
Towards Modeling and Holistic Timing Analysis of Industrial Component-Based

DRE Systems

Saad Mubeen∗, Jukka Mäki-Turja∗† and Mikael Sjödin∗

∗ Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Västerås, Sweden
† Arcticus Systems, Järfälla, Sweden

{saad.mubeen, jukka.maki-turja, mikael.sjodin}@mdh.se

Abstract—We propose a model- and component-based ap-
proach for communications-oriented development of Dis-
tributed Real-time Embedded (DRE) systems with a support
for legacy communication protocols, legacy nodes and Holistic
Response Time Analysis (HRTA). Because an end-to-end timing
model should be available to perform HRTA, we also present
a method to extract such models from component-based DRE
systems. Moreover, we extend the existing analysis of Controller
Area Network to support mixed messages in the system with
priority- and FIFO-queued nodes. A mixed message represents
a common transmission pattern implemented by some high-
level protocols used in the industry. We also provide a proof of
concept by extending the existing industrial model, i.e., Rubus
Component Model, implementing the HRTA along with the
extended analysis in an industrial tool suite, i.e., Rubus-ICE,
and conducting an automotive-application case study.

Keywords-Distributed real time embedded systems; DRE
systems; holistic response-time analysis; component-based de-
velopment; component model; timing model; real-time analysis.

I. INTRODUCTION

In this paper, we present the development and implemen-

tation of new modeling and timing analysis techniques to

support the state-of-the-practice development of component-

based Distributed Real-time Embedded (DRE) systems.

A. Background

Embedded systems are found in almost all electronic

products around us. Their applications span over many

domains including automotive, aerospace, consumer elec-

tronics, biomedical, military, business, industrial control,

etc. It is estimated that about 10 billion processors are

manufactured every year. Out of which, approximately 99%

are embedded processors while only 1% find their way to the

general-purpose computers such as PCs and laptops [1], [2].

Not only the number of embedded processors has increased

in the past few years, but also the software which runs

on them (embedded software) has drastically increased in

size and complexity. In automotive domain, e.g., a modern

premium car contains nearly 100 million lines of code that

run on about 70 to 100 embedded processors [3].

Often, an embedded system needs to interact with its

environment in a timely manner, i.e., the embedded system

is a real-time system. For such a system, the desired and

correct output is one which is logically correct as well as

delivered within a specified time (e.g., a deadline). One way

to classify a real-time system is as being either soft or hard.

In soft real-time systems, infrequent deadline misses can be

tolerated. For example, electronic window control system in

a car is a soft real-time system. On the other hand, missing a

deadline in a hard real-time system can result in the system

failure. In hard real-time systems, a logically correct but late

response is considered as bad as logically incorrect response.

The electronic engine control system in a car is an example

of a hard real-time system. Many hard real-time systems

are also safety critical which means that the system failure

can result in catastrophic consequences such as endangering

human life or the environment. The airbag control system in

a car is an example of a safety-critical hard real-time system.

In order to capture, e.g., requirements early during the

development, handle the complexity of embedded software,

lower the development cost, reduce the time-to-market and

time-to-test, allow reusability, and support modeling at

higher level of abstraction, the research community proposed

model- and component-based development of embedded

systems by employing the principles of Model-Based soft-

ware Engineering (MBE) and Component-Based Software

Engineering (CBSE) [4], [5]. MBE provides the means to

use models throughout the process of system development.

It uses models to describe functions, structures and other

design artifacts. Whereas, CBSE supports the development

of large software systems by integration of software com-

ponents. It raises the level of abstraction for software devel-

opment and aims to reuse software components and their

architectures. There is a great interest for bringing these

techniques in the embedded systems industry [5], [6].

In DRE systems, the functionality is distributed over many

nodes (processors) that communicate with each other via

one or more networks. The software development of DRE

systems is much more complex compared to uniprocessor

embedded real-time systems because of various reasons

including the distribution of functionality and real-time

requirements on network communications. When MBE and

CBSE are used for the development of DRE systems, model-

ing of communication infrastructure arises as a challenge. In

the industry, DRE systems are built often using legacy (sub)

systems (i.e., previously developed) which use predefined

2012 19th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4664-3/12 $26.00 © 2012 IEEE

DOI 10.1109/ECBS.2012.46

283

2012 IEEE 19th International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4664-3/12 $26.00 © 2012 IEEE

DOI 10.1109/ECBS.2012.46

283

rules for communication. DRE systems are often expected to

use legacy protocols for network communication. A compo-

nent technology for the development of DRE systems should

abstract the application software from the communication

infrastructure and support the modeling and analysis of

legacy communications and legacy systems.

The need for safety criticality in many DRE systems

requires evidence that each action by the system will be

taken at a time that is appropriate to its environment. It

is important to make accurate predictions of the timing

behavior of such systems. In order to provide evidence that

each action in the system will meet its deadline, a priori

analysis techniques such as schedulability analysis have

been developed by the research community. The Holistic

Response-Time Analysis (HRTA) [7] is a schedulability

analysis technique to calculate upper bounds on the response

times of event chains that are distributed over more than one

node in a DRE system. The end-to-end timing model of a

DRE system should be available to perform HRTA. Ideally, a

component technology for the development of DRE systems

should support automatic extraction of such models.

There are a number of real-time network protocols used

in DRE systems. Among them, Controller Area Network

(CAN) [8] is one of the most frequently used especially in

automotive domain. It has been standardized by the Interna-

tional Organization for Standardization as ISO 11898-1 [9].

According to CAN in Automation (CiA) [10], the number

of CAN enabled controllers sold in 2011 are estimated to be

850 million. In total, more than two billion CAN controllers

have been sold until today. Out of this huge number,

approximately 80% CAN controllers have been used in

automotive domain. CAN is a multi-master, event-triggered,

serial communication bus protocol supporting bus speeds of

up to 1 mega bits per second. In this paper, we will focus

only on CAN and some of its high-level protocols which

are developed for various industrial applications. These

include CAN Application Layer (CAL) [11], CANopen [12],

Hägglunds Controller Area Network (HCAN) [13], CAN for

Military Land Systems domain (MilCAN) [14], etc.

B. Paper Layout

The rest of the paper is organized as follows. In Section

II, we formulate the research problem. Section III describes

the Rubus concept. In Section IV, we present the related

work. Section V discusses the paper contributions. Finally,

Section VI concludes the paper.

II. PROBLEM FORMULATION

The model- and component-based development has

emerged as an attractive option for the development of

software for DRE systems. The majority of existing model-

and component-based development approaches allow for

structural and functional modeling. They do not support

execution modeling which is concerned with the modeling

of run-time properties and/or requirements (e.g., end-to-end

deadlines, jitter, etc.) of software functions. The modeling

of DRE systems should extend down to the execution level

to allow precise control of resource utilization and that

timing requirements are not violated when the system is

executed. However, providing such modeling support for

DRE systems is very challenging because the functionality in

DRE systems can be realized with more than one execution

model, e.g., separate execution models for the nodes and

networks. Today, one of the main focus points during the

development of DRE systems in the industry is to model

and express timing related information and perform timing

analysis [15].

One way to deal with these challenges is to use a

component technology that allows model- and component-

based development of DRE systems with the support for

modeling, analyzing, predicting and modifying the execution

behavior. Such a component technology should complement

structural and functional modeling with the modeling of

execution requirements at an abstraction level close to the

functional specification while abstracting the implementation

details. The component technology should allow the expres-

sion of timing related information during the development.

Moreover, it should facilitate the identification of timing

errors early during the development by easily rendering the

modeled DRE applications for end-to-end timing analysis.

However, building such a component technology to sup-

port the state-of-the-practice development of DRE systems

raises many challenges. One of the main reasons behind

these challenges is that the development process of DRE

systems in academia and industry may be very different

from each other. In academia, the development process often

starts with discussions about models and functions. The

models are assumed to be platform independent. Further, it

is assumed that the models and functions will be deployed

on specific platforms at a later stage. However, this way of

development for DRE systems is often not practiced in the

industry, especially in automotive or vehicle domain. The

traditional process for the development of DRE systems

in the industry starts with designing the bus (or network)

communication. The infrastructure for the DRE system to be

developed is already known. In the early stage of industrial

development process of DRE systems, usually the focus is

on finding the answers to the questions as follows. How

many busses will be there in the system? Which nodes

will be connected to which bus? How many messages will

be there in the system? Which messages will be sent by

each node? After finding the answers to these questions, the

focus is shifted towards the development of functions. Thus,

a communication-oriented development process is used for

DRE systems and constitutes the state of the practice.

In order to provide a model- and component-based ap-

proach to support the state-of-the-practice development of

DRE systems, we will target the challenges concerned

with the modeling of real-time network communication and

284284

support for holistic timing analysis. One such challenge is

to support the modeling of legacy network communication

and allow the use of legacy nodes in component-based DRE

systems. In order to ensure that the DRE system will behave

in a timely manner during its execution, we need to analyze

tasks, messages and event chains in distributed transactions

and predict the end-to-end delays. The component technol-

ogy for the industrial development of DRE systems should

support state-of-the-art real-time analysis such as HRTA.

The supported HRTA should be able to incorporate the

analysis of common message transmission patterns that are

implemented by the real-time network protocols used in the

industry. In order to perform HRTA, the end-to-end timing

model of DRE systems should be available. The extraction

of end-to-end timing model from component-based DRE

systems is another challenge that we will target.

The research problem addressed in this paper can be

formulated as follows.

Investigate how to provide a model- and

component-based approach for communications-

oriented development of DRE systems with a sup-

port for legacy communication protocols, legacy

nodes and holistic response-time analysis.

We further refine this problem to formulate two questions

that we will investigate in this paper.

1) How to model legacy network communication and

allow the use of legacy nodes for the state-of-the-

practice development processes for component-based

DRE systems?

2) How to extract end-to-end timing models from

component-based DRE systems that are built using the

state-of-the-practice development processes?

III. THE RUBUS CONCEPT

Rubus is a collection of methods and tools for model-

and component-based development of dependable embed-

ded real-time systems. Rubus is developed by Arcticus

Systems [16] in close collaboration with several academic

and industrial partners. Rubus is today mainly used for

development of control functionality in vehicles. The Rubus

concept is based around the Rubus Component Model

(RCM) [17] and its development environment Rubus-ICE,

which includes modeling tools, code generators, analysis

tools and run-time infrastructure. The overall goal of Rubus

is to be aggressively resource efficient and to provide means

for developing predictable and analyzable control functions

in resource-constrained embedded systems.

A. The Rubus Component Model (RCM)

RCM expresses the infrastructure for software functions,

i.e., the interaction between the software functions in terms

of data and control flow separately. The control flow is

expressed by triggering objects such as internal periodic

clocks, interrupts, internal and external events. One im-

portant principle in RCM is to separate functional code

and infrastructure implementing the execution model, i.e.,

explicit synchronization or data access should all be visible

at the modeling level.

In RCM, the basic component is called a Software Circuit

(SWC). It is the lowest-level hierarchical element in RCM

and its purpose is to encapsulate basic functions. The SWCs

interact with each other through the use of ports. An SWC

can be seen as a type, or a class, that can be instantiated

an arbitrary number of times. By separating functional

code and the infrastructure, RCM facilitates analysis and

reuse of components in different contexts (an SWC has

no knowledge how it connects to other components). The

execution semantics of software components (functions) is

simply: upon triggering, read data on data in-ports; execute

the function; write data on data out-ports; and activate the

output trigger. Furthermore, the component model has a

possibility to encapsulate SWCs into software assemblies

enabling the designer to construct the system at different

hierarchical levels.

B. The Rubus Code Generator and Run-Time System

From the resulting architecture of connected SWCs, func-

tions are mapped to run-time entities; tasks. Each external

event trigger defines a task and SWCs connected through

the chain of triggered SWCs (triggering chain) are allocated

to the corresponding task. All clock triggered “chains” are

allocated to an automatically generated static schedule that

fulfills the precedence order and temporal requirements.

Within trigger chains, inter-SWC communication is ag-

gressively optimized to use the most efficient means of

communication possible for each communication link. For

example, there is no use of semaphores in point-to-point

communications within a trigger chain. Another example is

sharing of memory buffers between ports when there are no

overlapping activation periods.

Allocation of SWCs to tasks and construction of schedule

can be submitted to different optimization criterion to min-

imize, e.g., response times for different types of tasks, or

memory usage. The run-time system executes all tasks on a

shared stack, thus eliminating the need for static allocation

of stack memory to each individual task.

C. The Rubus Analysis Framework (RAF)

The Rubus model allows expressing real-time require-

ments and properties at the architectural level. For example,

it is possible to declare real-time requirements from a gen-

erated event and an arbitrary output trigger along the trigger

chain. For this purpose, the designer has to express real-

time properties of SWCs, such as worst-case execution times

and stack usage. The scheduler will take these real-time

constraints into consideration when producing a schedule.

For event-triggered tasks, response-time calculations are

performed and compared to the requirements. The analysis

285285

supported by the model includes distributed end-to-end

response time analysis and shared stack analysis.

D. The Rubus Simulation Model

The Rubus SIMulation Model (RSIM) and accompanying

tools enable simulation and testing of applications modeled

with RCM at various hierarchical levels such as: an SWC

or a function, a hierarchical RCM component structure as

an Assembly (ASM), a complete Electronic Control Unit

(ECU) application (may require I/O simulation), a set of

ECU’s, a distributed system (may require I/O simulation of

each ECU), etc. To verify the logical functionality of these

objects, RSIM supports testing in an automatic generated

framework based on the Rubus OS Simulator.

E. Plug-in Framework in Rubus-ICE

The plug-in framework in Rubus-ICE [18] facilitates the

implementation of state-of-the-art research results in an

isolation (without needing Rubus tools) and their integration

as add-on plug-ins (as binaries or source code) with the

integrated development environment. A plug-in is interfaced

with the builder tool. The plug-ins are executed sequentially

which means that the next plug-in can execute only when the

previous plug-in has run to completion. Hence, each plug-in

reads required attributes as an input, runs to completion and

finally writes the results to the Intermediate Compiled Com-

ponent Model (ICCM) file. An Application Programming

Interface (API) defines the services required and provided

by a plug-in. Each plug-in specifies the supported system

model, required inputs, provided outputs, error handling

mechanisms and a user interface. A sequence of main

steps in Rubus-ICE, from modeling an application to the

generation of code, is depicted in Figure 1. The component-

based design of an application is modeled in the Rubus

Designer tool. Then the compiler compiles the design model

into the ICCM file. After that the builder runs a set of plug-

ins sequentially. Finally, a coder tool generates the code.

Designer Compiler Builder Coder

XML XML

Plug-ins

ICCM Code

Figure 1. Sequence of steps from design to code generation in Rubus-ICE

IV. RELATED WORK

A. Component Based Development

There exist many component models for the development

of distributed systems, e.g., DCOM [19], CORBA [20],

EJB [21], etc. These models in their original form are not

suitable for the development of resource-constrained DRE

systems because they require excessive amount of computing

resources, have large memory foot print and have inadequate

support for modeling of real-time communication. There are

very few commercial component models for the develop-

ment of DRE systems especially in automotive domain. In

the last decade, automotive research community and industry

has focused more on the component-based development

which led to the development of several component models.

1) AUTOSAR: AUTOSAR (AUTomotive Open System

ARchitecture) [6] is a standardized software architecture for

the development of software in automotive domain. It can

be viewed as a standardized distributed component model

[22]. In AUTOSAR, the application software is defined in

terms of Software Components (SWCs). The distribution of

SWCs, their virtual integration and communication at design

time is handled by the Virtual Function Bus (VFB). The run-

time representation of VFB for each Electronic Control Unit

(ECU) is defined by the Run-Time Environment (RTE). The

communication services are provided by the Basic Software

(BSW) via RTE to the AUTOSAR SWCs.

When AUTOSAR was being developed, there was no

focus placed on the specification and handling of real-

time requirements and properties. On the other hand, such

requirements and capabilities were strictly taken into ac-

count for RCM. As compared to AUTOSAR, RCM clearly

distinguishes between the control flow and the data flow

among SWCs in a node. AUTOSAR hides the modeling of

execution environment. On the other hand, RCM explicitly

allows the modeling of execution requirements, e.g., jitter,

deadlines, etc., at an abstraction level close to the functional

modeling while abstracting the implementation details.

In RCM, special network interface components are used if

SWCs require inter-ECU communication; otherwise, SWCs

communicate via data and trigger ports. On the other hand,

AUTOSAR does not differentiate between intra-node and

inter-node communication at modeling level. Unlike RCM,

there are no special components in AUTOSAR for modeling

inter-node communication in DRE systems. The Sender

Receiver communication mechanism in AUTOSAR is very

similar to the pipe-and-filter communication mechanism for

component interconnection used in RCM.

2) TIMMO: TIMMO (TIMing MOdel) [15] is an initia-

tive to provide AUTOSAR with a timing model. It describes

a predictable methodology and a language, TADL (Timing

Augmented Description Language) [23], to express timing

requirements and timing constraints during all development

phases of automotive embedded systems. TADL is inspired

by MARTE (Modeling and Analysis of Real Time and

Embedded systems) [24] which is a UML profile for model-

driven development of real-time and embedded systems.

TIMMO development methodology makes use of structural

modeling provided by EAST-ADL [25] which is a domain-

specific architecture description language used in automo-

tive domain. TIMMO methodology and its model structure

abstract the modeling of communication at implementation

level of EAST-ADL where AUTOSAR is used. TIMMO and

TADL have been evaluated on prototype validators. To the

best of our knowledge there is no concrete industrial imple-

mentation of TIMMO. Its results will be further validated

and brought to the industry in TIMMO-2-USE project [26].

286286

3) ProCom: ProCom [27] is a two-layer component

model for the development of distributed embedded systems.

At the upper layer, called ProSys, it models a system with

concurrent subsystems (active components). At the lower

layer, called ProSave, a subsystem is internally modeled in

terms of functional components which are passive. ProCom

is inspired by RCM. There are a number of similarities

between the ProSave modeling layer and RCM, e.g., compo-

nents are passive, separation between data flow and control

flow among components, and pipe-and-filter mechanism

for component interconnection. At modeling level, ProCom

does not differentiate between inter- and intra-node com-

munication. The support for modeling and holistic timing

analysis of DRE systems is a work in progress. Moreover,

the development environment and the tools accompanying

ProCom are still evolving.

4) COMDES-II: COMDES-II (COMponent-based design

of software for Distributed Embedded Systems) [28] pro-

vides a component-based framework for the development

of distributed embedded control systems. It models the

architecture of a system at two levels. At upper level, an

application is modeled as a network of actors that are active

components (unlike RCM components). At the lower level,

the functionality of an actor is modeled in terms of Function

Blocks which are passive components similar to the SWCs in

RCM. The Operating System (OS) employed by COMDES-

II implements fixed-priority timed multitasking scheduling.

Whereas, Rubus OS implements hybrid scheduling [29]. The

support for development tools and run-time environment in

COMDES-II was provided fairly recently [30]. On the other

hand, RCM and its tool suite are relatively mature as they are

being used in the industry for the development of embedded

systems for over 15 years [16].

5) Real-Time CORBA: The middleware technologies

such as Real-Time CORBA and minimum CORBA [31]

have been used for the development of DRE systems in

some projects. Because of higher resource requirements,

these technologies may not be suitable for the state-of-the-

practice development of resource-constrained DRE systems

with hard real-time requirements [32].

B. Response Time Analysis (RTA)

1) RTA of Tasks in a Node: Liu and Layland [33]

provided theoretical foundation for analysis of fixed-priority

scheduled systems. Joseph and Pandya published the first

RTA [34] for the simple task model in [33]. Subsequently,

RTA has been applied and extended in a number of ways

by the research community. Tindell [35] developed the

schedulability analysis for tasks with offsets and it was

further extended by Palencia and Gonzalez Harbour [36].

Later, Mäki-Turja and Nolin [37] reduced pessimism from

RTA developed in [35], [36] and presented a tighter RTA

for tasks with offsets by accurately modeling inter-task

interference. RTA [38], [39] has become a powerful, mature

and well established schedulability analysis technique. In

crux, RTA is used to perform a schedulability test which

means it checks whether or not tasks in the system will

satisfy their deadlines. RTA applies to systems where tasks

are scheduled with respect to their priorities and which

is the predominant scheduling technique used in real-time

operating systems today [40]. We extract the timing model

and implement the analysis in [37] as part of HRTA.

2) RTA of Messages in a Network: There are many real-

time network protocols used in DRE systems. In this paper,

we will focus only on CAN and some of its high-level

protocols. Tindell et al. [41] developed the schedulability

analysis of CAN which has served as a basis for many

research projects. This analysis has been implemented in the

analysis tools that are used in the automotive industry [42],

[43]. Later on, this analysis was revisited and revised by

Davis et al. [44]. This analysis assumes that all CAN device

drivers implement priority-based queues. In [45] Davis et al.

pointed out that this assumption may become invalid when

some nodes in a CAN network implement FIFO queues and

some implement priority-based queues. They extended the

schedulability analysis of CAN with FIFO queues.

However, the existing analysis assumes that CAN mes-

sages are queued for transmission periodically or sporad-

ically. It does not support the response-times computation

of mixed-type CAN messages which are implemented by

several high-level protocols for CAN. In order to meet this

industrial need, we extend the existing analysis to support

mixed messages. The extended analysis can compute the

response times of periodic, sporadic and mixed messages in

the CAN network where some nodes use FIFO queues while

others use priority queues. We also implement both existing

and extended analysis as part of HRTA.

3) Holistic RTA (HRTA): It combines the analysis of

nodes and a network. Hence, it computes the response times

of event chains that are distributed over several nodes in a

DRE system. In this paper, we consider the timing model

that corresponds to the holistic schedulability analysis for

DRE systems [7]. In [46], Pop et al. provide a holistic

schedulability analysis of distributed embedded systems in

which the tasks are both time- and event-triggered. The

analysis is developed for ST/DYN protocol bus that uses

static and dynamic phases for sending messages. As com-

pared to this approach, we use CAN protocol for network

communication and the analysis supports any combination

of periodic, sporadic and mixed messages.

V. PAPER CONTRIBUTIONS

The contributions in this paper are organized in four

parts. In the first part, we introduce a new technique for

modeling legacy network communication in DRE systems.

In the second part, we present a method to extract the end-

to-end timing models from component-based DRE systems.

In the third part, we identify a need for the extension of

287287

existing response-time analysis of CAN, and accordingly, we

present the extended analysis. Finally, in the fourth part, we

provide a proof-of-concept implementation of the techniques

developed in previous three parts. In this Section, we provide

the summary of these contribution. The details of these four

contributions are discussed in [47], [48], ([49], [50]), and

[51] respectively.

A. Modeling of Legacy Network Communication in

Component-based DRE Systems

This contribution addresses first research question. We

introduce a new approach for modeling real-time network

and legacy communication in component-based DRE sys-

tems. In order to show usability of our modeling approach,

we implement it by extending the existing industrial com-

ponent model, i.e., RCM. By introducing special-purpose

components to encapsulate and abstract the communication

protocols in DRE systems, we allow the use of legacy

nodes and legacy protocols in a component- and model-

based software engineering environment. With the addition

of these components, RCM will be able to not only model

real-time network communication, but also support state-of-

the-practice development of component-based DRE systems.

The proposed extension also allows model- and

component-based development of new nodes that are de-

ployed in legacy systems that use predefined communi-

cation rules. These extensions also enable adaptation of

a node when communication rules change (e.g., due to

re-deployment in a new system or due to upgrades in

the communication system) without affecting its internal

component design. The special-purpose components can be

automatically generated from the information about legacy

communication or from early design decisions about net-

work communication. Although RCM was selected for the

proof-of-concept implementation, the proposed extensions

should be generally applicable for the extension of several

component models for the development of DRE systems that

use the pipe-and-filter style for component interconnection

such as ProCom [27] and COMDES-II [28]. This modeling

approach is briefly discussed in Section A1 of Appendix A.

B. Extraction of End-to-end Timing Models

This contribution addresses second research question.

HRTA is an important activity during the development of

DRE systems. In order to perform HRTA of component-

based DRE systems, the end-to-end timing models should be

extracted from them. The extraction of such models can be

challenging because the design and analysis models are usu-

ally built using different meta-models. We present a method

to extract the end-to-end timing models from component-

based DRE systems to facilitate HRTA. This method is built

upon the modeling approach that we discussed in the first

contribution. We discuss and solve the issues concerning

the model extraction such as extraction of unambiguous

timing and tracing information from all nodes and networks

in the system and tracing of event chains in distributed

transactions. The extraction method for end-to-end timing

models and the solutions of encountered problems may be

applied to several component models that use a pipe-and-

filter style for component interconnection. The end-to-end

timing model that we considered is also general as it incor-

porates the analysis of several real-time network protocols

used in the automotive domain. To show the applicability of

our approach, we demonstrate the implementation of end-

to-end timing model extraction in the analysis framework

of the existing industrial tool suite Rubus-ICE. The solution

for tracing event chains in distributed transactions and the

extraction method for end-to-end timing models is briefly

discussed in Sections A2 and A3 of Appendix A.

C. Extension of the Existing Analysis for CAN

To analyze communications in DRE systems, it is impor-

tant to find out whether the existing analysis is sufficient

or extensions are required to meet the industrial needs. In

this work, we focus only on CAN and some of its high-

level protocols. While answering the two research question

(discussed in Section II), we identified that the existing

response-time analysis of CAN does not support the analysis

of common message transmission patterns which are imple-

mented by some high-level protocols used in the industry.

The existing analysis calculates the response times of CAN

messages that are queued for transmission periodically or

sporadically. However, there are a few high-level protocols

for CAN such as CANopen and HCAN that support the

transmission of mixed messages as well. A mixed message

can be queued for transmission both periodically and spo-

radically. In other words, a mixed message is simultaneously

time and event triggered. Thus, it may not exhibit a periodic

activation pattern.

In order to support the development of DRE systems

employing high-level protocols for CAN, there is a need

to extend the existing analysis. We extend the existing

response-time analysis of CAN to support mixed messages.

The extended analysis is generally applicable to any high-

level protocol for CAN that uses periodic, sporadic, and both

periodic and sporadic transmission of messages. However,

the extended analysis assumes that all nodes connected to

the network implement priority queues. We further extend

this analysis by building it upon the analysis for CAN with

FIFO queues [45]. Hence, the extended analysis supports the

worst-case response-time computation of mixed messages in

the CAN network where some nodes use FIFO queues while

others use priority queues.

D. Proof-of-Concept Implementation

In this contribution we validate our solutions. In order to

transfer the new modeling techniques and extended analysis

to the industrial tools we need to validate them first. We

found out that the process of implementing and integrating

state-of-the-art real-time analysis with an existing industrial

288288

tool suite offers many challenges. The Implementer has

to not only code and implement the analysis in the tool

suite, but also deal with several other issues. We present

the implementation of HRTA as a plug-in for the existing

industrial tool suite Rubus-ICE. As part of HRTA, we

implemented the existing as well as the extended analysis

discussed in the third contribution. The implemented HRTA

is general as it supports the integration of response-time

analysis of various networks without a need for changing the

holistic algorithm. The implementation of HRTA in Rubus-

ICE is briefly discussed in Appendix A. To the best of our

knowledge, Rubus-ICE is the only tool suite that implements

RTA of mixed messages in CAN [49] and a tighter version

of offset-based RTA algorithm [37] as part of HRTA.

We discuss and solve encountered issues and highlight

gained experiences during the implementation, integration

and evaluation of HRTA plug-in. We believe that most of the

experiences gained and solutions to the issues encountered

in this work maybe applicable when other complex real-time

analysis techniques are implemented in any industrial tool

suite that supports a plug-in framework (for the integration

of new tools) and component-based development of DRE

systems. Finally, we provide a proof of concept for all

modeling approaches and extended analysis discussed in

this paper by modeling an automotive industrial application

(autonomous cruise control system) using extended RCM

and analyzing it with HRTA plug-in in Rubus-ICE.

E. Discussion

We selected RCM and Rubus-ICE for a proof-of-concept

implementation of our new modeling techniques and ex-

tended analysis for several reasons. Among them, one reason

is the existing support for structural, functional and execu-

tion modeling of dependable embedded real-time systems.

Further, RCM and Rubus-ICE provide a means for devel-

oping predictable and analyzable control functions with a

support for modeling real-time properties and requirements,

interconnections between the functions in terms of data flow

and control flow separately, and run-time support.

With the proposed extensions, RCM along with Rubus-

ICE can be considered a suitable choice for component-

based development of DRE systems in the industry for

many reasons. For example, it complements the structural

and functional modeling with the execution modeling; it

supports communications-oriented development process for

DRE systems; it supports modeling of legacy communica-

tion and systems; it models timing related information; it has

a small run-time footprint (timing and memory overhead);

it implements the state-of-the-art research results; and it

provides strong support for development and analysis tools.

F. Industrial Impact of Contributions

The new modeling techniques and extended analysis that

we introduced in this paper are incorporated in the new

release of RCM and Rubus-ICE (Version 4.0).

VI. CONCLUSION

A. Summary and Conclusion

In this paper we introduced new techniques to provide a

model- and component-based support for communications-

oriented development of DRE control systems. We proposed

a new approach for modeling legacy network communication

in component-based DRE systems. The proposed approach

abstracts the implementation and configuration of commu-

nications in DRE systems. It enables the communication

capabilities of a node very explicit, but efficiently hides

the implementation or protocol details. Moreover, it allows

model- and component-based development of new nodes

that are deployed in legacy systems that use predefined

communication rules. The proposed approach also enables

adaptation of a node when communication rules change

without affecting its internal component design.

We also presented a method to extract end-to-end timing

models from component-based DRE systems that are devel-

oped using above modeling approach. The purpose of ex-

tracting the end-to-end timing models is to support HRTA of

DRE systems. We believe, these techniques may be suitable

for several other component models for DRE systems that

use a pipe-and-filter style for component interconnection.

Moreover, these techniques can be used for any type of

“inter-model signaling”, where a signal leaves one model

(e.g., a node, or a core, or a process) and appears again in

some other model.

While we were looking for answers to our research

questions, we identified a need for the extension of existing

response-time analysis of CAN to support the analysis

of common message transmission patterns that are imple-

mented by some high-level protocols used in the industry.

Accordingly, we extended the existing analysis which is

generally applicable to any high-level protocol for CAN that

uses periodic, sporadic, and mixed transmission of messages

in a system with priority and FIFO-queued nodes.

We provided a proof-of-concept implementation of our

modeling and analysis approaches by extending the existing

industrial component model, i.e., RCM; implementing the

extended HRTA in an industrial tool suite, i.e., Rubus-

ICE; and conducting an automotive-application case study.

The extended HRTA that we implemented in Rubus-ICE is

general as it supports the integration of real-time analysis

of various networks without a need of changing the holistic

algorithm. The analysis engines that we provide are able

to predict important execution characteristics of the system

such as holistic response times without a need for tedious

and expansive testing. The proposed solutions and gained

experiences in this work should provide guidance for the im-

plementation of other complex real-time analysis techniques

in any other industrial tool suite that supports a plug-in

framework (for the integration of new tools) and component-

based development of DRE systems.

289289

We believe, the industrial tools (for the development of

DRE control systems) implementing our modeling tech-

niques and extended analysis may prove helpful for the soft-

ware development organizations in the automotive domain to

decrease the costs for software development, configuration

and testing.

B. Future Work

An interesting future research direction is to investigate

and develop patterns that allow transformation between

several domain-specific modeling languages in the vehic-

ular domain. The idea is to bridge the semantic gap be-

tween functional models (expressed in standard languages

as EAST-ADL [25] and/or proprietary languages such as

Simulink [52] or Statemate [53]) and execution models

(expressed in standard languages like TADL [23] and Au-

tosar [6] and/or proprietary languages like RCM). It would

also be interesting and useful to facilitate the exchange of

analysis models and tools between RCM and several other

component models and tools used for the development of

automotive embedded systems.

In the future, the HRTA plug-in can be expanded by

implementing and integrating the analysis of other network

communication protocols (e.g., Flexray, switched ethernet,

etc.) within the holistic analysis algorithms discussed in this

paper. Another future work could be providing a support for

asynchronous data-flow using the two different semantics of

data-age and reaction (described in [54]) in Rubus-ICE.

ACKNOWLEDGEMENT

This work is supported by Swedish Knowledge Foun-

dation (KKS) within the projects Femmva and EEMDEF,

the Swedish Research Council (VR) within project TiPCES,

and the Strategic Research Foundation (SSF) with the centre

PROGRESS. The authors would like to thank the industrial

partners Arcticus Systems and BAE Systems Hägglunds.

REFERENCES

[1] M. Barr and A. Massa, Programming Embedded Systems. O’Reilly
Media, Inc., 2006.

[2] M. Barr, “Embedded Systems Glossary.” http://www.netrino.com/
Embedded-Systems/Glossary.

[3] R. N. Charette, “This Car Runs on Code,” Spectrum, IEEE, vol. 46,
no. 2, 2009, http://spectrum.ieee.org/green-tech/advanced-cars/this-
car-runs-on-code.

[4] T. A. Henzinger and J. Sifakis, “The Embedded Systems Design
Challenge,” in Proceedings of the 14th International Symposium on
Formal Methods (FM), Lecture Notes in Computer Science. Springer,
2006, pp. 1–15.

[5] I. Crnkovic and M. Larsson, Building Reliable Component-Based
Software Systems. Norwood, MA, USA: Artech House, Inc., 2002.

[6] “AUTOSAR Techincal Overview, Version 2.2.2. AUTOSAR – AU-
Tomotive Open System ARchitecture, Release 3.1, The AUTOSAR
Consortium, Aug., 2008,” http://autosar.org.

[7] K. Tindell and J. Clark, “Holistic schedulability analysis for
distributed hard real-time systems,” Microprocess. Microprogram.,
vol. 40, pp. 117–134, April 1994.

[8] R. B. GmbH, “CAN Specification Version 2.0,” postfach 30 02 40,
D-70442 Stuttgart, 1991.

[9] ISO 11898-1, “Road Vehicles interchange of digital information
controller area network (CAN) for high-speed communication, ISO
Standard-11898, Nov. 1993.”

[10] “Automotive networks. CAN in Automation (CiA),” http://www.can-
cia.org/index.php?id=416.

[11] “CAL, CAN Application Layer for Industrial Applications, CiA Draft
Standard DS-207, Version 1.1,” CAN-in-Automation, Feb. 1996.

[12] “CANopen high-level protocol for CAN-bus, Version 3.0,” NIKHEF,
Amsterdam, March 2000, http://www.nikhef.nl/pub/departments/ct/po
/doc/CANopen.pdf.

[13] J. Westerlund, “Hägglunds Controller Area Network (HCAN), Net-
work Implementation Specification,” BAE Systems Hägglunds, Swe-
den (internal document), April 2009.

[14] “MilCAN,” http://www.milcan.org/.

[15] “TIMMO Methodology , Version 2,” TIMMO (TIMing MOdel), De-
liverable 7, October 2009, The TIMMO Consortium.

[16] “Arcticus Systems,” http://www.arcticus-systems.com.

[17] K. Hänninen et.al., “The Rubus Component Model for Resource Con-
strained Real-Time Systems,” in 3rd IEEE International Symposium
on Industrial Embedded Systems, June 2008.

[18] K. Hänninen et.al., “Framework for real-time analysis in Rubus-ICE,”
in Emerging Technologies and Factory Automation, 2008. ETFA 2008.
IEEE International Conference on, 2008, pp. 782 –788.

[19] “Microsoft, Distributed Component Object Model (DCOM),”
http://msdn.microsoft.com/en-us/library/Aa286561.

[20] “OMG, Common Object Request Broker Architecture
(CORBA) , Version 3.1,” January 2008. [Online]. Available:
http://www.omg.org/spec/CORBA/3.1

[21] L. DeMichiel, “Sun Microsystems, Enterprise JavaBeans Specifica-
tion, Version 2.1,” Sun Microsystems, 2002.

[22] H. Heinecke et al., “AUTOSAR – Current results and preparations
for exploitation,” in Proceedings of the 7th Euroforum Conference,
ser. EUROFORUM ’06, May 2006.

[23] “TADL: Timing Augmented Description Language, Version 2,”
TIMMO (TIMing MOdel), Deliverable 6, October 2009, The TIMMO
Consortium.

[24] “The UML Profile for MARTE: Modeling and Analysis of Real-
Time and Embedded Systems,” January 2010. [Online]. Available:
http://www.omgmarte.org/

[25] “EAST-ADL Domain Model Specification, Deliverable D4.1.1,”
http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-
ADL2-Specification 2010-06-02.pdf.

[26] “TIMMO-2-USE,” http://www.timmo-2-use.org/.

[27] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic,
“A Component Model for Control-Intensive Distributed Embedded
Systems,” in Proceedings of the 11th International Symposium on
Component Based Software Engineering (CBSE2008). Springer
Berlin, October 2008, pp. 310–317.

[28] X. Ke, K. Sierszecki, and C. Angelov, “COMDES-II: A Component-
Based Framework for Generative Development of Distributed Real-
Time Control Systems,” in Embedded and Real-Time Computing
Systems and Applications, RTCSA 2007. 13th IEEE International
Conference on, August 2007, pp. 199 –208.

[29] J. Mäki-Turja, K. Hänninen, and M. Nolin, “Efficient Development
of Real-Time Systems Using Hybrid Scheduling,” in International
Conference on Embedded Systems and Applications, June 2005.

[30] Y. Guo, K. Sierszecki, and C. Angelov, “COMDES Development
Toolset,” in 5th International Workshop on Formal Aspects of Com-
ponent Software FACS 08, Malaga, Spain, 2008.

290290

[31] “Catalog of Specialized CORBA Specifications. OMG Group,”
http://www.omg.org/technology/documents/.

[32] S. Lankes, A. Jabs, and T. Bernmerl, “Integration of a CAN-based
connection-oriented communication model into Real-Time CORBA,”
in Parallel and Distributed Processing Symposium, 2003.

[33] C. Liu and J. Layland, “Scheduling algorithms for multi-programming
in a hard-real-time environment,” ACM, vol. 20, no. 1, pp. 46–61,
1973.

[34] M. Joseph and P. Pandya, “Finding Response Times in a Real-Time
System,” The Computer Journal (British Computer Society), vol. 29,
no. 5, pp. 390–395, October 1986.

[35] K. W. Tindell, “Using offset information to analyse static priority pre-
emptively scheduled task sets,” Dept. of Computer Science, University
of York, Tech. Rep. YCS 182, 1992.

[36] J. Palencia and M. G. Harbour, “Schedulability Analysis for Tasks
with Static and Dynamic Offsets,” Real-Time Systems Symposium,
IEEE International, p. 26, 1998.

[37] J. Mäki-Turja, , and M. Nolin, “Tighter response-times for tasks
with offsets,” in Real-time and Embedded Computing Systems and
Applications Conference (RTCSA). Springer-Verlag, August 2004.

[38] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, “Fixed
priority pre-emptive scheduling:an historic perspective,” Real-Time
Systems, vol. 8, no. 2/3, pp. 173–198, 1995.

[39] L. Sha, T. Abdelzaher, K.-E. A. rzén, A. Cervin, T. P. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. P. Lehoczky, and A. K. Mok, “Real Time
Scheduling Theory: A Historical Perspective,” Real-Time Systems,
vol. 28, no. 2/3, pp. 101–155, 2004.

[40] M. Nolin, J. Mäki-Turja, and K. Hänninen, “Achieving Industrial
Strength Timing Predictions of Embedded System Behavior,” in ESA,
2008, pp. 173–178.

[41] K. Tindell, H. Hansson, and A. Wellings, “Analysing real-time com-
munications: controller area network (CAN),” in Real-Time Systems
Symposium (RTSS) 1994, pp. 259 –263.

[42] “Volcano Network Architect (VNA). Mentor Graphics,” http://www.
mentor.com/products/vnd/communication-management/vna.

[43] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg, “Volcano - a
revolution in on-board communications,” in Volvo Technology Report,
1998.

[44] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised,” Real-
Time Systems, vol. 35, pp. 239–272, 2007.

[45] R. I. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Controller Area
Network (CAN) Schedulability Analysis with FIFO queues,” in 23rd
Euromicro Conference on Real-Time Systems (ECRTS11), July 2011.

[46] T. Pop, P. Eles, and Z. Peng, “Holistic scheduling and
analysis of mixed time/event-triggered distributed embedded
systems,” in Proceedings of the tenth international symposium
on Hardware/software codesign, ser. CODES ’02. New York,
NY, USA: ACM, 2002, pp. 187–192. [Online]. Available:
http://doi.acm.org/10.1145/774789.774828

[47] S. Mubeen, J. Mäki-Turja, M. Sjödin, and J. Carlson, “Analyzable
Modeling of Legacy Communication in Component-Based Distributed
Embedded Systems,” in 37th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), 2011, Sep. 2011,
pp. 229 –238.

[48] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Extraction of end-to-end
timing model from component-based distributed real-time embedded
systems,” in Time Analysis and Model-Based Design, from Functional
Models to Distributed Deployments (TiMoBD) workshop located at
Embedded Systems Week. Springer, October 2011, pp. 1–6.

[49] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Extending schedula-
bility analysis of controller area network (CAN) for mixed (peri-
odic/sporadic) messages,” in Emerging Technologies Factory Automa-
tion (ETFA), IEEE 16th Conference on, sept. 2011.

[50] Mubeen, Saad and Mäki-Turja, Jukka and Sjödin, Mikael, “Extending
response-time analysis of controller area network (CAN) with FIFO
queues for mixed messages,” in Emerging Technologies Factory
Automation (ETFA), IEEE 16th Conference on, sept. 2011, pp. 1–4.

[51] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for Holistic
Response-time Analysis in an Industrial Tool Suite: Implementation
Issues, Experiences and a Case Study,” in 19th IEEE Conference on
Engineering of Computer Based Systems (ECBS), April 2012.

[52] “Simulink - Simulation and Model-Based Design,” http://www.math-
works.se/products/simulink/.

[53] “Rational Statemate,” http://www-01.ibm.com/software/awdtools/
statemate/.

[54] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A Compo-
sitional Framework for End-to-End Path Delay Calculation of Auto-
motive Systems under Different Path Semantics,” in Compositional
Theory and Technology for Real-Time Embedded Systems, 2008.
CRTS 2008. Workshop on, dec. 2008.

APPENDIX A

A1. Support for Modeling of Legacy Communication

In order to model legacy network communication in

DRE systems, we introduced special-purpose components,

i.e., Network Specification (NS), Output Software Circuit

(OSWC) and Input Software Circuit (ISWC) in [47].

1) Network Specification: It represents the model of

communication in a physical network. There is one NS for

each network protocol. The protocol-independent part of NS

defines messages, data-elements mapped to these messages,

message properties, i.e., a message ID, a unique sender node

ID, a list of receiver nodes IDs and an ordered set of signals.

The protocol-dependent part of NS defines the behavior

semantics of each message according to the protocol used for

network communication. It contains complete information

of all the frames which are sent on the bus. Moreover, it

contains a Signal Mapping object that defines all the rules

concerning the following questions. How are signals packed

into the frames? How many signals a message contains?

How are signals encoded into the frames at the sender node?

How are signals decoded from the received frames and sent

to the respective SWCs at the receiver node?

2) Output and Input Software Circuits: The OSWC com-

ponent is the model representation of signals in an outgoing

message to the network. OSWC has only one trigger in-

port and at least one data in-port. Each data in-port is

associated with one signal in NS. OSWC has no data and

trigger out-ports. It uses protocol-specific rules, specified in

the protocol-specific part of NS, while encoding data and

mapping signals to a frame. In this way, OSWC provides a

clear abstraction to the SWCs that send signals to one of its

data in-ports. Thus, SWCs are kept unaware of the protocol-

specific details such as signal-to-frame mapping, data type

encoding and transmission patterns of frames.

The ISWC component is the model representation of

signals in an incoming message from the network. It has

one unconditional trigger out-port. An unconditional trigger

port produces a trigger signal every time the SWC is

291291

executed. There is at least one data out-port in the ISWC

component. Each data out-port is associated with one signal

in NS. ISWC has no data out-ports. There is one trigger

in-port in every ISWC component which is triggered when

a frame arrives from the network. When a frame arrives at

a node, the physical network drivers and protocol-specific

implementation of ISWC extract the signals (zero or more

signals per frame). When the signal(s) is delivered, the data

is placed on the data port which is connected to the data in-

port of the destination component (the tracing information

is provided in NS), and the corresponding trigger port is

triggered. The model representation of OSWC, ISWC and

NS in a two-node DRE system is shown in Figure 2.

����������	
���	���
���	��
��

����	����

�������	

����

��������	

�����

�����

Ext

����	

������

����	

����

������	���

 ����

!������	���

 ����

"��#��

�������

������

����

	
�
��

"��#��

�������

�������

�������

�$�%

�$�&

OR

!�$�	

'

����

��

Ext

�$�' �$�(

Ext

��$�	

'

��$�	

)'

�$�* �$�+

�$�,

����

	
�
��

!�$�	

)'

����

��

������

�

-	��������.�/���0��	�������

-	������	 �/

-	�������	��0��#�����

-	��������

�'1�''2	�'(3

�(1�('2	�((3

Figure 2. Model of OSWC, ISWC and NS in a two-node DRE system

A2. Tracing of Event Chains in Distributed Transactions

The tracing information of all event chains in the modeled

DRE application is provided in NS. We assign pointers

(references) to the input trigger ports of all OSWCs and the

output trigger ports of all ISWCs along the same distributed

transaction. All such pointers for all the event chains in the

system are specified in NS. Consider again the model of a

two-node DRE system shown in Figure. 2. Both the nodes

send messages to each other. There is a pointer array P1 in

NS that references the trigger in-port of OSWC B1 in Node

B and trigger out-port of ISWC A1 in node A. Similarly, a

pointer array P2 is stored in NS that points to the trigger in-

port of OSWC A1 in Node A and trigger out-port of ISWC

B1 in node B. In this way, the event chains in distributed

transactions in a DRE system can be traced.

A3. Extraction of End-to-End Timing Model in Rubus-ICE

In Rubus-ICE, a DRE application is modeled in Rubus

Designer. It is then compiled to ICCM file which contains

the compiled component model and timing and tracing

information of the modeled system. The end-to-end timing

model that is implemented in RAF, extracts the required

timing and tracing information from ICCM file as shown in

Figure 3. From the extracted timing model, RAF performs

the end-to-end timing analysis and then provides the results,

i.e., response times of individual tasks, response times

of network messages, end-to-end response times of event

chains, network utilization, etc., back to Rubus-ICE.

Rubus-ICE
Rubus Analysis Framework

ICCM File

Analysis Results

(XML File)

End-to-end Timing Model

System Timing Model

System Tracing Model

Network Timing ModelNode Timing Model

HRTA

Plug-in

Algorithms for RTA of

Tasks in a Node

Algorithms for RTA of

Messages in a Network

HRTA Algorithm
Rubus Desiner

Modeled DRE Application

Figure 3. Extraction of end-to-end timing model and conceptual view of
HRTA plug-in in Rubus-ICE

A4. Implementation of Extended HRTA in Rubus-ICE

The conceptual view of HRTA that is implemented as a

plug-in in Rubus-ICE is shown in Figure 3. The HRTA algo-

rithm iteratively uses the algorithms for node and network

analysis. We implemented a tighter version of the offset-

based RTA algorithm [37] to compute the response-times

of tasks in nodes. In order to analyze network messages,

we implemented a general RTA of CAN (it supports several

high-level protocols for CAN). It is based on the existing

analysis [41], [44] as well as the extended analysis of

CAN for mixed messages [49] as discussed in the third

contribution. The pseudocode of HRTA algorithm is shown

in Algorithm 1. The details about implementation issues,

solutions and implemented analysis are described in [51].

Algorithm 1 HRTA Algorithm

RTPrev ← 0 // Initialize Response Time (RT) to zero

Repeat ← TRUE

while Repeat = TRUE do

for all Messagesandtasksinthesystem do

JitterMsg ← RTSender

JitterReceiver ← RTMsg

ComputeRTof allmessages

ComputeRTof all tasksineverynode

if RT > RTPrev then

RTPrev ← RT

Repeat ← TRUE

else

Repeat ← FALSE

end if

end for

end while

292292

