
An Architecture-Based Verification Technique

for AADL Specifications�

Andreas Johnsen, Paul Pettersson, and Kristina Lundqvist

School of Innovation, Design and Engineering
Mälardalen University

Väster̊as, Sweden
{andreas.johnsen,paul.pettersson,kristina.lundqvist}@mdh.se

Abstract. Quality assurance processes of software-intensive systems are
an increasing challenge as the complexity of these systems dramatically
increases. The use of Architecture Description Languages (ADLs) pro-
vide an important basis for evaluation. The Architecture Analysis and
Design Language (AADL) is an ADL developed for designing software-
intensive systems. In this paper, we propose an architecture-based veri-
fication technique covering the entire development process by adapting
a combination of model-checking and model-based testing approaches
to AADL specifications. The technique reveals inconsistencies of early
design decisions and ensures a system’s conformity with its AADL spec-
ification. The objective and criteria (test-selection) of the verification
technique is derived from traditional integration testing.

1 Introduction

The architecture design phase is one of the most critical phases in the develop-
ment process of software-intensive systems. The architecture specification is the
initial development artefact representing the earliest design decisions made on
the intended system’s structure, functional properties and quality attributes (also
known as non-functional properties or extra-functional properties). Design deci-
sions involve the allocation of functional properties – which are closely related to
a system’s behavior, capabilities and services – to certain structures to achieve
certain quality attributes. Furthermore, the architecture specification is used as a
mutual communication blueprint among stakeholders and guides the implementa-
tion phase of the system. Consequently, the developed system will heavily depend
on the architecture specification, which it ideally should conform to.

The design decisions established in the architecture design phase, or the
absence of some, may impose incorrect properties of the system and thereby cre-
ating challenges in quality assurance processes. These incorrect structural, func-
tional as well as non-functional properties may go unnoticed until later phases
of the development process where a correction is known to be significantly more
� This work was partially supported by the Swedish Research Council (VR), and

Mälardalen Real-Time Research Centre (MRTC)/Mälardalen University.

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 105–113, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

106 A. Johnsen, P. Pettersson, and K. Lundqvist

costly compared to a correction in the architecture design phase. Hence, evaluat-
ing the architecture specification is crucial in order to detect possible faults and
inconsistencies before the development process progresses, reducing a significant
amount of cost and time. Furthermore, in order to preserve the valuable effort
made at the architecture design phase, an implementation of the system must
be implemented in conformance with the architecture specification. The verifica-
tion techniques used to tackle these challenges, i.e. 1) to evaluate an architecture
specification and 2) to test the conformance of an implementation with respect to
its architecture specification, rely on what kind of properties and their relations
that may be described with the Architecture Description Language (ADL) used
to specify the system’s architecture.

Software-intensive systems are systems where software interacts with sensors,
actuators, devices, other systems and people. Examples of such systems are em-
bedded systems for aerospace, automotive and telecommunications. What these
systems have in common is that they often are operating in dynamic, time- and
safety-critical environments. One ADL that has been developed for this kind of
systems, is the Architecture Analysis and Design Language (AADL) [1], which is
widely used both within industry and the research community. In this paper we
propose an architecture-based verification technique, for software-intensive sys-
tems specified by AADL, addressing challenge 1) and 2) mentioned above. The
technique is based on formal constructs enabling automation of the verification
activities where challenge 1) and 2) are tackled by adapting model-checking
and model-based testing approaches to an architectural perspective. The ob-
jective of the technique is to evaluate the integration of components at both
the specification-level and the implementation-level. Automated simulation of
AADL specifications is not feasible directly from the artefact since AADL lacks
formal semantics and implemented semantics. Formal semantics of a subset of
AADL and an implementation thereof can be found in [2].

The rest of this paper presents an overview of AADL in Section 2. The
architecture-based verification technique is introduced in Section 3, defined ver-
ification criteria are presented in Section 4, followed by concluding remarks in
Section 5.

2 Preliminaries

AADL [3] was released and published as a Society of Automotive Engineers
(SAE) Standard AS5506 [1] in 2004. It is a textual and graphical language used
to model, specify and analyze software- and hardware-architectures of real-time
embedded systems. The AADL language is based on a component-connector
paradigm that describes components, component interfaces and the interactions
(connections) among components. Hence, the language captures functional prop-
erties of the system, such as input and output through component interfaces,
as well as structural properties through configurations of components and con-
nectors. Furthermore, means to describe quality attributes, such as timing and
reliability, are also provided. AADL defines ten types of component abstractions
which can be divided into three groups:

An Architecture-Based Verification Technique for AADL Specifications 107

– Application software: process, thread, thread group, data and subpro-
gram

– Hardware/Execution platform: processor, bus, memory and device
– Composite: system

3 The Architecture-Based Verification Technique

This section presents an overview of the automatable verification technique for
AADL specifications. The technique comprises both evaluation of specifications
and the systems’ conformity to them. It is depicted as a flowchart in Figure 1,
where initially a system’s intended architecture is specified using AADL. Such
an artefact is commonly specified through a translation from something cog-
nitive, an idea, a need or an informal/semi-formal requirement specification,
but since it is informal, it is not possible to formally prove that the AADL
specification correctly conforms to the informal one it is derived from [4]. Con-
sequently, making this type of evaluation far from possible to automate and
thus is out of scope in this technique. What is possible though is to formally
reason about a system solely through the AADL specification, to prove its con-
sistency and completeness, and later use it as a test model to perform model-
based testing on. The different steps of the verification technique are as follows:

Fig. 1. Flowchart of the technique

The first step is to use the map-
pings/transformation rules (described
in [2]) to transform an AADL spec-
ification to a timed automata model
upon which automated formal verifi-
cation can be performed.

The second step is to apply
the architecture-based verification
criteria (section 4) to the AADL
specification. They define the test
selection, i.e., what samples of the
specification to evaluate and how they
are extracted, and the coverage re-
quirement, i.e., how many samples
to evaluate. The samples generated
from the criteria are sequences of
component-integrations in terms of
control-flows and data-flows.

Sequences are transformed, in the third step, to the corresponding timed au-
tomata paths through a structural mapping between them.

The outcome, a set of timed automata paths are required in the fourth step
to be fully simulated by the Uppaal model-checker, by using temporal logics, in
order to satisfy the criteria. The verdict from the simulations reveals the con-
sistency and completeness of the AADL specification, where a correction of the
specification should be made if it is shown inconsistent or incomplete.

108 A. Johnsen, P. Pettersson, and K. Lundqvist

The paths are later used in the fifth step to generate test cases to the imple-
mentation (model-based testing), to test the conformance of the implementation
with respect to the architecture specification. Test paths are transformed to
concrete test cases through a mapping between the architecture specification
and its implementation (we assume identical name spaces between the AADL
specification and the system).

4 AADL Verification Criteria

Due to features of an ADL, the primary focus of evaluation at this level is the in-
tegration of components as described by Eickelmann and Richardson [5] in their
work about architecture-based defect prevention and detection. The idea of tak-
ing traditional data-flow and control-flow analysis criteria to the architectural-
level has been proposed by Jin and Offut in [6], where explicit data-flow and
control-flow properties through system architectures are defined. Based on these
properties, they define general architecture-based testing criteria applicable to
any ADL treating components and connectors as separate entities interconnected
through their interfaces. Since AADL connectors do not have interfaces, and are
dependent on the interfaces of the components they connect, the defined criteria
are not applicable to AADL specifications. From the definition of the general cri-
teria defined by Jin and Offut, we define architecture-based verification criteria
specific to AADL based on the possible bindings of data-flow and control-flow
properties (leading to sequences) described by AADL.

4.1 Verification Objectives

AADL specifications have explicit control-flows and data-flows through the ar-
chitecture described by the informal semantics of AADL. These flows are de-
pendent on how components transfer control and data through their interfaces
(AADL component features). The possible interactions among components are
represented by, and restricted to, four different types of connections: port con-
nections, data access connections, subprogram calls and parameter connections.

Component abstractions within the software group, except data components,
may have port interfaces for directional (in port, out port or inout port) interac-
tions of typed data and events. A port can either be a data port (for transfer of
data), a data event port (for transfer of data and associated control) or an event
port (for transfer of control). Port interfaces can be connected through Port
connections, which describe the transfer of control and data among/through
concurrently executing thread components, or between a thread component and
device component (threads and subprograms are used to represent functionality
executed with or by device components). The flow of data or control through a
port connection is determined by the directions of the connected ports.

Data components representing static data sharable among components are not
accessible though ports, they are accessible through data access interfaces that
may be declared with components of the software group. Data access connections
describe the transfer of data where the data flow is determined by the value (read
or write) of an Access Right property associated with the connection.

An Architecture-Based Verification Technique for AADL Specifications 109

Subprogram components are not declared as subcomponents, instead they are
called from thread or subprogram components through explicit subprogram calls
declarations, expressing a flow of control from the calling component to the called
subprogram. Call declarations may implicitly describe flows of data, where data
can be provided to or received from a subprogram through parameter or data
access connections. Parameters are interfaces of subprograms, similarly to data
ports, for directional data interactions, where a parameter can be connected to
a data port or another parameter through parameter connections describing the
transfer of data. The data flow through a parameter connection is determined
by the directions of the connected interfaces.

The runtime configuration of subcomponents and their interactions within a
component may change if it is specified with modes. For each mode, it is pos-
sible to set the active components and connections, mode-specific subprogram
calls and mode-specific properties. The transition from one mode to another is
triggered by events derived from event ports, which is specified in a mode state
machine. These modes can also be used to describe the internal logical execu-
tion (functional behavior) of thread and subprogram components. In addition to
modes, a behavioral annex (BA) [7] extending the expressiveness of mode state
machines has been developed to specify logical execution through automata syn-
tactically similar to mode state machines. Thereby, it is possible to refine logical
execution through state variables, states and transitions operating on a com-
ponent’s interfaces. Transitions can be specified with guards, such as boolean
expressions and events, as well as actions, such as assignments and subprogram
calls. Consequently, the control- and data-flows specified with the four different
connections (described above) are refined if a behavioral model operates on the
interfaces the connections connect.

The four different types of connections specify the architectural control-flows
and data-flows of an AADL specification. Architectural control-flows are the
different execution orders of architectural elements whereas architectural data-
flows are the relations between definitions of data elements in a source component
and uses of the corresponding data elements in a target component. These flows
may be dependent on mode state machines, refined by the BA and constrained by
associated properties where conflicts may occur between these constructs. The
objective of the verification criteria is to ensure consistency and completeness of
and between the flows, their refinements and their constraints through analysis
of control-flow reachability, data-flow reachability and concurrency among flows:

Control-flow reachability: Every architectural element in an execution order
should be able to reach the subsequent element to be executed in the order.
The subsequent element should be reached without conflicting properties (con-
straints) of the execution order.
Data-flow reachability: Every data element should be able to reach its target
component, where the data is used, from its source component, where the data is
defined. The target component should be reached without conflicting properties
of the data flow.

110 A. Johnsen, P. Pettersson, and K. Lundqvist

Concurrency among flows: Analysis of single interactions of data or control
is not enough since there are implicit relations between them that may cause
deadlocks in the system. The relations between the flows should not prevent
control-flow reachability or data-flow reachability, and where the system should
be free from deadlocks.

4.2 Verification Criteria

In order to extract control-flows and data-flows from an AADL specification, we
define the atomic bindings of control and data that generates the flows, where
we refer these atomic bindings to AADL relations. The relations are used to
define integration verification sequences of control-flow and data-flow upon the
verification criteria are defined.
In the definitions of AADL relations, an AADL Specification is represented as a
5-tuple:

AADLSPEC = 〈N, I, C, BAC, PAC〉
Where:
N is the set of Components = {n1, n2, ..., nn}

I is the set of component interfaces = {nx.i | nx.i is a port, data acess,
subprogram or parameter interface of nx and nx ∈ N}

C is the set of Connections = {c(s, d) | c(s, d) is a port-, a data access-, a
subprogram call- or a parameter-connection connecting the source interface
s ∈ I to the destination interface d ∈ I}

BAC is the set of BA Connections = {bac(s, d) | bac(s, d) is an automaton
path and the initial location in the path or a transition from the initial location
is labeled with s ∈ I and the last location in the path or a transition to the
last location is labeled with d ∈ I}

PAC is the set of Property Associated Constructs = {pac | pac ∈ I ∪ C ∪
BAC and is constrained by at least one associated property}

Based on this representation of an AADL specification, the defined relations
are:

1. Connection Transfer Relation: defines the data or control transfer that
is generated between two interfaces connected trough a connection.
CTR is the set of Connection Transfer Relations where CTR ⊆ I × I
such that 〈nx.i1, ny.i2〉 ∈ CTR iff c(nx.i1, ny.i2) ∈ C

2. Connection Property Relation: defines the constrained data or con-
trol transfer that is generated between two interfaces connected trough a
connection.

An Architecture-Based Verification Technique for AADL Specifications 111

CPR is the set of Connection Property Relations where CPR ⊆ I × I
such that 〈nx.i1, ny.i2〉 ∈ CPR iff c(nx.i1, ny.i2) ∈ C and nx.i1or ny.i2
or c(nx.i1, ny.i2) ∈ PAC

3. Component Internal Relation: defines the (possibly constrained) data
or control transfer that is generated between two interfaces of a component
that are connected through a connection or a BA.
CIR is the set of Component Internal Relations where CIR ⊆ I × I
such that 〈n1.i1, n1.i2〉 ∈ CIR iff 〈n1.i1, n1.i2〉 ∈ CTR ∪ CPR or
〈n1.i1, n1.i2〉 ∈ BAC

4. Direct Component to Component Relation: defines the (possibly con-
strained) data or control transfer that is generated between two components
that are directly connected through a connection.
DCCR is the set of Direct Component to Component Relations where
DCCR ⊆ I × I such that 〈n1.i1, n2.i2〉 ∈ DCCR iff 〈n1.i1, n2.i2〉 ∈ CTR ∪
CPR

5. Indirect Component to Component Relation: defines the (possibly
constrained) data or control transfer that is generated between two com-
ponents that are indirectly connected through one or several component(s).
The relation is recursive in order to cover any number of interconnected
components. The base case is:
ICCR is the set of Indirect Component to Component Relations where
ICCR ⊆ I × I × I∗ such that 〈n1.i1, n3.i4, t〉 ∈ ICCR iff 〈n1.i1, n2.i2〉 ∈
DCCR and 〈n2.i2, n2.i3〉 ∈ CIR and 〈n2.i3, n3.i4〉 ∈ DCCR and
t = 〈〈n1.i1, n2.i2〉, 〈n2.i2, n2.i3〉, 〈n2.i3, n3.i4〉〉
The recursive definition is:
ICCR is the set of Indirect Component to Component Relations where
ICCR ⊆ I × I × I∗ such that 〈n1.i1, nx.iy, t〉 ∈ ICCR iff 〈n1.i1, n2.i2〉 ∈
DCCR and 〈n2.i2, n2.i3〉 ∈ CIR and 〈n2.i3, nx.iy, t′〉 ∈ ICCR and
t = 〈〈n1.i1, n2.i2〉, 〈n2.i2, n2.i3〉, 〈t′〉〉

From these AADL relations three verification sequences are derived, which are
paths of the architecture specification:

1. Component Internal Transfer Path: If there exists a 〈n1.i1, n1.i2〉 ∈
CIR, there exists a path from n1.i1 to n1.i2. The path is constrained if
〈n1.i1, n1.i2〉
∈ CPR.

2. Direct Component to Component Path: If there exists a 〈n1.i1, n2.i2〉 ∈
DCCR, there exists a path from n1.i1 to n2.i2. The path is constrained if
〈n1.i1, n2.i2〉 ∈ CPR.

3. Indirect Component to Component Path: If there exists a
〈n1.i1, nx.iy, t〉 ∈ ICCR, there exist a path from n1.i1 to nx.iy via t. The
path is constrained if any pair in t ∈ CPR.

The AADL specification is consistent if each path is free from contradictory be-
havior, that is, each path does not contradict Control-flow reachability, Data-flow
reachability and Concurrency among flows. The AADL specification is complete

112 A. Johnsen, P. Pettersson, and K. Lundqvist

if each path not yielding an end-to-end flow (typically a sensor-to-actuator flow)
is subsumed in another path.

Upon the integration verification sequences, we define the three architecture-
based verification criteria, which specifies requirements for a set of simulations
or test cases to be adequate. Within following definitions, ”S” is either a set of
simulations of an AADL specification or a set of test cases for an implementation
implemented to conform an AADL specification.

– Component Internal Coverage: requires that S covers all Component
Internal Transfer Paths.

– Direct Component to Component Coverage: requires that S covers all
Direct Component to Component Paths.

– Indirect Component to Component Coverage: requires that S covers
all Indirect Component to Component Paths.

5 Conclusion

The AADL language is a formalism for development of safety-critical software-
intensive systems. In this paper we have presented a verification technique cov-
ering the entire development process of a system specified with this formalism.
The technique evaluates the consistency and completeness of an AADL specifi-
cation and tests a systems’ conformity to it. The entire development process is
covered by adapting a combination of model-checking and model-based testing
approaches to an architectural perspective. The adaption is performed through
the definition of AADL-specific verification criteria. We are currently validat-
ing the technique against a system developed by a major vehicle manufacturer.
The next step is to enrich the verification criteria with further details as well as
formally define consistency and completeness of AADL specifications.

References

1. As-2 Embedded Computing Systems Committee SAE. Architecture Analysis & De-
sign Language (AADL). SAE Standards no. AS5506 (November 2004)

2. Johnsen, A., Pettersson, P., Lundqvist, K.: An Architecture-based Verification Tech-
nique for AADL Specifications. Technical Report ISSN 1404-3041 ISRN MDH-
MRTC-253/2011-1-SE, Mälardalen University (May 2011)

3. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The Architecture Analysis and Design Lan-
guage (AADL): An Introduction. Technical report, Technical report (2006)

4. Stocks, P., Carrington, D.: A framework for specification-based testing. IEEE Trans.
Softw. Eng. 22(11), 777–793 (1996)

5. Eickelmann, N.S., Richardson, D.J.: What makes one software architecture more
testable than another? In: ISAW 1996: Joint Proceedings of the Second Interna-
tional Software Architecture Workshop (ISAW-2) and International Workshop on
Multiple Perspectives in Software Development (Viewpoints 1996) on SIGSOFT
1996 Workshops, pp. 65–67. ACM, New York (1996)

An Architecture-Based Verification Technique for AADL Specifications 113

6. Jin, Z., Offutt, J.: Deriving Tests From Software Architectures. In: ISSRE 2001: Pro-
ceedings of the 12th International Symposium on Software Reliability Engineering,
p. 308. IEEE Computer Society Press, Washington, DC, USA (2001)

7. Franca, R.B., Bodeveix, J.-P., Filali, M., Rolland, J.-F., Chemouil, D., Thomas,
D.: The AADL behaviour annex – experiments and roadmap. In: ICECCS 2007:
Proceedings of the 12th IEEE International Conference on Engineering Complex
Computer Systems, pp. 377–382. IEEE Computer Society Press, Washington, DC,
USA (2007)

	An Architecture-Based Verification Technique for AADL Specifications
	Introduction
	Preliminaries
	The Architecture-Based Verification Technique
	AADL Verification Criteria
	Verification Objectives
	Verification Criteria

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

