The representatiothef
system architecture and component behaviors is representee SaveCCM
XML file format [1], and the environment is stored in arPhAL XML file.
UPPAAL PORT connects system inputs and output to global variables in the
environment model.

70 Paper A

A set of properties concerning the safety and liveness of tinetable con-
trol system have been verified. IrPBAAL, liveness properties can be specified
asleads toproperties in the forn® ~~ P’, meaning that if a system has reached
a state withP satisfied, it will eventually reach a state whepéis satisfied.
We discuss a few representative properties below. The fiogtguty specified
is:

Al —deadlock (8.1)

Property 8.1 is a safety property, specifying the absenaeatilock sit-
uations. A deadlock occurs when the system can not progueseef. In a
real-time system, this is often caused by two tasks mutweadbluding each
other from acquiring a resource (e.g. semaphore). It canksscaused by a
fault in the environment model. The property is verified atgelil above. The
A is a universal quantifier, and refers to the property to béigdron all ex-
ecution paths of the statespace. The bhois a universal quantifier over all
states in a path. The states are defined by values of all \esiab well as lo-
cations of automata. The keywodeéadlockepresents a state in the execution
where there is no outgoing (delay or action) transition. fihietable system is
verified to bedeadlock free

The absence of a deadlock does not mean that the system entpea
to make progress. The control system could be continuing thi& compo-
nent trigger without the components progressing througin tespective finite
state machines. The following set of properties verify thatturntable system
is progressing. It checks that the central compofiemhtable continuously
moves betweehlle andTurning states. This is specified usitepds toproper-
ties. The diamong is an existential quantifier over states in the path, meaning
that the property is eventually satisfied by a state in thi fet paths in this
case).

AQ Turntable. Turning Turntable. Turning ~ Turntable.ldle (8.2)
Turntable.ldle ~~ Turntable. Turning
The properties 8.2 establishes that the comporenitable always pro-
gresses. This is possible only when the individual compts&o are pro-

gressing following the design strategy. The progress afiddal components
can be verified as below.

Loader.Ready ~~ Loader.Finished (8.3)

The above leads-to property 8.3 verifies thedder always progresses. We
can verify a similar property for all other components. Rart we verify an

8.5 Related Work 71

important safety property stating that when thentable component is exe-
cuting, no other components are executing:

AO(Turntable. Turning = (8.4)
(Loader.Ready A Tester.Ready A Unloader.Ready A Driller.Ready))

Property 8.4 models the fact that while tfierntable is turning the other
components are just waiting in theReady location, according to the design
strategy.

Property 8.5 establishes a state correspondence betweemveianment
componentand the corresponding SaveCCM component. Theqy@nsures
that whenever th@urntable is not turning, theDisc component is not turning
either:

AO(—Turntable. Turning = —Disc. Turning) (8.5)

The next property (8.6) specifies that the control model neeads two
conflicting signals to its environment. Here, it checks thatsystem does not
activate both actuators associated with Ehéler component, simultaneously,
as they move th®rill in opposite directions:

AO —(Driller.aDrillDown A Driller.aDrillUP) (8.6)

8.5 Related Work

There are a number of component based development (CBDgWarks for
embedded systems described in the literature. The BIP frankeand the
toolkit IF [14] are intended for predictable embedded systelevelopment by
supportingcorrectness-by-constructiaand compositional verification. While
BIP offers bottom-up design of systems, our approach sup@BD in a bit
more pragmatical traditional top-down design, with supmdrmodeling in
Save-IDE [15] and formal verification using theeBaAL PORTtoOIKIt [13, 6].

The Charon toolkit [10] supports modular specification obecded sys-
tems, based on the notions afentsand modes for architectural and be-
havioral specifications, respectively. Our behaviorat#jmation language of
components shares some features of the modes in Charonitbatthierar-
chy, and in our approach the execution history of a compoisgrbvided by
using a simple design pattern.

The Statemate toolkit [16] is an early working environmentthe devel-
opment of complex reactive systems. Modularity of the systievelopment

72 Paper A

is provided in terms of differentiews such as structure, functionality, and
behavior. Our approach for behavior specification of congods (modules in
Statemate) is similar to the Statecharts [17], the behaMimnguage of Statem-
ate. Though not hierarchical, our FSM notation for compdbehaviors (see
Section 8.3), combined with the patterns proposed in thiepas similar to
the Statechart features run-to-completion and executgiarly.

The case study of Turntable production system, presenthisipaper, has
previously been analyzed using different methods and tém[4.8], a turntable
model is specified iry [19], a simulation language for industrial systems, and
translated into Promela, the input language of the Spin ihduecker to verify
several properties of the model. In [11]yanodel of the turntable system was
translated into the specification languages of three moldetkers: CADP,
Spin, and WPAAL comparing both the ease of conversion, the expressiveness
of each of the specification languages, and the abilitiespamfbrmances of
the respective model-checkers. In [20], the turntable pectidn system was
implemented in the COMDES-II component-based softwamaéwsork. The
authors developed a semantic transformation of the COMDBIE8®del into
an UrPAAL timed automata model, allowing for formal verification ofet of
properties similar to those in [11].

8.6 Conclusion

In this paper, we have presented how the Save CCM compomsetiapproach
for development of embedded systems has been applied ineastady, to
model and verify an industrial turntable production syst&ve have presented
a component-based system architecture model, as well aethited behav-
ioral models of the system components. To produce a mankgad easy-to-
grasp design model of the turntable, we have used threeesidmat useful, de-
sign patterns. The finite behaviors of components are spddifia finite state
machine notation, using two design patterns for encodimgtoecompletion
semantics, and history states. Timing is introduced usihiyé design pattern
for specifying the execution time and order of components. al§o describe
how the design specifications are syntactically transfarm# the modeling
framework used in SaveCCM, for further analysis usirRPWAL PORT.
Throughout the case study, we have been using Save-IDE @indrinec-
tion to UPPAAL PORT, for editing models, as well as for performing (symbolic)
simulation, and verification by model-checking. As a maugliesult, we be-
lieve that we have produced a very intuitive component-thasedel of the

8.6 Conclusion 73

turntable system. As verification results, we have shownthieasystem model
satisfies all the requirements specified for the system,dbized as safety and
liveness properties in TCTL.

As future work, we intend to develop an enriched behavio@eting lan-
guage and formal analysis support for the successor of $2MeCalled Pro-
Com. The language will be based on the design patterns teddrn this pa-
per, and possibly on other newly developed, more involvettpes that might
prove useful in simplifying both the formal models and thasrification.

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

[7]

J. Carlson, J. Hakansson, and P. Pettersson. SaveC@MmnAlysable
component model for real-time systemsProceedings of the 2nd Work-
shop on Formal Aspects of Components Software (FACS 2B@&}ronic
Notes in Theoretical Computer Science. Elsevier, 2005.

J. Hakansson and P. Pettersson. Partial order redufctioverification of
real-time components. IRroc. of 1st International Workshop on Formal
Modeling and Analysis of Timed Syste2807.

E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign Patterns: El-
ements of Reusable Object-Oriented Softwakddison Wesley Profes-
sional Computing. AddisonWesley Publishing Company, Regdvas-
sachusetts, 1995.

Mikael Akerholm, Jan Carlson, Johan Fredriksson, Hans Hansshn, Jo
Hakansson, Anders Moller, Paul Pettersson, and Massinadi.T The
SAVE approach to component-based development of vehisykiems.
Journal of Systems and Softwa8®(5):655-667, May 2007.

Rajeev Alur and David L. Dill. A theory of timed automat&heoretical
Computer Sciencd 26(2):183-235, 1994.

K.G. Larsen, Paul Pettersson, and Yi. Wang. Uppaal intahll. Int. J.
on Software Tools for Technology Transfel-2):134-152, 1997.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tialoon
UPPAAL. In Marco Bernardo and Flavio Corradini, editofeymal Meth-
ods for the Design of Real-Time Systems: 4th Internatioohb8l on
Formal Methods for the Design of Computer, Communicatiom, Soft-
ware Systems, SFM-RT 2Q0#umber 3185 in LNCS, pages 200-236.
Springer—\Verlag, September 2004.

75

76 Bibliography

[8] D. Harel and E. Gery. Executable object modeling withesthartsIEEE
Computer30(7):31-42, July 1997.

[9] Bran Selic. An efficient object-oriented variation ofetlstatecharts for-
malism for distributed real-time systems.Rroceedings of the 11th IFIP
International Conference on Computer Hardware Descriplianguages
and their Applications - CHDL '93volume A-32 ofIFIP Transactions
pages 335-344. North-Holland, 1993.

[10] R. Alur, D. Thao, J. Esposito, H. Yerang, F. lvancic, \ardar, P. Mishra,
G.J. Pappas, and O. Sokolsky. Hierarchical modeling antysinaof
embedded systemBroceedings of the IEE®1(1):11-28, January 2003.

[11] E.Bortnik, N. Trcka, A.J. Wijs, S.P. Luttik, J.M. varedortel-Fronczak,
J.C.M. Baeten, W.J. Fokkink, and J.E. Rooda. Analyzingrodel of
a turntable system using Spin, CADP and Uppdalurnal of Logic and
Algebraic Programming65(2):51-104, 2005.

[12] Davor Slutej. Component-based modeling and analyssedded sys-
tems. Master’s thesis, Department of Computer Science agthEering,
Malardalen University, September 2008.

[13] John Hakansson, Jan Carlson, Aurelien Monot, PauéPson, and Da-
vor Slutej. Component-based design and analysis of emdesidtems
with uppaal port. In6th International Symposium on Automated Tech-
nology for Verification and Analysigpages 252—-257. Springer—Verlag,
October 2008.

[14] Ananda Basu, Marius Bozga, and Joseph Sifakis. Mogddiieteroge-
neous real-time components in BIP. $&EFM pages 3-12, 2006.

[15] Sverine Sentilles, John Hakansson, Paul Petterssah|vica Crnkovic.
Save-ide an integrated development environment for mglgredictable
component-based embedded systems. Ptaceedings of the 23rd
IEEE/ACM International Conference on Automated Softwargieer-
ing (ASE 2008)September 2008.

[16] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnudlichal
Politi, Rivi Sherman, Aharon Shtull-trauring, and D Markakhtenbrot.
Statemate: A working environment for the development of plex re-
active systemslEEE Transactions on Software Engineerii§, 1991.

[17] David Harel. Statecharts: A visual formalism for coexkystemsSci-
ence of Computer Programming:231-274, 1987.

[18] V. Bos and J.J.T. Kleijn. Automatic verification of a mdacturing sys-
tem. Robotics and Computer Integrated Manufacturirig:185-198,
2001.

[19] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, an&Ri. Schif-
felers. Syntax and consistent equation semantics of hyiiidJournal
of Logic and Algebraic Programmin8(1-2):129 — 210, 2006.

[20] Xu Ke, P. Pettersson, K. Sierszecki, and C. Angelov. ifié&tion of
comdes-ii systems using uppaal with model transformatiémbedded
and Real-Time Computing Systems and Applications, 200BSRTO8.
14th IEEE International Conference ppages 153-160, Aug. 2008.

Chapter 9

Paper B:

Formal Semantics of the
ProCom Real-Time
Component Model

Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlsortir@riSeceleanu, Paul
Pettersson

In proceedings of the 35 Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), pages 478-485, Auguddoz

79

Abstract

ProCom is a new component model for real-time and embeddstdreg, tar-
geting the domains of vehicular and telecommunicatioresyst In this paper,
we describe how the architectural elements of the ProConpooent model
have been given a formal semantics. The semantics is givansinall but
powerful finite state machine formalism, with notions of emgy, timing, and
priorities. By defining the semantics in this way, (¢ provide a rigorous and
compact description of the modeling elements of ProCam set the ground
for formal analysis using other formalisms, afidi) provide an intuitive and
useful description for both practitioners and researchéosillustrate the ap-
proach, we exemplify with a number of particularly intenegtcases, ranging
from ports and services to components and component higestc

9.1 Introduction 81

9.1 Introduction

Designing embedded systems (ES) ioomponent-basedshion has become
an attractive approach for embedded software developm#ith benefits
ranging from simplification and parallel working to plugdmmaintenance
and reuse, the financial gains are significant. In this cantystems con-
sist of identifiable, relatively independent and generadlyglaceable units of
composition, calledomponentsvhich encapsulate complex functionality.

Once a component is defined, it can be distributed and usethér ap-
plications. Examples of component models include JavaBggnKoala [2],
SOFA [3, 4], ProCom [5, 6] etc. Out of these, ProCom is a rdggmbposed
component model tailored for developingal-time ES in the vehicular and
telecom domains.

To achievepredictability throughout the development of the ES, the de-
signer needs to employ a design framework equipped withyaisainethods
and tools that can be applied at various levels of abstmcitioorder to pro-
vide estimations and guarantees of relevant system prepetisually, embed-
ded system designers deal with two kinds of requireméntactionalrequire-
ments specify the expected services, functionality, aatlifes, independent of
the implementationExtra-functionarequirements specify the use of available
resources. For the same functional requirements, exiretiinal properties
can vary depending on a large number of factors and choiceliding the
overall system architecture and the characteristics ofitttkerlying platform.
Consequently, ES modeling must deal with both computatioipdysical con-
straints, which calls for an underlying semantic framewbek abstracts away
from both physical notions of concurrency and from all pbgtonstraints on
computation.

In this paper, we formalize the semantics of ProCom [5] dectiiral el-
ements, while identifying potential trouble spots in maaigl which we de-
scribe in detail in Section 9.2.2. To tackle the mentionedieting issues of
ES, ProCom consists of two distinct, but related, layersclvbxpose a num-
ber of modeling characteristics that pose challenges teytstem designer. The
upper layer, called ProSys, serves the modeling of the E®iamaer of active
and concurrent subsystems, communicating by messagengaskhe lower
layer, ProSave, addresses the internal design of a subsygsten to primitive
functional components implemented by code. ProSave coersare passive
and the communication between them is based on a pipesiterd{fliaradigm.
Bridging the semantic gap between the two communicatioagigms is one
particular modeling challenge that we show how to solve withe proposed

82 Paper B

ProCom formalization.

Another distinguishing characteristic of ProCom is thegimiity to model
both fully implemented components, described internajtycbde, and also
design-time components, possibly modeled internally@s-iconnected ProSave
components that might co-exist with the implemented corapts

In order to rigorously describe the above mentioned and étleoother be-
havioral features of ProCom models, and to provide suppoffiofmal analy-
sis, we use an underlyirigpite state machin@=SM) formalism, with notions of
urgency, timing and priority. The formal semantics of thévH&nguage, hence
of the architectural elements of our component model, isesqed in terms of
timed automatavith priorities [7] and urgent transitions [8]. However, time
following, we chose to present just some of the most intergstases, like
the formal description of services, component hierarchg, BroSys-ProSave
linking. The formalism is intended to provide a high-le\aistract representa-
tion of ProCom semantics, understandable and appealirghddrmalists and
engineers. Our solution is based on a small semantic coraitdwhe synthe-
sis of ProCom-based models of real-time embedded systemntdstonform.
Note that, although it sets the grounds for formal verifmatiour semantic
descriptions focus only on describing the correct behawfdProCom archi-
tectural elements, without consideration for efficiencfommal verification of
the resulted models.

The remainder of the paper is organized as follows. In Sedi@, we
briefly recall the ProCom component model and identify sormisopartic-
ularities. Section 9.3 presents our underlying formal tiotaand the actual
formalization of the selected ProCom architectural elemeThe compari-
son to related work is carried out in Section 9.4, whereaseittiSn 10.6, we
conclude the paper.

9.2 The Component Model

9.2.1 ProCom

The ProCom component model [6] is specifically developedith@ss the par-
ticularities of the embedded systems domain, includinguese limitations
and requirements on safety and timeliness.

To achieve efficiency, ProCom components are design-timigesnthat
can comprise information about interfaces, internal stme; code, models,
attributes, etc., rather than discernable, concrete imitee final system. Ap-

9.2 The Component Model 83

plications are build as a collection of interconnected congmts, and in the
later stages of development this component-based desiganisformed into
executable units, such as tasks that can be handled byidrediteal-time op-
erating systems.

Another basis of the ProCom development approach is thaustypes
of analysis are carried out throughout the developmentga®icin order to
ensure that the application will meet requirements on nesousage, safety
and timeliness. Early analysis is particularly emphasiasedt allows potential
problems to be discovered when the cost of resolving theraléively low.
At early stages, analysis is mainly based on models and &stimand in later
stages on, for example, source code and concrete desigmgtara. A key
concern is to provide means to perform analysis on systenesenfally de-
veloped parts, for example reused components, co-existpaitts in an early
stage of development.

To address the different concerns that exist on differami$eof granular-
ity, spanning from the overall architecture of a distrilsléenbedded system, to
the details of low-level control functionality, ProCom igganized in two dis-
tinct, but related, layers: ProSys and ProSave. In additidhe difference in
granularity, the layers differ in terms of architecturglstand communication
paradigm.

In ProSys, the top layer, a system is modeled as a collectimonomunicat-
ing subsystemthat execute concurrently, and communicate by asynchsonou
messages sent and received at typed output and ingsgage ports

Contrasting this, the lower lever, ProSave, consists o§ipasunits, and
is based on a pipes-and-filters architectural style withgligt separation
between data and control flow. The former is capturediata portswhere
data of a given type can be written or read, and the lattarigger portsthat
control the activation of components. Data ports alwayseapfn a group
together with a single trigger port, and the ports in the sgroap are read and
written together in a single atomic action.

Figure 11.1 (a) shows the graphical representation of ayRre@bsystem
with one input port and two output ports, and (b) shows a snfiloSave
component with one input port group and two output port geoupriangles
and boxes denote trigger- and data ports, respectively.

In addition to simple connections from output- to input gpRroSave con-
tainsconnectorghat provide detailed control over the data- and control flow
including forking, joining and dynamically changing cowtien patterns.

Both layers are hierarchical, meaning that subsystems hsasveompo-
nents can be nested. The way in which the two layers are litdgather is that

84 Paper B

Component B
Subsystem A

(a) (b)

Figure 9.1: A ProSys subsystem and a simple ProSave componen

a primitive ProSys subsystem (i.e., one that is not compo§ether subsys-
tems) can be further decomposed into ProSave componentse Abttom of
the hierarchy, the behavior of a primitive ProSave compbigemplemented
as a C function.

For the purpose of analysis, itis possible to associatibatirs with compo-
nents and subsystems to specify different functional andfoactional char-
acteristics. Some attributes can be represented by a singiber, e.g., worst-
case execution time or static memory usage, but in the caseood com-
plex functional and extra-functional behavior (such asirtgnand resource
consumption), a dense time state-based hierarchical ingdehguage called
REMES [9] is used.

9.2.2 Particularities of ProCom

The ProCom component model imposes restrictions on thevietad its con-
structs, which should be addressed and formally specifiedider to achieve
predictable behavior. This section recalls the informdldwéoral semantics
of specific modeling constructs in ProCom: services, cotioes, component
hierarchy and building active subsystems out of passivepocorants.

The functionality of a ProSave component is captured by afssgrvices
The services of a component are triggered individually aent éxecute con-
currently, while sharing only data. A service consists of arput port group
and zero or more output port groups, and each port groupsisrefione trig-
ger port and a number of data ports. An input port group may lbalaccessed

9.2 The Component Model 85

at the very start of each invocation, and the service mayymegarts of the
output at different points in time. The input ports are readrie atomic step,
and then the service switches to an executing state, whpesfdarms internal
computations and writes at its output port groups. The dadktiggering of
an output group of a service are always produced at the sange tBefore
the service returns to idle, each of the associated outptigpoups must have
been activated exactly once. This restriction servesdbit tiead-execute-write
behavior of a service. Since a service is a complex condsgfprimalization
is highly needed.

In the ProCom languagepnnection@ndconnectorslefine how data and
control can be transferred between ProSave componentse BnoSave com-
ponents can not be distributed, the migration of data og#igover a con-
nection is loss-less and atomic. However, the trigger $sgage not allowed
to arrive to any port before all data have arrived to all enstidations. This
should hold also in case when the data passes through a ¢onneooSave
follows a push model for data transfer, so whenever therata produced on
an output port, it is forwarded by the connection to the ingata port and
stored there. In case more data (trigger) connections aiglethat the same
time, the order in which they are taken is non-determinit@t us assume the
following modeling scenario: three components A, B and €jmaterconnected
via a Data-Fork connector (see Figure 9.2). The Data-Fonkector is used
to split data connections, so data written to the input datd is forwarded
to the output ports. When component A has finished executiogyponent
B should start executing. However, since the input trigget pf component
B is directly connected to the output trigger port of compang, while the
data is not transferred directly, but via a connector, tieeerisk that the trig-
ger signal may reach component B before the data has ariienkce, such a
scenario in which trigger might arrive before data shoulgtmhibited by the
formalization.

Internally, a ProSave component may be described by codther imter-
connected sub-components. When a trigger of an output geoaptivated
internally, all the data (assuming it is ready internallyJdahe trigger are
atomically transferred to the corresponding output pastigs of the enclosed
component. This contributes to the fact that, externdtlgre is no difference
between components, which allows the coexistence of falyetbped compo-
nents and early design units.

ProSys systems are active entities that communicate viaagegassing.
In contrast, the communication between ProSave compoighé&sed on the
pipes-and-filters paradigm. Internally, a ProSys systembesbuilt out of other

86 Paper B

Figure 9.2: Example of a critical modeling of data and triggansfer in Pro-
Com.

ProSys (sub)systems. At the lowest level of ProSys hieya@lsubsystem
can be internally modeled by ProSave components. In ordbuild active
subsystems out of passive components, weclggks A clock is a special type
of construct that has one output trigger port, which is at&d periodically at
a given rate. Clocks are not allowed to drift, but it is notuased that all
clocks are initially synchronized. Additionally, a mapgiis needed between
the message passing in ProSys and the trigger/data comationicised in
ProSave.

Given the above, we identify the following issues that hawivated our
formalism and that we show how to solve in Section 9.3:

e The data and triggering of an output group of a service mugiyd be
produced atomically, and each of the service output porigganust
have been activated exactly once before the service retidie state.

¢ All the data must arrive to its end destinations before tlygér signal.
This rule should also hold in cases when data is transfemexdigh a
connector.

e Coexistence of both fully implemented components havintj kveown
inner structure, and early design black box components)lghe sup-
ported.

e Bridging the two communication paradigms: message pagsiRgpSys
and pipes-and-filters in ProSave.

9.3 Formal Semantics of Selected ProCom Architectural Eleents 87

9.3 Formal Semantics of Selected ProCom Archi-
tectural Elements

To describe the behavioral semantics of ProCom architglatiements, we in-
troduce a high-level formalism as an extension of finiteestaichine (FSM)
notation and semantics. Our FSM formalism is enriched wiltliteonal no-
tions of urgency, priority and implicit timing, necessanr fnodeling seman-
tics of component-based architectures of real-time systefhe formalism
is small, but powerful enough to grasp all the informatioattis needed for
proper formalization of ProCom. In addition, we believettha language is in-
tuitive enough to be used by developers/engineers, but@isalists/researchers.
Yet this has to be proved by experiments that we leave forduttork.

The FSM formalism and related graphical notation are intoedi formally
below.

9.3.1 Formalism and Graphical Notation

Let V be a set of variableg; a set of boolean conditions (guardg overV,

B the set of booleansd a set of variable updates, aida set of intervals of
the form [y, ns], wheren; < ny andni, no are natural numbers. Our FSM
language is a tupléS, so, T, D), whereS is a set of states, € S is the initial
state, T C S x G x B x B x A x S is the set of transitions between states, in
which B x B represent priority and urgency (described below), BndS — I

is a partial function associating delay intervals withesat

The FSM language relies on a graphical representation timesists of the
usual graphical elements, that is, states and transitamnsidd with guards,
priority, urgency, and updates, see first two columns of FEdu3. A transi-
tion can be eitheargentor non-urgentand it can haveriority or no priority.
As shown in Figure 9.3, a transition may be decorated withnibve-urgency
symbol *, and/or the priority symbdl. Note that, a transition that is not anno-
tated with * is urgent. A state can be associated with a delegyval, which is
graphically located within the state circle.

Intuitively, the execution of an FSM starts in the initiahtg. At a given
state, an outgoing transition may be taken only if ierabledi.e., its associ-
ated guard evaluates taue for the current variable values. If from the current
state, more than one outgoing transition is enabled, onleenfi tis taken non-
deterministically, and prioritized transitions are predel over non-prioritized
transitions. In case all enabled outgoing transitions dhsesare non-urgent,
it is possible to delay in the state. On the other hand, ifdtaee any outgoing

88 Paper B

Informal FSM TA
a?

urgent transition > >
o) b?

urgent transition with priority > >
?

non-urgent transition *—> —C,
») . * ’[‘ d?

non-urgent transition with priority s L, _

urgent transition with guard x==5 X=x+1 x==5 a? x=x+1

x==5 and update x=x+1

initial state

@)
@

clki=0 clki >ny

state

®00

state with delay interval [n4,n;]

C|kiSn2

Figure 9.3: The graphical notation of the FSM elements ari thanslation
into TA.

urgent enabled transitions, one of them must be taken imateddi Thus, the
notions of priority and urgency avoid unnecessary nonfd@tésm among en-
abled transitions, clarifying the modeling aspects angipbsimproving the
performance of formal analysis. A state that is associaidtdadelay interval
[n1, n2] may be left anytime betweem andn, time units after it is entered.

In order to form a system, FSMs may be composed in paralled.sEman-
tic state of the composed system is the combined states aiathieavalues of
the FSMs. The notions of urgency and priority are appliedhally, and time
is assumed to progress with the same rate in all FSMs.

9.3.2 Formal Semantics of the FSM Language

In this section, we formally define the semantics of our FShyleage using
timed automata (TA) [10] with priorities [7] and urgent tsitions [8] as a
semantic domain. The translation of each FSM element to Téejscted in

9.3 Formal Semantics of Selected ProCom Architectural Eleents 89

Figure 9.3. The FSM language has four kinds of transitiongent transition,
urgent transition with priority, non-urgent transitiomdanon-urgent transition
with priority. In TA we introduce four channelg; b, ¢, andd. Channels: and
b are urgent, and channéisandd have higher priority than channelsandc.
Accordingly we map the transitions of FSMs into TA edges latevith the
appropriate channels, as defined in Figure 9.3. The trausBA edges need
a timed automaton offering synchronization on the comptgarg channels
(e.g.,a! complementary ta?), depicted in Figure 9.4.

Each FSM state results into a TA location. For every FSM wélay states,
a clockclk; is introduced. Accordingly, an FSM state with delay intéfva,
no] is translated into a corresponding TA location with ineauti clk; < no.
The clock is reset on all ingoing edges and the guards of #ijaing edges are
conjuncted withclk; > n;.

The system represented by a composition of FSMs can bedtadshto a
network of TA in two steps. First, each FSM is translated antomed automa-
ton and then all TA are composed into a network together iighatutomaton
of Figure 9.4.

N by
v chan c,d;
urgent chan a,b;
priority a,c < b,d
S
0/

Figure 9.4: The automaton used for synchronization.

9.3.3 Overview of ProCom Formalization

In the formalization, each data and message port is repegbey a variable
with the same type as the port. The variables are storingthstlvalue written
to the ports, respectively. Likewise, a trigger port is eggmted by a boolean
variable determining the activation of that port. Portsmfposite components
are represented by two variables, corresponding to thevgaved from outside
and from inside. Accordingly, in the ProCom formalizatioe wssume the
following set of shared variables through which the FSMs camicate:

90 Paper B

e vy, variable associated with a data partof corresponding type.

e v;,: boolean variable associated with a trigger pomdicating whether
the port is triggered, default false.

e v, variable associated with a message posof corresponding type.

e v, andvy,: internal variables for ports of composite components;esor
sponding to port variables;, andw;,, respectively.

Additionally, we lete be the null value of any type indicating that no data
is present on a data or message port.

The complete formalization of ProCom is available in [11heTsemantics
of all ProCom elements is defined as a translation to the F&jUiage, and the
semantics of an entire ProCom system is defined by the placalteposition
of FSMs for the individual constructs.

In the following, we chose the most representative, and sdoadly chal-
lenging, architectural elements of ProCom, and preserit theamalization.
The elements are: services, connections, componentkschrtd message
ports.

9.3.4 Services

Assume a ProSave component with one service,S5agnd letS; consist of
one input port group and two output port groups (Figure 9)h (&he infor-
mal semantics of a service in ProSave is described in SegtibrThe formal
semantics of a service, in this casg, is described below and shown in Fig-
ure 9.5 (b).

Letw1 andw?2 be boolean variables corresponding to the output port group
respectively; the variables indicate whether the respegtioup has been acti-
vated or not. By associating boolean variables with thewtuysprt groups, we
ensure that the groups are written only once during an eiecirtstance of
a service. While being in aBxecute state a service may yield into two error
scenarios:

e A service might try to go back to thele state before all output groups
have been activated. In the formal semantics of a serviedgfiiepicted
by the stateError 1.

e During execution, a service might try to activate an alreadtvated
output port group. This problem is captured by the skater 2.

9.3 Formal Semantics of Selected ProCom Architectural Eleents 91

w1=true w2=true
v'y=false v'p=false
Vu=V'y Vo=V’
V3=V g3 Vg4=V g4

Va2=V g2
w1\ vy

Service

Vio
Error 2 @ Error 1

(@) (b)

Figure 9.5: (a) A ProSave serviég and (b) its formal semantics.

As such, the formal semantics, ensures the informal seosagiscribed in
Section 9.2 i.e., the triggering and data of a service is ydvpoduced atomi-
cally and each of the service output groups is activatedtixace before the
service returns to thielle state.

9.3.5 Data and Trigger Connections

We will now focus on the ProSave connections between twomatsd, and

d; and two trigger portg, andt;. The formal semantics of ProSave connec-
tions is presented in Figure 9.6, for data connection, aneligare 9.7, for
trigger connection.

To ensure that data is transferred prior to trigger, and tadawndesirable
consequences otherwise, the transitions in the FSM fosmglrigure 9.6) are
associated with priority in the case of data connectionss iBtalso the case in
the semantics of all connectors that forward data (det&il¢tl]).

92 Paper B

do > d1
(a)

Voo |=€ T temp=vq4y Vgqo =€

vg1=temp T DatalnTransit

Figure 9.6: (a) A ProSave data connection and (b) its foremlatics.

9.3.6 Component Hierarchy

ProCom is a hierarchical component model, with each computdyeng a par-
allel composition of services, executing concurrently ahdring data. The
functionality of a ProSave component can be implementeddiggle C func-

tion (primitive component) or by inter-connected internamponents (com-
posite component).

In early stages of development, a component may still becktdax with
known behavior, but unknown inner structure. Later on, thegonent may
be detailed and in the end implemented. However, all commpisrfellow the
same execution semantics. In an early stage of developmvaet only the
behavior of the component is assumed to be known, it is thgoresbility
of the behavior model to signal the end of execution, andke tare of the
internal variables (data and trigger) of a component adoglhyl In a later stage
of development, when the inner structure of a composite corapt is known,
its formalization is handled by the inter-connected subponents. In this
case, we assume that there is a virtual controller in chdrgjgiwaling when the
internal trigger of a component has become false i.e., ditemponents have
returned to the idle state. Consequently, in both casegtiimal variables are
left to be modified by the behavior, code or inner realizattmrt the external
variables of a component are always handled by the semanftiasservice
(defined in Section 9.3.4). This emphasizes the fact thatn fan external

9.3 Formal Semantics of Selected ProCom Architectural Eleents 93

Vio vio=false

vy=true TriggerinTransit

(b)

Figure 9.7: (a) A ProSave trigger connection and (b) its fdreemantics.

observer’s point of view, there is no difference betweetyaesign black box
components and fully implemented components.

9.3.7 Linking Passive and Active Components

By definition, ProSave components are passive and they conngata via data
exchange and triggering. ProSave components can be usedite the in-
ternals of an active ProSys subsystem with some additioralector types:
clocks(see Figure 9.9 (a)) andput- andoutput message portsee Figure 9.10
(a) and Figure 9.11 (a), respectively). These connecteraairallowed inside
a ProSave component, so the coupling between ProSave aSgsPiodone
only at the top level in ProSave. The use of these conned@saimplified in
Figure 9.8.

A clock serves for generating periodic triggers. A ProSasagonent can
be activated by receiving a periodic trigger with approgrigeriod. The formal
semantics of a ProSave clock with period P is shown in Figudgl$). Thus,
the formal semantics complies to the informal semanticsadek, described
in Section 9.2.

Message ports bridge the gap between the two communicadi@aligms:
pipes and filters in ProSave and message passing in ProSyrsntessage port
acts as a connector with a trigger and data port that may beected to other
ProSave elements. Whenever a message is received, theniegatge port

94 Paper B

Figure 9.9: (a) A ProSave clock with periddand (b) its formal semantics.

writes this message data to the output data port, and aggitta¢ output trigger.
Similarly, whenever the trigger from an output message igoattivated, the
output message port sends a message with the data curreesignp on its
input data port.

We assume the following:

e todata(): is a function that translates messages into data.

e tomessage(): is a function that translates data into messag

Given the above, the formal semantics of an input messageapdran
output message port can be described as in Figure 9.10 (Bigack 9.11 (b),
respectively.

9.4 Discussion and Related Work 95

Vmo 1= e
vd0=todata(vmo)
Vip=true

(b)

Figure 9.10: (a) A ProSave input message port and (b) itsdbsemantics.

Vio
do |13 \
[_1)mg
to M. Vmo= tomessage(vqo)
il vi=false
(b)

(@)

(a)

Figure 9.11: (a) A ProSave output message port and (b) itsgbsemantics.

9.4 Discussion and Related Work

As shown previously, the formalization of the relevant RsaCarchitectural
elements can be subsumed by a small and simple FSM-like dayaglex-
tended with an abstract representation of clocks, and atgmnay and priority
on transitions. To place our contribution in the right comtend emphasize
its strengths and weaknesses, in the following, we reviawesof the related
work to which ours can compare.

The BIP (Behavior, Interaction model, Priority) componfamework in-
troduced by GoRler and Sifakis [12, 13] has been designedgport the con-
struction of reactive systems. By separating the notiotebfvior, interaction
model, and execution model, it enables both heterogeneodsling, and sep-
aration of concerns. The semantics of BIP is given in terniSrobd Automata

96 Paper B

(TA), on which priority rules are successively applied téozoe certain invari-
ants of the expected real-time behavior. As opposed to aordbsemantics,
the BIP formalization targets directly the efficient verdfiion of the considered
models.

COMDES-II (Component-Based Design of Software for Disttédal Em-
bedded Systems) [14] is a development framework in whichftinetional
units encapsulate one or more dynamically scheduled tietviBesides pro-
viding a clear separation of concerns (functional behafrimn real-time be-
havior), in modeling, COMDES-II also offers support for fical analysis, by
specifying the activity behavior in terms of hybrid stateamiaes. The Pro-
Com semantics presented in this paper does not focus oraethe&fdrmational
aspects of component and system behavior, but more on tbéveeand real-
time aspects, while emphasizing the co-existence of bitemkand fully im-
plemented components, via the component hierarchy.

The communication among SOFA components [3] can be capfored
mally, by traces, which are sequences of event tokens denibité events oc-
curring at the interface of a component. The behavior of a/S6xity (in-
terface, frame or architecture) is the set of all tracesctvitian be produced
by the entity. Such a formalization can be hard to comprehudthe pro-
posed formalization of ProCom might, on the other hand, beerddficult to
implement and exploit towards efficient verification, duetschigher-level of
abstraction.

A process-algebraic approach to describing architechalahvior of com-
ponent models is advocated by Allen and Garlan [15], and Magel. [16],
who formalize the component behavior in CSP (Communica8aguential
Processes) and via a labeled transition system with a pp#sflmite number
of states.

Koala [2] is a software component model, introduced by Bhiklectron-
ics, designed to build product families of consumer eledt® For Koala
compositions, the extra-functional information is expbagéthe component’s
interface. The prediction of extra-functional properigsarried out by mea-
surements and simulations at the application level. Inreshtthe ProCom
semantics sets the ground for achieving predictabilityforanal verification
(by translating our FSMs into timed automata [7]), priorngoiementation.

ProCom'’s precursor, SaveCCM, is also an analyzable conmpomadel for
real-time systems [17]. SaveCCM’s semantics is defined bgresstormation
into timed automata with tasks, a formalism that explicitipdels timing and
real-time task scheduling. The level of detail of such a farmodel is higher
than in our FSM notation, making it more suitable for formatification; how-

9.5 Conclusions 97

ever, the timed automata models of SaveCCM can be clutteittdrariables
whose interpretation is not necessarily intuitive, whicikes the formal mod-
els less amenable to changes.

9.5 Conclusions

In this paper, we have presented the overall ideas and s@senle learned
from defining a formal semantics of the ProCom component tiragléan-
guage. The ProCom language is structured in two layers, quipged with
a rich set of design elements aimed to primarily support thieation area
of embedded systems. The ProCom language constructs énsturdice inter-
faces, data and trigger ports, passive or active companemtsections and
connectors, hierarchies of components, timing, etc.

Clearly, a formalization of the language needs to deal witbancepts of
the modeling language. Additionally, it has been our goaitke the for-
malization as simple and intuitive as possible, so thatiit ®arve as a basis
both for engineers using ProCom, as well as researchersopavg analysis
techniques, model-transformation tools, etc., within freCom framework.
In order to meet these sometimes contradicting goals, we baed a small
but powerful FSM language, in which the semantics of eaclCBno element
is described. The FSM language builds on standard FSM,rettiwith finite
domain integer variables, guards and assignments onticarssinotions of ur-
gency and priority, as well as time delays in locations. Tdrglage assumes
an implicit notion of time, making it easy to integrate withrious concurrency
models (e.g., the synchronous/reactive concurrency modaldiscrete-event
concurrency model) [18]. Its formal semantics is expregséarms of TA with
priorities and urgent transitions, as shown in Sectior29.Bhe FSM language
has graphical appeal and it is simpler than the correspgrinmodel, as it
abstracts from real-valued variables and synchronizati@mnels. Moreover,
thanks to the TA formal semantics, the FSM models of ProCostesys can
be analyzed in a dense-time underlying framework, as weih @sdiscrete-
time one, since TA has been recently given a sampled seradhfit. Hence,
tools such as BPAAL can be employed for early-stage verification of ProCom
models, whereas discrete-time model-checkers, such apiDT3)], could be
used for later-stage analysis, as a sampled time semasntiloser to the actual
software or hardware system with a fixed granularity of tiarel can become
appealing at later stages of design.

To illustrate our approach, we describe in detail how thégesonstructs

98 Paper B

for services, data and trigger connections, componenaitbies, and passive
and active components of ProCom have been formalized imtammer. These
elements are deliberately chosen, since they represenliffeeent types of

design elements in the language, and expose the encodimgdees used in
the ProCom-FSM translation.

As future work, we plan to develop support for model-basedyasis tech-
niques such as model-checking, based on the formalizaitien ¢n this paper.
In particular, we plan to integrate our recent work on mauteind analysis of
embedded resources and the associated modeling languadER[P] with
the formal semantics of ProCom given in this paper.

Bibliography

[1]
(2]

[3]

[4]

[5]

R. EnglanderDeveloping Java Bean®'Reilly, 1997.

R. van Ommering, F. van der Linden, and J. Kramer. The &gampo-
nent model for consumer electronics softwarelHEE Computerpages
78-85. IEEE, March 2000.

T. Bure§, P. Hnetynka, and F. Plasil. SOFA 2.0: Balagcvanced
features in a hierarchical component model. Pimceedings of SERA
2006 pages 40-48. IEEE CS, August 2006.

F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Archilee for com-
ponenttrading and dynamic updating Rroceedings of ICCDS 98&EE
CS, May 1998.

T. Bures, J. Carlson, |. Crnkovi€, S. Sentilles, and/algarakis. ProCom
— the Progress Component Model Reference Manual, versiorirgch-
nical Report MDH-MRTC-230/2008-1-SE, Malardalen Unsigy, June
2008.

[6] T.Bure§, J. Carlson, S. Sentilles, and A. Vulgarakicofnponent model

family for vehicular embedded systems. Rroceedings of the Third In-
ternational Conference on Software Engineering Advané&dskE, Octo-
ber 2008.

[7] Alexandre David, John Hakansson, Kim Guldstrand Laysed Paul Pet-

tersson. Model checking timed automata with prioritiesg€dBM sub-
traction. In4th International Conference on Formal Modelling and Anal-
ysis of Timed Systems (FORMATS Qges 128-142. Springer-Verlag,
September 2006.

99

100 Bibliography

[8] Johan Bengtsson, W. O. David Griffioen, Kre J. Kristo$ien, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Aated anal-
ysis of an audio control protocol usingePAAL. Journal of Logic and
Algebraic Programming52—-53:163-181, July-August 2002.

[9] Cristina Seceleanu, Aneta Vulgarakis, and Paul Petters REMES: A
resource model for embedded systemsPtoceedings of the 14th IEEE
International Conference on Engineering of Complex Comip8t/stems
(ICECCS 2009)IEEE Computer Society, 2009.

[10] R. AlurandD. L. Dill. A theory of timed automatdheoretical Computer
Sciencel26(2):183-235, 1994.

[11] J. Suryadevara, A. Vulgarakis, J. Carlson, C. Secelgamd P. Pettersson.
ProCom: Formal semantics. Technical Report ISSN 1404-38&N
MDH-MRTC-234/2009-1-SE, Malardalen University, March(®.

[12] G. GoBler and J. Sifakis. Priority systems.RAroceedings of FMCO’03
volume LNCS 3188, pages 314—-329. Springer-Verlag, 2004.

[13] G. GoRler and J. Sifakis. Composition for componeasddl modeling.
Science of Computer Programmirigh(1-3):161-183, 2005.

[14] X.Ke, K. Sierszecki, and C. Angelov. COMDES-II: A Compent-Based
Framework for Generative Development of Distributed REate Con-
trol Systems. IrProceedings of the 13th IEEE International Conference
on Embedded and Real-Time Computing Systems and Apptisgtages
199-208. IEEE Computer Society, 2007.

[15] R.J. Allen and D. Garlan. A formal basis for composingngmnents.
ACM Transactions on SW Engineering and Methodaola§@7.

[16] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Spagifgistributed
software architectures. Iroceedings of the 5th European Software En-
gineering Conferenge 995.

[17] M. Akerholm, J. Carlson, J. Fredriksson, H. Hansson, J. Hésdam
A. Moller, P. Pettersson, and M. Tivoli. The SAVE approaach t
component-based development of vehicular systelmstnal of Systems
and Softwarg80(5):655-667, May 2007.

(18]

(19]

(20]

B. Lee and E. A. Lee. Interaction of finite state machiaed concurrency
models. In32nd Annual Asilomar Conference on Signals, Systems, and
ComputersNovember 1998.

P. A. Abdulla, P. Krcal, and W. Yi. Sampled universaldftimed au-
tomata. In10th International Conference Foundations of Software Sci
ence and Computational Structures, FOSSACS 2007, part 6PBET
2007, volume LNCS 4423, pages 2-16. Springer-Verlag, 2007.

Dragan Bo3nacki and Dennis Dams. Discrete-time Rianand Spin.
In FTRTFT '98: Proceedings of the 5th International Symposiumfor-
mal Techniques in Real-Time and Fault-Tolerant Systearges 307-310.
Springer-Verlag, 1998.

Chapter 10

Paper C:

Bridging the Semantic Gap
between Abstract Models of
Embedded Systems

Jagadish Suryadevara, Eun-Young Kang, Cristina Secel@aul Pettersson

In proceedings of the 13 International Symposium on Component Based
Software Engineering (CBSE), pages 55-73, June, 2010.

103

Abstract

In the development of embedded software, modeling languiaged within

or across development phases e.g., requirements, spteificdesign, etc are
based on different paradigms and an approach for relatiegetlis needed.
In this paper, we present a formal framework for relatingcéfEation and

design models of embedded systems. We have chosen UML siztiéres

as specification models and ProCom component language $ardmodels.

While the specification is event-driven, the design is basetime triggering

and data flow. To relate these abstractions, through theugredrajectories
of corresponding models, formal semantics for both kindsioflels and a set
of inference rules are defined. The approach is applied ont@namous truck
case-study.

10.1 Introduction 105

10.1 Introduction

Embedded systems (ES) are increasingly becoming contesisive, and time
sensitive. To ensure predictable behaviors, the developphases of an ES re-
quire extensive modeling and analysis. These developnmasigs/ abstraction
layers e.g., requirements, specification, design, andeémehtation, provide
opportunities for applying different predictability agais techniques. Such
models have to be precise enough to support formal anafyrsismust ensure
inter-operability during design. However, they may useadagms for describ-
ing behavior that cannot be immediately compared and tlatee to their
apparently incompatible nature.

There exist several paradigms for behavior specificaticenufedded sys-
tems. For example, statemachine based approaches, sudiilastatema-
chines [1], are intended to specify timed aspects of contipmtand commu-
nication, besides functionality. They often use an apéciogvent-triggered
representation of behavior, since such a paradigm faeititeaasy changing of
a model’s configuration or set of events. On the other hanawer models
might use a different modeling paradigm, e.g., a periotilice-triggeredbe-
havioral description, instead of an event-triggered regméation. With time-
triggered communication, the data is read from a bufferpating to a trig-
gering condition generated by, e.g., a periodic clock. élitth these modeling
capabilities are invaluable to obtaining a mature ES deweknt process tai-
lored for predictability, in order to ensure the correctebthe process, one
needs to guarantee that the behavioral models are indesibtn.

In this paper, we present a formal framework and a methogdtmgelat-
ing event-based and time triggered, data-flow driven maafddehavior, which
may be used at the same abstraction layer, e.g., at spdoifitatel, or across
various layers of abstraction, from specification, to, ,etlge design level of
embedded system development. Concretely, we consider UdMérsachines
[1] for event-based specification models and the ProCom oot language
[2] for design models. Hence, as it stands now, the framevgotilored to a
specific class of embedded systems, which employ the aboméaned for-
malisms for modeling behavior. However, the framework amg method-
ology could be generalized to include other similar classdfesystems (e.qg.,
component based systems) and other behavioral paradiggisf{eite state
machines).

The proposed framework is based on comparison of executggctories
of corresponding behavior models. To accomplish this, tmnél semantics
of both kinds of models is defined in terms of underlying tiéms systems.

106 Paper C

As the execution trajectories generated by above descnitmetls can be ex-
tremely large and incomprehensible, they need to be redoaadre readable
and analyzable forms. Hence, we propose two sets of inferares, one for
simplification of specification trajectories and other fionglification of design

trajectories. Moreover, in order to be able to relate andpamathe above two
sets of simplified trajectories, we introduce a set of tramshtion rules that
lets one relate an event-triggered trajectory with comesing time-triggered
one.

We apply our approach on an autonomous truck system, by aimgpa
some trajectories of its specification with those of coroegiing component-
based design model. By virtually simulating the models, hasa “run” of
each model, respectively, by outlining corresponding sitspresentative tra-
jectories. Then, we show that, by applying our rules, we aahdimplify the
design model trajectory and then transform it into a trajgcequivalent to
the one generated by the specification model. The timingcéspé both runs
are also apparent in the respective trajectories, hencéhowg Bow to relate
them too. For creating the truck’s design model, we use tireldpment en-
vironment of SavelDE [3], an integrated design environnienES. SavelDE
is developed as part of the PROGRESS project [4] for compebased de-
velopment of predictable ES in the vehicular domain. It sufgpthe subset of
ProCom modeling language used for the case study desige piiber.

The rest of the paper is organized as follows. In Section,Mke2describe
event-based, and time triggered formalisms for modelingesided systems.
Corresponding to these formalisms we formally define seitsof a subset of
both UML statemachines and ProCom design languages. lio8ed.3, we
present the case study details. In Section 10.4, we desmibmethodology,
and introduce three sets of inference rules for simplificatind comparison of
trajectories of specification and design models. Someaelabrk is discussed
in Section 11.8. In section 10.6, we make conclusions anesspects of the
future work of the paper.

10.2 Abstract Models of Embedded Systems

In this section, we define the modeling formalisms for mduketed specifi-
cation and design of embedded systems used in this paperpe&ffisation
language, we will consider UML statemachine notation withirig annota-
tions [1], and for design models, we will use the ProCom congmd modeling
language [5].

10.2 Abstract Models of Embedded Systems 107

10.2.1 Specification model of embedded systems

We specify embedded systems using the UML statemachind¢iorofd]. In
order to model timing, we will use the notion of timeouts pgd®d in UML.
An example of a UML statemachine is shown in Fig. 10.1. We nowe @
formal definition of the model:

Statemachine SyntaxA statemachine is a tuple, Iy, A4, E, M) where
e L is afinite set of locations,
e [y € L is the initial location,
e A=/{aog,...,an,tm} is a set of events, where

— a; is an external event with zero or more parameters,
— tm is a timeout representing the expiry of a timer, and

e M : L — {e} UNis a mapping from locations to the natural numbers
(including zero), ot denoting absence of timeout,

e £ C L x Ax Lisasetof edges. O

Fig. 10.1 shows a UML statemachine with the three locatieoitow, Turn,
andFind. The edges frorfrollow to Turn and fromFind to Follow are labeled
with the external events_o_l() andline_found(), respectively. The edge from
Turn to Find is labeled with everafter(4), intuitively denoting a timeout that
expires after four time units

We now give the semantics of a UML statemachine specificatiodel
defined in terms of a finite state transition system.

Statemachine SemanticsThe semantics of a statemachine is defined as a tran-
sition system(S, s, T') where

e S is afinite set of states of forgi, m) with l € L andm € {¢} UN,
e 5o € Sis theinitial stately, M (1)),

o T C S x AU {tick} x S wheretick is a periodic internal event, is a
transition relation such that

1in the figures, we use timeout events of the farfiter(n), wheren € N, instead of annotat-
ing the source location (e.g., locatidorn in Fig. 10.1) with timeout value..

108 Paper C

Turn

after(4)

Figure 10.1: A UML statemachine specification model of théoaamous
truck.

e_o_l()

Follow

line_found()

— (l,m) 25 ('Y if (1, a5, 1') € E, andm/ = M(I")

if m=¢

m—1 otherwise

— (lm) BE Y if L= 1, m £ 0, andm! = {5

A',m!yif (I,tm,l') € E,m =0,andm’ = M(l')

!
3
Iz

O

Intuitively, the initial state represents the initial ldican, and its timeout value,
in the statemachine. The first rule describes the state ehahgn an exter-
nal event specified over an edge from current location, atiteircurrent state,
occurs. By second rule, if a timeout is defined at currenttlonathe current
value of the timeout decreases in steps of one correspomaliagch occur-
rence of an internal periodicck event. Theick event is ignored in the current
state if no timeout is associated with the correspondingtlon. The third rule
describes the occurrence of timeout event, and hence thédocand corre-
sponding state change, when the timeout duration assdaiatie the current
location expires i.e. becomes zero.
A trajectoryof a UML specification model is an infinite sequence

T = (lo,mo) 2o, (l1,m1) 2, (l2,ma) ...

where (ly, mg) is the initial state, andl;, m;) iy (li+1,miy1) € T and
Ai € {ao, ..., an, tick,tm} for all i € N.

10.2 Abstract Models of Embedded Systems 109

10.2.2 Design model of embedded systems

As design modeling language we will use ProCom [5], a compbredel

for embedded systems. It consists of the two sub-langud&yesys, which is
designed to model systems at high level (i.e., in terms gElarained compo-
nents calledubsystemsand ProSave [2] which is designed to model detailed
functionality of the subsystems. In this paper, we will fean the ProSave
model as it is better suited for our purposes. A ProSave meoalatists of
atomic or composite components connected through postslédi into input
and output ports), and connections. Ports and connectpmesent data flow
between components.

Component Syntax A componentC' is a tuple(I, O, P, in, out, f, e), where

e |, O, and P are mutually disjoint sets of input, output, anggte vari-
ables respectively,

e in : I — Bool is a boolean expression over input variablebat trig-
gers the execution of the component,

e out : O — Bool is a boolean expression over output variakilethat
indicates that the component has completed its execution,

e f:Ix P — P x Oisafunction that maps input and private values to
the private and output values, and

e ¢ € Nis a constant representing the execution time of the comypone
O

We denote byX = I U O U P the set of all variables with size{| = |I| +

|O] + |P|. We will further useC'.n to denote the elements of a component,
hence e.g.(.I denotes the input variables of componéntwWe now introduce
the formal syntax of the ProSave model.

ProSave SyntaxA ProSave design model is a tugl€, —), where
e C={Cy,...,Cy}is aset of components,

e — C CxCisasetof componentconnections, such that output vagable
C;.0 may be connected to input variabl€$./ O

110 Paper C

Follow [F2e
SystemClock | Sensor (fo) [10]
(sc) [0 (se) [10]
tfo
sl, sr Turn ttu Actuator
(tu) o] (ac) [10]
Controller y i
o) [10]
Find
(f) [10]

Figure 10.2: Schematic view of a ProSave design model of dhenamous
truck.

We will write C;.0,, — C;.I,, to represent the connection from output vari-
ablem of component’; to input variablen of component’;.

A ProSave system is typically driven by a periodic clock vhperiodically
generates a control (or trigger) signal. A clock componedeffined as follows:

Clock Component A component” = (I, O, P, in, out, f,e) is a clock com-
ponent with period piff 7 |=| O |=1, e = p, andC.O — C'I. O

Fig. 10.2 shows a ProSave design model consisting of sevapauents (de-
picted as boxes) interconnected by data and control flowextions (depicted
as solid arrows indicating the flow direction). Compon8&gstemClock is a
clock component with period 40. The other six component® hexecution
time 10. Their internal behavior may be specified using a fdism based on
statecharts [6] or timed automata [7], which we are not expliconcerned
with in this paper. A component starts execution when it ikexsecontrol in-
put. It then reads its input and proceeds with internal caatmn. When the
internal execution is completed, data and control outpgeiserated for other
components.

We will now give the formal semantics of the subset of ProSased in
this paper. For the semantics of the full ProCom languageagebes the reader
to [2].

For a ProSave model consisting of componeiys..., C,,, we useV to
denote the set of all variables in a model, iE¥.,= X, U ...U X,,. The
semantics is defined using valuatiamsnapping each variable i to values
in the type (or domairf)of V/, and vectorss of 3; € {0, ..., e;, L } representing

2We assume all variables Wi are of type Boolean or finite domained integers.

10.2 Abstract Models of Embedded Systems 111

the remaining execution time of all compone@ts

We usef;(a) to denote the valuation’ in which o/(x;) for eachz; €
P, U O; is the value obtained by applying the functiéh. f in the valuation
a, andd’(z') = a(a’) for all other variables’’. To update the execution time
vector3 we useB[3; := n] to denote thed’ in which 3] = n and g = 3; for
all j # i, and we write © n to denote the3’ in which 3} := 3; — n for all
Bi > n.

ProSave SemanticsThe semantics of a ProSave design mddé, ..., C, }, —
) is defined as a transition systdi, o, 7) where

e Y is a set of states of the form of a pdir, 3),

e 0y € Y is the initial statg/ay, o) which is such thaty, = C;.in for all
clock components§’; andeg = —C;.in for all other component’;, and
Bo =1,

e T C ¥ x {CD,;,CS;, TP} x ¥ is a set of transitions such that the
following conditions hold:

— (component startfc, 3) S8y (ol B i (Crin A (B = L)),

B = B[Bi == e;], and for alli # j : 3; # 0,
— (component donel, 3) CP (o, B if B = 0, ¢ = f;(a), and
B = BB = 1],

— (time passing)a, B) —2 (o, ') if for all i : ~(Ci.in A (B =

1)) ands; #0,3 = Bo1,and(a =).
whereC'S; € {CSy, ...,CS,} andCD; € {CDy,...,CD,}. O

Intuitively, in the initial state only the clock componemt® triggered and the
remaining execution time of all components are undefinece “Ebmponent
start” rule describes how components are started. A comydariemay start
its execution provided that all completed components hattten their out-
put. WhenC; starts, its execution time is setég The “component done” rule
describes that when a componéhtcompletes its execution, its output values
are generated and mapped to the input values of the conrmmtgzbnents ac-
cording to connection relations, and its remaining execution time is updated
to L to reflect that it is inactive. Rule “time passing” descrilbesv time pro-
gresses in the design model. As time progresses the rerga&xacution time
B, of each active componegt; is decremented by 1.

112 Paper C

-———

,
X
I'2: Tum N 3 Find
\ \
\\ ~

N — ~~
-9 — — .
1 Follow I)

Figure 10.3: Path of the truck movement.

A trajectoryof a design model is an infinite sequence

7 = {ap, Bo) == (a1, B1) 2 (ag, Ba) ...
where(ao, fo) € oy is an initial state, ande;, ;) 5 (i1, Bis1) € Tis a
transition such that; € {CD;,CS;, TP} foralli € N.

10.3 Case Study: Autonomous Truck

The autonomoustruck is part of a demonstrator project cctediat the Progress
research centfe The truck moves along a specified path (as illustrated in Fig
10.3), according to a specified application behavior. |s ggction we give
an overview of the truck application followed by a specificat and a design
model, described in the modeling languages introducedtiptavious section.
We will study a simplified version of the case study, in whible truck
should simply follow a line. When it reaches the end of the it should try
to find back to the line, follow the line again in the oppositeedtion, and
repeat its behavior. The truck will have the following opgmaal modes (see
also Fig. 10.1):

e Follow: in which the truck follows the line (the thick line of Fig. 13)
using light sensors. When the end of the line is detectediaihges to
Turnmode.

e Turn: the truck turns right for a specified time duration, and tbleanges
to Find mode.

3For more information about Progress, $://www.mrtc.mdh.se/progress/.

10.3 Case Study: Autonomous Truck 113

Figure 10.4: The design model of the autonomous truck in IBdve

e Find: the truck searches for the line. When it is found, the trietkms
to Follow mode.

A specification model of the case study is given in Fig. 10tlstdrts in
locationFollow. The end of the line is modeled using external eveiatl().
In locationTurn, it turns for four seconds, and then proceeds to locdfiod
when the timer expires. The external evimé_found() models that the line is
found and control switches back to the initial locatiesilow.

The schematic view of a ProSave deign model of the case stugiyén
in Fig. 10.2. The original model (as shown in Fig. 10.4) wasgedigped using
SavelDE [3], an integrated development environment supppthe subset of
ProSave used in this paper. As shown in Fig. 10.2, the desagifehtonsists
of componentSystemClock (a periodic clock)Sensor, Controller, Follow,
Turn, Find and Actuator. ComponenSystemClock triggers the complete
model periodically through the componeé®gnsor which reads the light sen-
sors of the truck. The sensor values (left, right) are comioated through the

114 Paper C

data portssl andsr. Note, a connection between two components as shown
in Fig. 10.2, denotes a collection of independent port cotioes between
corresponding data or trigger ports of the components. @m@ptController
acts as a control switch for triggering the componéiatow, Turn, andFind
selectively , through control poris, tu, fi respectively, which contain the func-
tionality of the corresponding modes of the truck behavitre completion of
execution of each operational mode (the corresponding ocaet) is indi-
cated by data (port) valuésB¢,, FB,,, andFB, respectively. Component
Actuator, triggered by control portfo, ttu, or tfi, actuates the corresponding
hardware to cause the physical activity of the truck movemas discussed
previously, the periodicity of th8ystemClock is 40 time units and the execu-
tion times of each of other components is 10 time units.

10.4 Methodology Description

In Section 10.2, we have described the syntax and semarfttesoanodels

used in the development of embedded system software: ting-based model
of UML statemachines, and the time-triggered and data-fideented model of
ProCom. These are examples of modeling languages thatraegl ait provid-

ing different views of embedded systems, used in differexgtess or at different
abstraction levels during system development. The comnserofi different

models creates a need for comparing descriptions of systeads in different
modeling languages.

In this section, we propose a method for comparing evergdand time-
triggered models of embedded systems. The method will berides and il-
lustrated on UML statemachines and ProCom models of thenanotous truck
case study described in the previous section. Construatsgmantic bridge
between the two models requires a series of steps that needistematically
applied. Our methodology for bridging the gap between thiagigms consists
of the following five steps(i) given a specification trajectory, generate a cor-
responding design trajectory by e.g, simulating the mogg}; simplify the
specification trajectory (can be omitted)ji) simplify the design trajectory;
(iv) transform the design trajectory into one comparable to tlemtebased
specification trajectory(v) compare the reduced specification and design tra-
jectories.

To support above described steps to (iv) of the method we will present
in Sections 4.1 to 4.3 a number of inference rules for simpld specification
and design trajectories, and for transforming betweenlre tin the latter

10.4 Methodology Description 115

transformation step, we need to take two crucial steps. ©t®relate events
in the UML statemachine model to the data-flow of the ProCordehdr his is
done by mapping events observed in the specification tmajestto predicates
over the data variables used in the design model. We expact tiesigner will
easily be able to provide this mapping based on his insighdskaowledge
in the models. For the autonomous truck system, we can asaumegpping
given in Table 10.4.2 in section 10.4.2. A second importéep $n relating
two models of embedded systems regards the different tiadessthat may be
used. We take a rather straightforward approach and assumasadefined
in section 10.4.3, for characterizing the sampling periodésign models, in
comparison to the time base used in the specification model.

10.4.1 Specification simplification inference rules

In the following rules, we denote by, € S,: € N, the states of an arbitrary
specification model trajectory.

Skiptimerule. Thisrule states that a sequencéick transitions correspond-
ing to a location without an associated timeout can be ighore

tick tick tick
—

Si

By applying this rule to the original specification trajegtof the Autonomous
truck (omitted due to space limitations), we get the singuifirajectory shown
in Fig. 5.(a).

Time passing rule. The intuition behind this rule is that one can collapse a
sequence diick transitions corresponding to a timeout location in the Bpec
cation model, into a single transition that collects all tisks. Consequently,
the intermediate states generated by the individual tiek®ime hidden.

tick tick tick
Si Si+1 N Si+n (n tiCk)

n.tick

Si — > Si+n

To show the rule at work, we have used it to reduce the sequenizk tran-
sitions (s; to s5) displayed in Fig. 5.(a), to the corresponding sequencégn F
5.(b).

116 Paper C

Timeout start rule. Here, we introduce the virtual eveftt_start needed
to distinguish the transition leading to the correspondinggout annotated
location, from the one fired when the timeout countdown staktthough not
a simplification rule by itself, its usefulness is shown i tlulesskip and
n_TP, presented later.

event_label
8 ————> 8i41 m=wvalue m £eAm' £0

(tm_start)

event_label tm_start

S — 7 Si+l —7 Sit2

In the above ruleyalue € {0,¢}. In casevalue = 0, thatis,m = 0, it follows
thatevent_label = tm; on the other hand, ifalue = ¢, that is,m = ¢, then
event_label = a.

Timeoutrule. A sequence ofi-ticktransitions beginning at a location having
timeoutn that is then followed by a timeout transition can be reduced t
single transition denoted kiyn(n), as shown below:

n.tick tm
S — = Si+1 — Si42 (tm)
tm(n)

S — Si+2

After applying the timeout rule, the sequence of4htick transitions ; to s5)
followed by thetm transition 65 to sg), depicted in Fig. 5.(b), is reduced to
transition &, to sg), as in Fig. 5.(c).

10.4.2 Design simplification inference rules

As already mentioned, in order to be able to relate the spatidin and design
models formally, we require the detailed mapping of the mkand timeout
events of the specification model onto predicates over dates of the cor-
responding design model. In addition to the observableteysanch mapping
should also include the virtual timeout start event,start. We assume that
such a mapping is provided by the ProSave designer, as Hatghlements”
the specification model. For the current design model of tihereomous truck,
one such mapping is given in Table 10.4.2.

Below, we denote by; € 3,i € N, the states of an arbitrary design
model trajectory. In Fig. 10.6, we give an excerpt of a degigjectory of
the autonomous truck, and, on the right-hand side of thedigue explain the
used notation in terms of Definition 10.2.2 of Section 10.2.

10.4 Methodology Description 117

so<Follow, 1>
I

e o_|
N4
s1<Turn, 4>
I
tick
N\
s,<Turn, 3> so<Follow, >
I I
tick e o_|
N3 L NV .
Sa<Tum, 2>) 3 sl<Tur?, 4> so<Follow, 1>
ik [n_tick—-— 4. tick e b
N4 i NS ! — ~
s.<Tumn, 1> Lss<Tum 0> | si<Tumn, 4>
tick tm | m | tm(4)
N Vv i LV
ss<Turn, 0> _. se<Find, 1> _| | se<Find, L>
I
tr‘n Iine_f‘ound line_found
N N4 N
se<Find, 1> s,<Follow, 1> s,<Follow, 1>
|
line_found
N4
s7<Follow, 1>
(@) (b) ()

Figure 10.5: Examples of specification trajectories sifigations of the au-
tonomous truck.

Skip time rule. This rule states that a sequence of TP-transitions frorastat
that do not satisfy the predicate corresponding to the aliguentm start can

be ignored. Such transitions correspond to time passirigeideésign trajectory,
which are of no interest, that is, not related to observabiedut events.

TP
0; — 0it1 03 ¥ Predim_start

(Skip)
0;

We apply the skip time rule on a design trajectory of the aomoous truck
(see Fig. 10.7), and, as a result, we simplify the trajechyryeducing states
01,09,03, andoy, to states; only. The complete trajectory is given in the
Appendix.

Hide CSrule. By thisrule, a CS-transition, hence the target state, caays
be ignored.

o CSiy

i —i’ (hide.CS)
0;
Assuming a design trajectory of our case-study, the apicaf the above
rule on this trajectory is shown in Fig. 10.8.

118 Paper C

| Events | Predicates |
e 0. sl sr AN FBy,
line_found (slV sr) AN FBy;
tm(timeout event) FBy,
tm_start ttu

Table 10.1: Events and corresponding predicates of th@awtous truck mod-
els.

o <sc.in, Bo> : o E=sc.in i.e., sc.in holds in o, and Bois the initial valuation of B
CSsc

o <-,T35C=2> : o4 #sc.in and also no other predicates hold in x;

0 <, Bse=1> : ox=0h and YXEB . x= Bsc BoAXI=Bi[x] and BB]=1

05 <-, Bsc=0> : oz=0 and VxeB. x= Bsc B2[X]=B1[x] and B2[Bs]=0
CD.

[oA <scTin,sr.in, > ®4 Esc.in Asr.in and Bs= B3

CSsc
2

Figure 10.6: Interpretation of example design trajectanation w.r.t. Defini-
tion 10.2.2.

Hide CD rule. This rule stipulates that a CD-transition and the corredpon
ing source state can be ignored if the target state does tistysany event
occurrence predicate.

CD;
O; — Oi+1 Va € A-o0; ¥ Pred, (hlde_CD)

Oi+1
An example application of the above rule is given in Fig. 10.8
Time passing rule. A sequence of TP transitions starting in a state satisfying

the predicate corresponding tim start, and ending in a state where the cor-
responding timeout occurs, can be collected into a singlesttion, while the

10.4 Methodology Description 119

0o <sC.in, o> —CS—> gy <-, fse=4> — P> G2 <, Bse=3>—TP—

03 <, Bse=2> —TP—> 0, <-, Bse=1> —TP—> 05 <-, Bse=0> —CD.—>
Op <SC.in,sr.in, -> —CS¢—> -

J‘Lskip

0, <sc.in, o> —CS«> 01 <-, Bsc=4> —CDs> Og <SC.IN,Sr.iN, ->—CSec> -

Figure 10.7: Application ofkip ruleon a design trajectory of the autonomous
truck model.

intermediate states are ignored.

TP TP CD;
Oi = Oit1... — Oign — Tignt1 0i = Predum_start Oitnt1 = Predim

o ﬂ Oit+n+1
(n_TP)
We have applied the above rule on a design trajectory of ouo#amous
Truck, in Fig. 10.8. The rule works on the states, 046, 050, 053, 055 and

056

Precedence of inference rules. In order to get the correct simplified design
trajectory, we assume the following precedence rule whetyayy the above
inference rules over design trajectories (roige_CS binds the strongest):

hide_CS precedeshide_CD precedesn_TP precedesSkip

10.4.3 Rules for transforming the design model trajectorie

The following rules let one obtain design trajectories #iratcomparable to the
event-based specification model trajectories. The firstfaduses on relating
the time scales in both models; in order to achieve the gaahsgume a fixed
quanta of time (number of time units), callédwhich can be viewed as the
minimum amount of time guaranteed to be free of events. Tiésnsmallest
amount of time becomes the basic time-unit that all timetesl elements in
both trajectories can be expressed by.

TimeOut Rule. We assume that @P-transition “consumesd time units,
the time duration associated withtiak event is(m* §)(m € N), and an f
time units timeout in a specification trajectoty(n), equals K* tick). Then,

120 Paper C

Oa1 <-, Bse=1,Btu=0> —CDuv—> Osz<ac.in, Bsc=1>—CS—> Ouz <-, Bsc=1,Bac=1> —TP>

044 <, Bsc=0,Bac=0> —CD.—> Oys <-, Bsc=0> —CD.> Oys<SC.in,Sr.iN, -> —CSic>
a) 047<-, Bse=4> —CS.—> Oy5 <, Bsr=1> —TP—> 0Oy <, Bsc=3,Bs+=0> —CD.~>

Os0 <Ct.in, Bse=3> —CS:> Os1<-, Bsc=3,Bc=1> —TP—> 05 <-, Bsc=2,Bce=0> —CDc>

Os3 <tW.in, Bsc=2> —CSv—> Oss<-, Bsc=2,Bu=1> —TP—> Oss<-, Bsc=1,Bti=0> -CD.>

Osg <FBu, Bsc=1> TP>
% <FBu Buc H hide_CS

041<-, Bsc=1,Btu=0> —CD.> 0s2 <ac.in, Bsc=1>—TP—> Oag <-, Bsc=0,Bac=0>—CD.>
b O45<-, Bse=0> —CD.—> Oy <SC.iIN,Sr.iN,-> —TP—> 049 <-, Bsc=3,Bsr=0> —CD.~>
Oso <ct.in, Bse=3> —71p—> Osp <-, Bsc=2,Bee=0> —CD.> O <tu.in, Bsc=2> _1p—
055 <, Bsc=1,Bu=0> -CD> G55 <FBy, Bsc=1> -TP> -
H hide_CD

041 <-, Bsc=1,Bw=0> —Ch.> Osz<ac.in, Bse=1>—TP—> 0Oy <sc.in,sr.in, ->—TP—

C, .
) Oso <ct.in, Bse=3> —TP—> as3 <tu.in, Bsc=2> —TP— 055 <-, Bsc=1,Bru=0> ~CDw>
055 <FBy, Bsc=1> -TP> H n TP
d Oy <, Bsc=1,Bw=0> —CD.> gy <ac.in, Bsc=1> —4TP> Oge <FBy, Psc=1> -TP> -

Figure 10.8: (a) a partial design trajectory of the autonaestouck, and (b) to
(d) corresponding reduced trajectories after applicadibthe inference rules
of Section 10.4.2.

it follows that ann.m.TPtransition in the design trajectory is equivalent to the
‘n’ timeout eventfm(n).

n.m. TP

3 ok, 0kp1 . 0f ——— 0411 (TO)
tm(n)
3 sk, Sk41 - Sk — Sk41

EventOccur Rule. An event occurrence in a specification trajectory corre-
sponds to a CD-transition in the design trajectory, suchttteapredicate asso-
ciated to the event holds in the target state of the desiggctay.

CDj
3 0;y0i41 . Of — > 041 0341 ': Preda (EO)
a
3 Sk, Skt1 - Sk~ Skl

Next, we apply the above rules on a (simplified) design ttajgof our exam-
ple, in order to obtain a trajectory comparable to the cpoading specifica-

10.4 Methodology Description 121

tion trajectory.

0o <sc.in, fo> - r s<Follow, |>
CDy L———EO-———I |
v l e ol
030 <8, st, FByg, Bsc=1>—s v
| a r Ls,<Turn, 4>
4TP | | L
N Buc |-——-'(m(4)-———l m(4)
Os6 <FBy, Bsc=1> =) = .
| : L ss<F|er, 1>
Cﬁ l-——_EO.-__: Iine{gund
O, <sl, FBy, Bsc=1> | 1 se<Follow, 1>
@ (b)

Figure 10.9: Comparison of completely reduced trajecsovie(a) the design
model, and (b) the specification model, of the autonomouktru

10.4.4 Applying the methodology

Here, we show our methods at work, on the Autonomous Truakstasly, pre-
sented in Section 10.3. We do this by transforming a trajgatbthe design
model (Fig. 10.2), which we present in the Appendix, into ¢me is com-

parable to the corresponding specification model (Fig.)itBajectory. First,

the design trajectory is simplified by applying the inferenales introduced in
section 10.4.1. Similarly, a trajectory of the specificatinodel is then simpli-
fied to a minimal form by applying inference rules in 10.4.2tiBsimplified

trajectories are shown in Fig. 10.9. Next, we relate thegedtories by using
the inference rules of transformation (section 10.4.3jolsws:

e by EO rule, theC'D¢,-transition to staters, corresponds to the occur-
rence of event_o_l, since thegle_o_l) predicate, that isl" B, A sl A sr,
holds in the target staig;y. Further,csg corresponds to the completion
of the Follow mode of the truck behavior, @B, holds (by design).

o similarly, by EO rule, the”' D ¢;-transition to stateg, corresponds to the
occurrence of everiine_found, sincePredine_tound, that is,F B; A
sl, holds in the target states,. Further,ogs corresponds to the comple-
tion of theFind mode of the truck behavior, @B, holds (by design).

e by TO rule, the timeout eventn(4), between specification states
andsg corresponds to the T P-transition between design stateg and
osg that satisfyPredy,,_start, @nd Predy,,, respectively. Furthekrsg

122 Paper C

corresponds to the completion of thiarn mode, asF By, holds (by
design).

By applying the rules on the truck example, we have shown #idtast with
respect to this example, it is possible to transform and @ma simplified de-
sign model trajectory of the Autonomous Truck with a simptifspecification
model trajectory. The transformation correlates also iime tscales in both
models. In this particular case, we have reduced the desigiehtrajectory to
an event-based trajectory identical to the specificatian on
The above steps are necessary in proving the correctnesssigindwith

respect to specification, however they are not sufficientg8ioclosure, one
has to first consider all possible design behaviors for foangation, and then
possibly apply refinement techniques to prove that the detogs implement
the functional and timing requirements represented by pleeifcation model
(see Section 10.6).

10.5 Related Work

The problem of relating design to specification models igp&ctwith a growing
interest in the research community. For synthesizing exadbeiprograms from
timed models, a timed automata [7] based semantic framewehking on
non-instant observability of events is proposed [8]. Timggered automata
(TTA) - a sub class of timed automata (TA) - are used to moddkfistate
implementations of a controller that services the requatems specified by
a TA. This technique enables deciding whether a TTA coryaotplements a
TA specification. In comparison, although ProCom orientenl,methodology
can be applied within a generic component-based framewoikjs not being
tied to any particular formal verification framework either

Sifakis et al. propose a methodology for relating the abstas of both
real-time application software and corresponding impletaigon [9]. The re-
lated formal modeling framework integrates event-drivamg time triggered
paradigms by definingintiming functions. Problems of correctness, timing
analysis, and synthesis are considered in the methodologyontrast to our
approach, this one does not address the intermediate daggncommonly
used in system development.

In recent years, component and architecture based devetdpimave been
recognized as a viable way of building software systems.[PQ§sil and Vis-
novsky describe a formal framework basedbmihavior protocolsin order to

10.6 Conclusions and Future work 123

formally specify the interplay between components [11]isTdilows for for-
mal reasoning about the correctness of the specificatiomerafint and about
the correctness of an implementation, in terms of the spatidin. Further,
the framework is validated in the SOFA component model emvirent [12].
While the approach provides much needed formal correcinessmponent-
based development, it does not address timing issues atidaldayers of
abstractions in real-time system development.

UML has emerged as an industrial standard notation in syde@lopment
and provides various sub-languages namely statemacketgsence diagrams,
etc [1]. For specification and design of real-time systemsulalanguage
called UML/MARTE has been proposed [13]. In [14], the expiesness of
MARTE for event-triggered, and time-triggered commurimats described.
MARTE-based approaches facilitate various analyticalhmés for analysis,
e.g., schedulability, system performance analysis; hewévalls short in pro-
viding formal support for comparing models at differenttadstion levels.

Egyed, A. et al. [15] develop a methodology to mainly bridge infor-
mation gap created by heterogeneous models across thasofifg-cycle by
transforming architecture description into (high-lewgML designs. The lat-
ter are then further refined into lower level designs. In casitto our approach,
their work does not provide details on the behavioral tramsétions. Indeed,
a formal approach for establishing the semantic links betwdifferent termi-
nologies and concepts across an architectural and a nurhdesign models
is not sufficiently addressed during the transformation.

10.6 Conclusions and Future work

In this paper, we have presented a formal approach for mglatistem models
used in different design stages of embedded systems. Feathespecifica-
tion phases, we chose the UML statemachine language in wigtbm behav-
iors are described in terms of abstract states, event teggetate changes, and
timeouts relating to the external system and timing beha¥or the later de-
sign stages, we use the ProCom component design model ih gystems are
specified using data-flow connectors and time-triggeredpmorant behaviors
closer to the timing granularity and behavior exhibited lom target platform.
As a main result, we have described a formal way of comparétgbioral
models of a system modeled in the two different language® Stiution is
based on a set of inference rules that can be applied to dhaditzansform
trajectories of a ProCom design model into a trajectory oMl$pecification

124 Paper C

model. This enables a designer to make sure that a compbasattand time-
triggered ProCom design model implements the behavior obeerabstract
and event-triggered UML specification of the same system.

Our initial experiences from applying the proposed techeitp a truck
control system, indicates that the design model trajezsaran often be man-
ually transformed into trajectories of the specificationdelo However, as this
is not the case in general, we plan as future work to apply Isition relation
checking to the specification trajectories, to prove (opdige) conformance
between non-identical trajectories. We will apply proasiagnt tools to sup-
port these techniques.

0y <sc.in, Bo>
|
CSse
¥
01 <, Bs=4>
|
4TP
%
Os <-, Bse=0>
i
Chsc
v
Ts <sc.in,sr.in, ->
|
CSs., CSs:
v
Ts <-, Bsc=4,Bsr=1>
|
™
v
09 <-, Bsc=3,Bsr=0>
|
CDs,
e
010 <ct.in, Bsc=3>
cs.
v
013 <, Bse=3,Bcr=1>
P
v
015 < Bse=2,Ba=0>
|
CDc
v
0,5 <fo.in, Bsc=2>
cs,
™
014 <+ Bsc=2,Bro=1>
o
M
O35 <~ Bse=1,Bro=0>
|
CDy
\V.
0,6 <ac.in, Bsc=1>
|
CSac
&
017 <-, Bse=1,Bac=1>
|
TP
v
015 <-, Bsc=0,Bac=0>
|
CD4CDac
S
O, <sc.in,sr.in, >
|
CS;, CSe,
S
Oz < ﬁsc=4,ﬁsr=1 >
1)
v
023 <, Bsc=3,Bsr=0>
|

CDx
v
024 <Ct.in, Bsc=3>
|
CSqt
&
025 <-, ﬁsc=3,ﬁcx= 1>
™
v

Appendix

026 <-, Bsc=2,Bc=0>
|
CD:
v
0,7 <fo.in, Bsc=2>
;
cs,
Y
O <, Bsc=2,Bro=1>
|
™
N
O <-, Bsc=1,Bro=0>
|
ChDo
%
O30 <sl, st, FBy, Bsc=1>
]
™
v
031 <-, Bsc=0>
|
CDsc
v
032 <sc.in,sr.in, ->
]
CS;,CSer
¥
O34 <-, Bsc=4,Bsr=1>
TP
W
O35 <, Bsc=3,Bs=0>
cb.,
v
036 <Ct.in, Bsc=3>
I
CSet
&
037 <-, Bsc=3,Bc=1>
TP
N
O35 <-, Bsc=2,Bct=0>
cb,
v
O39 <tu,in, Bsc=2>
CSy
<
O <, ﬁsc=2,&u=] >
™
v
041 <-, psc=] Bru=0>
CDy
&
042 <ac.in, ttu, Bsc=1>
|
CSac
v
Ou3 <-, Bsc=] ,Bac=1 >
TP
W
O44 <, Bsc=0,ﬁzc=0>
CD,.CD,,
V. .
Os6 <SC.in,sr.in, ->
|
CSs, CSy
<
Oug <-, Bsc=4,Bs=1>
|
™
N4

Osg <-, Bsc=3,Bs=0>

CDs,
v
Os0 <ct.in, Bsc=3>
CSa
<
Os1 <-, Bsc=3,Ba=1>
P
W
Os2 <-, Bsc=2,Bct=0>
i
CD:
e
Os3 <tu.in, Bsc=2>
cs,
v
054 <-, Bsc=2,Bu=1>
™
W
Os5 <-, ‘Bsc:] Bu=0>
CDy
v
056 <FBu, Bsc=1>
P
v
O57 <-, ﬁsc:0>
CDsc
v

Osg <s§.in,sr.in, >
CSs:,CSyr
S
Og0 <~ Bsc=4,Bsr=1>
\

™
v
061 <-, Bsc=3,Bs=0>
|
CD,,
&7
O, <ct.in, Bsc=3>
I
CSu
T

063 <, Bsc=3,Bcr=1>
|

™
v
Ogq <, Bsc=2,Bcr=0>
|
CDc
%
Ogs <fi.in, Bsc=2>
!
CS;
v
066 <~ Bsc=2,Bri=1>
)
™
W
Op7 <-, Bse=1,Bri=0>
|
CDs
&
Oes <ac.in, Bsc=1>
|
CSac
7
O69 <-, Bsc=1,Bac=1>
|
™
v

070 <-, Bsc=0, Bac=0>
DL CD..
%

0y, <sc.in,sr.in, ->

|
CS;.,CSsr
o
074 <-, Bsc=4,Bsr=1>
TP
v
075 <-, Bsc=3,Bsr=0>
\
CDx,
V.
076 <ct.in, Bsc=3>
|
CSe
T
077 <, Bsc=3,Ba=1>
|
™
g
Ors <',‘Bsc: 2,Ba=0>
CDc
v
079 <filin, Bsc=2>
|
cSss
&
Ogo <-, ‘BchZ,Bfi=1>
™
v
081 <-, Bsc=1,Bri=0>
ch
v
02 <s|,FBy;, Bsc=1>
|
™
N
Og3 <-, Bsc=0>
|
CDsc
v
Og4 <SC.iNST.in, >
08,008
&
Ogs <-, Bsc=4,Bsr=1>
\
™
N\
Ogg <-, Bsc=3, Bs=0>
cb.,
v,
Ogo <cL.in, Bsc=3>
|
CSe
>
Ogo <'y‘asc=3,Bct=] >
™
v
Og; <-, Bsc=2,Bct=0>
|
CDc
v

Oy, <fo.in, Bsc=2>
S
&
Oo3 <-, Bsc=2,Bro=1>
|
T
N4

Figure 10.10: An execution trajectory of the design modehefautonomous

truck.

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

James Rumbaugh, Ivar Jacobson, and Grady Bod#ttified Modeling
Language Reference Manual, The (2nd EditidP¢arson Higher Educa-
tion, 2004.

Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlsastjita Seceleanu,
and Paul Pettersson. Formal semantics of the procom realéompo-
nent model. IrB5th Euromicro Conference on Software Engineering and
Advanced Applications (SEAAugust 2009.

Sverine Sentilles, Anders Pettersson, Dag Nystronoriidas Nolte, Paul
Pettersson, and Ivica Crnkovic. Save-IDE - a tool for desagyalysis and
implementation of component-based embedded systenioteedings
of the Research Demo Track of the 31st International Confey®n Soft-
ware Engineering (ICSEMay 2009.

Mikael Akerholm, Jan Carlson, Johan Fredriksson, Hans Hansshn, Jo
Hakansson, Anders Moller, Paul Pettersson, and Massinadi.T The
SAVE approach to component-based development of vehisykiems.
Journal of Systems and Softwa88(5):655-667, May 2007.

Tomas Bures, Jan Carlson, lvica Crnkovic, Sverine $entiand Aneta
Vulgarakis. ProCom - the progress component model refereman-
ual, version 1.0. Technical Report ISSN 1404-3041 ISRN MMRTC-
230/2008-1-SE, Malardalen University, June 2008.

Davor Slutej, John Hakansson, Jagadish Suryadevaisdir@ Seceleanu,
and Paul Pettersson. Analyzing a pattern-based model oalgimee
turntable system. In Barbora Zimmerova Jens Happe, editorinter-
national Workshop on Formal Engineering approaches tovof Com-
ponents and Architectures(FESCA), ETAPS'09, York, UK cigrages

127

161-178. Electronic Notes in Theoretical Computer Scigid¢TCS),
Vol 253, Elsevier, September 2009.

[7] Rajeev Alur and David L. Dill. A theory of timed automat@heoretical
Computer Sciencd 26(2):183-235, 1994.

[8] Pavel Krcal, Leonid Mokrushin, P.S. Thiagarajan, aidng Yi. Timed
vs time triggered automata. In Philippa Gardner and Nobudshida, ed-
itors, Proc. of CONCUR’04.number 3170 in Lecture Notes in Computer
Science, pages 340-354. Springer—\Verlag, 2004.

[9] Joseph Sifakis, Stavros Tripakis, and Sergio Yovine.ilddag models
of real-time systems from application software.lfrProceedings of the
IEEE Special issue on modeling and design of embequeges 100-111.
IEEE, 2003.

[10] Ivica Crnkovic and Magnus LarssonBuilding Reliable Component-
Based Software Systenfrtech House publisher, 2002.

[11] Frantisek Plasil and Stanislav Visnovsky. Behaviartpcols for software
componentslEEE Trans. Softw. Eng28(11):1056—-1076, 2002.

[12] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. 3dfaBalancing
advanced features in a hierarchical component mod&ERA '06: Pro-
ceedings of the Fourth International Conference on Sofviargineering
Research, Management and Applicatigmesges 40—48, Washington, DC,
USA, 2006. IEEE Computer Society.

[13] Object Management Group. A UML Profile for MARTE, BetaAlygust
2007. Document number: ptc/07-08-04.

[14] Frédéric Mallet, Robert de Simone, and Laurent RioExent-triggered
vs. time-triggered communications with UML Marte.FDL, pages 154—
159, 2008.

[15] Nenad Medvidovic, Paul Griinbacher, Alexander Egyatj Barry W.
Boehm. Bridging models across the software lifecycle Syst. Softy.
68(3):199-215, 2003.

Chapter 11

Paper D:

Pattern-driven Support for
Designing Component-based
Architectural Models

Jagadish Suryadevara, Cristina Seceleanu, Paul Pettersso

In proceedings of the IBIEEE International Conference on Engineering of
Computer-Based Systems (ECBS), April 2011.

129

Abstract

The development of embedded systems often requires the uagaus mod-
els such as requirements specification, architectural goorent-based), and
deployment models, across different phases. However tiasts little de-
sign support for obtaining suitable component-based desliat satisfy spec-
ified requirements and timing constraints. In order to ptewjuided support
for the design process of embedded systems, we introdueesseamponent
templates, referred as patterns, which we also formallifyvagainst relevant
properties. To illustrate the usefulness of the approaehhawe applied the
proposed patterns to obtain a component-based design ofpetature con-
trol system.

11.1 Introduction 131

11.1 Introduction

To achieve behavioral predictability of an embedded systera might need to
use, during system development phases, extensive moaelthgnalysis, prior
to the actual system implementation. In general, thesegshady on various

models, such as, requirements specification, design, guidyheent models,

before the implementation stage. As different models asedh@n different

semantics, and focus on different aspects of the systenigladjdesign process
from one phase to another is needed. Further, the desigaggshould ensure
that the system aspects, such as, functional requirentémiag constraints

etc, are met by all system models, from any design phase teulhsequent
ones.

Designing an embedded system it@nponent-basestyle has become
an attractive approach. With benefits ranging from simgitfan and parallel
working to pluggable maintenance and reuse, the advanéagaggnificant. In
this context, an embedded system consists of identifiablatively indepen-
dent and generally replaceable units of composition, daltlenponentsvhich
encapsulate complex functionality. domponent modedefines syntax and
semantics of a component language through its architddewa elements,
such as, components, ports, connections, and connectouidesystem parts
and their compositions. There exist several component ma&ileh as Jav-
aBeans [1], Koala [2], SOFA [3, 4], and ProCom [5, 6], to nanfieva

In this paper, we present a pattern-based design procesvétog com-
ponent based designs of an embedded system that presepgettified func-
tional requirements and related timing constraints. We@gpse a set of compo-
nent templates, called component patterns in this papéransform a spec-
ification model together with functional and timing congita, into a cor-
responding component design. The proposed patterns acelsbsin Pro-
Com [5, 6], a language for component-based design of emblesligtems.
Further, the patterns are formally verified to satisfy rateviming properties.
This is done by translating the pattern specifications inC@ro, into corre-
sponding timed automata models, and model-check the ieguttodels using
UPPAAL [7].

To specify the functional requirements, and related timingstraints of
a system, we use an extended form of UML statemachines [&}heg with
UML/Marte timing profile [9], as the specification modelsg@lreferred as
modemachinem this paper). The timing constraints are specified usirg th
standard constructs of Marte CCSL (Clock Constraints $igation Language).

Finally, to illustrate the applicability of our approacheapply the patterns

132 Paper D

in the development of a ProCom based component design fompdmture
Control System (TCS).

The rest of the paper is organized as follows. In Section,deZresent an
overview of the ProCom component language. As a running pigmwe de-
scribe a Temperature Control System (TCS), in Section 1f.Section 11.4,
we present the specification language for modeling the fomality, and tim-
ing constraints of an embedded system. In Section 11.5, wpoge a set
of component patterns for modeling “timers”, “clocks”, ‘faoollers”, as well
as the periodic and sequential behaviors. Also, the forradfieation of the
patterns with respect to relevant properties is describeSeiction 11.6. In
Section 11.7, a complete ProCom design of TCS is presentddtd® work is
discussed in Section 11.8. Finally, in Section 11.9, we katecthe paper with
future directions of work.

11.2 ProCom Component Model: An overview

In this section, we present an overview of ProCd#) 6], a recently developed
component model for designingal-timeembedded systems in the vehicular
and telecom domains. To address the different concerngxisiton different
levels of granularity or various phases of system develapnroCom is or-
ganized into two distinct layers: ProSys and ProSave. Tyer$aalso differ in
terms of architectural style and communication paradignRroSys, a system
is modeled as a collection of communicatsgosystemthat execute concur-
rently, and communicate by asynchronous messages sereg@ided at typed
output and inpumessage ports

On the other hand, the lower layer, i.e., ProSave consigiasgive units,
and is based on a pipes-and-filters architectural style avitlexplicit separa-
tion between data and control flow. The former is captureddig portswhere
data of a given type can be written or read, and the latterigger portsthat
control the activation of components. Data ports alwaysapm a group to-
gether with a single trigger port, and the ports in the samegare read and
written together in a single atomic action. In addition tmgie connections
from output- to input ports, ProSave contagmnectorghat provide detailed
control over the data- and control flow, including forkinginjing and dynami-
cally changing connection patterns. For detailed desoriif these elements,
we refer to ProCom language reference manual [5].

1Developed at MRTC, Malardalen University, Sweden.

11.2 ProCom Component Model: An overview 133

Component B

Subsystem A

(a) (b)

Figure 11.1: a) A ProSys subsystem and b) A ProSave component

Fig. 11.1 (a) shows the graphical representation of a Pre8@system
with one input port and two output ports, and (b) shows a snfiloSave
component with one input port group and two output port geoufriangles
and boxes denote trigger- and data ports, respectively.

ProCom arcitectural elements have a precise formal secsgdid]. The
semantics is described in terms of finite state machinesidgtewith notions
of urgency, timing, and priorities. Below, we informallysigibe the semantics
of ProSave elements used in this paper. For through deisgissfer the reader
to [11].

e Components: internally, a ProSave component may be described by
code or other inter-connected sub-components. The furadtty of a
component is captured by a set of services.

e Services: the services of a component are triggered individually and
can execute concurrently, while sharing only data. A seremnsists of
one input port group and zero or more output port groups, act port
group consists of one trigger port and a number of data paéften trig-
gered, the input ports are read in one atomic step, and tleesettvice
switches to an executing state, where it performs interoadputations
and writes (atomically) at its output port groups. Before #ervice re-
turns to idle, each of the associated output port groups st been
activated exactly once. This restriction serves for tigrad-execute-
write behavior of a service.

e Connections: the migration of data or trigger over a ProSave connec-
tion is loss-less, atomic, and follows a push model. Howehertrigger
signals are not allowed to arrive to any port before all dateeharrived

134 Paper D

to all end destinations. This should hold also in case whea piasses
through a connector. In case more data (trigger) connectiomenabled
at the same time, the order is non-deterministic.

e Connectors: together with connections, connectors can be used to de-
fine complex data and control flow for a ProSave compositiocaSBRve
defines different kinds of connectors sucldaga fork, control fork, data
or, control or, control joinandselection A connector is a stateless com-
ponent and executes atomically.

e Clocks: itis a special type of construct that has one output trigget,
which is activated periodically at a given rate. Clocks astallowed to
drift, but it is not assumed that all clocks are initially sjanonized.

Both layers of the ProCom are hierarchical, meaning thasystbms as
well as components can be nested. The way in which the twodaye linked
together is that a primitive ProSys subsystem (i.e., oneishreot composed of
other subsystems) can be further decomposed into ProSeymooents. Thus,
a mapping has been defined between the message passing yis Rrabthe
trigger/data communication used in ProSave. At the bottbthehierarchy,
the behavior of a primitive ProSave component is implengtasea C function.

11.3 Example: Temperature Control System (TCS)

As the running example of the paper, we consider a Temper&tontrol Sys-
tem (TCS), for a heat producing reactor [12]. It has a calbeocdf control rods
that can be inserted into the core of the reactor, to corttmhieat producing
(chain) reaction. If inserted, a control rod absorbs newgti@nd consequently
the reaction is slowed down, with the temperature insidective decreasing
at a fixed rate, depending on the rod inserted. When pulledtioitreaction
speeds up, and temperature increases in the core. The matiohality of the
TCS is to maintain the temperature in the reactor betweesgkeifiedM N
and MAX values. However, when a rod has been used for cooling for d fixe
duration, say “T” time units, it is then unavailable for ateém time duration,
proportionalto T.

In the next section, we propose a language for specificafiinational,
and timing properties of an embedded system. We use thedgegdo specify
the functionality, and timing constraints of the TCS system

11.4 Our Specification Language: Modemachine + Marte CCSL 13

11.4 Our Specification Language: Modemachine
+ Marte CCSL

A specification is a way of explicitly stating system requients and behav-
ior. In this section, we propose a language for the abstmatiBcation of
system functionality, and related timing constraints ofeambedded system.
We use an extended form of statemachines that weMatlemachinegsee
Fig. 11.2). A modemachine adds to the original statemacthieeystem be-
havior, defined externally, which could be in turn a finitedestaachine, a timed
automaton etc. Also, in a modemachine, one can specify doadktraints,
by using UML/Marte CCSL (Clock Constraint Specification bamage) [9].
Graphically, a Modemachine is similar to UML statemachif8s

11.4.1 Modemachine Definition and Graphical Notation

A modemaching a tuple(M, B, T,C, A, s), whereM is a set oimodess is
theentrymode,B is a set of externally defindaehaviors A is a set ofevents
T C M x A x Mis the set of transitions betweemodesand(is a set of
clock constraints

If a mode contains other modes, it is callecbenpositenode. A mode with
no internal modes is called atomicmode. The elements of a modemachine
are further described below, informally.

11.4.2 Modes, and Behaviors

A mode consists of a set tehaviors where abehaviordenotes the specific
functionality of the system. A mode instance is the set dfradiehaviors at a
particular instance of time. Behaviors can be externalbc#jed, for example

using external modeling tools such as Matlab/Simulink, URthapsody, etc,

or denote the reusable code of system functionalities. id/ahmode or sub-

mode, behaviors execute concurrently, sequentially, dogieally, based on

the associated mode constraints. Mode changes occur whamesmonding

event or timeout occurs, or implicitly when all behaviorstlie mode termi-

nate. Further, an enabled mode change due to a timeout,dtees iprecedence
over other simultaneously enabled mode changes, if any.

136 Paper D

«composite-mode» TempControl

N\ // «atomic_modes» \\
/ \

/ «atomic_mode» \‘ / \
{ [. ‘
| / > electAnd /
\ MeasureTemp / \ /
\. P/ \.

InsertRod ./
- <<mode_constraint>> -
MeasureTemp.start = ldealClock discretizedBy 0.01 /

MeasureTemp.start alternatesWith SelectAndInsertRod.start

Rod_inserted Rod_deletad

v

«composite-mode» Cooling

j : N -)
J/«atom|c—mode» \ /' «atomic-mode»
| | ;' |
\ Delay | |
\ {ouration] 150sec /’

sigTimeQut \' DeleteRod /
N e

Figure 11.2: Modemachine specification of a temperaturérobsystem.

11.4.3 Events, Triggers, and Timeouts

The execution of a behavior is triggered by the occurrenemadxternal event
or time event. For an embedded system, the extewaltsare generated by its
environmentonsisting of sensors and actuatorstrijger denotes a periodic
time event, and it is usually generated by “system clockgj.(ddealClock

in UML/Marte, for measurement of discrete chronometricgjmTriggers can
be used to specify periodic behaviors within a modetirdeoutdenotes the
expiry of the specified amount of (discrete) time duratioiméouts are use-
ful to model delays associated with an embedded system. @éotitncan be
associated with atomic modes, making them delay in padicsthtes of the
system model. The expiry of a timeout is denoted by the irtgrsignaled

si gTi meQut event.

11.4.4 Mode constraints using UML/Marte CCSL

The recently adopted UML Profile for Modeling and AnalysisR#al-Time
and Embedded systems (MARTE)[9] provides necessary aadaed features
for modeling software of the real-time and embedded dontainther, it aims
at bringing interoperability between existing languaged formalisms of the
real-time embedded domain. MARTE defines an expresBive-Modelfor

11.4 Our Specification Language: Modemachine + Marte CCSL 18

a generic timed interpretation of UML models. CCSL is a laaggiannexed
to MARTE specification. It is a declarative language thatc#es constraints
imposed on the clocks, i.e., both physical and logical, tiagdhe activation
conditions of a model. Some of the constraints used in thempage briefly
discussed below:

e discretizedBy: specifies a discrete clock from a dense chronometric
clock (e.g.,IdealClockdefined in Marte Time package). Expression
(11.1) below defines a clock, whose period is OQIwheres is the
time unit of the IdealClock.

IdealClock discretizedBy 0.01 (11.2)

e isPeriodicOn: specifies a discrete clock from another discrete clock
of finer granularity (or faster clock). Expression (11.2)dvedefines a
discrete clock that ticks 10 times slower than C (a tick of @nhes with
every 10th tick of C):

C’ isPeriodicOn C period 10 (11.2)

e alternatesWith: implies causality between two clocks. Expression
(11.3) states that each instance of clock C precedes andsthescor-
responding instance of clock C'.

C alternatesWth C’ (11.3)

e NFP _duration: supports the description of duration values with respect
to an ideal chronometric clock. NFP_Durationvalue is defined, in the
non-functional types model library in Marte (i.e., MARTBasicNFRTypes),
as a tuple containing a real value and a time unit.

Marte constraintsin (11.1) and (11.2) are related to thlsgmchronous con-
straintcoi nci desW't h (also denoted by “=") which can also be used in
specifying a mode constraint. The Marte constraint er nat esW t h (see
(11.3) above), is useful to specify constraints over logitacks (e.g., non-
periodic event occurrences, beginning and terminatiorebglior paths, etc),
for instance, to specify causality dependencies betwebaviaral paths. An-
other useful Marte constraint for component modelslétayedFor(e.g., “a
del ayedFor non b”, i.e., everyn'” tick of b following a tick of a). To-
gether withprecedegelation), it can be used to specify complex timing

138 Paper D

constraints of particular behaviors, like timing relagbips between the start
and the end of a behavior (e.g., Biish=< (Bl.startdel ayedFor 3 on C)).

11.4.5 Example Specification: TCS Modemachine

A modemachinspecification of TCS is given in Fig. 11.2. At the top level,
it contains two composite mod@smpControl, andCooling. Transitions be-
tween the modes are enabled with occurrence of eWatkinserted, and
Rod_deleted.

The composite mod@&mpControl contains two atomic submod&tea-
sureTemp, andSelectAndinsertRod. Further, the submoddeasureTemp
contains a periodic behavior as specified by the associatatieMonstraint
di screti zedBy. Also, the sequential dependency i.e., causality between
behaviors ofMeasureTemp, and SelectAndinsertRod is specified by the
Marte constrainal t er nat esW t h. SelectAndinsertRod contains the de-
tailed behavior based on the data inputs received, for &g selection and
insertion is skipped when the current temperature valuaneonicated by the
MeasureTemp component, is within the specified intervdl N and MAX, as
described in Section 11.3.

The duration of the delay is specified using the Marte MfePation prop-
erty. For instance, the composite mddeoling contains alelaymodeDelay
characterized by a duration of 150 sec. When the timeoutexpit triggers
the atomic mod®eleteRod.

Now let us assume a repository of ProCom components, whichlgtbe
used for the architectural design of the TCS. Therefore, vldnansform the
above modemachine into a component-based design. To atisbritps, we
need to tackle the following design issues/challenges:

e How to transform a composite mode with periodic, and seqalelne-
haviors, into a component-compliant description?

e How to transform the control structure of a modemachineexgnt, and
signal based transitions?

e How to represent timeout in a component based-design?

e How to integrate different design aspects into a complettesy design?

In order to address the above design issues, we introducedd sem-
ponent patterns that guides a designer in transforming amadhine-based

11.5 Component Patterns 139

specification, e.g, the specification model of the tempegatontrol system
(TCS) in Fig. 11.2, into a corresponding ProCom based archital design.
The patterns are described in the next section.

11.5 Component Patterns

The component patterns, proposed in this section, prowidigls mechanisms
for modeling the time, and event based executions of sybtmaviorsghrough
reusable, easy to understand component designs. Thensadterdescribed in
ProCom component language (see Section 11.2). To illestrat approach,
we apply the proposed pattern-based support, in trangfigrthie elements of
themodemachinspecification of the TCS system (see Fig. 11.2), into a corre-
sponding design aspects in ProSave.

For ProCom-based pattern descriptions, we assume thabthpanents
are triggered, where necessary, by a clock, aynClock of fixed periodic-
ity, say “P". In turn, theMainClockitself can be defined by the clock pattern
(described below) using thdealClockfrom the Marte time library. Thi#ain-
Clockis denoted by the conventional clock-icon symbol in thegrattlescrip-
tions below. Further, we specify additional constraintstanresulting designs
(referred as “pattern constraints”), if any, by the pateacription (in a dotted
text box, e.g., Fig. 11.3).

The set of patterns proposed below, address the desigrsigdemtified
earlier, in the previous section: the “Timer Pattern” clotgezes a time out in
a component based design; the “Discrete Clock Pattern’easdds the clock
synchronization problem between clocks of different gtarity; the “Peri-
odic Behavior Pattern” represents the design of perioljieadecuted compo-
nents; finally the “Controller Pattern” addresses eveggared executions in
a component-based design, and the development of a corspétéan design.

11.5.1 Timer Pattern

Timers, and timeouts constitute important aspects of areeithd system be-
havior. The pattern models a timeout (or delay) behavior system or its
parts. It is triggered by a discrete, chronometric clock,atgel deal G ock

in UML/Marte time package. When triggered, time is intetpateasured (us-
ing a state variable) until the specified duration/delaysuiare expired. The
output, i.e., the timeowti gTi meQut , is indicated as both data and control.
This facilitates using the timeout as either sampled dataawtive trigger (de-

140 Paper D

<<ProSave-TimerPattern>>

<<ProSave>>Timer
{value:=m}

>
service set

service tick

Figure 11.3: The timer pattern in ProSave.

sign choice based on the specified timing constraints). hEurthe pattern
specifies the timer mechanisset to assign the timer value (the value itself
can be assigned statically or dynamically).

A ProSave description of the pattern is given in Fig. 11.3e Tbmponent
Timer contains two serviceset, andtick. The serviceset, when triggered,
sets the timer value (based on the statically assignedidorailue through
corresponding data port). The servigek, the periodic behavior triggered by
theMainClock decrements the timer value, if set, during each executiolec
and generates a timeout (denotedsliyg Ti neQut) when the value becomes
zero. The connectoiSelect, DataFork are required to differentiate the final
timeout output from trigger outputs corresponding to imdiial executions of
Timer component (due to the semantics of a ProSave component).

The timer pattern corresponds to the Marte clock constiaifitl.4) below,
wheren is a natural number, argis the time unit. However, the timer pattern
suffers from gjitter of one period of the triggering clock i.e., tiainClock
(as verified in Section 11.6). This implies the need for ciraps suitable
granularity for theMainClock Further, this should be taken into consideration
while evaluating other timing aspects of the design, suchrad-to-end latency.

NFP _duration =n S (11.4)

Application of the timer pattern to TCS: The pattern can be applied to
transform adelay mode (i.e. an atomic mode with NEdRiration value) of
a modemachine into a corresponding design in ProSave. bonge, in TCS
specification, the internal modgelay (within the composite mod€ooling,
see Fig. 11.2), is translated into a ProSave design, as sindvig. 11.4. Fur-
ther, if the delay mode is not connected by a transition to @thgr internal

11.5 Component Patterns 141

<<ProSave>>
]
DeleteRod %7

Figure 11.4: Transformation of the composite mdtimoling of TCS into a
ProSave Design, by applying the timer pattern.

> <<ProSave>>
u Timer
Set

© E Tick

mode, its timeout i.esi gTi meQut is communicated to the controller (de-
scribed below, by theontroller patterr) of a containing composite mode. For
TCS, thetime-outfrom Delay mode triggers the modeeleteRod.

11.5.2 Discrete Clock Pattern

Clocks are central to embedded system behavior. The patigdels a coarse-
grained discrete clock (i.e., a slower clock) triggered Hinar-grained clock
(e.g., theMainClocK. Also, the pattern facilitates the synchronization ofivar
ous clocks within a component-based design.

The pattern is similar to the timer pattern described abbuédoes not
require aset operation (as the state variable is simply incrementednvitig-
gered). Further, unlike the timer pattern, the output ofszdite clock pattern
is always a trigger rather than data as this is justified byfalee that clock
ticks represent causality, between the clock and the triggeregbooent, in a
component-based design.

A ProSave description of the pattern is given in Fig. 11.5e Fhrvice
tick, when triggered by the finer-grained clock, eldainClock increments
the value of the state variable, moduhqsee the associated pattern constraint).
The connectoBelect is needed to output the trigger only when the specified
period expires, indicated by the associated boolean ddpubport. Hence,
the final output trigger corresponds taiek for everym ticks of the triggering
clock.

The discrete clock pattern corresponds to the followingt®atock con-
straints as shown in (11.5), (11.6) below. Except for thiahtick, the discrete
clock pattern does not suffer from ajiger (as verified in Section 11.6). This
is consistent with the ProSave clock semantics.

MainClock di scretizedBy n (11.5)

142 Paper D

<<ProSave-DiscreteClock Pattern>>

<<ProSave>>
Clock
>
Iﬁ {value:=m} -'>
service tick

Figure 11.5: The discrete clock pattern in ProSave.

i sPeriodi cOn MainClock Period P (11.6)

Application of the discrete clock pattern to TCS The pattern can support
the design of periodic behaviors in a component-based nleslgo described
by the following patterns below. Additionally, it can be ds® synchronize
different clocks in a design. This not only simplifies theigasincreasing its
readability, and understandability, but avoids cloclejitt and corresponding
unpredictable delays, if any, which can be caused by difteckocks. In the
case of TCS component-based design, as shown in Fig. 1helldinClock
triggers both the&ontroller component, and th€&imer component. Addition-
ally, it could also trigger th€lock component, which instead is triggered by
theController, for further simplification of the design.

11.5.3 Periodic Behavior Pattern

An embedded system is commonly described as a collectioeraigicbehav-
iors. The pattern describes twaehaviors sayB1, andB2, where the periodic
behaviorB1 triggers the execution d82. This causality makes the behavior
B2 sequential, and also periodic. However, it is generallyantgmt for behav-
ior B2 to act on the output generated frdt, which entails the constraint that
“B2 must beat idle state wheB1 completes the execution”.

In Fig. 11.6, we give the ProSave description of this pattdime compo-
nentB1 (containing thébehaviorB1) is triggered by a clock of corresponding
periodicity (can be designed using the discrete clock pattescribed above).
Further, the output oB1 triggers the component containing thehaviorB2.
However, the design must ensure that the specified patterstraint is pre-
served. That isB2 must badle, whenB1 completes its execution. The formal

11.5 Component Patterns 143

<<PeriodicBehavior Pattern>>

- D <<component> > ’ <<component>>
0 Bl E E B2

i B1. output.trig => {not) B2.input.trig i

Figure 11.6: The periodic behavior pattern in ProSave.

verification of the pattern (see Section 11.6), verifies thelitions for the con-
straint to hold, in terms of the period 8f1, and also the end-to-end response
time of B1, andB2.

The pattern corresponds to the following Marte clock caistrin (11.7)
below.

Bl.finish al t ernat esWt h B2.start (11.7)

Application of the periodic behavior pattern to TCS: The pattern can be
used in transforming a mode with periodic behaviors inteegponding component-
based design. In the TCS modemachine (Fig. 11.2), the cdraposde
TempControl contains atomic submodes with periodic, and sequentia\beh
iors MeasureTemp, SelectAndinsertRod, respectively. Thus, the composite
modeTempControl can be translated into a ProSave design as shown in Fig.
11.7. The Clock componentis designed by the applicatioheféitscrete clock
pattern, and based on the periodicitMéasureTemp mode behavior (repre-
sented byfempControl component), as specified by the corresponding timing
constraint (see Fig. 11.2). When triggered by @leck component periodi-
cally, theTempControl executes by reading the temperature data and provides
output, temperature deviation within the allowed intervahis value is read

by SelectAndIinsertRod component to determine if a control rod is required
to be inserted or not.

11.5.4 Controller Pattern

The behavior of an embedded system consists mainly of ewaime-triggered
behaviors We have already covered the time-triggered behaviors &y #t-
terns described above. Here, we introduce the controlligenma to describe
the event triggered execution of systérahaviors This corresponds to the
reactive part of the system behavior.

144 Paper D

<<ProSave/ >

<<ProSave>>

<<ProSave>> Temperatur
Clock(n) eControl SelectAndin
] sertRod

Tick

Figure 11.7: Transformation of composite moampControl of TCS into a
ProSave design, by applying the periodic behavior pattern.

In principle, a component-based design is based on tirggdred, and
control-, data-flow semantics. Hence, the pattern transavent-based exe-
cution of modebehaviordnto the executions based on sampling of the environ-
ment data corresponding to sensors, and actuators. Witomaonent-based
design, events can be represented by pre-defined predmatethe environ-
ment data [13]. When triggered by a system clock (e.g. MaeClockdis-
cussed previously), the data is sampled to determine th&@etce of events,
through the evaluation of corresponding predicates.

Fig. 11.8 shows the ProSave design of the pattern. Jdwroller com-
ponent is triggered by a system clock, eMainClock periodically (in an
implementation, the controller thus becomes a periodik taghe system).
The periodicity of the clock is to be determined by the peditg of data oc-
currences or their criticality. Also, there can exist mul#iclocks of different
periodicity (can be or-ed using ProSave conne@ontrolOr). Further, the
controller implements the mode change behavior of a modemege.g., Fig.
11.2). It also implements a datastructure representingrégicate-event map-
ping ([13]) described above. The controller can be trigdénginternal signals
i.e., si gTi meQut , when the signal represents a trigger rather than data (as
described in the Timer pattern previously).

Application of the controller pattern to TCS: The pattern can be used in
transforming the control structure of a modemachine speatifin into cor-
responding component-based design. For example, the-basatl transitions
corresponding to the top-level control structure of the T@&lemachine spec-
ification (Fig. 11.2), is transformed into the correspogdiomponent-based
design in Fig. 11.9. When triggered, tl®ntroller evaluates the predicates
corresponding to the event occurrerRed_inserted, andRod_deleted, re-
spectively. In this case, no timeout is communicated to th&roller, hence
using the control-or connector, shown in the pattern, iseqtired.

11.6 Pattern Verification 145

<<ProSave-ControllerPattern> >

<<ProSave>>

Controller

si gTi meQut

Figure 11.8: The controller pattern in ProSave

<<ProSave> >
l [Select
7 Controller

Figure 11.9: Transformation of the top level mode transgiof TCS into a
ProSave design, by applying the controller pattern.

11.6 Pattern Verification

In this section, we describe the formal verification withpest to component
patterns, presented in the previous section. The appre&esed on the formal
semantics of the architectural elements of the ProSaveitageg[10, 11]. The
formal semantics is based on an extension of finite state imadbrmalism
with the notions of urgency, priority etc. The semanticshaf tormalism itself
was given in terms of timed automata (TA) [14]. This providesiechanism
to formally verify ProSave designs using UPPAAL, the timedoanata based
model-checker [7] .

For formal verification, a component pattern is translated the corre-
sponding network of timed automata, based on the underls@mgantics of
constituting ProSave elements.

11.6.1 \Verification of periodic behavior pattern

For periodic behavior pattern (in Fig. 11.6), the correspog network of
timed automata is given in Fig. 11.10. Each of the timed aatai@lockTA,

146 Paper D

ChannelsTA
ClockTA

Clocklnitial

ClockToB1 B1
trigOutM ainClk A trigOutMainClk=false clk==3 trigOutA=true, triginA=false
cimr iy SR clk<=3
NoTrigger @Tnggcmﬂramwt trialnA B? ck=0
A triginA=true Idle InExecution
B1ToB2 B2
trigOutA A? trigOutA=false clk==4 trigOutB=true, triginB=false
e finTransi clk<=4
NoTrigger @Tﬂggel\rﬂmn sit trighhB__B? __ clk=0

triglnB=true Idle InExecution

Figure 11.10: Translation of the periodic behavior pattarRroSave into the
corresponding network of timed automata.

ClockToB1, B1, B1ToB2, B2 correspond to the periodic trigger B1, trig-
ger connection t@1, componenBl, trigger connection fronB1 to B2, and
componenB2, respectively. Also, the end-to-end response time (sanfR)
component81, B2 are modeled in corresponding TA (3, 4 in this example).
ChannelsTA denotes the timed automaton that contains complementarych
nels, corresponding to urgent channels A, B of other TA.

On the above models, we have verified with UPPAAL [7], thatftikw-
ing properties are satisfied by the periodic behavior patter

A[] not deadl ock (11.8)
Al] Bl.trigOut i nply (not B2.InExecution) (11.9)

Property (11.8) states that there is no deadlock in the ppatiéhough ba-
sic, this is a very important model feasibility propertyoperty (11.9) verifies
the main constraint of the pattern i.e., that B2 is idle, ibateady to begin
execution, whenever B1 terminates its execution. Howetvisrobserved that
this property is satisfied, provided that the following citioths hold:

< Epi if Epi > Ep

) where
> FEpy if FEpy > Epi

Periodicity of Bl={

11.7 Temperature Control System: A Complete ProCom Design 47

Ep1, Epo denote the response time of B1, B2 respectively.

11.6.2 \Verification of other Patterns

In addition to “no deadlock”, we have verified other propestlike the ones
expressed by (10 - 12), this time for the Timer pattern (see Eil.3). Ex-

pression (11.10) describes a liveness property (alsodakels tg or response
property [7]), as follows: when the timer is set, it evenlyplerforms a time-
out. Formulae (11.11), (11.12), verified to be satisfied keyghttern, indicate
that the timer duration has a jitter of one period of h@nClock

timerValue == Set.N ~ timerValue == 0 (11.10)
Al (TimeOutimply (obsClk >= (m — 1) x P)) (11.11)
Al (TimeOutinply (obsClk <= (m + 1) x P)) (11.12)

For the discrete clock pattern, we have model-checked tiresmonding
network of automata against the following properties: deedfreedom, live-
ness (as given by (11.10)), and jitter freedom (see (11.13)¢ latter means
that theClock discretizes theMainClock perfectly, without any jitter, unlike
the timeout duration of the timer pattern:

Al TimeOut i nply (obsClk = m x P) (11.13)

11.7 Temperature Control System: A Complete
ProCom Design

In this section, we complete the approach introduced in@exil.4 and 11.5,
by describing the final steps leading to a complete ProCotesydesign.

We have applied th@imer pattern, of the Fig. 11.3, to transform the
composite modéCooling of the TCS specification (Fig. 11.2), which con-
tains the delay mod®elay, and an atomic modBeleteRod with its cor-
respondingbehavior The expiration of the timeout, signaled by the event
si gTi meQut from the Timer component, triggers the execution of the-
haviorin DeleteRod.

148 Paper D

To recall, Fig. 11.5 presents a ProSave design correspgalithe com-
posite moddempControl in the TCS specification. The corresponding design
in ProSave, is obtained by applying the discrete clock pattethe composite
mode.

Also, the top level control structure, corresponding toréective behavior
of the TCS modemachine (Fig. 11.2), with respect to the eRod_inserted,
andRod_deleted is translated into the corresponding ProSave design in Fig.
11.8, through the controller pattern.

The complete ProCom design of the TCS is presented in Fid.11For
simplicity, the complete system is represented as a singl8y® subsystem
(see Section 11.2). For integrating different design pdotsinstance, those
described above, the following design steps are applied:

e Synchronize the clocks using discrete clock pattelifferent clocks in
the component-based design can be synchronized by apphendis-
crete clock pattern, and a finest-grained clock, e.g.MamClock This
not only simplifies the component design, but also minimidesk jit-
ters, if any. For TCS, the different clocks, due to ContmplReriod-
icBehavior, and Timer patterns, are synchronized usingvtamClock.

e Interconnect ProSys message ports with ProSave ptressystem can
be designed as a basic ProSys system (also called ProSasysgumb)
by connecting message ports to ProSave control, and data(psshown
in Figure 11.11). Sensor and other data values, receivedeasages
through ProSys message ports are forwarded to the intern&ake
components through their ports.

11.8 Related work

In the domain of synchronous languages [15], mode autonmatdlee notion
of running modes have been introduced, to reduce the gagebatthe initial
design of a system and the program written for it. The forsmalhas been
proposed to support both dataflow, and imperative stylee mMidbdemachine
described in this paper corresponds to the event-basedrttigcal, high-level
control structure of the system and associated timing cainss.

11.8 Related work 149

<<ProSave> >

%
) <<ProSave>>
<<ProSave>:> Temperatur
Pros Clock(n) | eControl [0 |>SelectAndIn i
<<ProSave>> p_‘@) sertRod > :|
Tick T S |
Select I

2

AV

I {

.| Controller
Al

<<ProSave>> <<ProSave>>
Ti =
‘ _Igr::r DeleteRod [’
_______________ s
1 Select T
© M e B ‘

Figure 11.11: The Temperature Control System in ProComb&y compo-
nent made of ProSave components.

T |

Sandén proposes the “state-machine” pattern [16], foigde®y concur-
rent real-time software in Ada [17]. Many possible impleraions of the
pattern, corresponding to concurrent, reactive, and timgered behaviors,
are described. Also, patterns for non-functional aspagth sis resource us-
age, quality-of-service have been proposed [18]. Howesueth patterns focus
on the design or implementation phase of the system. Therpatproposed
in this paper support the design process, by directly mapfiie specifica-
tion aspects, with associated timing constraints, intactireesponding design
elements.

Maxwell et al. have proposed a formal framework [19] for hstizs-based
transformation of architectural designs. The authorswapheuristics in a
structured and formal manner, such that the architecttaastormations can
be performed for optimizing the non-functional qualitiéasystem. Denford
et al. have proposed an architectural refinement methodtfi2@lfocuses on
non-functional requirements e.g., reliability, performa, while still address-
ing the functional requirements. While these works focusion-functional
aspects such as performance, we address architecturghdélsrough timing
constraints of embedded systems. However, this is donedhydimg the func-
tional requirements also.

UML/Marte profile is extensively used in the context of AADRrchi-
tecture analysis and design language [21]) for componas¢d designs of
real-time, embedded systems [22, 23]. AADL supports theetiod of both
software components such as thread, subprogram, prooelsglaaform com-
ponents, e.g., bus, memory, processor, and device. HowedBIL introduces

150 Paper D

avoidable redundancies that obscure the model and mayeaend design in-
consistence. To address this deficiency, the Marte clocktcaints have been
used [23] to precisely specify both event, and time triggex@mmunications
for AADL models, and to compute end-to-end flow latency. Ehweerks focus
on models related to software and platform mapping. In thisep, we offer
formally verified support for component-based system dgsigthe form of
patterns based on timing constraints.

EastADL [24] is a layered architecture language for modedeal develop-
ment of automotive software. To address various concerrsystem’s life-
cycle development, it provides abstraction layers suckatsife level, require-
ments, analysis, design, and implementation. Mallet ethalve described
Marte CCSL specification of EastADL timing requirements][ZEhis enables
the use of Marte tools for timing verification of EastADL réqaments. The
work is similar to model driven aspects underlying the psgmbpatterns in this
paper.

11.9 Conclusions

In this paper, we have proposed a set of component basednsafibe devel-
oping embedded system designs. The patterns are based spettiication
of reactive, and time-triggered behaviors of an embeddsi#gsy. An extended
form of statemachine, referred as modemachine, combingdWWIL/Marte
clock constraints is used as the specification language.ae proposed com-
ponent patterns for clocks, timers, periodic, and readigteaviors. Also, we
have described the implementation of the proposed patterttee ProCom
language, in order to support the design process based apdodication of
functionality, and timing constraints. Further, we haveded the corre-
spondence of the proposed patterns with related UML/Mdoiekaonstraints.
To guarantee timing correctness aspects, we have fornailjad our pat-
terns, by model checking their corresponding timed autamaidels, in UP-
PAAL. This facilitates the development of component badesign models
with precise timing aspects. We have demonstrated the apprdy trans-
forming the modemachine specification of an example tentperaontrol sys-
tem, into a corresponding design in ProCom component mokded. explicit
representation of running modes in the design, by applinaif the proposed
patterns, may be useful for developing efficient deploymendels. However,
this requires further validation. Also, we intend to extémel approach to other
Marte constraints, and validate the approach with compjsiesms. Further,

11.9 Conclusions 151

we plan to work on the compositional verification of timingperties of the
resulting component-based system designs.

Bibliography

[1]
(2]

(3]

[4]

[5]

[6]

[7]

(8]

R. EnglanderDeveloping Java Bean®©'Reilly, 1997.

R. van Ommering, F. van der Linden, and J. Kramer. The &gampo-
nent model for consumer electronics softwarelHEE Computerpages
78-85. IEEE, March 2000.

T. Bure§, P. Hnetynka, and F. Plasil. SOFA 2.0: Balagciavanced
features in a hierarchical component model. Pimceedings of SERA
2006 pages 40-48. IEEE CS, August 2006.

F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Archiiee for com-
ponenttrading and dynamic updating Rroceedings of ICCDS 98 EE
CS, May 1998.

T. Bures, J. Carlson, |. Crnkovi€, S. Sentilles, and/algarakis. ProCom
— the Progress Component Model Reference Manual, versiorirgéch-
nical Report MDH-MRTC-230/2008-1-SE, Malardalen Unsigy, June
2008.

T. Bures, J. Carlson, S. Sentilles, and A. Vulgarakisofponent model
family for vehicular embedded systems. Proceedings of the Third In-
ternational Conference on Software Engineering AdvanégskE, Octo-
ber 2008.

Kim G. Larsen, Paul Pettersson, and Wang YiPR4AL in a Nutshell.
Int. Journal on Software Tools for Technology Transfig—2):134-152,
October 1997.

Object Management Group. UML 2.0 Superstructure Spetifin, The
OMG Final Adopted Specification, 2003.

153

154 Bibliography

[9] Object Management Group. A UML Profile for MARTE, Beta 1ygust
2007. Document number: ptc/07-08-04.

[10] Aneta Vulgarakis, Jagadish Suryadevara, Jan Car3astjna Seceleanu,
and Paul Pettersson. Formal semantics of the procom realdompo-
nent model. IrB5th Euromicro Conference on Software Engineering and
Advanced Applications (SEAAugust 2009.

[11] Jagadish Suryadevara, Aneta Vulgarakis, Jan Car3astjna Seceleanu,
and Paul Pettersson. ProCom: Formal semantics. TechrepalrRISSN
1404-3041 ISRN MDH-MRTC-234/2009-1-SE, Malardalen Lamaity,
March 2009.

[12] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pssitar. REMES: A
REsource Model for Embedded Systems.InrProc. of the 14th IEEE
International Conference on Engineering of Complex Comip8t/stems
(ICECCS 2009)IEEE Computer Society, June 2009.

[13] Jagadish Suryadevara, Eun-Young Kang, Cristina 8aoel, and Paul
Pettersson. Bridging the semantic gap between abstractimnotiem-
bedded systems. In Lars Grunske and Ralf Reussner, edigils|nter-
national Symposium on Component Based Software Enging&BSE)
Springer LNCS, vol 6092, June 2010.

[14] R. AlurandD. L. Dill. A theory of timed automatdheoretical Computer
Sciencel126(2):183-235, 1994.

[15] Florence Maraninchiand Yann Rémond. Mode-autoneatew domain-
specific construct for the development of safe criticalesyst. Sci. Com-
put. Program, 46:219-254, March 2003.

[16] Bo I. Sandén. The state-machine patternPtaceedings of the confer-
ence on TRI-Ada '96: disciplined software development Wil pages
135-142, New York, NY, USA, 1996. ACM.

[17] A. Burns and A. Wellings.Concurrency in Ada Cambridge University
Press, 1995.

[18] Joseph P. Loyall, Paul Rubel, Richard Schantz, Micldigihetchi, and
John Zinky. Emerging patterns in adaptive, distributedHtieae, embed-
ded middleware. I®th Conference on Pattern Language of Programs
September 2002.

[19] Cameron Maxwell, Tim O'Neill, and John Leaney. Formadtatecture
transformation using heuristics. Engineering of Computer-Based Sys-
tems, 2007. ECBS '07. 14th Annual IEEE International Cazriee and
Workshops on theages 15 —24, March 2007.

[20] M. Denford, John. Leaney, and TimR@ill. Non-functional refinement
of computer based systems architecturePioceedings of the 11th IEEE
International Conference and Workshop on Engineering ofnfSater-
Based Systemgages 168—, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[21] Society of Automotive Engineers (SAE). Architectumeadysis and de-
sign language (AADL), June 2006.

[22] M. Faugere, T. Bourbeau, R. De Simone, and S. Gerard. MARIso an
UML profile for modeling AADL applications. IfEngineering Complex
Computer Systems, 2007. 12th IEEE International Conferemncpages
359 -364, 2007.

[23] F. Mallet, R. de Simone, and L. Rioux. Event-triggersdtime-triggered
communications with UML MARTE. IrSpecification, Verification and
Design Languages, 2008. FDL 2008. Forum pages 154 —159, 2008.

[24] ATESST (Advancing Traffic Efficiency through Softwarechnology).
East-ADL?2 specification, March 2008.

[25] F. Mallet, M.-A. Peraldi-Frati, and C. Andre. Marte CC$ execute
East-ADL timing requirements. I®bject/Component/Service-Oriented
Real-Time Distributed Computing, 2009. ISORC '09. IEEElin&tional
Symposium grpages 249 —253, March 2009.

