
Hard Real-time Support for Hierarchical Scheduling
in FreeRTOS*

Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, Moris Behnam
Mälardalen Real-Time Research Centre

Västerås, Sweden
Email: rafia.inam@mdh.se

Abstract—This paper presents extensions to the previous im-
plementation of two-level Hierarchical Scheduling Framework
(HSF) for FreeRTOS. The results presented here allow the use
of HSF for FreeRTOS in hard-real time applications, with the
possibility to include legacy applications and components not
explicitly developed for hard real-time or the HSF.

Specifically, we present the implementations of (i) global and
local resource sharing using the Hierarchical Stack Resource
Policy and Stack Resource Policy respectively, (ii) kernel support
for the periodic task model, and (iii) mapping of original FreeR-
TOS API to the extended FreeRTOS HSF API. We also present
evaluations of overheads and behavior for different alternative
implementations of HSRP with overrun from experiments on the
AVR 32-bit board EVK1100. In addition, real-time scheduling
analysis with models of the overheads of our implementation is
presented.

Index Terms—real-time systems; hierarchical scheduling
framework; resource sharing, fixed-priority scheduling

I. INTRODUCTION

In real-time embedded systems the components and compo-
nents integration must satisfy both (1) functional correctness
and (2) extra-functional correctness, such as satisfying tim-
ing properties. Hierarchical Scheduling Framework (HSF) [1]
has emerged as a promising technique in satisfying timing
properties while integrating complex real-time components on
a single node. It supplies an effective mechanism to provide
temporal partitioning among components and supports inde-
pendent development and analysis of real-time systems [2].
In HSF, the CPU is partitioned into a number of subsystems
(servers or applications); each real-time component is mapped
to a subsystem that contains a local scheduler to schedule the
internal tasks of the subsystem. Each subsystem performes its
own task scheduling, and the subsystems are scheduled by a
global (system-level) scheduler. Two different synchronization
mechanisms overrun [3] and skipping [4] have been proposed
and analyzed for inter-subsystem resource sharing, but not
much work has been performed for their practical implemen-
tations.

We have chosen FreeRTOS [5], a portable open source real-
time scheduler to implement hierarchical scheduling frame-
work. The goal is to use the HSF-enabled FreeRTOS to
implement the virtual node concept in the ProCom component-
model [6], [7]. FreeRTOS has been chosen due to its main

* This work is supported by the Swedish Foundation for Strategic Research
(SSF), via the research programme PROGRESS. Our HSF implementation
code is available at http://www.idt.mdh.se/pride/releases/hsf.

features, like it’s open source nature, small size and scalability,
and support of many different hardware architectures allowing
it to be easily extended and maintained. Our HSF implemen-
tation [8] on FreeRTOS for idling periodic and deferrable
servers uses fixed priority preemptive scheduling (FPPS) for
both global and local-level scheduling. FPPS is flexible and
simple to implement, plus is the de-facto industrial standard for
task scheduling. In this paper we extend our implementation
of HSF to support hard real-time components. We implement
time-triggered periodic tasks within the FreeRTOS operating
system. We improve the resource sharing policy of FreeRTOS,
and implement support for inter-subsystem resource sharing
for our HSF implementation. We also provide legacy support
for existing systems or components to be executed within our
HSF implementation as a subsystem.

A. Contributions

The main contributions of this paper are:
• We have supported periodic task model within the FreeR-

TOS operating system.
• We have provided a legacy support in our HSF imple-

mentation and have mapped the old FreeRTOS API to
the new API so that the user can very easily use an old
system into a server within a two-level HSF.

• We have provided an efficient implementation for re-
source sharing for our HSF implementation. This entails:
support for Stack Resource Policy for local resource shar-
ing, and Hierarchical Stack Resource Policy for global
resource sharing with three diferent methods to handle
overrun.

• We have included the runtime overhead for local and
global schedulability analysis of our implementation.

• We describe the detailed design of all the above men-
tioned improvements in our HSF implementations with
the consideration of minimal modifications in underlying
FreeRTOS kernel.

• And finally, we have tested and calculated the perfor-
mance measures for our implementations on an AVR-
based 32-bit board EVK1100 [9].

B. Resource Sharing in Hierarchical Scheduling Framework

A two-level HSF [10] can be viewed as a tree with one
parent node (global scheduler) and many leaf nodes (local
schedulers) as illustrated in Figure 1. The leaf nodes contain

its own internal set of tasks that are scheduled by a local
(subsystem-level) scheduler. The parent node is a global
scheduler and is responsible for dispatching the subsystems
according to their resource reservations. Using HSF, subsys-
tems can be developed and analyzed in isolation from each
other.

Resource Sharing in HSF

Global FPS
Scheduler

. . .

Global Shared Resources

SubSystem n

Local FPS
Scheduler

Task1 Taskn. . .

Local Shared Resources

S
R
P

S
R
P

SubSystem 1

Local FPS
Scheduler

Task1 Taskn. . .

Local Shared Resources

S
R
P

S
R
P

H
S
R
P

H
S
R
P

Fig. 1. Two-level Hierarchical Scheduling Framework

In a two-level HSF the resources can be shared among tasks
of the same subsystem (or intra-subsystem), normally referred
as local shared resource. The resources can also be shared
among tasks of different subsystems (or inter-subsystem)
called global shared resources as shown in Figure 1.

Different synchronization protocols are required to share re-
sources at local and global levels, for example, Stack Resource
Policy (SRP) [11] can be used at local level with FPPS, and
to implement SRP-based overrun mechanism at global level,
Hierarchical Stack Resource Policy (HSRP) [3] can be used.
Organisation: Section II presents the related work on hi-
erarchical scheduler implementations. Section III gives a
background on FreeRTOS in III-A, a review of our HSF
implementation in FreeRTOS in III-B, and resource sharing
techniques in HSF in section III-C. In section IV we provide
our system model. We explain the implementation details of
periodic task model, legacy support, and resource sharing in
section V. In section VI we provide scheduling analysis and
in section VII we present the behavior of implementation and
some performance measures. In section VIII we conclude the
paper. The API for the local and the global resource sharing
in HSF is given in Appendix.

II. RELATED WORK

HSF has attained a substantial importance since introduced
in 1990 by Deng and Liu [1]. Saewong and Rajkumar [12]
implemented and analyzed HSF in CMU’s Linux/RK with
deferrable and sporadic servers using hierarchical deadline

monotonic scheduling. Buttazzo and Gai [13] present an HSF
implementation based on Implicit Circular Timer Overflow
Handler (ICTOH) using EDF scheduling for an open source
RTOS, ERIKA Enterprise kernel. A micro kernel called
SPIRIT-µKernel is proposed by Kim et al. [10] based on two-
level hierarchical scheduling methodology and demonstrate
the concept, by porting two different application level RTOS,
VxWorks and eCos, on top of the SPIRIT-µKernel. It uses
an offline scheduler at global level and the fixed-priority
scheduling at local level to schedule the partitions and tasks
respectively. A detailed related work on HSF implementation
without resource sharing is presented in [8].

A. Local and Global Synchronization Protocols

1) Local synchronization protocols: Priority inheritance
protocol (PIP) [14] was developed to solve the priority inver-
sion problem but it does not solve the chained blocking and
deadlock problems. Sha et al. proposed the priority ceiling
protocol (PCP) [14] to solve these problems. A slightly differ-
ent alternative to PCP is the immediate inheritance protocol
(IIP). Baker presented the stack resource policy (SRP) [11]
that supports dynamic priority scheduling policies. For fixed-
priority scheduling, SRP has the same behavior as IIP. SRP
reduces the number of context-switches and the resource hold-
ing time as compared to PCP. Like most real-time operating
systems, FreeRTOS only support an FPPS scheduler with PIP
protocol for resource sharing. We provide support for SRP for
local-level resource sharing in HSF.

2) Global synchronization protocols: For global resource
sharing some additional protocols have been proposed. Fisher
et al. proposed Bounded delay Resource Open Environment
(BROE) [15] protocol for global resource sharing under EDF
scheduling. Hierarchical Stack Resource Policy (HSRP) [3]
uses the overrun mechanism to deal with the subsystem budget
expiration within the critical section and uses two mechanisms
(with pay back and without payback) to deal with the over-
run. Subsystem Integration and Resource Allocation Policy
(SIRAP) [4] uses the skipping mechanism to avoid the problem
of subsystem budget expiration within the critical section. Both
HSRP and SIRAP assume FPPS. The original HSRP [3] does
not support the independent subsystem development for its
analysis. Behnam et al. [16] not only extended the analysis
for the independent subsystem development, but also proposed
a third form of overrun mechanism called extended overrun.
In this paper we use HSRP for global resource sharing and
implement all the three forms of the overrun protocol.

B. Implementations of Resource Sharing in HSF

Behnam et al. [17] present an implementation of a two-
level HSF in the commercial operating system VxWorks with
the emphasis of not modifying the underlying kernel. The
implementation supports both FPS and EDF at both global and
local level of scheduling and a one-shot timer is used to trigger
schedulers. In [18], they implemented overrun and skipping
techniques at the top of their FPS HSF implementation and
compared the two techniques.

Holenderski et al. [19] implemented a two-level fixed-
priority HSF in µC/OS-II, a commercial real-time operating
system. This implementation is based on Relative Timed Event
Queues (RELTEQ) [20] and virtual timers [21] on the top of
RELTEQ to trigger timed events. They incorporated RELTEQ
queues and virtual timers within the operating system kernel
and provided interfaces for it and HSF implementation uses
these interfaces. More recently, they extended the HSF with
resource sharing support [22] by implementing SIRAP and
HSRP (with and without payback). They measured and com-
pared the system overheads of both primitives.

The work presented in this paper is different from that
of [18] in the sense that we implement resource sharing in
a two-level HSF with the aim of simplified implementation
while adopting the kernel with the consideration of being
consistent with the FreeRTOS. The user should be able to
choose the original FreeRTOS or HSF implementation to
execute, and also able to run legacy code within HSF with
doing minimal changes in it. The work of this paper is
different from that of [22] in the sense that we only extend
the functionality of the operating system by providing support
for HSF, and not changing or modifying the internal data
structures. It aims at simplified implementation while mini-
mizing the modifications of the underlying operating system.
Our implementation is simpler than both [18], [22] since we
strictly follow the rules of HSRP [3]. We do not have local
ceilings for the global shared resources (as in [18], [22])
which simplifies the implementation. We do not allow local
preemptions while holding the global resources which reduces
the resource holding times as compared to [18], [22]. Another
difference is that both [18], [22] implemented SIRAP and
HSRP (with and without payback) while we implement all
the three forms of overrun (with payback, without payback,
and enhanced overrun). We do not support SIRAP because
it is more difficult to use; the application programmer needs
to know the WCET of each critical section to use SIRAP.
Further neither implementation does provide analysis for their
implementations.

III. BACKGROUND

A. FreeRTOS

FreeRTOS is a portable, open source (licensed under a
modified GPL), mini real-time operating system developed
by Real Time Engineers Ltd. It is ported to 23 hardware
architectures ranging from 8-bit to 32-bit micro-controllers,
and supports many development tools. Its main advantages
are portability, scalability and simplicity. The core kernel is
simple and small, consisting of three or four (depends on the
usage of coroutines) C files with a few assembler functions,
with a binary image between 4 to 9KB.

Since most of the source code is in C language, it is
readable, portable, and easily expandable and maintainable.
Features like ease of use and understandability makes it very
popular. More than 77, 500 official downloads in 2009 [23],
and the survey result performed by professional engineers in
2010 puts the FreeRTOS at the top for the question ”which

kernel are you considering using this year” [24] showing its
increasing popularity.

FreeRTOS kernel supports preemptive, cooperative, and
hybrid scheduling. In the fixed-priority preemptive scheduling,
the tasks with the same priority are scheduled using the round-
robin policy. It supports both tasks and subroutines; the tasks
with maximum 256 different priorities, any number of tasks
and very efficient context switch. FreeRTOS supports both
static and dynamic (changed at run-time) priorities of the
tasks. It has semaphores and mutexes for resource sharing and
synchronization, and queues for message passing among tasks.
Its scheduler runs at the rate of one tick per milli-second by
default.
FreeRTOS Synchronization Protocol: FreeRTOS supports
basic synchronization primitives like binary, counting and re-
cursive semaphore, and mutexes. The mutexes employ priority
inheritance protocol, that means that when a higher priority
task attempts to obtain a mutex that is already blocked by a
lower priority task, then the lower priority task temporarily
inherits the priority of higher priority task. After returning
the mutex, the task’s priority is lowered back to its original
priority. Priority inheritance mechanism minimizes the priority
inversion but it cannot cure deadlock.

B. A Review of HSF Implementation in FreeRTOS

A brief overview of our two-level hierarchical scheduling
framework implementation [8] in FreeRTOS is given here.

Both global and local schedulers support fixed-priority
preemptive scheduling (FPPS). Each subsystem is executed
by a server Ss, which is specified by a timing interface
Ss(Ps, Qs), where Ps is the period for that server (Ps > 0),
and Qs is the capacity allocated periodically to the server
(0 < Qs ≤ Ps). Each server has a unique priority ps and a
remaining budget during the runtime of subsystem Bs. Since
the previous implementation not focus on real-time, we only
characterize each task τi by its priority ρi.

The global scheduler maintains a pointer, running server,
that points to the currently running server.

The system maintains two priority-based lists. First is the
ready-server list that contains all the servers that are ready
(their remaining budgets are greater than zero) and is arranged
according to the server’s priority, and second is the release-
server list that contains all the inactive servers whose budget
has depleted (their remaining budget is zero), and will be
activated again at their next activation periods and is arranged
according to the server’s activation times.

Each server within the system also maintains two lists. First
is the ready-task list that keeps track of all the ready tasks of
that server, only the ready list of the currently running server
will be active at any time, and second is the delayed-task list
of FreeRTOS that is used to maintain the tasks when they are
not ready and waiting for their activation.

The hierarchical scheduler starts by calling
vTaskStartScheduler() API and the tasks of the highest
priority ready server starts execution. At each tick interrupt,
• The system tick is incremented.

• Check for the server activation events. The newly acti-
vated server is replenished with its maximum budget and
is moved to the ready-server list.

• The global scheduler is called to handle the server events.
• The local scheduler is called to handle the task events.
1) The functionality of the global scheduler: The global

scheduler performs the following functionality:
• At each tick interrupt, the global scheduler decrements

the remaining budget Bs of the running server by one
and handles budget expiration event (i.e. at the budget
depletion, the server is moved from the ready-server list
to the release-server list).

• Selects the highest priority ready server to
run and makes a server context-switch if
required. Either prvChooseNextIdlingServer() or
prvChooseNextDeferrableServer() is called to select
idling or deferrable server, depending on the value
of the configGLOBAL_SERVER_MODE macro in the
FreeRTOSConfig.h file.

• prvAdjustServerNextReadyTime(pxServer) is called to
set up the next activation time to activate the server
periodically.

In idling server, the prvChooseNextIdlingServer() func-
tion selects the first node (with highest priority) from
the ready-server list and makes it the current run-
ning server. While in case of deferrable server, the
prvChooseNextDeferrableServer() function checks in the
ready-server list for the next ready server that has any task
ready to execute when the currently running server has no
ready task even if it’s budget is not exhausted. It also handles
the situation when the server’s remaining budget is greater than
0, but its period ends, in this case the server is replenished with
its full capacity.

2) The functionality of the local scheduler: The local
scheduler is called from within the tick interrupt using the
adopted FreeRTOS kernel function vTaskSwitchContext().
The local scheduler is the original FreeRTOS scheduler with
the following modifications:
• The round robin scheduling policy among equal priority

tasks is changed to FIFO policy to reduce the number of
task context-switches.

• Instead of a single ready-task or delayed-task list (as in
original FreeRTOS), now the local scheduler accesses a
separate ready-task and delayed-task list for each server.

C. Resource sharing in HSF

Stack Resource Policy at global and local levels: We have
implemented the HSRP [3] which extends SRP to HSRP. The
SRP terms are extended as follows:
• Priority. Each task has a priority ρi. Similarly, each

subsystem has an associated priority ps.
• Resource ceiling. Each globally shared resource Rj is

associated with a resource ceiling for global scheduling.
This global ceiling is the highest priority of any subsys-
tem whose task is accessing the global resource. Similarly

each locally shared resource also has a resource ceiling
for local scheduling. This local ceiling is the highest
priority of any task (within the subsystem) using the
resource.

• System/subsystem ceilings. System/subsystem ceilings
are dynamic parameters that change during runtime.
The system/subsystem ceiling is equal to the currently
locked highest global/local resource ceiling in the sys-
tem/subsystem.

Following the rules of SRP, a task τi can preempt the
currently executing task within a subsystem only if τi has a
priority higher than that of running task and, at the same time,
the priority of τi is greater than the current subsystem ceiling.

Following the rules of HSRP, a task τi of the subsystem Si
can preempt the currently executing task of another subsystem
Sj only if Si has a priority higher than that of Sj and, at
the same time, the priority of Si is greater than the current
system ceiling. Moreover, whilst a task τi of the subsystem
Si is accessing a global resource, no other task of the same
subsystem can preempt τi.

D. Overrun Mechanisms

This section explains three overrun mechanisms that can be
used to handle budget expiry during a critical section in the
HSF. Consider a global scheduler that schedules subsystems
according to their periodic interfaces . The subsystem budget
Qs is said to expire at the point when one or more internal
tasks have executed a total of Qs time units within the
subsystem period Ps. Once the budget is expired, no new task
within the same subsystem can initiate its execution until the
subsystems budget is replenished at the start of next subsystem
period.

To prevent excessive priority inversion due to global re-
source lock its desirable to prevent subsystem rescheduling
during critical sections of global resources. In this paper, we
employ the overrun strategy to prevent such rescheduling.
Using overrun, when the budget of subsystem expires and
it has a task that is still locking a global shared resource,
the task continues its execution until it releases the resource.
The extra time needed to execute after the budget expiration
is denoted as overrun time θ. We implement three different
overrun mechanisms [16]:

1) The basic overrun mechanism without payback, denoted
as BO: here no further actions will be taken after the
event of an overrun.

2) The overrun mechanism with payback, denoted as PO:
whenever overrun happens, the subsystem Ss pays back
in its next execution instant, i.e., the subsystem budget
Qs will be decreased by θs i.e. (Qs − θs) for the
subsystems execution instant following the overrun (note
that only the instant following the overrun is affected
even if θs > Qs).

3) The enhanced overrun mechanism with payback, de-
noted as EO: It is based on imposing an offset (de-
laying the budget replenishment of subsystem) equal to
the amount of the overrun θs to the execution instant

that follows a subsystem overrun, at this instant, the
subsystem budget is replenished with Qs − θs.

IV. SYSTEM MODEL

In this paper, we consider a two-level hierarchical schedul-
ing framework, in which a global scheduler schedules a system
S that consists of a set of independently developed and
analyzed subsystems Ss, where each subsystem Ss consists
of a local scheduler along with a set of tasks. A system have
a set of globally shared resource (lockable by any task in the
system), and each subsystem has a set of local shared resource
(only lockable by tasks in that subsystem).

A. Subsystem Model

For each subsystem Ss is specified by a subsystem (a.k.a.
server) timing interface Ss = 〈Ps, Qs, ps, Bs, Xs〉, where Ps
is the period and Qs is the capacity allocated periodically to
the subsystem where 0 < Qs ≤ Ps and Xs is the maximum
execution-time that any subsystem-internal task may lock a
shared global resource. Each server Ss has a unique priority
ps and at each instant during run-time a remaining budget Bs.

It should be noted that Xs is used for schedulability analysis
only and our HSRP-implementation does not depend on the
availability of this attribute. In the rest of this paper, we use
the term subsystem and server interchangeably.

B. Task Model

For hard real-time systems, we are considering a simple
periodic task model represented by a set Γ of n number of
tasks. Each task τi is represented as τi = 〈Ti, Ci, ρi, bi〉, where
Ti denotes the period of task τi with worst-case execution time
Ci, ρi as its priority, and bi its worst case local blocking. bi
is the longest execution-time inside a critical section with a
resource-ceiling equal to or higher than ρ amongst all lower
priority task inside the server of τi. A task, τi has a higher
priority than another task, τj , if ρi > ρj . For simplicity, the
deadline for each task is equal to Ti.

C. Scheduling Policy

We are using a fixed-priority scheduling FPS at the both
global and local level. FPS is the de-facto standard used
in industry. For hard-real time analysis we assume unique
priorities for each server and unique priorities for each task
within a server. However, our implementation support shared
priorities, which are then handled in FIFO order (both at global
and local scheduling).

D. Design Considerations

Here we present the challenges and goals that our imple-
mentation should satisfy:

1) The use of HSF with resource sharing and the
overrun mechanism: User should be able to make a
choice for using the HSF with resource sharing or the
simple HSF without using shared resources. Further,
user should be able to make a choice for selecting one
of the overrun mechanisms, BO, PO, or EO.

2) Consistency with the FreeRTOS kernel and keeping
its API intact: To embed the legacy code easily within
a server in a two-level HSF, and to get minimal changes
of the legacy system, it will be good to match the
design of implementation with the underlying FreeRTOS
operating system. To increase the usability and under-
standability of HSF implementation for FreeRTOS users,
major changes should not be made in the underlying
kernel.

3) Managing local/global system ceilings: To ensure the
correct access of shared resources at both local and
global levels, the local and global system ceilings should
be updated properly upon the locking and unlocking of
those resources.

4) Enforcement: Enforcing server execution even at it’s
budget depletion while accessing a global shared re-
source; its currently executing task should not be pre-
empted and the server should not be switched out by
any other higher priority server (whose priority is not
greater than the systemceiling) until the task releases
the resource.

5) Calculating and deducting overrun time of a server
for PO and EO: In case of payback (PO and EO),
the overrun time of the server should be calculated and
deducted from the budget at the next server activation.

6) Protection of shared data structures: The shared data
structures that are used to lock and unlock both local and
global shared resources should be accessed in a mutual
exclusive manner with respect to the scheduler.

V. IMPLEMENTATION

A. Support for Time-triggered Periodic Tasks

Since we are following the periodic resource model [25],
we need the periodic task behavior implemented within the
operating system. Like many other real-time operating sys-
tems, FreeRTOS does not directly support the periodic task
activation. We incorporated the periodic task activation as
given in Figure 2. To do minimal changes in the underlying
operating system and save memory, we add only one addi-
tional variable readyTime to the task TCB, that describes
the time when the task will become ready. A user API
vTaskWaitforNextPeriod(period) is implemented to activate
the task periodically. The FreeRTOS delayed-task list used to
maintain the periodic tasks when they are not ready and wait-
ing for their next activation period to start. Since FreeRTOS
uses ticks, period of the task is given in number of ticks.

// task function
while (TRUE) do {

taskbody();
vTaskWaitforNextPeriod(period);

end while

Fig. 2. Pseudo-code for periodic task model implementation

B. Support for Legacy System

To implement legacy applications support in HSF imple-
mentation for the FreeRTOS users, we need to map the
original FreeRTOS API to the new API, so that the user can
run its old code in a subsystem within the HSF. A macro
configHIERARCHICAL_LEGACY must be set in the config file to
utilize legacy support. The user should rename the old main()

function, and remove the vTaskStartScheduler() API from
legacy code.

The legacy code is created in a separate server, and
in addition to the server parameters like period, bud-
get, priority, user also provides a function pointer of the
legacy code (the old main function that has been re-
named). xLegacyServerCreate(period, budget, priority,

*serverHandle, *functionPointer) API is provided for this
purpose. The function first creates a server and then creates
a task called vLegacyTask(*functionPointer) that runs only
once and performs the initialization of the legacy code (ex-
ecutes the old main function which create the initial set of
tasks for the legacy application), and destroys itself. When
the legacy server is replenished first time, all the tasks of
the legacy code are created dynamically within the currently
running legacy server and start executing.

We have adopted the original FreeRTOS xTaskGeneric-

Create function to provide legacy support. If config-

HIERARCHICAL_SCHEDULING and configHIERARCHICAL_LEGACY

macros are set then xServerTaskGenericCreate function is
called that creates the task in the currently executing server
instead of executing the original code of xTaskGenericCreate
function.

This implementation is very simple and easy to
use, user only needs to rename old main(), remove
vTaskStartScheduler() from legacy code, and use a single
API to create the legacy server. It should be noted that the
HSF guarantees separation between servers; thus a legacy
non/soft real-time server (which e.g. is not analyzed for
schedulability or not use predictable resource locking) can
co-exists with hard real-time servers.

C. Support for Resource sharing in HSF

Here we describe the implementation details of the resource
sharing in two-level hierarchical scheduling framework. We
implement the local and global resource sharing as defined by
Davis and Burns [3]. For local resource sharing SRP is used
and for global resource sharing HSRP is used. Further all the
three forms of overrun as given by Behnam et al. [16] are
implemented. The resource sharing is activated by setting the
macro configGLOBAL_SRP in the configuration file.

1) Support for SRP: For local resource sharing we im-
plement SRP to avoid problems like priority inversions and
deadlocks.
The data structures for the local SRP: Each local resource
is represented by the structure localResource that stores
the resource ceiling and the task that currently holds the re-
source as shown in Figure 3. The locked resources are stacked
onto the localSRPList; the FreeRTOS list structure is used

to implement the SRP stack. The list is ordered according to
the resource ceiling, and the first element of list has the highest
resource ceiling, and represents the local system ceiling.

Local Scheduler with SRP-2011-04-18

SubSystem Control
Block

Period
Budget
Remaining Budget
Priority
TaskNumInReadyQueue
CurrentNumberOfTasks
ReadyTime
currentTCB
Ready Task List
Delayed Task List

Local SRP List
OverrunReadytimeOffset
SystemCeiling
GlobalSRPTakenNum
PayBackBudget

. . .

Task Control
Block

Ready Time
ReadyQueueFlag

Local Server

. . .

LocalResource

SRPListItem
ResourceCeiling
OwnerTask

Fig. 3. Data structures to implement SRP

The extended functionality of the local scheduler with SRP:
The only functionality extended is the searching for the next
ready task to execute. Now the scheduler selects a task to
execute if the task has the highest priority among all the ready
tasks and its priority is greater than the current system ceiling,
otherwise the task that has locked the highest (top) resource
in the localSRPList is selected to execute. The API list
for the local SRP is provided in the Appendix.

2) Support for HSRP: HSRP is implemented to provide
global resource sharing among servers. The resource sharing
among servers at the global level can be considered the same
as sharing local resources among tasks at the local level. The
details are as follows:
The data structures for the global HSRP: Each global re-
source is represented by the structure globalResource that
stores the global-resource ceiling and the server that currently
holds the resource as shown in Figure 4. The locked resources
are stacked onto the globalHSRPList; the FreeRTOS list
structure is used to implement the HSRP stack. The list is
ordered according to the resource ceiling, the first element
of the list has the highest resource ceiling and represents the
GlobalSystemCeiling.

Global Scheduler HSRP – 2011-01-18

2-Level Hierarchical
Scheduling System

. . .

. . .
Running Server

Ready Server List

Release Server List

HSRP List

SubSystem Control
Block

Period
Budget
Remaining Budget
Priority
TaskNumInReadyQueue
CurrentNumberOfTasks
ReadyTime
currentTCB
Ready Task List
Delayed Task List

Local SRP List
OverrunReadytimeOffset
SystemCeiling
GlobalSRPTakenNum
PayBackBudget

. . .

GlobalResource

HSRPListItem
GResourceCeiling
OwnerServer

Fig. 4. Data structures to implement HSRP

The extended functionality of the global scheduler with
HSRP: To incorporate HSRP into the global scheduler, prv-
ChooseNextIdlingServer() and prvChooseNextDeferrable-

Server() macros are appended with the following functional-
ity: The global scheduler selects a server if the server has the
highest priority among all the ready servers and the server’s
priority is greater than the current GlobalSystemCeiling,
otherwise the server that has locked the highest(top) resource
in the HSRPList is selected to execute. The API list for the
global HSRP is provided in Appendix.

3) Support for Overrun Protocol: We have implemented
three types of overrun mechanisms; without payback (BO),
with payback (PO), and enhanced overrun (EO). Implemen-
tation of BO is very simple, the server simply executes and
overruns its budget, and no further action is required. For PO
and EO we need to measure the overrun amount of time to
pay back at the server’s next activation.
The data for the PO and EO Overrun mechanisms: Two
variables PayBackBudget and OverrunReadytimeOffset are
added to the subsystem structure subSCB to keep a record of
the overrun amount to be deducted from the next budget of the
server as shown in Figure 4. The overrun time is measured and
stored in PayBackBudget. OverrunReadytimeOffset is used in
EO mechanism to impose an offset in the next activation of
server.
The extended functionality of the global scheduler with
Overrun: A new API prvOverrunAdjustServerNextReady-

Time(*pxServer) is used to embed overrun functionality (PO
and EO) into the global scheduler. For both PO and EO,
the amount of overrun, i.e. PayBackBudget is deducted from
the server RemainingBudget at the next activation period of
the server, i.e. Bs = Qs − θs. For EO, in addition to this,
an offset (Os) is calculated that is equal to the amount of
overrun, i.e. Os = θs. The server’s next activation time (the
budget replenishment of subsystem) is delayed by this offset.
OverrunReadytimeOffset variable is used to store the offset
for next activation of the server.

4) Safety Measure: We have modified vTaskDelete

function in order to prevent the system from crash-
ing when users delete a task which still holds a local
SRP or a global HSRP resource. Now it also executes
two private functions prvRemoveLocalResourceFromList

(*pxTaskToDelete), and prvRemoveGlobalResourceFromList

(*pxTaskToDelete), before the task is deleted.

D. Addressing Design Considerations

Here we address how we achieve the design requirements
that are presented in Section IV-D.

1) The use of HSF with resource sharing and the
overrun mechanism: The resource sharing is activated
by setting the macro configGLOBAL_SRP in the con-
figuration file. The type of overrun can be selected
by setting the macro configOVERRUN_PROTOCOL_MODE

to one of the three values: OVERRUN_WITHOUT_PAYBACK,
OVERRUN_PAYBACK, or OVERRUN_PAYBACK_ENHANCED.

2) Consistency with the FreeRTOS kernel and keeping
its API intact: We have kept consistence with the
FreeRTOS from the naming conventions to API, data
structures and the coding style used in our implementa-
tions; for example all the lists used in our implementa-
tion are maintained in a similar way as of FreeRTOS.

3) Managing local/global system ceilings: The correct
access of the shared resources at both local and global
levels is implemented within the functionality of the API
used to lock and unlock those resources.
When a task locks a local/global resource whose
ceiling is higher than the subsystem/system ceiling,
the resource mutex is inserted as the first element
onto the localSRPList/HSRPList, the systemceiling

/GlobalSystemCeiling is updated, and this task/server
becomes the owner of this local/global resource re-
spectively. Each time a global resource is locked, the
GlobalResourceTakenNum is incremented.
Similarly upon unlocking a local/global resource,
that resource is simply removed from the top
of the localSRPList/HSRPList, the systemceiling

/GlobalSystemCeiling is updated, and the owner of
this resource is set to NULL. For global resource, the
GlobalResourceTakenNum is decremented.

4) Enforcement: GlobalResourceTakenNum is used as an
overrun flag, and when its value is greater than zero
(means a task of the currently executing server has
locked a global resource), no other higher priority server
(whose priority is not greater than the systemceiling)
can preempt this server even if its budget depletes.

5) Overrun time of a server for PO and EO:
prvOverrunAdjustServerNextReadyTime API is used to
embed the overrun functionality into the global sched-
uler as explained in section V-C3.

6) Protection of shared data structures: All the func-
tionality of the APIs (for locking and unlocking
both local and global shared resources) is executed
within the FreeRTOS macros portENTER_CRITICAL()

and portEXIT_CRITICAL() to protect the shared data
structures.

VI. SCHEDULABILITY ANALYSIS

This section presents the schedulability analysis of the HSF,
starting with local schedulability analysis (i.e. checking the
schedulability of each task within a server, given the servers
timing interface), followed by global schedulability analysis
(i.e., checking that each server will receive its capacity within
its period given the set of all servers in a system).

A. The Local Schedulability Analysis

The local schedulability analysis can be evaluated as fol-
lows [25]:

∀τi ∃t : 0 < t ≤ Di, rbf(i, t) ≤ sbf(t), (1)

where sbf is the supply bound function, based on the periodic
resource model presented in [25], that computes the minimum

possible CPU supply to Ss for every time interval length t,
and rbf(i, t) denotes the request bound function of a task τi
which computes the maximum cumulative execution requests
that could be generated from the time that τi is released up to
time t and is computed as follows:

rbf(i, t) = Ci + bi +
∑

τk∈HP(i)

⌈
t

Tk

⌉
· Ck, (2)

where HP(i) is the set of tasks with priorities higher than that
of τi and bi is the maximum local blocking.

The evaluation of sbf depends on the type of the overrun
mechanism;

a) Overrun without payback:

sbf(t) =

{
t− (k + 1)(Ps −Qs) if t ∈W (k)

(k − 1)Qs otherwise,
(3)

where k = max
(⌈(

t−(Ps−Qs)
)
/Ps
⌉
, 1
)

and W (k) denotes
an interval [(k + 1)Ps − 2Qs, (k + 1)Ps −Qs].

b) Overrun with payback [16]:

sbf(t) = max
(

min
(
f1(t), f2(t)

)
, 0
)
, (4)

where f1(t) is

f1(t) =

{
t− (k + 1)(Ps −Qs)−Xs if t ∈W (k)

(k − 1)Qs otherwise,
(5)

where k = max
(⌈(

t − (Ps − Qs) −Xs

)
/Ps
⌉
, 1
)

and W (k)

denotes an interval [(k+1)Ps−2Qs+Xs, (k+1)Ps−Qs+Xs],
and f2(t) is

f2(t) =

 t− (2)(Ps −Qs) if t ∈ V (k)

t− (k + 1)(Ps −Qs)−Xs if t ∈ Z(k)

(k − 1)Qs −Xs otherwise,
(6)

where k = max
(⌈(

t− (Ps −Qs)
)
/Ps
⌉
, 1
)

, V (k) denotes an

interval [2Ps − 2Qs, 2Ps − Qs − Xs], and Z(k) denotes an
interval [(k + 2)Ps − 2Qs, (k + 2)Ps −Qs].

c) Enhanced overrun:

sbf(t) = max
(
f2(t), 0

)
. (7)

B. The Global Schedulability Analysis

A global schedulability condition is

∀Ss ∃t : 0 < t ≤ Ps, RBFs(t) ≤ t. (8)

where RBFs(t) is the request bound function and it is evaluated
depending on the type of server (deferrable or idling) and type
of the overrun mechanism (see [16] for more details). First,
we will assume the idling server and later we will generalize
our analysis to include deferrable server.

d) Overrun without payback:

RBFs(t) = (Qs+Xs+Bls)+
∑

Sk∈HPS(s)

⌈
t

Pk

⌉
·(Qk+Xk). (9)

where HPS(s) is the set of subsystems with priority higher than
that of Ss. Let Bls denote the maximum blocking imposed
to a subsystem Ss, when it is blocked by lower-priority
subsystems.

Bls = max{Xj | Sj ∈ LPS(Ss)}, (10)

where LPS(Ss) is the set of subsystems with priority lower
than that of Ss.

e) Overrun with payback:

RBFs(t) = (Qs+Xs+Bls)+
∑

Sk∈HPS(s)

(⌈
t

Pk

⌉
(Qk) +Xk

)
.

(11)
f) Enhanced overrun:

RBFs(t) = (Qs+Xs+Bls)+
∑

Sk∈HPS(s)

(⌈ t+ Jk
Pk

⌉
(Qk)+Xk

)
.

(12)
Where Js = Xs and the schedulability analysis for this type
is

∀Ss, 0 < ∃t ≤ Ps −Xs, RBFs(t) ≤ t, (13)

For deferrable server, a higher priority server may execute
at the end of its period and then at the beginning of the next
period. To model such behavior a jitter (equal to Pk − (Ok +
Xk)) is added to the ceiling in equations 9, 11 and 12.

C. Implementation Overhead

In this section we will explain how to include the imple-
mentation overheads in the global schedulability analysis.

Looking at the implementation we can distinguish two
types of runtime overhead associated with the system tick:
(1) a repeated overhead every system tick independently if
it will release a new server or not, and (2) an overhead
which occurs whenever a server is activated and it includes
the overhead of scheduling, maybe context switch, budget
depletion after consuming the budget then another context
switch and scheduling and finally it includes the overrun
overhead.

(1) Is called fixed overhead (fo) and it is the result of
updating the system tick and perform some checking and
its value is always fixed. This overhead can be added to
equation 8. This equation assumes that the processor can
provide all CPU time to the servers (t in the right side of
the equation) now we assume that every system tick (st), a
part will be consumed by the operating system (fo) and then
instead of using t in the right side of equation 8, we can use
(1− fo/st)× t to include the fixed overhead. (st defaults to
1ms for our implementation.)

(2) Is called server overhead (so) and repeats periodically
for every server, i.e. with a period Pi. Since the server

overhead is executed by the kernel its not enough to model it as
extra execution demand from the server. Instead the overhead
should be modeled as a separate server So (one server So
corresponding to each real server Si) executing at a priority
higher that of any real server with parameters Po = Pi,
Qo = so, and Xo = 0.

The overhead-parameters are dependent on the number of
servers, tasks and priority levels, etc. and should be quantified
with static WCET-analysis which is beyond the scope of this
paper; however some small test cases reported in [8] the
measured worst-case for idling servers are fo = 32µs and
so = 74µs, and for deferrable servers they are fo = 32µs
and so = 85µs for three servers with total seven tasks.

VII. EXPERIMENTAL EVALUATION

In this section, we report the evaluation of behavior and
performance of the resource sharing in HSF implementa-
tion. All measurements are performed on the target platform
EVK1100 [9]. The AVR32UC3A0512 micro-controller runs at
the frequency of 12MHz and its tick interrupt handler at 1ms.

A. Behavior Testing

In this section we perform an experiment to test the behavior
of overrun in case of global resource sharing in HSF imple-
mentation. The experiment is performed to check the overrun
behavior in idling periodic server by means of a trace of the
execution. Two servers S1, and S2 are used in the system, plus
idle server is created. The servers used to test the system are
given in Table I.

Server S1 S2
Priority 2 1
Period 20 40
Budget 10 15

TABLE I
SERVERS USED TO TEST SYSTEM BEHAVIOR.

Note that higher number means higher priority. Task prop-
erties and their assignments to the servers is given in Table II.
T2 and T3 share a global resource. The execution time of
T2 is (3 + 3) that means a normal execution for initial 3 time
units and the critical section execution for the next 3 time units,
similarly T3 (10+8) executes for 10 time units before critical
section and executes for 8 time units within critical section.
The visualization of the executions of budget overrun without
payback (BO) and with payback (PO) for idling periodic server
are presented in Figure 5 and Figure 6 respectively.

Tasks T1 T2 T3
Servers S1 S1 S2
Priority 2 1 1
Period 15 20 60

Execution Time 3 (3 + 3) (10 + 9)

TABLE II
TASKS IN BOTH SERVERS.

Fig. 5. Trace of budget overrun without payback (BO) for Idling server

In the visualization, the arrow represents task arrival, a gray
rectangle means task execution. In Figure 5 at time 20, the high
priority server S1 is replenished, but its priority is not higher
than the global system ceiling, therefore, it cannot preempt
server S2 which is in the critical section. S2 depletes its budget
at time 25, but continues to executes in its critical section until
it unlocks the global resource at time 29. The execution of S1
is delayed by 9 time units.

Fig. 6. Trace of budget overrun with payback (PO) for Idling server

In case of overrun with payback, the overrun time is
deducted from the budget at the next server activation, as

shown in Figure 6. At time 40 the server S2 is replenished with
a reduced budget, while in case of overrun without payback
the server is always replenished with its full budget as obvious
from Figure 5.

B. Performance Measures

Here we report the performance measures of lock and
unlock functions for both global and local shared resources.

The execution time of functions to lock and unlock global
and local resources is presented in Table III. For each measure,
a total of 1000 values are computed. The minimum, maximum,
average and standard deviation on these values are calculated
and presented for both types of resource sharing.

Function Min. Max. Average St. Dev.
vGlobalResourceLock 21 21 21 0
vGlobalResourceUnlock 32 32 32 0
vLocalResourceLock 21 32 26.48 5.51
vLocalResourceUnlock 21 21 21 0

TABLE III
THE EXECUTION TIME (IN MICRO-SECONDS (µS)) OF GLOBAL AND

LOCAL LOCK AND UNLOCK FUNCTION.

VIII. CONCLUSIONS

In this paper, we have provided a hard real-time support
for a two-level HSF implementation in an open source real-
time operating system FreeRTOS. We have implemented the
periodic task model within the FreeRTOS kernel. We have
provided a very simple and easy implementation to execute a
legacy system in the HSF with the use of a single API. We have
added the SRP to the FreeRTOS for efficient resource sharing
by avoiding deadlocks. Further we implemented HSRP and
overrun mechanisms (BO, PO, EO) to share global resources
in a two-level HFS implementation. Under assumption of
nested locking, the overrun is bounded and is equal to the
longest resource-holding time. Hence, the temporal isolation
of HSF is subject to the bounded resource-holding time.

We have focused on doing minimal modifications in the
kernel to keep the implementation simple and keeping the orig-
inal FreeRTOS API intact. We have presented the design and
implementation details and have tested our implementations on
the EVK1100 board. We have included the overheads for local-
level and global-level resource sharing into the schedulability
analysis. In future we plan to integrate the virtual node concept
of ProCom model on-top of the presented HSF [6], [7].

REFERENCES

[1] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open
environment. In IEEE Real-Time Systems Symposium (RTSS), 1997.

[2] G. Lipari, P. Gai, M. Trimarchi, G. Guidi, and P. Ancilotti. A hierarchical
framework for component-based real-time systems. Component-Based
Software engineering, LNCS-3054(2004):209–216, May 2005.

[3] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed priority
pre-emptive systems. In IEEE Real-Time Systems Symposium (RTSS’06).

[4] Moris Behnam, Insik Shin, Thomas Nolte, and Mikael Sjödin. SIRAP:
A synchronization protocol for hierarchical resource sharing in real-time
open systems. In Proc. EMSOFT, pages 279–288, October 2007.

[5] FreeRTOS web-site. http://www.freertos.org/.

[6] J. Carlsson, J. Feljan, and M. Sjödin. Deployment Modelling and
Synthesis in a Component Model for Distributed Embedded Systems.
In 36th (SEAA), 2010.

[7] Rafia Inam, Jukka Mäki-Turja, Jan Carlson, and Mikael Sjödin. Using
temporal isolation to achieve predictable integration of real-time com-
ponents. In WiP Session of (ECRTS10), pages 17–20, 2010.

[8] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, S. M. H. Ashjaei, and
Sara Afshar. Support for hierarchical scheduling in FreeRTOS. In
To appear in the 16th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA11), September 2011.

[9] ATMEL EVK1100 product page. http://www.atmel.com/dyn/Products/.
[10] Daeyoung Kim, Yann-Hang Lee, and M. Younis. Spirit-ukernel for

strongly partitione real-time systems. In Proceedings (RTCSA00), 2000.
[11] T. Baker. Stack-based scheduling of real-time processes. Journal of

Real-Time Systems, 3(1):67–99, 1991.
[12] S. Saewong and R. Rajkumar. Hierarchical reservation support in

resource kernels. In IEEE (RTSS01), 2001.
[13] G. Buttazzo and P. Gai. Efficient edf implementation for small embedded

systems. In International Workshop on (OSPERT06), 2006.
[14] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:

An approach to real-time synchronization. Journal of IEEE Transactions
on Computers, 39(9):1175–1185, 1990.

[15] N. Fisher, M. Bertogna, and S. Baruah. The design of an edf-scheduled
resource-sharing open environment. In IEEE (RTSS07).

[16] Moris Behnam, Thomas Nolte, Mikael Sjödin, and Insik Shin. Overrun
Methods and Resource Holding Times for Hierarchical Scheduling of
Semi-Independent Real-Time Systems. IEEE TII, 6(1), February 2010.

[17] Moris Behnam, Thomas Nolte, Insik Shin, Mikael Åsberg, and Rein-
der J. Bril. Towards hierarchical scheduling on top of vxworks. In
Proceedings of the Fourth International Workshop (OSPERT’08).

[18] Mikael Åsberg, Moris Behnam, Thomas Nolte, and Reinder J. Bril.
Implementation of overrun and skipping in vxworks. In Proceedings
of the 6th International Workshop (OSPERT10), 2010.

[19] Mike Holenderski, Wim Cools, Reinder J. Bril, and J. J. Lukkien. Ex-
tending an Open-source Real-time Operating System with Hierarchical
Scheduling. Technical Report, Eindhoven University, 2010.

[20] M. Holenderski, W. Cools, Reinder J. Bril, and J. J. Lukkien. Multiplex-
ing Real-time Timed Events. In Work in Progress session of (ETFA09).

[21] M.M.H.P. van den Heuvel, M. Holenderski, W. Cools, R. J. Bril, and
J. J. Lukkien. Virtual Timers in Hierarchical Real-time Systems. In
Work in Progress Session of (RTSS09), December 2009.

[22] M.M.H.P. van den Heuvel, M. Holenderski, W. Cools, R. J. Bril, and J. J.
Lukkien. Extending an HSF-enabled Open-Source Rel-Time Operating
System with Resource sharing. In (OSPERT10), 2010.

[23] Microchip web-site.
[24] EE TIMES web-site. http://www.eetimes.com/design/embedded/4008920/

The-results-for-2010-are-in-.
[25] I. Shin and I. Lee. Periodic resource model for compositional real-time

guarantees. In IEEE (RTSS03), pages 2–13, 2003.

APPENDIX

A synopsis of the application program interface to imple-
ment resource sharing in HSF implementation is presented
below. The names of these API are self-explanatory.

1) xLocalResourcehandle xLocalResourceCreate(uxCeiling)

2) void vLocalResourceDestroy(xLocalResourcehandle)

3) void vLocalResourceLock(xLocalResourcehandle)

4) void vLocalResourceUnLock(xLocalResourcehandle)

5) xGlobalResourcehandle xGlobalResourceCreate

(uxCeiling)

6) void vGlobalResourceDestroy(xGlobalResourcehandle)

7) void vGlobalResourceLock(xGlobalResourcehandle)

8) void vGlobalResourceUnLock(xGlobalResourcehandle)

