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Abstract

Ubiquitous deployment of embedded systems is having a substantial im-
pact on our society, since they interact with our lives in many critical
real-time applications. Typically, embedded systems used in safety or
mission critical applications (e.g., aerospace, avionics, automotive or nu-
clear domains) work in harsh environments where they are exposed to
frequent transient faults such as power supply jitter, network noise and
radiation. They are also susceptible to errors originating from design
and production faults. Hence, they have the design objective to main-
tain the properties of timeliness and functional correctness even under
error occurrences.

Fault-tolerance plays a crucial role towards achieving dependability,
and the fundamental requirement for the design of effective and effi-
cient fault-tolerance mechanisms is a realistic and applicable model of
potential faults and their manifestations. An important factor to be con-
sidered in this context is the random nature of faults and errors, which,
if addressed in the timing analysis by assuming a rigid worst-case occur-
rence scenario, may lead to inaccurate results. It is also important that
the power, weight, space and cost constraints of embedded systems are
addressed by efficiently using the available resources for fault-tolerance.

This thesis presents a framework for designing predictably depend-
able embedded real-time systems by jointly addressing the timeliness
and the reliability properties. It proposes a spectrum of fault-tolerance
strategies particularly targeting embedded real-time systems. Efficient
resource usage is attained by considering the diverse criticality levels
of the systems’ building blocks. The fault-tolerance strategies are com-
plemented with the proposed probabilistic schedulability analysis tech-
niques, which are based on a comprehensive stochastic fault and error
model.
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Jiale Zhou, Mikael Åsberg and Moris Behnam, for the good times we
have had, despite the temperature wars, torturing me and my plants
with extreme heat! I would like to thank Andreas Gustavsson, An-
tonio Cicchetti, Conny Collander and Ingrid Runnérus for their com-
pany during the tough training hours, Maria Lindén for the introduc-
tion to ice-skating, Dag Nyström and Séverine Sentilles, for revealing the
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Chapter 1

Introduction

Embedded systems are deployed ubiquitously in many critical applica-
tions that interact with our lives. Typically, the main requirement for
those embedded systems used in safety or mission critical applications is
to provide continuity of correct and timely service even under the effects
of faults. For instance, in the automotive domain, the systems are often
subjected to high degrees of Electromagnetic Interference (EMI) from
the operational environment, which can potentially cause errors. The
common causes of such interferences include cellular phones and other
radio equipments inside the vehicle, electrical devices like switches and
relays, radio transmissions from external sources, lightning in the envi-
ronment, etc. Electromagnetic Compatibility (EMC) has been seriously
considered by the automotive industry for more than 40 years, and sev-
eral legislations and directives are in effect to tackle the EMI problem
[75]. However, even today it is not possible to completely eliminate the
effects of EMI since exact characterization of all such interferences defy
comprehension. These systems are also susceptible to internal faults
originating from the technological advances. For example, nano-level
shrinking of electronic devices are making them highly susceptible to
transient errors, or increased clock frequencies also increase the chance
of a transient pulse getting latched thus affecting the logic parts as well
[65].

Fault-tolerance plays a crucial role towards achieving dependability,
and the fundamental requirement for the design of effective and efficient
fault-tolerance mechanisms is a realistic and applicable model of poten-
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2 Chapter 1. Introduction

tial faults, their manifestations and consequences. Moreover, systems’
resources for providing fault-tolerance are often limited in the embed-
ded systems domain, due to the underlying constraints such as space,
weight and cost. Hence, the design process of developing fault-tolerant
embedded systems involves the selection of appropriate fault-tolerance
strategies to be used in critical parts of the system with the help of
design and analysis tools.

1.1 Problem Statement

1.1.1 Fault and Error Modeling

The behaviour of errors which are caused by transient and intermittent
faults can be very complex. The main reason behind this complexity is
the random behaviour of these errors, which depend on several factors,
such as the type and the severity of the fault to which the system is
exposed, the resistance of the hardware to the fault, and the effectiveness
of the fault detection and fault-tolerance mechanisms.

Majority of the earlier research efforts were based on a simplified error
model assumption that only singleton errors can occur in the systems,
and that they are separated at least by a known minimum inter-arrival
time. However, error bursts of varying lengths are not uncommon and
they may have an adverse effect on systems’ timeliness. Hence the ver-
satility and applicability of the existing models are limited, in the sense
that they are incapable of representing complex error scenarios, thus
potentially leading to inaccurate analysis results.

1.1.2 Fault-Tolerance Strategies

Design of safety and mission critical applications most often incorporates
fault-tolerance in the form of spatial and temporal redundancy. Each
approach has advantages and disadvantages over the other, in terms of
cost, performance and error coverage, and the decision of which approach
to choose mainly depends on the application and the environment in
which it is deployed.

The conventional fault-tolerance strategies need to be extended and
elaborated to include specific design elements that are crucial in the em-
bedded real-time systems domain. Examples of these extensions include
the detection and masking of errors in the time domain, and addressing



1.2 Publications 3

the mixed criticality of the various parts of the embedded systems to
provide efficient resource usage.

1.1.3 Fault-tolerant Schedulability Analysis

Real-time scheduling research is typically based on worst-case assump-
tions, and providing timeliness guarantees under these assumptions. In
cases where it is not possible to derive an absolute worst-case property,
the research strives to find the possible bounds in order to keep the
worst-case guarantees valid, although at a cost of somewhat pessimistic
results. Similarly, the fault-tolerant scheduling research most often as-
sumes worst-case fault rates (which hold for a certain probabilities), and
develops schedulability analysis techniques based on these assumptions.
However, such a bound may not exist for fault and error arrival rates, as
these events are typically random by their nature. As a result, in many
cases, the existing analysis techniques do not permit tuning the assump-
tions at a later stage, in order to adapt to the changing environments
and system properties, thus limiting their applicability.

1.2 Publications

This following are the publications that the thesis is primarily based on.

• Licentiate Thesis The sections that present the background and
the fault-tolerance strategies in this thesis include some of the work
presented in the licentiate thesis [13, 30, 14].

• Paper A On Voting Strategies for Loosely Synchronized Depend-
able Real-Time Systems, Hüseyin Aysan, Radu Dobrin, Sasikumar
Punnekkat, Iain Bate, 7th IEEE International Symposium on In-
dustrial Embedded Systems, SIES, Germany, June, 2012.

This paper presents our proposed majority voter (VTV) and and
its evaluation.

• Paper B Maximizing the Fault-Tolerance Capability of Fixed Pri-
ority Schedules, Radu Dobrin, Hüseyin Aysan, Sasikumar Pun-
nekkat, 14th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, RTCSA, Tai-
wan, August, 2008.
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This paper proposes a fault-tolerant scheduling technique, for task
scheduling assuming a mixed criticality task set.

• Paper C Efficient Fault-Tolerant Scheduling on Controller Area
Network (CAN), Hüseyin Aysan, Abhilash Thekkilakattil, Radu
Dobrin, Sasikumar Punnekkat, 15th IEEE International Confer-
ence on Emerging Technologies and Factory Automation, ETFA,
Spain, September, 2010.

This paper proposes a fault-tolerant scheduling technique, for mes-
sage scheduling on CAN assuming a message set with multiple
criticality levels where criticality of messages are translated into
fault-tolerance requirements.

• Paper D Task-Level Probabilistic Scheduling Guarantees for De-
pendable Real-Time Systems - A Designer Centric Approach, Hü-
seyin Aysan, Radu Dobrin, Sasikumar Punnekkat, 2nd IEEE Inter-
national Workshop on Object/component/service-oriented Real-
Time Networked Ultra-dependable Systems, WORNUS, U.S.A,
March, 2011.

This paper proposes a method which allows the system designer to
specify task-level reliability requirements and provides a scheduling
analysis to test if these requirements are met for each task in a
mixed criticality task set.

• Paper E Probabilistic Schedulability Guarantees for Dependable
Real-Time Systems under Error Bursts, Hüseyin Aysan, Radu Do-
brin, Sasikumar Punnekkat, Rolf Johansson, 8th IEEE Interna-
tional Conference on Embedded Software and Systems, ICESS,
China, November, 2011.

This paper proposes a probabilistic schedulability analysis for task
scheduling assuming a random burst error model.

• Paper F Probabilistic Scheduling Guarantees in Distributed Real-
Time Systems under Error Bursts, Hüseyin Aysan, Radu Dobrin,
Sasikumar Punnekkat, Julián Proenza, 17th IEEE International
Conference on Emerging Technologies and Factory Automation,
ETFA, Poland, September, 2012.

This paper proposes a probabilistic schedulability analysis for mes-
sage scheduling assuming a random burst error model.
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• Paper G A Strategy for Achieving Reliability and Timing Guar-
antees using Temporal and Spatial Redundancy, Hüseyin Aysan,
Radu Dobrin, Sasikumar Punnekkat, Iain Bate, In submission.

This paper proposes a cascading redundancy strategy combining
the spatial redundancy and the temporal redundancy approaches
and a corresponding reliability analysis for the proposed strategy.

Contributors to these papers: Hüseyin Aysan is the main
contributor and the main author of the papers, with the exception
of Paper B which is based on the original idea by Radu Dobrin. All
these works have been performed under the supervision of Radu
Dobrin and Sasikumar Punnekkat. The works in Paper A and Pa-
per G have been carried out in close cooperation with Iain Bate.
Julián Proenza contributed to Paper F with his extensive knowl-
edge on CAN. Rolf Johansson contributed to Paper E with his
expertise in safety-critical systems, and Abhilash Thekkilakattil
performed the simulation studies in Paper C.

1.3 Thesis Contributions

The major contributions of this thesis are as follows:

• A majority voting strategy which performs voting in both the time
and the value domains, applicable to loosely synchronized depend-
able real-time systems and its evaluation. This contribution was
published in Paper A and contributes to the material in Chapter
3.

• A method for providing fault-tolerance using the temporal redun-
dancy approach for scheduling task sets with mixed criticality lev-
els and its evaluation. This contribution was published in Paper B
and is presented in Chapter 3.

• A method for providing fault-tolerance using the temporal redun-
dancy approach for scheduling message sets with mixed criticality
levels and its evaluation. The error model assumes singleton er-
rors, however the amount of fault-tolerance can be tuned by the
designer for each message in the message set in terms of maximum
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allowed re-transmission attempts. This contribution was published
in Paper C and contributes to the material in Chapter 3.

• A probabilistic real-time analysis technique for fixed-priority task
scheduling, where the designer can specify separate reliability re-
quirements for each individual task and get analysis results for
the overall schedulability, therefore enabling task-level tuning of
resource allocations for fault-tolerance. Fault-tolerance level for
each task can be analyzed individually by the designer and instead
of specifying the number of maximum allowed re-executions, the
designer can specify desired reliability levels for each task. This
contribution was published in Paper D and contributes to the ma-
terial in Chapter 4.

• A stochastic fault and error model capable of modeling errors with
various characteristics, such as single errors vs error bursts, and
multiple factors affecting the fault and error occurrence rates. This
error model was published in Papers E and Paper F and con-
tributes to the material in Chapter 4.

• A probabilistic real-time analysis technique for fixed-priority task
scheduling, assuming the stochastic fault and error model. The
error model assumes both singleton and burst errors. The maxi-
mum number of error bursts per task instance can be more than
one, however error bursts are treated as continues blocks of errors.
This contribution was published in Paper E and contributes to the
material in Chapter 4.

• A probabilistic real-time analysis technique for message scheduling,
assuming the stochastic fault and error model. The error model
assumes both singleton and burst errors, with the possibility of
specifying both the burst rate as well as the error rate within a
burst. The maximum number of error burst for any message in-
stance is limited to one. This contribution has been proposed in
Paper F and contributes to the material in Chapter 4.

• A framework to combine the spatial and temporal redundancy ap-
proaches to bring out their synergetic effects. The spatial redun-
dancy mechanism provides fault-tolerance by masking errors in
both the time and the value domains with the usage of the real-
time voting strategy VTV, presented in Paper C. It also works as
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an error detector in certain scenarios where the total number of
errors exceeds the masking capability of the spatial redundancy
stage. In such scenarios, the temporal redundancy stage comes
into operation to perform error recovery. The framework includes
a joint response time and reliability analysis for both an ideal voter,
whose False Negative Rate (FNS) and False Positive Rate (FPS)
are zero, and real voters in case information regarding the real-
world performance is available for the voter. This contribution
has been proposed in Paper G and contributes to the material in
Chapter 5.

1.4 Thesis Outline

The rest of the thesis starts with Chapter 2 which introduces the basic
terminology, concepts and theory regarding dependability, error mod-
eling, real-time systems, real-time communication, real-time scheduling
and real-time analysis.

Following the introduction and the background chapters, the con-
ducted research is presented in three chapters:

• Chapter 3 presents three fault-tolerance strategies in detail, one
with spatial redundancy and two with temporal redundancy ad-
dressing mixed criticality levels of tasks and messages.

• Chapter 4 presents three probabilistic schedulability analysis tech-
niques. The first analysis technique addresses the scheduling of
mixed criticality task sets and the other two analysis techniques
consider the burst error model for task and message scheduling
respectively.

• Chapter 5 presents a cascading redundancy strategy combining
the spatial redundancy and the temporal redundancy approaches
and a corresponding reliability analysis for the proposed strategy.

Finally, Chapter 6 concludes the thesis, and discusses the future
work.





Chapter 2

Background

This chapter presents the theoretical background for this thesis, and
begins with introducing two fundamental system properties, viz., de-
pendability and timeliness, which are crucial properties for the majority
of the embedded real-time systems. The chapter continues with the de-
scription of the commonly used error modeling approaches that form the
basis for various fault-tolerance strategies. Then, the real-time schedul-
ing policies, relevant to the thesis, used for task and message scheduling
are presented, followed by the description of the commonly used real-
time analysis techniques. Controller Area Network (CAN), which is a
communication protocol commonly used in the embedded real-time sys-
tems domain, is presented in detail since it will be used throughout the
thesis.

2.1 Dependability

This section presents the widely used and accepted basic concepts of
dependability and the related terminology, proposed by Laprie et al.
[10, 57]. Dependability of a system is the ability to provide services that
can be justifiably trusted by its users. A systematic representation of the
dependability concept can be done as shown in Figure 2.1 where the main
components are the threats to dependability, attributes of dependability
and the means to achieve dependability. The threats, attributes and the
means mainly focused in this thesis are marked in this figure.

9
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Figure 2.1: The dependability tree [10]

2.1.1 Failures, Errors and Faults

A system failure is the deviation of its delivered service from the specified
service, therefore threatening the confidence of the system to deliver a
service that can be trusted. The characteristics of systems with respect
to the controllability and the severity of their failure behaviour can be
described in terms of failure modes. A major challenge in the design and
development of systems is the assurance that the system failures occur
only in the specified modes, i.e. controllability of the potential failures
[10]. Examples of failure modes, presented in [10, 63, 76], include the
following:

Fail-safe: A system whose failures do not result in severe consequences
is a fail-safe system.

Fail-stop: A system that omits producing any outputs upon a failure
and continues to stay in this mode until restarted is a fail-stop system.
Typically, fail-stop systems signal the failures to its users with a warning
signal.
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Crash failure: A system that fails in a crash failure mode omits pro-
ducing any outputs upon a failure and continues to stay in this mode
until restarted. Differently from fail-stop mode, the failure may remain
undetected.

An error is a system state that may lead to a system failure through
propagations, i.e., state transformations. Errors can be classified based
on several aspects, such as, domain, persistence, consistency, homogene-
ity, impact and criticality [16, 80, 99, 53] as shown in Figure 2.2. The

D i
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Value
Inexact

Unacceptable distinct
Inaccurate

Coarse Subtle
Errors

Consistency

Homogeneity

Impact

Inconsistent

Precise
Imprecise

Persistence 
Transient
Intermittent
Permanent 

Impact

Criticality

Figure 2.2: Error classification

domain and consistency properties may determine the types of error han-
dling mechanisms to be used. The other properties describe with what
frequency the errors may occur, and once they occur, the probability of
causing a system failure as well as the severity of the consequences of
such failures. Hence, they may determine the appropriate locations for
these mechanisms and the amount of resources that should be reserved
for adequate handling of the expected errors. Modeling error scenar-
ios, error transformations and error propagations, is a crucial step in
the design of dependable real-time systems, in order to effectively and
efficiently introduce mechanisms to prevent system failures.

A fault is the adjudged cause of an error. During an operation of
a system, faults that may be transformed into errors are classified into
two categories with respect to system boundaries, as internal faults, e.g.,
hardware faults, and external faults, e.g., electromagnetic interferences
(EMI) [10, 57, 93, 78]. Faults can also be classified into three cate-
gories with respect to the level of persistence, as being permanent, e.g.,
a permanent damage in the hardware, intermittent, e.g., software design
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faults that cause difficult to reproduce errors (Heisenbugs) [52, 43], or
transient, e.g., EMI from mobile phones [93, 78]. The error rates caused
by transient and intermittent faults are much higher than that caused
by permanent faults [90, 79, 53, 48].

The relationship between faults, errors and failures is shown in Figure
2.3 where each arrow represents a relation of cause and effect [10]. A
fault causes an error to happen in case it gets activated and an error
causes a failure when it is propagated to the service interface of the
system. This relation of cause and effect acts like a chain, i.e., a failure
in one system causes a fault in another system that contains the failed
system, or it causes an external fault for the systems that interact with
it.

Figure 2.3: The chain of dependability threats [10]

2.1.2 Reliability, Availability and Safety

Reliability is the ability to continue delivering correct service, i.e., per-
form failure-free operation, for a specified period of time. Availability
is the probability of being operational and able to deliver correct ser-
vice at a given time [10]. These two concepts are often mixed with each
other, however, they are different properties. A system that fails very
frequently has a low reliability, but can still have very high availability
provided that the recoveries are performed very quickly. Similarly, if a
system breaks down very rarely, but the repair action takes a long time,
its reliability is high, while its availability is low. Safety is the absence
of catastrophic consequences of system failures on the user of the system
or the environment in which the system is operating.

Though being different concepts, these attributes of dependability
are closely connected. For example, if system reliability is improved,
then its availability is improved as well (although the opposite case is
not always true). In this thesis, we propose strategies for improving
reliability of real-time systems which also has a positive effect on the
safety and the availability for the stated reason.
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2.1.3 Fault-Tolerance

Fault-tolerance is the set of measures and techniques that are used to
enable continuity of correct service delivered by a system even in case of
errors. Two essential steps for providing fault-tolerance are error detec-
tion and error recovery. Other optional measures include fault diagnosis
and fault isolation, in order to prevent the faults from causing more
errors.

There exist various types of error detection strategies targeting dif-
ferent types of errors. Examples are timing checks for timing errors,
reasonableness checks for coarse value errors and replica comparison for
subtle value errors. Each detection approach has a different resource
requirement and error coverage, where resource requirement generally
grows as the coverage increases. Apparently, this may not be a linear
relation since the error coverage may consist of various error types which
cannot be compared with each other.

Error recovery is the action to transform the system state into an
error-free state. There are three main approaches to perform error re-
covery:

1. Backward error recovery is an approach which involves taking the
system back to a state that was saved before the error has been
detected. The saved state is called a checkpoint.

2. Forward error recovery is an approach which involves switching the
system state to a state known to be error-free.

3. Compensation through redundancy is another error recovery ap-
proach which uses error-free replicas to compensate the error state.
The redundancy can be achieved in the spatial domain by replicat-
ing the computing nodes, or in the temporal domain, by execution
of recovery blocks [46], re-execution of the same actions or execu-
tion of alternate actions.

This thesis focuses on the third type of error recovery approach, viz.,
compensation through redundancy.

2.1.4 Fault-Forecasting

Fault-forecasting is the prediction of systems’ ability to satisfy the de-
pendability attributes. Along with fault-tolerance, it is one of the major
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complementary techniques to attain dependability. The commonly used
other techniques to attain dependability are fault prevention and fault
removal [10] which are outside the scope of this thesis.

Fault-forecasting can either be done qualitatively, by identifying in
which failure modes the system or parts of the system can fail, or qualita-
tively, by deriving the probabilities that the system meets its dependabil-
ity requirements. This thesis predominantly focuses on the qualitative
fault-forecasting techniques by the usage of probabilistic schedulability
analysis techniques for real-time systems.

2.2 Modeling Faults and Errors

Errors occur with different probabilities depending on the operational
environments and the characteristics of the systems, such as the inter-
nal design faults, production faults or the resistance to external faults.
Hence, in order to efficiently allocate resources to fault-tolerance mech-
anisms or fault-forecasting techniques, error scenarios should be con-
sidered individually for each system. Depending on the purpose of the
approach, whether it is a fault-tolerance mechanism, fault-forecasting
technique or a combination of both, different error modeling techniques
have been proposed, some of them being briefly described in the following
subsections.

2.2.1 Category-based Fault and Error Models

Category-based fault and error modeling is mainly used in qualitative
fault-forecasting techniques, that aim at identifying, classifying and or-
dering the event combinations that may lead to failures, such as Fault
Tree Analysis (FTA) [101], Failure Mode and Effects Analysis (FMEA)
[2], Fault Propagation and Transformation Notation (FPTN) [35], Fail-
ure Propagation and Transformation Calculus (FPTC) [98] and Failure
Propagation and Transformation Analysis (FPTA) [39].

Examples of this type of models are Ezhilchelvan and Shrivastava’s
classification of faults [33, 34] where they describe the consistency aspect
of faults, and various sorts of timing faults in detail, and Bondavalli and
Simoncini’s time/value based error classification [16] which is used to
observe the capability of system users or error detection mechanisms to
detect errors in each class.
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2.2.2 Bounded Error Models

Many fault-tolerance techniques used in real-time research [64, 77, 83, 40,
22, 44, 54, 94] use either sporadic error models in which error occurrences
are assumed to be separated at least by a stated minimum inter-arrival
time, or assume a maximum number of error occurrences within a stated
period to specify the bounds for worst-case error scenarios. The various
ways for specifying the error bounds include:

• using a parameter of the task set, or a constant value to specify
the minimum inter-arrival times, e.g., errors are separated by at
least the largest period in the task set, or two times the largest
worst-case execution time (WCET) in the task set

• using a parameter of each task, the whole task set, or a constant
value to specify the period during which a stated number of errors
are allowed to occur, e.g., maximum n errors may occur during
each task period, or during the least common multiple (LCM) of
all the task periods

Recently, Many and Doose presented a bounded error model [69]
where they modeled the complex behaviour of error bursts. Their model
assumes a minimum inter-arrival between the faults causing errors and
each fault has a bounded interval during which errors are allowed to occur
(Figure 2.4). During this interval, no information is available regarding
the error arrivals, since the intensity of the faults is not modeled. Outside
the fault interval, no error is assumed to occur.

fault interval 

minimum fault inter-arrival time

Figure 2.4: Burst error model by Many and Doose

A common issue of the fault-tolerance mechanisms that use this type
of error models is the incapability of tuning the assumptions regard-
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ing the error occurrence bounds, limiting their applicability in different
contexts. For instance, if a more severe error scenario needs to be consid-
ered, with an increased number of recovery attempts, the fault-tolerance
mechanism that has been implemented assuming the earlier worst-case
scenario may not be able to provide any guarantees with the new as-
sumptions. In an opposite case, if a system with a fault-tolerant (FT)
scheduler has moved to an environment where there is a lower probabil-
ity of errors, unnecessary amount of resources might have been allocated
for fault-tolerance and the designer of the system may not have any idea
regarding which resources to reclaim while keeping an adequate level of
guarantees for the new environment.

2.2.3 Stochastic Error Models

The mentioned limitation of bounded error models is addressed in stochas-
tic error models where error occurrence characteristics are modeled by
random parameters, such as error occurrence rates and various time in-
tervals. Error frequencies can be modeled without any particular bounds
by using stochastic error models. Hence one can perform various sensitiv-
ity analyses to identify the error recovery thresholds, e.g., the maximum
error rate at which the system can guarantee delivery of correct service.

Burns et al. [23] and Broster et al. [20, 19, 21] modeled error arrivals
as a Homogeneous Poisson Process where the probability of exactly n
errors within an interval of t is:

Prn(t) =
e−λt(λt)n

n!

where λ is the constant error arrival rate.

Navet et al. [73] modeled error arrivals similarly with a Poisson dis-
tribution, however, each error event is separately modeled as being either
a single error or an error burst as shown in Figure 2.5. They defined error
bursts as a number of errors that may hit message transmissions in the
worst possible case. The number of errors are modeled with a separate
distribution that depends on the operational environment of the consid-
ered embedded system. This distribution is assumed to be constructed
during the system design by tests and measurements.
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error bursts

single errorsrandom inter-arrival time

Figure 2.5: Burst error model by Navet et al.

2.3 Real-Time Systems

Real-time systems are computing systems whose correctness depends
not only on the correctness of the outputs produced, but also on the
timeliness of these outputs [92]. In hard real-time systems, failing to meet
the timeliness requirement may result in catastrophic consequences, such
as loss of human life, whereas in soft real-time systems, missing these
requirements typically result in decreased Quality of Service (QoS), or
degraded service.

Real-time systems are typically composed of a set of tasks, where each
task performs a certain function satisfying certain timing constraints.
The timing constraints are specified by special attributes, such as off-
sets, which specify the earliest time points at which the tasks can start
executing, or deadlines which specify the latest time points by which the
tasks should complete their executions. Tasks may have periodic [66],
aperiodic or sporadic [71] activations which are controlled by a sched-
uler, based on a scheduling policy. Each periodic task consists of an
infinite sequence of activations, which are called instances. The schedul-
ing policy can either be off-line or on-line. In the off-line scheduling
policies, the time points for each activation of task instances are decided
at design-time, whereas in on-line scheduling, these decisions are made
during run-time based on, e.g., task priorities. On-line scheduling poli-
cies can further be decomposed into Fixed Priority Scheduling (FPS),
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and Dynamic Priority Scheduling (DPS) policies depending on whether
the task priorities are decided during design-time or run-time [88, 7].

Fast computing or performance optimizations are not direct solutions
for satisfying the timeliness requirement, since increasing the speed of
computations does not mean that meeting the deadlines will be guaran-
teed [91]. Real-time research strives for assuring that the systems will
behave predictably with respect to time, e.g., execute their tasks before
their predefined deadlines, while enabling efficient usage of the limited
resources such as processor and memory.

Real-time systems consist of some sort of hardware, often relatively
complex real-time software and a dynamic environment that the systems
interact with. Despite the advances in the production techniques of com-
puter hardware, there still remains a possibility that the hardware may
fail. Similarly, despite the advances in software engineering, bug free
software development is considered as infeasible due to the costs, if at
all practically possible. Furthermore, due to the non-deterministic na-
ture of environments in which real-time systems operate, there is always
a possibility of external interferences that may adversely affect the cor-
rectness or timeliness of their functioning. Therefore, special attention
has to be paid to cope with such interferences, in order to have the con-
fidence in the real-time systems at acceptable levels. This is the basic
reason for the close coupling between real-time systems and dependabil-
ity concerns.

2.4 Real-Time Communication

A real-time system typically consists of either a single processing node
or a distributed set of nodes. Systems with the latter configuration,
where processing nodes are interconnected over a communication net-
work, are typically called distributed real-time systems and deployed in
a wide range of application domains, e.g., automotive, factory automa-
tion and avionics. To satisfy the timeliness requirements in such sys-
tems, meeting the task deadlines alone is not enough which should be
complemented with the timely delivery of messages between the process-
ing nodes [95]. Real-time communication aims to satisfy the timeliness
requirements of message transmissions with the help of scheduling tech-
niques as in the case of task scheduling.
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2.4.1 Controller Area Network (CAN)

CAN is a widely used communication protocol which was designed in the
80s at Robert Bosch GmbH [72] with a particular focus on automotive
real-time requirements. It has been very popular in the automotive
and automation industries due to its low cost and predictable real-time
behaviour. CAN protocol provides prioritized transmission of network
messages. This enables analysis of its real-time behaviour using similar
techniques developed for fixed priority task sets.

CAN is a broadcast bus, which uses deterministic collision resolution
to control access to the bus. The basis for the access mechanism is the
electrical characteristics of the CAN bus. The dominant bit value on the
bus is ”0”, meaning that, if more than one nodes are transmitting bits
simultaneously, and one them is transmitting a ”0”, then the value on
the bus seen by all nodes will be ”0”. The value on the bus becomes
”1” only if all nodes transmit ”1”s. This behaviour is used to resolve
collusions on the bus. Each node waits until the bus is idle. Upon
detection of silence, each node starts transmitting the highest priority
message frame in its output queue, while simultaneously monitoring the
value of the bus. Each message frame has a unique identifier acting as
its unique priority. The identifier is the first part of the message frame
to be transmitted and it is transmitted from the most-significant to the
least-significant bit. The priority increases as the numerical value of
the identifier decreases. Hence, by monitoring the value on the bus, a
node detects if there is another frame being transmitted with a higher
priority, when it transmits a recessive bit (”1”) and sees a dominant
bit (”0”) on the bus. Whenever a higher priority frame transmission
is detected, the node stops the transmission. Because identifiers are
deemed unique within the system, a node transmitting the last bit of the
identifier without detecting a collision must be transmitting the highest
priority queued message frame, and hence can start transmitting the
body of the message frame.

CAN frames can be transmitted at speeds of up to 1 Mbps. Each
message can contain between 0 and 8 bytes of data. An 11 bit identifier
is associated with each message frame. There is also an extended CAN
format with a 29 bit identifier, but since this format is identical in all
other respects, it will not be considered here. The identifier serves two
purposes: (1) assigning a priority to the message frame, and (2) enabling
receivers to filter message frames. A node filters message frames by
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only receiving message frames with particular bit patterns. The CAN
message frame format contains 47 bits of protocol control information
(the identifier, Cyclic Redundancy Check (CRC) data, acknowledgement
and synchronization bits, etc.). The data transmission uses a bit stuffing
protocol which inserts a stuff bit after five consecutive bits of the same
value. The frame format is specified such that only 34 of the 47 control
bits are subject to bit stuffing. Hence, the maximum number of stuff

bits in a message frame with η bytes of data is b (8η+34−1)
4 c (since the

worst-case bit pattern is ‘0000011110000...’). The size of a transmitted
CAN message frame, denoted by f , is between 47 and 135 bits:

f = (8η + 47 + b (8η + 34− 1)

4
c) (2.1)

where η is the number of data bytes.

Error Handling in CAN

The model underlying the basic CAN analysis assumes an error free com-
munication bus, i.e. all message frames sent are assumed to be correctly
received, which may not always be true due to the interference from the
operational environment, or the faulty hardware components. To avoid
erroneous transmissions, CAN designers have provided elaborate error
checking and self-checking mechanisms as presented in [24], specified in
the data link layer of ISO 11898 [47]. The error detection is achieved
by means of transmitter-based-monitoring, bit stuffing, CRC, message
frame format check, and frame acknowledgement.

To make sure that all nodes have a consistent view, errors detected
in one node must be globalized. This is achieved by allowing the detect-
ing node to transmit an error frame that is between 17 to 31 bits long
(details are given in [1]). Upon reception of an error frame, each node
will discard the erroneous message, which then will be automatically
re-transmitted by the sender. Note that, the re-transmitted message
could be subjected to arbitration during re-transmission. This implies
that if any higher priority messages gets queued during the transmission
and error signalling of the current message, then those messages will be
transmitted before the erroneous message is re-transmitted.

Basic philosophy of these features is to identify an error as fast as
possible and then retransmit the affected message. This implies that
in systems without spatial redundancy of communication medium/con-
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trollers, the fault-tolerance mechanism employed is temporal redundancy
which addresses transient errors but could have an adverse impact on
the latencies of message sets; potentially leading to violation of tim-
ing requirements. Furthermore, bursts of errors typically affect several
message re-transmission attempts and contribute to potentially large re-
sponse times that may deem the system unschedulable. Hence, novel
schedulability analysis techniques are needed to handle complex error
scenarios.

2.5 Real-Time Scheduling

Real-time scheduling is the procedure to control the access of real-time
tasks or messages to shared resources that they are allocated on, such as
processors and networks. A real-time scheduler activates the task exe-
cutions or message transmissions based on the timing constraints which
are translated into task or message attributes. This section presents
the commonly used scheduling policies that are further addressed in this
thesis.

2.5.1 Off-line Scheduling

Off-line scheduling is a static approach, where the order of task or mes-
sage activations are pre-determined at design-time. The time points for
each task activations are usually stored in scheduling tables. Run-time
dispatchers perform a simple table-lookup to decide which task or mes-
sage is granted access to the shared resources at every specified time.

This approach ease the satisfaction of complex timing constraints,
such as end-to-end deadlines, precedence and instance separation, and
provides deterministic execution of tasks or transmission of messages.
However, it lacks the flexibility to handle non-deterministic run-time
events such as performing recovery procedures in the event of errors.
One can allocate certain slots for handling non-deterministic events in
off-line scheduling, but this comes at the cost of suboptimal utilization
or slow response, since these slots are reserved even if there is no need
for them, or the scheduler needs to wait until a slot has reached, rather
than having the possibility of responding immediately.
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2.5.2 On-line Scheduling

In on-line scheduling, the scheduling decisions are made during run-time
based on, e.g., task or message priorities. Based on whether the priorities
are pre-determined at design-time, or can be changed during run-time,
two major scheduling policies have been proposed, viz., FPS and DPS.

Fixed Priority Scheduling (FPS)

In FPS, task or message priorities are decided during design-time and
remain unchanged during run-time. The scheduler gives the task or
message with the highest priority, that is available in the ready queue, the
access to the shared resource. The most well-known policy of assigning
priorities to tasks is the Rate Monotonic (RM) policy proposed by Liu
and Layland [66]. This policy is shown to be an optimal FPS policy,
meaning that if there is any FPS policy that can schedule a given task
set, then RM can also schedule it. RM policy assumes a periodic task
model with deadlines equal to the periods and assigns priorities to tasks
based on their periods, giving higher priorities to the tasks with the
shorter periods. RM policy requires that the scheduler is preemptive
which means that it suspends the currently executing task if a task with
a higher priority becomes available in the ready queue, and resumes
it whenever it becomes the highest priority task in the ready queue
again. Leung and Whitehead proposed the Deadline Monotonic (DM)
priority assignment policy [61, 6, 9] and proved that it is an optimal
priority assignment policy under preemptive FPS for a set of periodic
(or sporadic) tasks with deadlines that are less than their periods (or
minimum inter-arrival times).

Dynamic Priority Scheduling (DPS)

In DPS, task or message priorities change dynamically during run-time.
Earliest Deadline First (EDF) is the most well-known DPS policy [66],
which assigns the highest priority to the task that has the closest dead-
line among the tasks in the ready queue. Dertouzos showed that [28]
under the task model assumed by Liu and Layland [66], EDF is an opti-
mal scheduler in terms of schedulability, guaranteeing schedulability for
processor utilizations up to 100%, i.e., under the assumed task model,
if there is a task set schedulable by any scheduler, then EDF can also
schedule it.
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2.6 Real-Time Analysis

Timing analysis of real-time systems aims to provide guarantees that
every task or message in the system can meet their deadlines. The
majority of the existing analysis techniques targeting hard real-time sys-
tems in the literature aims at providing deterministic guarantees using
worst-case assumptions [66, 59, 77, 49]. Probabilistic analysis techniques
have also been proposed targeting soft real-time systems [38, 3, 60, 50],
addressing stochastic events, such as error occurrences, for which mak-
ing worst-case assumptions is not always possible, and with the aim of
providing more accurate analysis results for tasks whose WCET vary
greatly from the average-case execution times [5, 31]. This section gives
an overview of the existing deterministic real-time analysis techniques
that form a basis to the proposed deterministic and probabilistic real-
time analysis techniques in the thesis.

The notation used in this section, regarding the real-time task model
is presented in Table 2.1.

2.6.1 Utilization Bounds

Rate Monotonic

Liu and Layland [66] showed that if the total processor utilization of
all the tasks in the task set satisfies the minimum processor utilization
bound, then the task set is schedulable.

n∑
i=1

Ci
Ti
≤ n(2

1
n − 1) (2.2)

This total processor utilization based schedulability condition as-
sumes that the tasks’ deadlines are equal to their periods, and they are
released at the beginning of their periods. This schedulability condition
is sufficient but not necessary, meaning that the condition only guaran-
tees meeting all the deadlines in case the total utilization is less than
or equal to the given bound. However, if the total utilization is more
than the bound, the task set may still be schedulable. The bound shown
above converges to 69% for large n. However Lehoczky [59] showed that,
in their study, the average case for the utilization bound reached up to
88% for randomly created task sets.
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n number of messages / tasks
Ci worst-case transmission/execution time

of message/task i
Ci worst-case execution time of alternate

task i
Ti period/minimum inter-arrival time of

message/task i
Ri worst-case latency/response time of

message/task i
Di relative deadline of message/task i
hp(i) set of messages/tasks with priority

higher than that of message/task i
hep(i) set of messages/tasks with priority

higher than or equal to that of
message/task i

Ji worst-case queuing jitter of message i
qi worst-case queuing delay of message i
Bi non-preemptive transmission of a lower

priority message frame, or the
non-preemptive transmission of a
message frame belonging to the previous
instance of the message i

TF minimum fault inter-arrival time

Table 2.1: Real-time task model notation

Fault-Tolerance Adaptation of Rate Monotonic

Pandya and Malek extended the RM policy to provide recovery from
single errors by re-executing the tasks hit by the errors [77]. They showed
that, assuming that the inter-arrival time between any two errors is
greater than largest period in the task set, the task set is schedulable
even when performing re-executions, if the total processor utilization of
tasks is less than or equal to 50%. This bound is better than the trivial
bound obtained by simply doubling the task utilizations (34.5 %).



2.6 Real-Time Analysis 25

Earliest Deadline First

Liu and Layland showed that using EDF, utilizations up to 100% can
be achieved while guaranteeing schedulability assuming the same task
model used for deriving the RM utilization bound.

n∑
i=1

Ci
Ti
≤ 1 (2.3)

This schedulability condition is necessary and sufficient. For a more
relaxed task model where deadlines are allowed to be different than the
periods, it has been shown that this condition is not sufficient [62].

Non-preemptive Rate Monotonic on CAN

Andersson and Tovar [4] showed that using the RM policy on a CAN
bus (with non-preemptive transmissions), the schedulability of message
streams can be guaranteed if the total network utilization does not ex-
ceed 25%. They also proved that no greater bound can be given for the
CAN bus. The messages are assumed to be sporadic and have unique
priorities. The relative message deadlines are assumed to be equal to
the minimum inter-arrival times.

2.6.2 Response Time Analysis

Response Time Analysis (RTA) is an analysis technique used to deter-
mine whether a task or a message set meets all the deadlines in the
worst-case execution scenarios. For each task or message, the worst-case
execution scenario is assumed as the scenario that gives the worst-case
response time (WCRT) with the worst combination of task execution
times [103] or message transmission times, task or message release pat-
terns and error events.

This section presents the well-known RTA techniques for fixed prior-
ity task and message scheduling policies, that are used throughout the
thesis.

Response Time Analysis for Task Scheduling

The traditional RTA used in FPS calculates the WCRT Ri for each task
i (denoted by τi) in the task set using the following equation assuming
that there are no errors and, hence, no recovery attempts [49]:
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Ri = Ci +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj (2.4)

The second term in the equation is the worst-case interference Ihpi from
the higher priority tasks experienced by task i.

The following recurrence relation is used for solving Equation 2.4:

rn+1
i = Ci +

∑
j∈hp(i)

⌈
rni
Tj

⌉
Cj

where r0
i is assigned the initial value of Ci. r

n is a monotonically non-
decreasing function of n and when rn+1

i becomes equal to rni then this
value is the WCRT Ri of task i. If the WCRT Ri becomes greater than
the deadline Di, then the task cannot be guaranteed to meet its deadline,
and the task set is therefore considered unschedulable.

Response Time Analysis for Task Scheduling under Errors

If we assume an FT scheduler, where the tasks affected by errors are
re-executed, then the execution of task i will interfere with both errors
as well as higher priority tasks. Accordingly, the WCRTs are computed
[22] by using the following equation:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj +

⌈
Ri
TF

⌉
max

k∈hep(i)
(Ck) (2.5)

where Ck is the WCET needed by task k to recover from the errors, TF
is a known minimum inter-arrival time between faults that may cause
errors, and hep(i) is the set of tasks with priority equal to or higher than
the priority of task τi (hep(i) = hp(i)∪ τi). The last term calculates the
worst-case interference arising from the recovery attempts and is denoted
by Ierri . This equation is also solved by a recurrence relation as in the
previous case. If all Ri values are less than or equal to the corresponding
Di values, then the task set is guaranteed to be scheduled under the
condition that no two errors occur closer than the TF value.

Response Time Analysis for Message Scheduling in CAN

In [96] the authors present analysis to calculate the WCRT of CAN
messages. This analysis is based on the RTA for task scheduling, which
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is later refined in [27]. Calculating the response times requires a bounded
worst-case queuing pattern of messages. The standard way of expressing
this is to assume a set of traffic streams, each generating messages with a
fixed priority. The worst-case behavior of each stream is to periodically
queue messages.

For an ideal CAN controller (the non-ideal case is presented by [97])
the WCRT Ri of a CAN message Mi is defined by

Ri = Ji + qi + Ci (2.6)

where Ji is the worst-case queuing jitter of message Mi, inherited from
the sender task which queues the message. The minimum delay from the
point in time t, relative to the time message Mi is queued, is assumed
to be 0 (t is typically the start of the period). In other cases the term
Jmini needs to be added to Equation 2.6, since jitter is defined as the
difference between the biggest and smallest delay from t. The worst-case
queuing delay qi is given by,

qi = Bi +
∑

j∈hp(i)

⌈
qi + Jj + τbit

Tj

⌉
Cj (2.7)

where Bi, in the general case, is either the non-preemptive transmission
of a lower priority message frame, or the non-preemptive transmission of
a message frame belonging to the previous instance of the message Mi

[27]. This is equivalent to the worst-case blocking time of the longest
possible message frame (i.e., the worst-case transmission time of a CAN
message frame with 8 bytes of data and worst-case bit stuffing). τbit
caters for the difference in arbitration start times at the different nodes,
due to propagation delays and protocol tolerances.

Tindell et al. [96], extended the RTA for CAN to handle the error
induced interference and proposed the following equation:

qi = Ierri +Bi +
∑

j∈hp(i)

⌈
qi + Jj + τbit

Tj

⌉
Cj (2.8)

where the additional term, Ierri , denotes the maximum error interference
assuming a bounded error model:

Ierri =

(
nburst +

⌈
qi + Ci
TF

⌉
− 1

)(
maxj∈hep(i) + emaxτbit

)
(2.9)



28 Chapter 2. Background

In their assumed bounded error model, first an error burst of nburst
errors is assumed to interfere with the message transmissions, and after
that, one error is assumed to occur per elapsed minimum inter-arrival
time TF between faults causing the errors.

In [82], the authors extended Tindell et al.’s analysis with a more
general error model where a task can be interfered by a number of error
bursts with different durations. When experiencing a burst error, the
bus becomes unavailable and all transmissions are delayed for a duration
equal to the duration of that burst.

2.7 Summary

This chapter provides an overview of the theoretical background for the
dependability and real-time research, relevant to the thesis. It starts
with describing the main concepts and terminology for the dependabil-
ity research and briefly describes the commonly used error modeling
approaches in the dependability and real-time research. Later, it gives
an overview of real-time systems and real-time communication including
a description of CAN’s technical details necessary for the thesis. Fi-
nally, it presents the scheduling policies for task and message scheduling
together with the real-time analysis techniques relevant to this thesis.



Chapter 3

Temporal and Spatial
Redundancy Strategies

Embedded real-time applications typically have to satisfy high depend-
ability requirements due to the interactions with, and possible impacts
on, the environment. Ensuring dependable performance of such systems
is typically ensured by fault-tolerance in their designs. Redundancy is
the key fault-tolerance approach and it has been employed successfully
in the spatial, temporal, information and analytical domains of a large
number of critical applications [45, 102]. This chapter proposes various
fault-tolerance strategies in the temporal and spatial domains that pro-
vide significant improvements over the existing strategies, in terms of
better error detection, wider error coverage and more efficient resource
usage.

3.1 Voting on Time and Value Domains

Safety and mission critical applications have been using voting strategies
based on N-Modular Redundancy (NMR), most often in the well-known
form of Triple-Modular Redundancy (TMR), where three nodes are used
for replication [74]. The key attraction of this approach lies in its low
overhead and error masking abilities, without the need for backward
recovery [57]. Some of the disadvantages include the cost of redun-
dancy and single point failure mode of the voter. Traditionally, voters

29



30 Chapter 3. Temporal and Spatial Redundancy
Strategies

are constructed as simple electronic circuits, thus providing a very high
level of reliability. Distributed voters have also been employed to take
care of the single-point failure mode in highly critical systems [37, 68].
With the additional cost of increased computation time, more enhanced
voting strategies, such as plurality, median and average voting, can be
performed in software. Plurality voters(m-out-of-n voters) require m
matching outputs out of n, where m is less than the majority, to reach
a consensus [67, 42]. Median voters output the middle, and average vot-
ers output the average value of the replica output values. Surveys and
taxonomies of voting strategies have been presented [15, 41, 58].

Replicated nodes’ output values can vary slightly, resulting in a range
(or a set) of values, which should be considered as correct to avoid prob-
lems of failing to reach a consensus as indicated in [18, 25]. In order to
accomplish this, inexact voting strategies have been proposed [56, 81, 87].
This phenomenon is also observed in the time domain due to several fac-
tors, such as clock drifts, node failures, processing and scheduling varia-
tions at node level, as well as communication delays. Most of the exist-
ing voting strategies, however, focus solely on tolerating anomalies in the
value domain by assuming that they are running on tightly synchronized
systems, as pointed out in [51]. On the other hand, loosely synchronized
systems have several advantages over the tightly synchronized systems,
such as, lower overheads, reduced complexity, and the lower criticality
of the synchronization mechanism itself [55]. The key issue with loosely
synchronized systems is that voting is made more complicated since the
differences between the replica output values may exist independent of
whether errors have occurred, as each of the replicas may be receiving
different inputs.

A simple approach towards tolerating both value and timing errors
using the NMR approach could be adding time stamps to the replica
outputs. Then, voting on the time stamps could detect possible timing
errors in the replica outputs. However, this approach is unable to mask
late timing errors since the voter has to wait for all the values to be
delivered by the replicas. Majority voting techniques that are able to
implicitly handle the errors in the time domain, have been proposed by
Ravindran et al., [84, 85], and Shin et al., [89]. In these approaches,
voting is performed among a quorum or a majority of the responses
received, rather than waiting for all the responses, in order to be able
to mask late timing errors. Both Quorum Majority Voting (QMV) and
Compare Majority Voting (CMV) provide outputs within a bounded
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time interval. These approaches are built on the assumptions that the
number of replicas with erroneous outputs during each voting procedure
does not exceed the allowed thresholds (n out of 3n+1 erroneous replica
outputs for QMV, and n out of 2n + 1 erroneous replica outputs for
CMV). As long as the assumption holds, the ability to detect value
errors is equivalent to the existing approaches. However, QMV and
CMV cannot always detect whether this assumption has been violated.
Hence, these approaches may produce optimistic results in the sense
that, e.g., an incorrect value may be produced at a correct (or incorrect)
time, and thus may not be fully suitable for hard real-time systems.

Traditionally, research efforts are less focused on scenarios and solu-
tions beyond the stated assumptions, whereas in practice, the robustness
of dependable systems can be enhanced by the provision of signalling as-
sumption violations. For example, in the event of a violation of the
underlying assumptions, a voter needs to be cautious in the provision of
outputs to the environment, e.g., a “no output” together with an error
signal may be a better alternative than a potentially erroneous output.
This gives an enhanced capability for ensuring fail-safe or fail-stop be-
havior within systems.

This section outlines a conceptual design for the real-time voting
strategy Voting on Time and Value (VTV) [14], in which voting is per-
formed in both the time and the value domains. In particular, VTV
aims to enhance the fault-tolerance abilities of NMR by ensuring the
output from the voter to be both correct in value, and delivered within
an admissible time interval, under specified assumptions. The detection
threshold for the timing anomalies, hence the admissible time interval,
can be adjusted in the voter, in order to tune the detection performance.
Except for some extreme and highly unlikely scenarios, such as all node
outputs having late timing errors, VTV is designed to detect and signal
assumption violations in both the time and the value domains within a
bounded time, while QMV and CMV can only detect assumption vio-
lations in the value domain. VTV is also designed to perform at least
as good as the existing strategies targeting only tightly synchronized
systems.

Table 3.1 presents an overview of various voting strategies, applicable
to loosely synchronized real-time systems which are described in the
following subsections.

This section ends with an evaluation that shows how different de-
tection thresholds, error sizes, and error scenarios affect the detection
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Voting
Voter Description domain(s)

1. Wait for a quorum
(2n+1 out of 3n+1 replica outputs) value

QMV 2. Perform majority voting in the quorum
Wait for a majority (n+1 out of 2n+1

CMV replica outputs) with identical values value
1. Wait for a majority (or a plurality)
delivered within a predefined time window
2. Perform voting in the value domain among
all the available or only the timely replica outputs value

VTV (depending on the application characteristics) &
3. In case there is no agreement in the time
value domain, return to step one,
4. If no agreement is formed in both
the domains, signal disagreement

Table 3.1: Overview of voting strategies suitable for real-time systems

capabilities. The results demonstrate the robustness of VTV, confirm-
ing that VTV outperforms CMV in all scenarios with lower false negative
rates and in terms of its potential for notifying assumption violations.

3.1.1 System Model

In this section, a distributed real-time system is assumed, where each
critical node is replicated for fault-tolerance, and voting is performed
on replica outputs to ensure correctness in both value and time. Upon
receiving identical requests or inputs, replicas of a node start their execu-
tions on dedicated processors whose clocks are allowed to drift from each
other at most by a maximum deviation. This bound can be achieved by
relatively inexpensive clock synchronization algorithms implemented in
software (compared to expensive tight clock synchronization implemen-
tations). After the replicas complete their executions, the outputs are
sent to a stand-alone voting mechanism. Deviation in message transfer
times from the replicas to the voter is also assumed to be bounded by
using reliable communication techniques.

The maximum deviation of any two replica outputs in the time do-
main, in an error free scenario, as perceived by the voter, is denoted by
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δ, which includes the maximum skew between any two non-erroneous
replica clocks, and the maximum skew between any two message trans-
missions from replicas to the voter. Upon receiving replica outputs, the
voter starts executing the voting process, which has a known Worst-
Case Execution Time (WCET) Cvoter, and outputs a correct value at
an admissible time, or signals the non-existence of a correct output to
the subsequent component in the system within a bounded time.

The maximum admissible deviation between any two voter outputs in
the time domain, relative to the correct time point t∗ (seen by a perfect
observer), is denoted by ∆, and determined according to the system
specifications, i.e., what the rest of the system can tolerate as per the
real-time and dependability specifications. The reader should note that
the maximum admissible deviation of a voter output from the correct
time point, t∗, is ∆/2 and the maximum deviation of a replica output
from t∗ in an error free scenario is δ/2.

Potential errors in the value domain are detected when two replica
outputs differ more than the maximum admissible deviation between any
two replica outputs, denoted by σ. Potential errors in the time domain
are detected when the voter receives two replica outputs that are sep-
arated by more than δ multiplied by the detector coefficient α. If α is
less than one, the error detector may identify even error free outputs as
erroneous increasing the false positives, but this may increase the detec-
tion of the variations in the time domain due to errors reducing the false
negatives. An α value less than one can also be used if ∆/2 is less than
δ/2 + Cvoter to detect any scenarios that may result due to inadequate
synchronization and threaten system’s timeliness requirements. On the
other, hand if ∆/2 is greater than δ/2 + Cvoter, then the system can
tolerate even some of the variations due to errors. Hence, the difference
between ∆/2 and δ/2 + Cvoter can be used to reduce false positives by
using an α value greater than one. Figure 3.1 shows the relation between
∆, δ and Cvoter.

The output delivered by Ni, is specified by two domain parameters,
viz., value and time (for the sake of readability, the ith replica of a given
node is denoted by Ni):

Specified output for Ni = < v∗i , t
∗
i >

where v∗i is the correct value, t∗i is the correct time point (seen by a
perfect observer) when the output should be delivered.

An output delivered by Ni is denoted as:
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value
2


incorrect 
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Figure 3.1: Output correctness in the time and the value domains and
the relation between ∆, δ, and Cvoter

Delivered output from Ni = < vi, ti >

where vi is the value and ti is the time point at which the value was de-
livered. Based on the voter parameters σ, δ and α, the output generated
by replica Ni is defined as incorrect in the value domain if:

vi < v∗i −
σ

2
or vi > v∗i +

σ

2

and incorrect in the time domain if:

ti < t∗i − α
δ

2
(early timing error)

or if

ti > t∗i + α
δ

2
(late timing error).

The notations used for the error behavior of the replicas (seen by a
perfect observer) are:

• Ev: the number of replicas that have only value errors

• Et: the number of replicas that have only timing errors, consisting
of two subcategories:
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– Eet : the number of replicas that produce early outputs with
correct values

– Elt: the number of replicas that produce late outputs with
correct values

• Evt: the number of replicas that have both value and timing errors,
consisting of two subcategories:

– Eevt: the number of replicas that produce early outputs with
incorrect values

– Elvt: the number of replicas that produce late outputs with
incorrect values

where the total number of erroneous replica outputs E is:

E = Et + Ev + Evt

Finally, the notations used while describing the voting mechanisms
are:

• N : number of replicas

• Mt: minimum number of replicas required to form a consensus in
the time domain, as per the system specifications

• Mv: minimum number of replicas required to form a consensus in
the value domain, as per the system specifications

Basic assumptions: The VTV strategy relies on the following set
of basic assumptions (to a large extent based on [32]):

A1: non-erroneous nodes produce values within a specified admissible
range after each computation block

A2: non-erroneous nodes produce values within a specified admissible
time interval after each computation block

A3: replica outputs with incorrect values do not form (or contribute in
forming) a consensus in the value domain

A4: incorrectly timed replica outputs do not form (or contribute in
forming) a consensus in the time domain
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A5: there exist adequate mechanisms, e.g., infrequent synchronization,
which are significantly less costly than tight synchronization, to
ensure a maximum permissible replica deviation from the global
time

A6: the voting mechanism does not fail, as being designed and imple-
mented as a highly reliable unit

3.1.2 Methodology

The correctness of the VTV approach [14] relies on a number of con-
ditions regarding the permissible number of replicas that produce erro-
neous outputs:

C1: The number of replicas that produce erroneous outputs can not
exceed the difference between the total number of replicas and the
minimum number of error free replicas required to achieve consen-
sus in the value domain.

Ev + Et + Evt ≤ N −Mv

C2: The number of replicas that produce erroneous outputs in the time
domain is bounded by the difference between the total number of
replicas and the minimum number of error free replicas required
to achieve consensus in the time domain.

Et + Evt ≤ N −Mt

The goal of the VTV approach is twofold:

1. always deliver the correct value within [t∗ − ∆
2 , t
∗ + ∆

2 ], if the
conditions C1 and C2 hold

2. provide information about violation of the conditions, otherwise.

In VTV, agreement in the time domain is reached when Mt out of N
replicas deliver their outputs within the time interval [t∗−αδ/2, t∗+αδ/2]
(referred to as feasible window henceforth).

The maximum number of sets, consisting of Mt consecutive replica
outputs each (out of the N replicas), is N −Mt+ 1. Since the consensus
in the time domain can be reached in any of these sets, a separate feasible
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window needs to be initiated upon receiving each of the first N −Mt+ 1
replica outputs. In order to keep track of the feasible windows, simple
countdown timers are utilized. Once an agreement in the time domain
is obtained, then the voting is performed on the values. If an agreement
in the value domain is not obtained within a particular feasible window,
the process continues with subsequent feasible windows, until agreement
in both the time and the value domains can be achieved, or violations
of C1 or C2 are detected.

Depending on the application characteristics, a value produced by a
node may be considered valid or invalid for the purpose of voting, in the
case it is produced early. This voting dilemma is illustrated by using the
scenario described in Figure 3.2. Assume, for example, an airbag control

N1 a

N2 a

N3 Votera a or b?

N4 b

N5 b

TIME
t1 t2 t3 t4 t5

δ δ δ

Figure 3.2: Voting dilemma

system where a collision sensor is replicated in five different nodes that
produce one out of two values periodically, e.g., value a in case of a
collision detection or value b otherwise. VTV detects the first two values
as early and the last three are identified as timely. However, in this case,
even an early value should be taken into consideration in the voting since
an early collision detection is still a valid output with respect to the value
domain. Thus, the voter outputs the value a. On the other hand, let the
same Figure 3.2 represent an altitude sensor in an airplane, replicated by
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five nodes to read and output the altitude periodically to the voter, where
data freshness may be a more desirable aspect. As the correct window
of time for the output is the same as described in the previous example,
the only relevant values to be taken into consideration by the voter are
a, b, and b corresponding to the time points t3, t4, and t5 respectively.
Hence, a desirable output to be produced in this application at time
(t5 + Cvoter) is b. The two cases are summarized as follows:

Case 1 Only timely outputs are considered valid. If a plurality exists
among the timely received values, the plurality value is delivered
as the correct output.

Case 2 Early and timely outputs are considered valid. If a plurality
exists among all the received values, the plurality value is deliv-
ered as the correct output. The advantage of this case is that the
number of the nodes required to mask a given number of errors
(in the time and the value domains) can be significantly reduced,
compared to Case 1, since replica outputs erroneous in one domain
may still be used to reach consensus in the other domain. How-
ever, if the early timing errors have the potential to cause system
failures, then using VTV in this configuration may be inadvisable.
In this case, Condition C1 becomes:

C1(Case2) : The number of replicas that produce erroneous outputs, ex-
cept the outputs with early timing errors, can not exceed the
difference between the total number of replicas and the num-
ber of error-free replicas required to achieve consensus in value
domain.

Ev + (Et − Eet ) + (Evt − Eevt) ≤ N −Mv

3.1.3 Evaluation

In this subsection, a simulation study, performed to investigate the per-
formance of VTV as compared to CMV, is presented. As shown in Fig-
ure 3.3, five nodes are simulated where various kinds of transient errors
are injected with certain probabilities along with a reference node that
never fails. The outputs of the five nodes are voted using three different
voters: (i) one implementing the VTV strategy where early generated
replica outputs are considered invalid for the value voting (Case 1), (ii)



3.1 Voting on Time and Value Domains 39

N1

N2 CMV
Output

Error

N3

N
VTV
C 1

Output

ErrorN4

N5

Case 1 Error

OutputN5 VTV
Case 2

Output

Error

Nref
Perfect 
observer

FPR & FNR

Figure 3.3: Simulation setup

one implementing the VTV strategy where early outputs are considered
valid for the value voting (Case 2) and (iii) one implementing the CMV
strategy. All node outputs are sent to a perfect observer module to-
gether with the voter outputs and the assumption violation signals from
the voters, in order to determine the False Positive Rate (FPR) and the
False Negative Rate (FNR) of each voting strategy.

Experimental Design

The simulations are implemented using Matlab/Simulink. In order to
evaluate the dependency on the signals input to the replicas, two differ-
ent signals, viz., a sine wave and a square wave, at various frequencies
are used. By using the sine wave, signals that change smoothly over
time, with a value limit for the maximum change during a given time
are simulated. The sine wave also allows an assessment of how specific
frequencies are affected. An example for such a signal is the reading of a
temperature sensor in a closed room, where the rate of change is limited
based on the factors such as the heater capacity, the volume of the room,
etc. A square wave also allows a range of frequencies to be assessed. By
using the square wave, signals such as those that can be generated by
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sensors that output boolean values are simulated. An example for such
a sensor is a smoke detector which outputs either false to indicate that
there is no smoke, or true otherwise. The amplitudes of the signals are
set to 5 units. The sensor noise is simulated by adding a normally dis-
tributed random value with a mean of 0 and a variance of 0.2 units to
the input signals.

Injected Errors

Three types of errors are considered in the simulations.

1. Value errors: The node outputs the sampled value with a uni-
formly distributed random value offset within a given value offset
range.

2. Timing errors: The node outputs the sampled value with a uni-
formly distributed random time offset within a given time offset
range.

3. Omission errors: When an omission error (which is a special
type of timing errors) is injected, the node skips outputting the
sampled signal value.

In order to evaluate the sensitivity of the voting approaches, i.e. the
detection capabilities of the voters depending on the errors’ magnitude,
the time and value offsets are randomly generated within two different
ranges. The narrow time offset range is defined as [−1ms, 1ms]. Please
note that replica outputs are assumed to be timely as long as the time
difference between the output delivery times and the delivery time of an
ideal replica (with no timing errors and no time drift from the real-time)
is less than or equal to αδclock/2 where δclock = 0.5ms and α is selected
within an interval of [0.6, 1.4], hence the timing errors generated within
this range are harder to detect than the timing errors generated using
the wide time offset range [−4.5ms, 4.5ms], which, together with the
drift from the real-time, may result in replica output deliveries any time
during a period. The narrow value offset range is defined as [−1, 1] units
and the wide value offset range is defined as [−5, 5] units. Figure 3.4
shows a sampled input signal and a node output with injected errors.

Voters’ abilities to work in a wide range of conditions are evaluated
by injecting the errors with different combinations (no errors, only value
errors, only timing errors (including omission errors), and both value and
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Figure 3.4: A noisy input signal and the corresponding node output with
injected errors

timing of errors) as well as by injecting errors with different probabilities.
Based on the error occurrence probability during a period for each type
of error, two sets of experiments (one with a probability of 2% and one
with a probability of 10%) are conducted.

Task and System Properties

Each node executed an identical replica of a single task with a period
P = 10ms and an execution requirement C = 5ms. This is because, both
the CMV and the VTV strategies expect parallel executions of the tasks
in the replica nodes. A node samples the input signal at the beginning
of its period and outputs the sampled value after the assumed execution
time has elapsed in case of an error free operation. Except the timing
errors, the only factor that may result in different output delivery times is
the drift in the local clock of the node from the global clock. The drift is
simulated by allowing local periods slightly longer or shorter than 10ms.
The execution requirement is also scaled up or down based on the local
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period. Whenever the accumulated drift from the global clock, i.e. the
accumulated sum of the difference between the local period and the real
period, reaches the maximum admissible deviation from the real-time
(δclock/2 = 0.5ms), the local clock is synchronized with the global clock.
This is realized by running a synchronization period which is shorter
or longer than the real period with a value equal to the accumulated
difference.

Figure 3.5 shows an example of a scenario with clock synchronization.
The vertical arrows in the diagram indicate the beginning and the end

Synchronization Periodclock

Node 1
(local clock slower
than global clock)

Synchronization Period

Node 2
(local clock faster 
than global clock)

Node 3
(local clock same 
as global clock)

0                                   10                                  20                                  30                        39.5  40  40.5                        50                                  60         t (ms)

Figure 3.5: Clock synchronization

of the periods (release times and the deadlines of the tasks). In this
example, node 3’s clock runs in line with the real-time. However, node
1’s clock runs slower and node 2’s clock runs faster than the real-time.
At t = 39.5ms, the drift of node 2’s clock reaches δclock/2 = 0.5ms

and it executes a synchronization period T synch2 = 10.5ms. Similarly,
at t = 40.5ms, the drift of node 1’s clock reaches δclock/2 = 0.5ms and

it executes a synchronization period T synch1 = 9.5ms. At t = 50ms, all
clocks are synchronized.

The time step used in the simulations is 100 simulation nanoseconds
long, and each simulation is run for 100 simulation seconds. Increasing
the simulation duration did not affect the statistical trend in the results,
hence with the chosen error rates, a duration of 100 seconds for each
run is found to be adequate for the purpose of these experiments. The
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four error combinations (no error, only timing errors including omission
errors, only value errors and both types of errors), the two error range
combinations for both the time and the value errors, the two different
error probabilities, the two different signals and the three different fre-
quencies for each signal sum up to a total of 156 simulation runs. In
addition, to show the effect of α on the performance of the evaluated
voters, the experiments are separately run for 5 different α values.

Voters

Both the voters that use the VTV strategy and the voter that uses the
CMV strategy look for a majority in the value domain (Mv = 3). In
addition, the voters that use the VTV strategy look for a majority in
the time domain (Mt = 3). Furthermore, the voter that uses the VTV
strategy and configured for Case 1 requires that the majority of replica
outputs that match in the value domain are also timely. Two outputs are
assumed to be matching in the value domain if the difference between
them is less than or equal to the maximum admissible deviation in the
value domain between any two replica outputs (σ = 0.2 units), and they
are assumed to be matching in the time domain if the difference in output
delivery times is less than or equal to the maximum admissible deviation
in time between any two nodes (δclock = 1ms).

Perfect Observer

A perfect observer module is used to calculate the FPR and the FNR
of each voting strategy. It compares the most recently received outputs
from the voters with the output from the reference node. The outputs
of the voters are considered to be correct if the difference between them
and the reference node is less than or equal to the maximum admissible
deviation in the value domain from the ideal output σ/2 = 0.1 units.
This task also uses the error signals from the voters, i.e. the signals
that indicate the assumption violations, to determine the FPR and the
FNR.

Simulations with α = 1

Table 3.2 shows the FPR and the FNR of the evaluated voters for the
various signals and the error probabilities. Regardless from the signal
types, the signal frequencies and the error probabilities, the FPR of
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CMV is lower than that of VTV configured for Case 2, and the FPR
of VTV configured for Case 2 is lower than that of VTV configured for
Case 1. This is because the voters that use the VTV strategy identify
more erroneous scenarios since, unlike the voter using the CMV strategy,
they can detect the assumption violations in the time domain, and some
of those timing errors are not propagated into value errors. Among the
voters using the VTV strategy, the FPR is higher for the one configured
for Case 1 since, similarly, it signals a greater number of assumption
violations, some of which are not propagated into value errors. On the
other hand, it can be seen that the FNR of CMV is the highest among
all the evaluated voting strategies and the FNR of VTV configured for
Case 1 is the lowest, which is much more critical than the difference
in FPRs, as FNR is the rate that indicates the errors that are neither
masked nor signalled.

VOTER f(Hz)
SIGNAL FNR FPR
TYPE (2%) (10%) (2%) (10%)

CMV

1
Sine w. 0.09 0.39 1.17 3.92
Square w. 0.05 0.57 1.04 3.64

4
Sine w. 0.56 5.36 1.08 3.07
Square w. 0.17 2.22 1.38 3.72

16
Sine w. 1.74 11.27 0.8 2.49
Square w. 0.73 6.47 1.24 3.18

1
Sine w. 0.01 0.03 4.84 25.51
Square w. 0.02 0.09 5.06 25.87

VTV
4

Sine w. 0.02 0.31 4.53 21.56
(Case 1) Square w. 0.03 0.19 5.01 25.38

16
Sine w. 0.09 0.9 3.10 14.89
Square w. 0.05 0.34 4.55 20.98

1
Sine w. 0.09 0.39 1.17 3.92
Square w. 0.05 0.57 1.04 3.64

VTV
4

Sine w. 0.31 1.19 2.92 14.74
(Case 2) Square w. 0.08 0.65 3.11 16.96

16
Sine w. 0.93 3.81 2.38 11.83
Square w. 0.44 1.87 3 14.35

Table 3.2: FPR and FNR of CMV and VTV for various signal types and
signal frequencies
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Table 3.3 shows the FPR and the FNR of the evaluated voters for
various error combinations. As expected, the FPR and the FNR for all
the voters are zero in the absence of errors. When only value errors are
injected, the FPR and the FNR are identical for all voting strategies.
This is because all strategies use the same criteria for detecting the
value anomalies. However, when the injected errors are only in the form
of timing errors (including the omission errors), the performance of the
voters using the VTV strategy outperforms the voter using the CMV
strategy by a great margin. This increase in the performance is still
visible when all types of errors are injected together.

VOTER ERROR TYPE
FNR FPR

(2%) (10%) (2%) (10%)

CMV

No errors 0 0 0 0
Only value errors 0.01 0.03 1.57 6.31
Only timing errors 0.02 0.13 3.12 15.29

Both value & timing errors 0.02 0.15 6.01 29.83
No errors 0 0 0 0

VTV Only value errors 0.01 0.03 1.57 6.31
(Case 1) Only timing errors 0.02 0.13 3.12 15.29

Both value & timing errors 0.02 0.15 6.01 29.83
No errors 0 0 0 0

VTV Only value errors 0.01 0.03 1.53 6.31
(Case 2) Only timing errors 0.16 0.53 1.49 7.9

Both value & timing errors 0.24 0.75 3.81 19.36

Table 3.3: FPR and FNR of CMV and VTV for various the error com-
binations

Table 3.4 shows the FPR and the FNR of the evaluated voters for
different error magnitudes. Even when the injected errors become harder
to detect due to their smaller magnitude, the VTV strategy outperforms
the CMV strategy with respect to the FNR. However, the trend in the
ratio of FNRs becomes slightly less distinct.

All of the above FPR and the FNR values are derived by the perfect
observer by comparing the voter outputs with the reference node out-
put. As stated earlier, the voter output is identified as erroneous in the
value domain if the difference is greater than σ/2 = 0.1 units. Figure
3.6 shows the ratio of CMV’s FNR to VTV’s FNR (configured for both
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VOTER
ERROR MAGNITUDE FNR FPR

Value errors Timing errors (2%) (10%) (2%) (10%)

CMV

LARGE LARGE 0.32 2.48 1.23 4.65
LARGE SMALL 0.2 2.02 1.44 4.81
SMALL LARGE 0.23 2.12 0.51 1.07
SMALL SMALL 0.28 1.76 0.55 1.26
LARGE LARGE 0.02 0.13 5.8 28.73

VTV LARGE SMALL 0.01 0.11 4.1 20.84
(Case 1) SMALL LARGE 0.01 0.2 4.17 21.27

SMALL SMALL 0.02 0.14 3.13 13.8
LARGE LARGE 0.22 0.77 3.52 19.06

VTV LARGE SMALL 0.12 0.64 3.08 15.73
(Case 2) SMALL LARGE 0.16 0.66 2.2 12.4

SMALL SMALL 0.19 0.57 2.12 10.16

Table 3.4: FPR and FNR of CMV and VTV for various error magnitudes

Case 1 and Case 2) for the value errors that are greater than the values
identified on the X-axis. This experiments show that the masking and
signalling capability of CMV decreases relative to that of VTV as the
error magnitude increases, and hence is able to provide only a decreased
level of fault-tolerance for the errors that are more critical. VTV per-
forms better than CMV since the timeliness requirement of the signals
limits the amount of deviation from the correct signal.

Simulations Exploring the Variation of α

Table 3.5 shows the FPR and the FNR of the evaluated voters for the
given α values selected from the interval [0.6, 1.4]. Changing the value of
α does not have any effect on the performance of CMV since no specific
error detection is performed in the time domain. Nevertheless, the order
among the FPR and the FNR values for all the three types of voters
are preserved for all the chosen values of α. For both configurations of
VTV, as α increases, the FPR decreases and the FNR increases. This
is because, for small values of α, a greater number of voter outputs
are detected as potentially erroneous in the time domain. Among these
detected outputs, there are scenarios both where these anomalies are
occurred due to errors and due to clock drifts. If the anomalies are
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Figure 3.6: Ratio of CMV’s FNR to VTV’s FNR (configured for Case 1
and Case 2) with increasing error magnitudes

caused by errors, then their detection contributes to the reduction of the
FNR. If they are caused by clock drifts, then their detection causes an
increase in the FPR.

The experiment results confirm that VTV outperforms CMV in all
scenarios, showing a lower percentage of errors that are neither masked
nor signalled. The results indicate the overcautious nature of VTV by
showing a higher percentage of false positives due to the fact that it does
not account the untimely values for arriving at a majority. The results
also show that the ratio of the error masking and signalling capability of
VTV to that of CMV increases as the magnitude of the value errors in-
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VOTER α
FNR FPR

(2%) (10%) (2%) (10%)

0.6 0.01 0.11 5.64 27.5
0.8 0.01 0.18 5.18 26.43

CMV 1 0.02 0.21 4.64 24.61
1.2 0.02 0.22 4.3 21.82
1.4 0.25 2.12 1.09 3.49
0.6 0.01 0.11 5.64 27.5
0.8 0.01 0.18 5.18 26.43

VTV 1 0.02 0.21 4.64 24.61
(Case 1) 1.2 0.02 0.22 4.3 21.82

1.4 0.02 0.22 4.06 20.92
0.6 0.02 0.16 4.24 19.8
0.8 0.04 0.23 4 19.47

VTV 1 0.13 0.76 2.89 16.27
(Case 2) 1.2 0.16 0.84 2.57 14.98

1.4 0.19 0.85 2.47 14.66

Table 3.5: FPR and FNR of CMV and VTV for various error detector
coefficients

crease. Hence, VTV provides better error detection than CMV for value
errors of greater magnitude which are originated by timing anomalies.

The goal of using redundancy schemes is to boost the reliability of the
system to a level that the system specifications meet the dependability
requirements. The evaluations show that for a given redundancy scheme,
it is possible to tune its performance by choosing (i) an appropriate δ
(by adjusting the level of clock synchronization) and (ii) an appropriate
α that in combination would enable reaching a desired level of the FNR.
On the other hand, the FPR needs to be bounded at a certain level
so that the recovery actions taken due to the false positives would not
jeopardize the real-time requirements.
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3.2 Fault-Tolerant Scheduling of Tasks With
Mixed Criticality

Real-time systems typically have to satisfy complex requirements, map-
ped to the task attributes, eventually guaranteed by the underlying
scheduler. In such systems, due to resource constraints, the error re-
covery has to be performed in a prioritized way depending on the task
criticality levels. Moreover, as the relative criticality levels of the tasks
could undergo changes during the evolution/life time of these systems,
the designer might have the tedious task of making new schedules to
reflect such changes. This is especially relevant in the case of ’system of
systems’ or component based systems where the integrator needs to make
judicious choices for assigning/fine-tuning the priorities for scheduling
the tasks of subsystems within the global context. Temporal redun-
dancy techniques are preferred in many embedded applications where it
is not feasible to provide spatial redundancy due to weight, space and
cost considerations, hence, it is extremely important to devise appropri-
ate methodologies for scheduling real-time tasks under error assumptions
so that the exploitation of temporal redundancy does not jeopardize the
timeliness requirements on critical tasks.

This section presents a methodology to provide a priori guarantees in
fixed priority scheduling (FPS) such that the system will be able to tol-
erate one error per every critical task instance. The methodology utilizes
Integer Linear Programming (ILP) to derive task attributes that guar-
antee the re-execution of every critical task instance before its deadline,
while keeping the associated costs minimized. Unlike many previous
works, this method guarantees all primaries’ and all alternates’ feasible
execution, up to 100% utilization, in FPS while providing recovery from
up to one error per critical task instance, without any on-line compu-
tational overhead or major modifications to the underlying scheduler.
Additionally, in case the system load permits, non-critical tasks can fea-
sibly coexist with critical ones at high priority levels. The effectiveness
of the approach is evaluated, through simulation studies, by comparing
it with a well-known fault-tolerant (FT) adaptation of the Rate Mono-
tonic (RM) scheduling policy which is able to provide recovery from a less
severe worst-case error scenario, i.e., one error per longest task period.

In this approach, the term ‘FT feasibility’ of a schedule indicates
whether it is guaranteed to meet the deadlines of all critical tasks under
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a specified fault hypothesis. The fault-tolerance strategy employed in
this approach is the re-execution of the affected task, or execution of an
alternate task in the event of errors.

The error-induced additional timing requirements are analyzed at the
task instance level and appropriate task execution windows are derived
satisfying these requirements. Based on these windows, fixed task pri-
orities are derived using ILP in order to obtain FT feasible schedules.
In some cases, e.g., when the fault-tolerance requirements can not be
expressed directly by FPS attributes, artifacts are introduced by split-
ting tasks into instances to obtain a new task set with consistent FPS
attributes. The number of artifacts is bounded by the total number of
instances in the schedule within the hyperperiod (LCM). The presented
approach guarantees to find a solution, i.e., FT feasible FPS attributes,
under given assumptions, and is optimal in the sense that it minimizes
the number of artifacts, which is the main element of cost.

This approach is highly applicable in safety critical RT systems de-
sign, in legacy applications (where one needs to preserve the original
scheduler and scheduling policy), during system evolution (where criti-
calities and priorities could undergo changes), or during subsystem in-
tegration (as in embedded software present in Electronic Control Units
(ECUs) in automotive applications. For example, in the case of two
ECUs, developed with pre-assigned priorities for tasks from specified
priority bands, one may want to fine-tune and get a better schedule
considering the global context during integration. One can envisage
many possible variations to the error model and fault-tolerance strate-
gies. Though the present work does not categorically mention each of
them, the approach is designed in such a way as to accommodate future
anticipated changes in the error model and fault-tolerance strategies.

3.2.1 System Model

This approach assumes a periodic task set, denoted by Γ, where each task
i represents a real-time thread of execution and has a deadline equal to
its period. The task set consists of critical and non-critical tasks where
the criticality of a task could be seen as a measure of the impact of
its correct (or incorrect) functioning on the overall system correctness.
Each critical task i has an alternate task, denoted by τ i, with a WCET
Ci ≤ Ci and a deadline Di = Di. This alternate can typically be a
re-execution of the same task, a recovery block, an exception handler or
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an alternate with imprecise computations.

Γc represents the subset of critical tasks out of the original task set
and Γnc represent the subset of non-critical tasks, so that Γ = Γc ∪ Γnc.
Γc represents the set of critical task alternates. While this framework
permits varying criticality levels for tasks, in this section, to simplify the
illustration, only binary values are assumed for criticality levels.

For each jth instance of task i (τ ji ), an original feasibility window is

defined which is delimited by the original earliest start time est(τ ji ) and

deadline Dj
i relative to the start of the LCM.

Obviously, the maximum utilization of the original critical tasks to-
gether with their alternates can never exceed 100%. This will imply that,
during error recovery, execution of non-critical tasks cannot be permitted
as it may result in overload conditions. The scheduler is assumed to have
adequate support for flagging non-critical tasks as unschedulable during
such scenarios, along with appropriate error detection mechanisms in the
operating system.

The primary concern is providing schedulability guarantees to all
critical tasks in FT real-time systems which employ temporal redun-
dancy for error recovery. The basic assumption here is that the effects
of a large variety of transient and intermittent hardware faults can ef-
fectively be tolerated by a simple re-execution of the affected task whilst
the effects of software design faults could be tolerated by executing an
alternate action such as recovery blocks or exception handlers. Both of
these situations could be considered as execution of another task (either
the primary itself or an alternate) with a specified computation time
requirement.

Each error is assumed to adversely affect at most one task at a time
and is detected before the termination of the current execution of the af-
fected task instance. This would naturally include error detection before
any context switches due to release of a high priority task. Although
somewhat pessimistic, this assumption is realistic since in many imple-
mentations, errors are detected by acceptance tests which are executed
at the end of task execution or by watchdog timers that interrupt the
task once it has exhausted its budgeted WCET. In case of tasks com-
municating via shared resources, acceptance tests are assumed to be
performed before passing an output value to another task to avoid error
propagations and subsequent domino effects.
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3.2.2 Methodology

As the original feasibility windows and original priority assignment (if
any, e.g., in case of a legacy system) may not express the various fault-
tolerance requirements, the first step involves derivation of new feasibility
windows for each task instance τ ji ∈ Γ to reflect the fault-tolerance
requirements. While executing non-critical tasks in the background can
be a safe and straight forward solution, this approach aims to provide
non-critical tasks a better service that background scheduling. Hence,
depending on the criticality of the original tasks, the new feasibility
windows differ as:

1. Fault-Tolerant (FT) feasibility windows for critical task instances

2. Fault-Aware (FA) feasibility windows for non-critical ones

While critical task instances must execute within their FT feasibility
windows to be able to re-execute feasibly upon an error, the derivation
of FA feasibility windows has two purposes: to prevent non-critical task
instances from interfering with critical ones, i.e., to cause a critical task
instance to miss its deadline, while ensuring their execution at high pri-
ority levels, i.e., not only executing in the background. Since the size
of the FA feasibility windows depend on the size of the FT feasibility
windows, first the FT feasibility windows are derived followed by the
derivation of the FA feasibility windows. Finally, FPS attributes are
derived that ensures the task executions within their newly derived fea-
sibility windows.

In some cases, however, FPS cannot to express all the specified fault-
tolerance requirements and the error assumptions with the same priori-
ties for all instances directly. General fault-tolerance requirements may
require that instances of a given set of tasks need to be executed in dif-
ferent order on different occasions. Obviously, there exist no valid FPS
priority assignment that can achieve these different ordering. This ap-
proach detects such situations, and circumvents the problem by splitting
a task into its instances. Then, it assigns different priorities to the newly
generated ”artifact” tasks, the former instances. Key issues in resolving
the priority conflicts are the number of artifact tasks created, and the
number of priority levels. Depending on how the priority conflicts are
resolved, the number of resulting tasks may vary, i.e., based on the size
of the periods of the split tasks. This approach uses ILP in order to solve
the priority assignment problem, which at the same time minimizes the
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number of artifact tasks created in case of priority conflicts. The major
steps of the proposed methodology are shown in Figure 3.7.

Error modelTask criticalitiesOriginal task
tt ib t

Derivation of fault-tolerant 
f ibilit i d f iti l t k

attributes

feasibility windows for critical tasks

Derivation of fault-aware feasiblityf f y
windows for non-critical tasks

Formulation of optimization problem   
to minimize potential costs

I t Li P i (ILP)Integer Linear Programming (ILP)

FT task attributesFT task attributes

Figure 3.7: Methodology overview - scheduling tasks with mixed criti-
cality

A simple example is used throughout the description of the approach.
Let the task set consist of 2 tasks, A and B, where TA = 3, TB = 6, CA =
2 and CB = 2, scheduled according to the RM policy (Figure 3.8), where
B is the critical task subject to failures. Here, the earliest start times and
the deadlines are represented by up- and down arrows respectively. The
fault-tolerance strategy used in this example is re-execution of erroneous
task instances.

To be able to re-execute B upon an error occurrence, B must complete
before DB−CB . In this case, B’s new deadline will be 4. One possibility
is to assign B a higher priority than A. However, by doing so, the first
instance of A will always miss its deadline, even in error free scenarios
(Figure 3.9). Moreover, raising the priority of critical tasks may not
always ensure fault-tolerance in the assumed error scenarios, i.e., one
error per task instance, while the processor utilization approaches 100%.
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Figure 3.9: Task B fault-tolerant - task A always misses its deadline

The first part of the approach is the derivation of FT and FA fea-
sibility windows for critical and non-critical task instances respectively.
FT deadlines for the primary versions of the critical task instances are
derived in a way that, in case of a critical task error, an alternate version
of that instance can be executed without missing its original deadline.
FA deadlines for the non-critical task instances are then derived so that
the provided fault-tolerance for the critical ones is not jeopardized. Dur-
ing these steps the goal is to keep the FT and FA deadlines as late as
possible in order to maximize the flexibility for the second part of the
approach, which is the FPS attribute assignment using an ILP solver.

Derivation of FT deadlines: The aim of this step is to reserve suf-
ficient resources for the executions of the critical task alternates in the
schedule. While one can use any method to achieve that, the goal of
this approach is to provide guarantees in scenarios where the processor
utilization can reach 100%. Thus, the approach proposed by Chetto and
Chetto [26] is used for finding the latest possible start of executions for
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critical task alternates. Specifically, by scheduling only the set of crit-
ical tasks Γc and their alternates Γc according to Chetto and Chetto’s
approach, the FT deadline for each critical task instance, Dj

i (FT ), is

defined as being equal to the latest start time of its alternate τ ji .

In this way sufficient resources are reserved for each critical task
instance alternate, assuming that the cumulative processor utilization of
the primaries together with their alternates does not exceed 100% over
LCM. In the example, the FT deadline of B is 4.

Derivation of FA deadlines: The main purpose of FA deadline deriva-
tion to non-critical task instances is to protect critical ones from being
adversely affected. As a part of recovery action upon errors, an un-
derlying on-line mechanism checks if there is enough time left for the
non-critical task instances to complete before their new deadlines. If
not, these instances are not executed.

The same process as in FT deadline derivation is applied to derive the
FA deadlines, on the set of non-critical tasks, Γnc, but in the remaining
slack after the critical task primaries are scheduled to execute as late as
possible. This is done so due to two reasons, (i) to prevent non-critical
tasks from delaying the execution of critical primaries beyond their FT
deadlines, and (ii) to allow non-critical tasks to be executed at high
priority levels.

In the example, the derived FT and FA deadlines are illustrated in
Figure 3.10).

A A

FA deadlines

A A
FT deadline Original deadlines3 60 2

B
0 64

Figure 3.10: FT and FA task deadlines

In some cases, finding valid FA deadlines for some non-critical task
instances may not be possible. If Dj

i (FA)− est(τ ji ) < Cji , the FA dead-
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line, Dj
i (FA), is denoted as invalid. This scenario could occur since the

task set consists now of tasks with deadlines less than periods. In such
a case, the original deadline is kept as is, and task is given a background
priority, i.e., a lower priority than any other critical task, and any other
non-critical task with a valid FA deadline.

FPS Attribute Assignment

At this step, priority relations are identified for each point in time tk
at which at least one task instance is released for the task set with the
new FT and FA deadlines. This is done by deriving priority inequalities
between instances to ensure their execution within their derived FT and
FA feasibility windows. By solving the inequalities, the FPS attributes
are obtained that guarantees meeting the specified fault-tolerance re-
quirements.

At this stage, the task model consists of four types of task instances:
critical task instances consisting of primaries Γc and alternates Γc, and
non-critical task instances with and without valid FA deadlines, Γnc =
ΓFAnc ∪ Γnon FAnc .

For every tk ∈ [0, LCM) where tk equals the release time of at least
one task instance, a subset of the task set Γtk ⊆ Γ is considered that
consists of:

1. {current instances}tk - instances τ ji of tasks τi, released at the

time tk: est(τ ji ) = tk

2. {interfering instances}tk - instances τ qs of task τs released before
tk but potentially executing after tk: est(τ qs ) < tk < Dq

s , where

Dq
s =


Dq
s(FT ), if τ qs ∈ Γc

D
q

s(FT ), if τ qs ∈ Γc
Dq
s(FA), if τ qs ∈ ΓFAnc

Dq
s , if τ qs ∈ Γnon FAnc

Priority relations are derived within each subset Γtk based on the
derived FT and FA deadlines, such that the instance with the shortest
relative deadline will get the highest priority in each inequality.
∀tk,∀τ ji , τ qs ∈ Γtk , where i 6= s.

1. if τ ji , τ
q
s ∈ Γc ∪ ΓFAnc , or if τ ji , τ

q
s ∈ Γnon FAnc

P ji > P qs , where D
j
i < Dq

s
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2. if τ ji ∈ Γc ∪ ΓFAnc and τ qs ∈ Γnon FAnc

P ji > P qs

In tie situations, i.e. when the instances τ ji and τ qs have same dead-
lines, the task with the earliest start time is given a higher priority. In
cases where even the earliest start times are equal, the priority inequal-
ities are derived consistently.

The goal of the approach is to provide tasks with fixed offsets and
fixed priorities. When the priority inequalities are solved, it may happen
that different priorities need to be assigned to different instances of the
same task. These cases cannot be expressed directly with fixed priorities
and are the sources for priority assignment conflicts. Such a conflict is
resolved by splitting the task with the inconsistent priority assignment
into a number of new periodic tasks with different priorities. The in-
stances of the new tasks comprise all instances of the original task. The
priorities that resolve the conflicts and the splits that yield the smallest
number of FPS tasks is found by ILP.

ILP Formulation

The goal of the attribute assignment problem is to find the minimum
number of tasks together with their integer priorities, that fulfil the
priority relations derived so far. As mentioned above, each task of the
task set is either one of the original tasks or an artifact task created from
one of the instances of an original task selected for splitting. The goal
function G to be minimized computes the number of tasks to be used in
the FPS scheduler.

G = n+

n∑
i=1

(ni − 1)bi +

n∑
i=1

ni∑
j=1

b
j

i

where n is the number of original tasks, ni is the number of instances of
τi over LCM, bi is a binary integer variable that indicates if τi needs to be

split into its instances and b
j

i is a binary integer variable that indicates
if the alternate of the critical task instance τ ji can be executed at the
same priority as it primary.

The constraints of the ILP problem reflect the restrictions on the
task priorities as imposed by scheduling problem. To account for the
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case of priority conflicts, i.e., when tasks have to be split, the constraints
between the original tasks, including task re-executions, are extended to
include the constraints of the artifact tasks. Thus each priority relation
P ji > P qp between two tasks is translated into an ILP constraint:

pi + pji > pp + pqp,

where the variables pi and pp stand for the priorities of the FPS tasks
representing the original tasks or alternates, τi and τp respectively, and

pji , p
q
p stand for the priorities of the artifact tasks, τ ji and τ qp , in case it is

necessary to split the original tasks or to run an alternate at a different
priority. Although this may look like a constraint between four tasks (τi,
τ ji , τp, τ

q
p ) it is in fact a constraint between two tasks – for each task only

its original (τi resp. τp) or its artifact tasks (τ ji resp. τ qp ) can exist in the
FPS schedule. In case the priority relation involves task re-executions,

e g., P
j

i > P qp the translated constraint is:

pji > pp + pqp,

The goal is to be able to re-execute a task instance without changing its
priority.

A further set of constraints for each task ensures that only either the
original tasks or their instances (artifacts) are assigned valid priorities
(greater than 0) by the ILP solver. All other priorities are set to zero.

pi ≤ (1− bi)M
∀j : pji ≤ biM

While both primaries and alternates can coexist at different valid prior-
ities, the last set of constraints aims to yield same priorities for both of
them. Otherwise, the alternate will be assigned a different priority than
its primary.

(pi + pji )− p
j
i ≤ b

j

iM

In these constraints M is a large number, larger than the total number
of instances and alternates in the original task set. The variable bi for
task i, which also occurs in the goal function, indicates if τi has to be
split, i.e., bi allows only a task or its artifact tasks to be assigned valid

priorities. On the other hand, the variable b
j

i is a binary variable that
indicates if the alternate of τ ji can be scheduled at the same priority as
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its primary. Since the goal function associates a penalty for each bi and

b
j

i that has to be set to 1, the ILP problem indeed searches for a solution
that produces a minimum number of task splits. The constraints on the
binary variables complete the ILP constraints:

∀i, j : bi, b
j

i ≤ 1

The solution of the ILP problem yields the total number of tasks as
the result of the goal function. The values of the variables represent a
priority assignment for tasks and artifact tasks that satisfies the priority
relations of the scheduling problem.

A1

B

A1

B BB

0 2 0 2

A1

B B

A2

BB
3 60 60

1 2

(a) WCET executions (b) executions less than WCET

Erroneous execution Execution deadline miss Successful execution

3 63 6

Figure 3.11: FT feasible task set

Periods and Offsets

The priority assignment to the tasks by the ILP-solver is followed by the
assignment of periods and offsets. Based on the information provided by
the solver, periods and offsets are assigned to each task in order to ensure
the run time execution under FPS within their respective FT feasibility
windows, as following:

for 1 ≤ i ≤ n

Ti =
LCM

ni

Oi = est(τ1
i ))
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The final set of tasks executing under FPS is presented in Figure
3.11. A1 has the highest priority and A2 the lowest. In Figure 3.11 (a),
the tasks execute the worst-case scenario, i.e., task execution equal to
WCET and errors occurring at the end of the executions. In this case,
A2 will be shed by the scheduler due to the system overload. However,
at run-time, tasks will most likely execute for less than their WCETs.
In such scenarios, B can feasibly re-execute as well as the non critical
tasks A1 and A2 can complete before their deadlines (Figure 3.11 (b)).

3.2.3 Example

The approach is illustrated by an example where the task set shown in
Table 3.6 is scheduled by the RM scheduling policy as shown in Figure
3.12.

Task T C P Criticality

A 3 1 3 (highest) 0 (non-critical)
B 4 1 2 1
C 12 3 1 1

Table 3.6: Original task set

B	

4 12	


12	


8	


B	
 B	


A	

3 6	
 9 12	


A	
 A	
 A	


C	
 C	
C	


0

0

0

Figure 3.12: Original RM schedule

In this example, B and C are assumed to be the critical tasks. Here,
RM priority assignment cannot guarantee fault-tolerance execution of
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every critical task instance. For instance, if all the instances of B are
hit by errors and have to be re-executed, the primary version of C will
always miss its deadline. (3.13)

B	

4 12	


12	


8	


B	
 B	


A	

3 6	
 9 12	


A	
 A	
 A	


C	


B	
 B	
 B	

0

0

0

Erroneous execution	       Execution deadline miss	      Successful execution	  

Figure 3.13: RM schedule under errors - C misses its deadline

The first step is to derive FT feasibility windows for the critical tasks.
The method proposed by Chetto and Chetto [26] is used to calculate the
latest possible start of execution for critical tasks and alternates (Figure
3.14). As previously mentioned, the earliest start times and the deadlines
are represented by up- and down arrows respectively. The dashed blocks
represent the re-execution of the critical tasks instances. Accordingly,
the FT feasibility windows for the critical tasks are presented in Figure
3.15.

B	
 B	
 B	

4 12	


C	
 C	
 C	

12	


8	


B	
 B	
 B	

0

0

Figure 3.14: Latest possible executions for critical tasks and alternates

At this point, FA feasibility windows are derived for non-critical task
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B	

0 4 11	


C	

0

8	


B	
 B	


5

7	
1	


Figure 3.15: FT feasibility windows for critical tasks (B and C)

instances (in this example, for the instances of A), by scheduling them
as late as possible [26], together with the critical ones and associated FT
feasibility windows. The resulting FA feasibility windows are shown in
Figure 3.16.

B	

0 4 11	


C	

0

8	


B	
 B	


5

7	
1	


A	

3 6 9 12	


A	
 A	
 A	

0

Figure 3.16: FA feasibility windows for the non-critical task (A)

Based on the derived FT and FA feasibility windows for the critical
and non-critical tasks respectively, the sets of current and interfering in-
stances are analyzed for each release time in the task set and the priority
relations between the instances are derived as described in Section 3.2.2.
The resulting priority inequalities are presented in Table 3.7.

Next, the optimization problem is formulated as described in Section
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tk
{
currentinst.

}
tk

{
interferinginst.

}
tk

inequalities

0 A1, B1, B
1
, C1, C

1
None P 1

B > P 1
A

P
1

B > P 1
C

P 1
A > P 1

C

3 A2 C1 P 1
C > P 2

A

4 B2, B
2

A2, C1, C
1

P 1
C > P 2

A

P 2
A > P 2

B

P 2
B > P

1

C

P
2

B > P
1

C

6 A3 B2, B
2
C

1
P 2
B > P 3

A

P 2
B > P

1

C

P
2

B > P
1

C

8 B3, B
3

A3, C
1

P 3
A > P 3

B

P
1

C > P 3
B

P
1

C > P
3

B

9 A4 B3, B
3
, C

1
P 3
B > P 4

A

P
1

C > P 3
B

P
1

C > P
3

B

Table 3.7: Derivation of inequalities

3.2.2. The terms in the ILP goal function, i.e.,

G = n+

n∑
i=1

(ni − 1)bi +

n∑
i=1

ni∑
j=1

b
j

i

are:

n = 3
n∑
i=1

(ni − 1)bi = 3bA + 2bB + 0bC , and

n∑
i=1

ni∑
j=1

b
j

i = b
1

B + b
2

B + b
3

B + b
1

C

subject to the constraints derived from the priority inequalities. For
example, P 1

B > P 1
A is translated into the constraint C1:

C1 : pB + p1
B > pB + p1

B
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The ILP solver provides a set of FT tasks schedulable by FPS to
which periods and offsets are assigned, as described in Section 3.2.2.
The resulting task set is presented in Table 3.8.

τi T C O D P

A1 12 1 0 3 7
A2 12 1 3 6 5
A3 12 1 3 9 2
A4 12 1 9 12 0
B1 12 1 0 1 8 (highest)
B2 12 1 4 7 4
B3 12 1 8 11 1
C 12 3 0 5 6

C 12 3 0 10 3

Table 3.8: FT FPS tasks

In this example, since the utilization is already 100% without any
errors, the LP solver yields a solution consisting of 9 tasks, i.e., 8 from
the original tasks instances, and one additional consisting of the alternate
task belonging to C that has to be executed at a lower priority than C.
The resulting task set is directly schedulable by the original scheduler
while the critical tasks can tolerate one error per instance. Non-critical
tasks are allowed to be executed at a higher priority than critical ones
within their derived FA feasibility windows without jeopardizing the FT
feasibility of the critical tasks. In case of an error, however, non-critical
tasks will be suspended by the underlying scheduler until the erroneous
task has been re-executed.

3.2.4 Evaluation

In real-time systems where both critical and non-critical tasks co-exist,
missing a single deadline of a critical task instance can result in more
severe consequences than missing several deadlines of non-critical task
instances. Based on this point of view, the primary success criteria is
defined as the percentage of successfully met critical deadlines in the eval-
uation. Meeting the deadlines of non-critical task instances is assumed
to be the secondary success criteria and amount of deadline misses of
such tasks can be seen as the cost of meeting more critical deadlines.
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In this section the performance of the presented approach is evaluated
in comparison with the well-known FT adaptation of the RM schedul-
ing policy. The evaluation is performed by simulating the worst-case
scenario of detecting one error at the end of each critical task instance
execution and then re-executing the task instance. 2000 task sets are
generated where the total number of tasks in every task set is 10 and the
number of critical tasks is varying randomly from 1 to 10. The LCM is
chosen randomly between 20 and 200 time units which seems sufficient
to compare the behavior of two approaches. One reason of choosing
the constant value 10 for the number of tasks is related to the LCM
range. With this constant value and the given LCM range, tasks sets
are created with a wide range of total utilization from 0.5 to 1 even when
the LCM is selected as minimum. Furthermore, the limited number of
tasks increases the traceability of the scheduling decisions made by the
approaches under observation. After finding the LCM, task periods are
randomly chosen among the divisors of LCM. Randomization is realized
by Mersenne Twister pseudorandom number generator with 32-bit word
length [70]. Total processor utilizations of the task sets are kept within
intervals of 0.1 for every group of 500 task sets starting from the range
0.6-0.7. Within each group, processor utilizations of the critical tasks
are also kept within intervals of 0.1 for every sub-group of 100 task sets
varying between the range 0-0.1 and 0.4-0.5. The average execution time
of the implementation to create FT feasible task attributes is around 100
milliseconds on a 1GHz PC when a task set generated as described above
is used as an input. Figures 3.17 to 3.20 show the average percentage of
successfully met deadlines with respect to critical task utilization.

Each figure shows a different range of total processor utilization start-
ing from the range 0.6-0.7. As the processor utilization increases, it can
be seen that the success of the presented approach also increases with
the cost of missing more non-critical deadlines.

In the processor utilization range 0.6-0.7, the presented approach
starts to give better results than RM when critical task utilization is
above 0.3 (Figure 3.17). In the range 0.8-0.9 this threshold decreases to
0.2 (Figure 3.19). When the processor utilization is between 0.9 and 1
(Figure 3.20), critical task instances scheduled by RM start to miss their
deadlines even the critical task utilization very low while the presented
approach still guarantees meeting all the critical deadlines.
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Figure 3.17: Total processor utilization between 0.6 - 0.7
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Figure 3.18: Total processor utilization between 0.7 - 0.8
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Figure 3.19: Total processor utilization between 0.8 - 0.9
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Figure 3.20: Total processor utilization between 0.9 - 1
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3.3 Fault-Tolerant Scheduling of Messages
with Mixed Criticality

Dependable communication is becoming a critical factor due to the per-
vasive usage of networked embedded systems that increasingly interact
with human lives in many real-time applications. Similar to task schedul-
ing, the communication system often needs to transmit messages with
different criticality levels as well. Mixed criticality levels of messages
imply different reliability requirements, e.g., non critical messages do
not need to be retransmitted at all while critical ones require a speci-
fied level of fault-tolerance. Hence, the native message retransmission
mechanism, that assumes that all messages are equally critical, can not
handle the above scenarios in an efficient way, may result in the inability
to meet user defined reliability requirements, and, in some cases, even
leads to violation of timing requirements. Therefore there is a need for
mechanisms to address the multi-criticality levels of messages.

The approach presented in this section enables the provision of ap-
propriate guarantees in Controller Area Network (CAN) scheduling of
messages with mixed criticality levels which involves identifying FT fea-
sibility windows of execution for critical messages, and off-line derivation
of optimal message priorities that fulfil the user specified level of fault-
tolerance.

3.3.1 System Model

This approach assumes a distributed real-time architecture consisting
of sensors, actuators and processing nodes communicating over CAN.
The communication is performed via a set of periodic messages, Γ =
{M1,M2, . . . ,Mn}, with mixed criticality levels. The criticality of a
message indicates the severity of the consequences caused by its failure
and corresponds to the amount of resources allocated for error recovery
in terms of guaranteed re-transmissions. The basic assumption here is
that the effects of a large variety of transient and intermittent hardware
faults can effectively be tolerated by a simple re-transmission of the
affected frames. An error is assumed to adversely affect at most one
message frame at a time and be detected by the nodes in the network.
Γc represents the subset of critical messages out of the original message
set and Γnc represents the subset of non-critical messages, so that Γ =
Γc ∪ Γnc.
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In this approach, single-shot transmission on CAN is assumed, i.e.,
the automatic re-transmission mechanism is disabled. This particular
feature is available on a number of commercial controllers, e.g., Atmel
T89C51CCO2, Philips SJA1000 and Microchip MCP2515.

A message consists of m frames, m ≥ 1, and the network communi-
cation is non-preemptive during the frame transmissions. However, mes-
sages composed of more than 2 frames can preempt each other at frame
boundaries. Additionally, the non-preemptiveness of message frames
may cause a higher priority message to be blocked by a lower priority
message for at most one frame length, if the high priority message is
released during the transmission of a lower priority frame. This priority
inversion phenomenon can affect all messages except the lowest priority
one, and only once per message period, before the transmission of the
first message frame [29].

Each CAN message, Mi, has a unique priority Pi (defined by the
message identifier), a period Ti, a relative deadline Di, which is assumed
to be equal to the period, and a re-transmission requirement ri which
represents the number of frames that are required to be guaranteed for
re-transmission. Note that for non-critical messages ri = 0.

In an error free scenario, the worst-case transmission time Ci of mes-
sage i is given by:

Ci = mi f
max τbit (3.1)

where fmax is the worst-case frame size.

For each message instance, M j
i , an original feasibility window is de-

fined, delimited by its original earliest start time est(M j
i ) and deadline

Dj
i relative to the start of the LCM.

Obviously, the maximum utilization of the original critical messages
together with the re-transmissions can never exceed 100%. This will
imply that, during error recovery, transmission of non-critical messages
cannot be permitted as it may result in overload conditions, except in
situations where a non-critical frame is blocking a higher priority critical
message due to priority inversion. Hence, upon receiving an error frame,
the nodes transmitting non-critical messages suspend their transmissions
until the end of the failed message’s period. This will require that all
nodes transmitting non-critical messages have knowledge about critical
messages’ periods.
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3.3.2 Methodology

The first step of the methodology involves the derivation of new feasi-
bility windows for each message instance M j

i ∈ Γ, to guarantee meeting
the FT requirements. While transmitting non-critical messages using a
background priority band can be a safe and straightforward solution, the
goal of this approach is to provide non-critical messages a better service
than background scheduling. Hence, depending on the criticality of the
original set of messages, the new feasibility windows differ as:

1. Fault-Tolerant (FT) feasibility windows for critical messages

2. Fault-Aware (FA) feasibility windows for non-critical messages

While critical messages need to be entirely transmitted within their FT
feasibility windows to be able to be feasibly retransmitted upon an error,
according to the reliability requirements, the derivation of FA feasibility
windows has two purposes: (i) to prevent non-critical messages from
interfering with critical ones, by causing a critical message to miss its
deadline, while (ii) enabling the transmission of the non-critical messages
at high priority levels in error free situations. Since the size of the FA
feasibility windows depends on the size of the FT feasibility windows,
first the FT feasibility windows are derived, followed by the derivation of
the FA feasibility windows. Then, the message priorities are derived that
ensure the message transmissions within the newly derived feasibility
windows.

A high priority message can be blocked by a low priority message at
most one frame at the beginning of its transmission. Since the derivation
of the FT/FA feasibility windows requires knowledge about the worst-
case message sizes, the blocking frame needs to be accounted for in every
message transmission by adding one additional frame during the analysis.

In some cases, however, a fixed priority scheme cannot express all
the assumed FT requirements. General FT requirements may require
that instances of a given set of periodic messages needs to be transmit-
ted in different order on different occasions. Obviously, there exists no
valid fixed priority assignment that can achieve such an ordering. The
presented approach proposes a priority allocation scheme at message in-
stance level by using ILP to guarantee the message transmissions within
their FT/FA Feasibility Windows that efficiently utilizes the resources
while minimizing the priority levels. The major steps of the proposed
methodology are shown in Figure 3.21.
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Derivation of fault-tolerant 
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feasibility windows for critical mesasges

Derivation of fault-aware feasiblity f f y
windows for non-critical messages

Mesage interference analysisMesage interference analysis

I t Li P i (ILP)Integer Linear Programming (ILP)

FT frame attributesFT frame attributes

Figure 3.21: Methodology overview - scheduling messages with mixed
criticality

A simple example is used throughout the description of the approach.
Let the message set consist of 2 messages, A and B, sent from 2 nodes,
N1 and N2, where TA = 8, TB = 16, mA = 3 and mB = 6, i.e., message
A is allocated to 3 frames that need to be transmitted during one period
and message B is allocated to 6 frames. Moreover, let message B be the
only critical message with a re-transmission requirement rB = 5 frames.
The transmission scenario is illustrated in Figure 3.22) assuming that the
message set scheduled on CAN according to the RM scheduling policy.
To ease the readability, in this example, the blocking frames are assumed
to be included in the size of the messages. The earliest start times and
the deadlines are represented by up- and down arrows respectively.

To be able to re-transmit 5 frames before its deadline, B must com-
plete before DB − rB . In this case, B’s new deadline will be 11. One
possibility is to assign B a higher priority than A. However, by doing so,
the first instance of A will always miss its deadline, even in error free
scenarios (Figure 3.23). Moreover, this solution is not useful if a larger
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Figure 3.22: Original message set

number of critical messages need to be feasibly transmitted on the bus.
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Transmission deadline miss Successful transmissionTransmission deadline miss Successful transmission

Figure 3.23: Message B fault-tolerant - message A always misses its
deadline

Derivation of FT and FA Feasibility Windows

The first part of the approach is the derivation of FT and FA feasibility
windows for critical and non-critical message instances respectively. The
first step is the derivation of the FT deadlines for the critical message
instances in a way that, in case of errors, erroneous frames can be re-
transmitted before the original message deadline. Then, FA deadlines for
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the non-critical message instances are derived so that the provided fault-
tolerance guarantees for the critical ones are not jeopardized. During
these steps the goal is to keep the FT and FA deadlines as late as possible
in order to maximize the flexibility for the second part of the approach,
which is the priority assignment using an ILP solver.

Derivation of FT deadlines: The aim of this step is to reserve suffi-
cient resources for the re-transmission of erroneous frames in the sched-
ule. The main goal is to provide guarantees while maximizing the bus
utilization. To do so, the approach proposed by Chetto and Chetto [26]
is used to schedule all the critical messages and their worst-case retrans-
missions as late as possible. Then, FT deadlines are determined for each
critical message instance, Dj

i (FT ), as the latest start time of each critical
task’s first re-transmitted frame instance. In this way sufficient resources
are reserved for the recovery of each critical message instance, assuming
that the cumulative resource utilization of the critical messages and re-
transmissions, including the blocking from lower priority messages, does
not exceed 100% over LCM. In this example, the FT deadline of message
B is 11.

Derivation of FA deadlines: The aim of this step is to provide FA
deadlines to non-critical message instances to protect critical ones from
being adversely affected. However, as a part of recovery action upon
errors, the sending node should check if there is enough time left for the
non-critical messages to be sent before their new deadlines. If not, the
message is not transmitted.

To derive the FA deadlines, the same process as in FT deadline
derivation is applied, on the set of non-critical messages but in the re-
maining slack after the critical messages (without re-transmissions) are
scheduled to be transmitted as late as possible. This is done so due to
two reasons, (i) to prevent non-critical messages from delaying the trans-
mission of critical messages beyond their FT deadlines in case of critical
frame failures, and (ii) to allow non-critical messages to be transmitted
at high priority levels in error free scenarios. In this example, the de-
rived FT and FA deadlines are illustrated in Figure 3.24, where the FA
deadlines for the instances of A are 5 and 16 respectively.

In some cases, finding valid FA deadlines for some non-critical mes-
sages instances may not be possible. If Dj

i (FA)−est(M j
i ) < Cji , the FA
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Figure 3.24: FT and FA message deadlines

deadline, Dj
i (FA), is marked as be invalid . This scenario could occur

since the messages now may have deadlines less than periods after the
derivation of FT deadlines. In such a case, the original deadline is kept as
is, and the priority assignment mechanism assigns the non-critical mes-
sage a background priority, i.e., lower than any other critical message,
and any other non-critical message with a valid FA deadline.

FPS Attribute Assignment

At this step, priority relations are identified for each point in time tk at
which at least one message instance (i.e., the first frame of the message)
is released on the bus and the priority inequalities between messages
are derived to ensure their transmission within their derived FT and FA
feasibility windows. By solving the inequalities, the scheduling attributes
are obtained that guarantees meeting the specified FT requirements for
the message set ΓFPS .

At this point, the message set consists of four types of message frames:
critical messages consisting of primary frames Γc and re-transmitted
frames Γc, and non-critical messages, consisting of non-critical frames,
with and/or without valid FA deadlines, Γnc = ΓFAnc ∪Γnon FAnc . For every
tk ∈ [0, LCM) where tk equals the release time of at least one message
instance, a subset of the message set Γtk ⊆ Γ is considered that consists
of:

1. {current instances}tk - instances of message i, released at the time
tk: est(M j

i ) = tk
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2. {interfering instances}tk - instances of message s released before
tk but potentially executing after tk: est(Mq

s ) < tk < Dq
s , where

Dq
s =


Dq
s(FT ), if Mq

s ∈ Γc
D
q

s(FT ), if Mq
s ∈ Γc

Dq
s(FA), if Mq

s ∈ ΓFAnc
Dq
s , if Mq

s ∈ Γnon FAnc

Priority relations within each subset Γtk based on the derived FT and
FA deadlines, such that the message with the shortest relative deadline
will get the highest priority in each inequality:
∀tk,∀M j

i ,M
q
s ∈ Γtk , where i 6= s:

1. if M j
i ,M

q
s ∈ Γc ∪ ΓFAnc , or if M j

i ,M
q
s ∈ Γnon FAnc

P ji > P qs , where D
j
i < Dq

s

2. if M j
i ∈ Γc ∪ ΓFAnc and Mq

s ∈ Γnon FAnc

P ji > P qs

In tie situations, i.e., when the message instances M j
i and Mq

s have same
deadlines, the message with the earliest start time is given a higher pri-
ority. In cases where even the earliest start times are equal, the priority
inequalities are derived consistently.

The goal of this approach is to provide fixed priorities to all mes-
sages. When the derived priority inequalities are solved, however, it
may happen that different instances of the same message need to be
assigned different priorities, due to the Earliest Deadline First (EDF)
heuristic used in the approach. These cases cannot be expressed directly
with fixed priorities and are the sources for priority assignment conflicts.
This issue is resolved by splitting the messages with inconsistent priority
assignments into a number of new periodic messages with different pri-
orities. The new message instances comprise all instances of the original
set of messages. As a major concern is the number of priorities that
may increase, ILP is used to find the priorities and the splits that yield
the lowest number of messages that satisfy the inequalities, and implic-
itly the lowest number of priority levels. A full description of the ILP
problem formulation that is adapted to CAN scheduling is found in the
previous section.
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A major difference in CAN scheduling compared to task schedul-
ing on processors, is that frames are re-transmitted as soon they are
identified as erroneous, rather than after the transmission of the whole
message. Hence, a message consisting of m primary frames and r re-
transmitted frames may need to be transited at a priority level p the
first m frames, and at a priority p′ for the rest r frames. However, ILP
will make sure that, if possible, p = p′.

The final set of messages feasibly scheduled on CAN is presented in
Figure 3.25. A1 has the highest priority and A2 the lowest. In Figure
3.25, maximum number of re-transmissions are performed upon trans-
mission errors. In this case, due to the overload, A2 will be either shed
by the scheduler or only partially transmitted, i.e, 2 out of 3 frames, if
the message validity is still acceptable.

N1 3
1A1

1A 2
1A

0

N

N1

5

1A 2A 3A

168

N1 2A 2A 2A

0 1611

N2 1
1B 2

1B 2
1B 3

1B 4
1B 5

1B 5
1B 5

1B 6
1B 6

1B 6
1B

Erroneous transmission Transmission deadline miss Successful transmission

Figure 3.25: FT feasible message set

3.3.3 Evaluation

In network communications where both critical and non-critical messages
co-exist, missing a single deadline of a critical message instance can result
in more severe consequences than missing several deadlines of non-critical
message instances. Based on this point of view, the primary success
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Figure 3.26: Worst-case error scenario - total utilization 0.4 - 0.6

criteria is selected as the percentage of successfully met critical deadlines
(including re-transmissions) in the evaluations. Meeting the deadlines of
non-critical message instances is assumed to be the secondary success
criteria and the amount of deadline misses of such tasks can be seen
as the cost for guaranteeing all critical deadlines together with their
re-transmissions.

In this section the performance of the presented approach is evaluated
under different error scenarios. First, the worst-case error occurrence sce-
nario is simulated that leads to the maximum number of re-transmitted
frames, according to the reliability specifications per each critical mes-
sage. In the next series of runs, the scenario where every other message
instance is hit by errors is simulated. This shows the improvement on the
non-critical message performance in a less than worst-case error scenario.
In all cases, however, the simulation results show that the all critical mes-
sage frames are feasibly re-transmitted before their deadlines, according
to their user specified reliability constraints.

1000 message sets are generated, where the total number of messages
in every message set ranges from 5 to 10, and the number of critical
messages ranges from 1 to 5. The periods vary between 5 to 50 time
units, where one unit is equal to the largest possible frame length. The
number of frames in each message, as well as the maximum number
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Figure 3.27: Worst-case error scenario - total utilization 0.6 - 0.8

of frame re-transmissions in critical messages, range from 1 to 5. The
maximum number of message instances over LCM is limited to 1500.
Results are grouped with respect to the total network utilization of the
message sets.

Figures 3.26 and 3.27 show the percentage of successfully deadlines
met in the worst-case error scenario of maximum specified number of
re-transmissions for each critical message instance. The total network
utilization ranges are 0.4-0.6 and 0.6-0.8 respectively, and the X-axis
shows the network utilizations by the critical messages. Figures 3.28
and 3.29 show the results from the simulation runs where every other
critical message instance is hit by errors and re-transmitted according to
its reliability constraints. However, as the network utilization increases,
it can be seen that the cost of meeting the critical deadlines increases as
well.
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Figure 3.28: Less severe error scenario - total utilization 0.4 - 0.6
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Figure 3.29: Less severe error scenario - total utilization 0.6 - 0.8
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3.4 Summary

This chapter proposes three FT strategies. First strategy is a spatial re-
dundancy approach (VTV), which is particularly designed for real-time
systems. Its performance is evaluated against the well-known voting
strategy, CMV, confirming that VTV outperforms CMV in all scenarios
by showing a lower percentage of errors that are neither masked nor sig-
nalled. The experiments demonstrate the overcautious nature of VTV
by showing a higher percentage of false positives due to the fact that it
does not account the untimely values for arriving at a majority. The ex-
periments also show that, for a given redundancy scheme, it is possible to
tune the voter performance by choosing (i) an appropriate δ (by adjust-
ing the level of clock synchronization) and (ii) an appropriate α that in
combination would enable reaching a desired level of FNR while keeping
the FPR bounded at a certain level so that the recovery actions taken
due to the false positives will not jeopardize the real-time requirements.

The other two FT strategies are temporal redundancy approaches
for fault-tolerant scheduling of real-time tasks and messages respectively,
addressing the mixed criticality levels in a resource efficient manner. The
task scheduling approach guarantees a recovery attempt for every critical
task instance upon an error occurrence before the deadlines, provided the
combined utilization of primaries and alternates is less than or equal to
100%. The message scheduling approach enables the user to guarantee
a variable level of redundancy for critical messages depending on their
criticality levels. The non-critical tasks and messages in both approaches
are allowed have priorities higher than the priorities of the critical ones.
Hence, the non-critical tasks and messages are provided a better service
than background scheduling.



Chapter 4

Probabilistic Real-Time
Analysis (PRTA)

In dependable real-time systems, provision of schedulability guarantees
for task sets under realistic fault and error assumptions is an essential
requirement, though complex and tricky to achieve. Timing analysis of
real-time systems is typically performed to provide on worst-case guar-
antees, by investigating the schedulability of systems in the case of worst
error arrival patterns together with the longest possible execution times.
In the cases where it is not feasible/possible to derive an absolute worst-
case pattern or an execution time, upper bounds are used. This keeps the
worst-case guarantees valid, although it provides somewhat pessimistic
results depending on the difference between the worst-case value and
the upper bound used. However, in the case of fault and error events,
such bounds may not exist due to the random nature of such events,
and assuming a rigid worst-case occurrence scenario may either provide
inaccurate or excessively pessimistic analysis results. Hence, it is advis-
able to combine the timing analysis with probabilistic argumentations.
Wang et al. [100] addressed the trade-offs between task schedulability
and task reliability under random error events to find an optimal re-
source allocation for fault-tolerance where optimality is decided based
on the penalties given to missing deadlines due to insufficient resources
and task failures due to errors. Later, Burns et al. [23] and Broster et
al. [20, 19, 21] used random error models to provide probabilistic ar-

81
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gumentations on task and message scheduling. This chapter proposes a
more general stochastic error model than the models used in previous
approaches, and various probabilistic schedulability analysis techniques
targeting scheduling on both processors and networks.

4.1 Stochastic Error Model

A generic stochastic fault and error model that is capable of modeling
single errors as well as error bursts caused by the a single fault with
improvements over the existing methods is proposed in this subsection.
This model consists of the following three parameters and illustrated in
Figure 4.1:

random fault interval

random fault
inter-arrival time

random error inter-arrival
time within a burst

Figure 4.1: Stochastic error model

1. Fault inter-arrival time: This is the random duration between
two consecutive exposures to independent faults. This time not
only depends on the system itself, but also on the type of environ-
ment in which the system is operating, due to the various sources
of faults. A constant fault arrival rate λ is assumed in this error
model.

2. Fault duration: Once an error occurs, it is likely that the fault
causing this error will be in effect for a certain duration and will
cause more errors during that period. Consider, for example, a
vehicle as the system under observation, which passes through a
field with strong electromagnetic interference (EMI). The duration
of the exposure to this fault is related to the the velocity of the
vehicle, the path through and the area of the field under EMI.



4.1 Stochastic Error Model 83

The duration of the faults is very much application specific, and
obtaining information regarding the probability distribution of the
fault durations, requires again the consideration of not only the
application itself but also the operational environment.

3. Error inter-arrival time within a burst: This is the random
duration between two consecutive errors caused by a single fault.
This time depends on the intensity of a fault, together with various
other factors, such as the resistance of the hardware to the fault,
and the existing fault detection and fault-tolerance mechanisms.
In this chapter, a constant error arrival rate λerror, is assumed
for all faults. However the error model supports a distribution of
various error arrival rates.

4.1.1 Using Stochastic Error Models as Bounded Er-
ror Models in the Response Time Analysis

In order to perform a joint dependability and timing analysis, the ran-
dom nature of error events needs to be considered with the usage of
stochastic error models. One way to do this is to convert stochastic
error models to bounded error models to use in timing analyses, and
derive the probabilities that the bounds are held. With these probabili-
ties, probabilistic arguments can be made regarding the results of timing
analyses. For each fault Fi, a fault duration (li) is assumed for the tim-
ing analysis. The stochastic error model provides a probability mass
function for the fault durations that is denoted by f(l). This function
gives the probabilities of all possible fault durations from the range of
li. Therefore, no conversion is needed. The random parameters that are
converted into worst-case bounds are listed as follows:

1. From the constant fault arrival rate λ, together with the mission
time L of the system, a minimum inter-arrival time TF between
two independent faults materializing into either error bursts or sin-
gle errors can be derived with an associated probability using the
Poisson distribution.

One should note that the mission time L varies largely depending
on the domain, typically ranging from minutes for a car to take a
short trip to years for a satellite to complete its mission. Further-
more, the number of error events in a unit time λ not only depends
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on the system but also on the type of environment. For a given
system, the common values for λ range from 102 errors per hour in
aggressive environments to 10−2 errors per hour in lab conditions,
as indicated by Ferreira et al. [36] and Rufino et al. [86].

2. Form the assumed constant error rate λerror, and the assumed
fault duration li, a minimum inter-arrival time TE between two
errors caused by the same fault can be derived with an associated
probability using the Poisson distribution.

Depending on the fault duration and the fault intensity, a fault can
materialize into a burst of errors, only a single error, or no error
at all during its length. However, the worst-case scenario always
assumes that at least one error occurs during each fault exposure.

4.2 PRTA for Mixed Criticality Real-Time
Systems

Modern dependable embedded systems typically consist of a mix of hard
and soft tasks with varying criticality levels as well as associated fault-
tolerance requirements. To ensure efficient resource usage, allocation
of resources for providing fault-tolerance should be prioritized accord-
ing to the criticality levels of the tasks. One way of handling multiple
criticality levels is by direct assignment to resources per task based on
a pre-defined maximum number of feasible recovery attempts [12], that
would deterministically ensure schedulability. However, from the de-
signers’ perspective, the most natural way to specify the task criticality
levels is by expressing reliability requirements at task level, preferably
without having to deal with low level decisions, such as specifying the
maximum number of feasible recovery attempts. Hence, it is extremely
important to devise methods for translating the high-level requirement
specifications for each task into the low-level scheduling decisions needed
for the fault-tolerance mechanism to function efficiently and correctly.

This section presents a method, built upon the approach introduced
in [23], which allows the system designer to specify task-level reliability
requirements and provides a priori probabilistic scheduling guarantees
for real-time tasks with mixed-criticality levels in the context of preemp-
tive fixed-priority scheduling where the exploited fault-tolerance strategy
is redundancy in the temporal domain.
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In this section, a single processor platform is assumed on which a
set of sporadic tasks with deadlines equal to or less than their minimum
inter-arrival times is allocated. The task set allocated on the processor
consists of critical and non-critical tasks, where the criticality of a task
indicates the severity of the consequences caused by its failure and cor-
responds to the amount of resources allocated for error recovery in terms
of guaranteed recovery attempts. Each critical task has an alternate task
with a Worst-Case Execution Time (WCET) less than or equal to the
original WCET of its primary, a deadline equal to the original deadline
and a minimum inter-arrival time equal to the minimum inter-arrival
time of its primary. This alternate can typically be a re-execution of
the same task, a recovery block, an exception handler or an alternate
with imprecise computations. Errors are assumed to be caused by faults
that arrive with a random inter-arrival time and detected just before the
completion of the affected task instances. In this section, only single er-
rors are assumed. In case of tasks communicating via shared resources,
an acceptance test is executed before passing an output value to another
task to avoid error propagations and subsequent domino effects.

4.2.1 Dependability Requirements Specification

During the initial phase of the design of fault-tolerance mechanisms, the
designers specify the criticality levels for each task in terms of failure
probability (or reliability) per hour. These reliability figures are then
used to derive the fault inter-arrival time thresholds, TFi , for each task
i. These thresholds determine the maximum number of permitted error
recovery actions. If the actual fault inter-arrival times are greater than
or equal to these thresholds then the specified reliability requirements
are guaranteed to be satisfied, i.e. deadlines will be met even under error
occurrences.

In [23], a single TF value is valid for the whole task set (based on a
single level of criticality), which means that the reliability requirement is
specified for the whole system. It is assumed that if the actual shortest
interval between two faults in a mission time W is less than TF , then the
task set is unschedulable and the probability of unschedulability Pr(U) is
shown to be equal to Pr(W < TF ). In the next subsection, the method-
ology for providing the probabilistic guarantees for mixed-criticality task
sets is presented where the the specified reliability requirements are used
as inputs.
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4.2.2 Methodology Overview

The ultimate goal is to provide a schedulability analysis for the men-
tioned selective fault-tolerant (FT) scheduling technique for scheduling
the tasks with mixed reliability requirements, ranging from non-critical
tasks, failure of which does not adversely affect the systems’ correct and
dependable functioning, to highly critical tasks, where one or more times
of recovery actions might be necessary to perform in order to ensure de-
pendability. The methodology consists of two steps:

1. The first step is to determine the minimum fault inter-arrival time,
TFi

, for each critical task i ∈ Γc using the reliability figures given
by the system designers.

2. The second step involves checking whether the schedulability of
these tasks can be guaranteed even in the worst-case error scenarios
specified by the derived minimum inter-arrival times.

4.2.3 Proposed Approach

In this subsection, the approach is presented with the help of an example.
Let the task set for this example consists of 4 tasks, as shown in Table
4.1 where columns P, T,C,D,C represent the priority, period, WCET,
deadline and the worst-case recovery time respectively and the time unit
is milliseconds. Priorities are ordered from 1 to 4 where 4 is the lowest
priority. Note that task B is a non-critical task, and hence it does not
have a worst-case recovery time.

Task P T C D C

A 1 100 15 100 15
B 2 175 10 175 -
C 3 200 15 200 15
D 4 300 20 300 20

Table 4.1: Example mixed criticality task set



4.2 PRTA for Mixed Criticality Real-Time Systems 87

Derivation of TFi
Values

The following equations, proposed by Burns et al. [23], are used for de-
riving the upper and lower bounds of Pr(W < TF ). These equations are
derived assuming a Poisson probability distribution to find the proba-
bility of a number of events that occurs in a fixed time period, provided
that the occurrence rate (λ) is constant and the events are independent.

Upper bound: If L/(2TF ) is a positive integer then

Prub(W < TF ) = 1 + [e−λTF (1 + λTF )]
L

TF
−1

− 2[e−2λTF (1 + 2λTF )]
L

2TF (4.1)

Lower bound: If L/(2TF ) is a positive integer then

Prlb(W < TF ) = 1− [e−λTF (1 + λTF )]
L

TF (4.2)

Burns et al. [23] also derived the following two useful approximations
for the upper and lower bounds:

Approximation 1 An approximation for the upper bound on Pr(W <
TF ) is given by Equation 4.1 is 3

2λ
2LTF provided that λTF , λ2LTF are

small and L >> TF .

Approximation 2 An approximation for the lower bound on Pr(W <
TF ) is given by Equation 4.2 is 1

2λ
2LTF provided that λTF , λ2LTF are

small and L >> TF .
In this approach, the approximation for the upper bound is used to

calculate the TFi
values for each critical task i ∈ Γc from the reliability

requirements, since the goal of this approach is to find an upper bound
for unschedulability (or a lower bound for schedulability).

Let λ value for the operational environment be 10−2 and the lifetime
L of the system be 1 hour. The probability of any fault happening during
L is calculated as approximately 10−2 by using the Poisson probability
distribution. This would mean that the parts of the system where no
fault-tolerance is implemented would fail with a probability of 10−2,
i.e., any non-critical task will have a reliability of approximately 0.99.
Let the reliability requirements be given as shown in Table 4.2 for the
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Task Reliability requirement

A 1 - 1 x 10−8

C 1 - 1.25 x 10−9

D 1 - 5.85 x 10−9

Table 4.2: Reliability requirements for the critical tasks

critical tasks in the example task set (the numbers shown in the table
are selected for presentation purposes only).

By using Approximation 1 and specifying 1−R(i) as the upper bound
for the error probability of each task, where R(i) is the reliability require-
ment of task i, the TFi

values are calculated as shown in Table 4.3 (in
milliseconds).

Task TF

A 240
C 30
D 140

Table 4.3: Derived minimum fault inter-arrival times for critical tasks

Schedulability Test

Table 4.4 shows the Worst-Case Response Times (WCRT) that are cal-
culated by the traditional Response Time Analysis (RTA) assuming no
errors occur during task executions. For the sake of presentation, block-
ing times are assumed to be zero. As all the WCRTs are less than
the corresponding deadlines, this task set is schedulable under no-error
scenarios.

If an FT scheduler is assumed where the failed tasks are re-executed,
then the execution of task i will be affected by errors in task i or any
higher priority task. Based on this assumption, the WCRTs are com-
puted [22] by using the following equation:

Ri = Ci +
∑

j∈hp(τi)

⌈
Ri
Tj

⌉
Cj +

⌈
Ri
TF

⌉
max

k∈hep(τi)
(Ck) (4.3)
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Task P T C D R

A 1 100 15 100 15
B 2 175 10 175 25
C 3 200 15 200 40
D 4 300 20 300 60

Table 4.4: Worse-case response times - no error scenario

where Ck is the extra computation time needed by task k. The last term
calculates the worst-case interference arising from the recovery attempts.

Table 4.5 shows the response times that are calculated by Equation
4.3 assuming a minimum fault inter-arrival of TF = 75ms. The task set is
guaranteed to be schedulable under this fault rate assumption, assuming
no two faults arrive closer than the TF value, as all the WCRTs are less
than the corresponding deadlines.

Task P T C D C R (TF = 75)

A 1 100 15 100 15 30
B 2 175 10 175 10 40
C 3 200 15 200 15 55
D 4 300 20 300 20 100

Table 4.5: Worse-case response times - single criticality level

To address the multiple task criticality levels, the FT scheduling
paradigm presented in [23] is extended by enabling recovery attempts
only for the critical tasks and limiting these attempts to once per an
interval equal to the derived minimum inter-arrival times for each criti-
cal task. Accordingly, WCRTs are computed by the following equation
adapted for this scheduler:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj + Ierri (4.4)

In this equation, the term Ierri is a function that computes the worst-
case interference, arising from the recovery attempts, during the execu-
tion of task i for Ri. Algorithm 1 shows the details of this function.
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Inputs to the algorithm are task i, the response-time ri in the current

Algorithm 1: Ierri

input : τi, ri, ∀k ∈ hepc(i) TFk
, Ck

output: worst-case interference for task i in response time ri
begin

output← 0;

n←
⌈

ri
min(TFk

)|k∈hepc(i)

⌉
;

foreach k ∈ hepc(i) do
put τk in Array A;

j, k, l← 0;

sort A by decreasing C;
while j < n do

output← output+ CA[k];
j ← j + 1;
l← l + 1;

if l ≥
⌈

Ri

TFA[k]

⌉
then

k ← k + 1;
l← 0;

return output;

iteration of the recurrence relation, and TFk
and Ck values for each task

k ∈ hepc(i), where hepc(i) is the set of critical tasks with priority equal
to or higher than the priority of task i. The algorithm first calculates
the worst-case number of interferences from the following equation:

n =

⌈
Ri

min(TFk
)|k ∈ hepc(i)

⌉
(4.5)

Unlike in Equation 4.3, multiplying the worst-case number of inter-
ferences with the largest Fk value would generate an unnecessary pes-
simism, since task k that has the largest Ck may have a larger TFk

than
the TF value used in Equation 4.5. In that case, the worst-case number
of interferences n in ri can be greater than the worst-case number of

interferences by task k in ri which is calculated by
⌈
ri
TFk

⌉
. Therefore,
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after
⌈
ri
TFk

⌉
additions of Ck, the interferences by task l that has the next

largest worst-case recovery time should be added either for
⌈
ri
TFl

⌉
times

or n −
⌈
ri
TFk

⌉
times, whichever is smaller. This procedure is continued

until n interference values are added, and finally, the algorithm outputs
the accumulated worst-case interference for task i in response time ri.

In the example, the response times are calculated as shown in Table
4.6. As all the WCRTs are less than the corresponding deadlines, it can
be concluded that the task set is schedulable under the specified error
hypothesis.

Task P T TF C D C R

A 1 100 240 15 100 15 30
B 2 175 - 10 175 - 40
C 3 200 30 15 200 15 85
D 4 300 140 20 300 20 175

Table 4.6: Worse-case response times - multiple criticality levels

Task A

0 15 30

Erroneous execution Successful executionErroneous execution Successful execution

Figure 4.2: Worst-case interference for task A

Figures 4.2 to 4.5, show the worst-case interference for the individual
tasks. In the worst-case, task A has one interference in a computational
window of RA = 30, and it is the interference by task A itself, since n in
Equation 4.5 is 1 (

⌈
30
240

⌉
) and task A is the only task in hepc(A). Figure

4.2 shows the worst-case interference scenario for task A.

Task B has also one interference in a computational window of RB =
40 in the worst-case, and it is also the interference by task A, since n in
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Task A

Task B
0

Task B
30 4015

Erroneous execution Successful executionErroneous execution Successful execution

Figure 4.3: Worst-case interference for task B

Equation 4.5 is 1 (
⌈

40
240

⌉
) and task A is again the only task in hepc(B).

Figure 4.3 shows the worst-case interference scenario for task B.

Task C can be interfered for maximum three times in a computational
window of RC = 85 (

⌈
85
30

⌉
). As the maximum of the C values for the

tasks in hepc(C) is CA = CC = 15, the algorithm returns three times
this value (IerrC = 45). Figure 4.4 shows the worst-case interference
scenario for task C.

Task D has a worst-case of 6 interferences in a computational window
of RD = 175 (

⌈
175
30

⌉
). The maximum of the C values for the tasks

in hepc(D) is task D’s worst-case recovery time CD = 20, however,
the recovery of task D can interfere task D’s execution maximum 2
times, as TFD

= 140 and
⌈

175
140

⌉
= 2. The other 4 interferences can

either come from task A or task C which have the next largest C value.
The algorithm returns IerrD = 100. Figure 4.5 shows the worst-case
interference scenario for task D.

The analysis shows that for the given task set, all deadlines are met
with probabilities that satisfy the reliability requirements specified by
the designers even in the worst-case error scenario for the given error
rate λ = 10−2 and mission length L = 1 hour.
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Task A

Task B

Task C 0

550

Task C
30 455 70 8520

Erroneous primary Erroneous alternate Successful executionErroneous primary Erroneous alternate Successful execution

Figure 4.4: Worst-case interference for task C

4.3 PRTA for Task Scheduling under Error
Bursts

This section presents an approach that combines a schedulability analysis
for real-time tasks scheduled under the Fixed Priority Scheduling (FPS)
policy using an error model that is capable of modeling of error bursts
with random attributes, and a sensitivity analysis in order to derive
accurate probabilistic schedulability guarantees for FT real-time tasks.

The approach begins with performing a set of schedulability analyses
that accounts for a range of worst-case scenarios generated by stochastic
error burst occurrences on the response times of tasks scheduled under
the FPS policy. Then the probabilistic schedulability guarantees are
calculated as a weighted sum of the conditional probabilities of schedu-
lability under specified error burst characteristics.

In this section a single processor platform is assumed on which a
sporadic task set is allocated which have deadlines equal to or less than
their minimum inter-arrival times. Whenever an error is detected within
a task, the affected task i executes an alternate task with a WCET less
than or equal to the original WCET of its primary, a deadline equal to the
original deadline and a minimum inter-arrival time equal to the minimum
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Task A
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Task C 0

Task D 0
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Figure 4.5: Worst-case interference for task D

inter-arrival time of its primary. This alternate can typically be a re-
execution of the same task, a recovery block, an exception handler, or
an alternate task with imprecise computations. Errors are assumed to
be detected just before the completion of the affected task instances.

The main sources of errors are assumed to be EMI (external faults),
and transient hardware faults (internal faults) that affect, e.g. the sen-
sors and the network systems. Examples to the considered errors are
incorrect input values from sensors, or failure in delivering the output
values via network messages. Errors that are propagated into tasks are
detected at the end of task executions by observing, e.g., the out-of-
range output values or omitted outputs. Examples to the assumed error
detection mechanisms are usage of sanity checks, range checks, check-
sums for the value correctness and the usage of watchdog timers for the
time correctness. Watchdog timers are assumed to be implemented as
simple hardware units that run in parallel with the tasks and interrupt
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in case of detected errors and the overhead of the value error detectors
are included in the WCETs of the respective tasks.

Each fault may result in errors encapsulated in an error burst for a
random duration. The distribution regarding the duration of the faults
is very much domain specific, and, in this section, it is assumed that the
information regarding the probability distribution of the fault durations
is available. Other parameters assumed to be given related to the error
model is the error rate λ and the the mission time L. In this section,
it is assumed that no task can successfully finish between errors within
a burst. Furthermore, any task instance scheduled even partially under
the error burst will be considered as affected by the error.

4.3.1 Methodology Overview

The goal of this approach is to find the probability that the given task set
is schedulable during a mission time L under the specified error model.
This probability is dependent on the error characteristics (the minimum
inter-arrival time between faults, TF , the possible values for the fault
duration lj , and the probability distribution f(l)) and can be derived
from the conditional probabilities that the task set is schedulable under
specific sets of values for these parameters.

The analysis begins with finding the maximum number of error bursts,
n, that can hit any task in the task set. Considering the interplay be-
tween TF and lj , a set of sensitivity analyses is performed to derive the
minimum inter-arrival times between faults (TF ) for each possible com-
bination of n fault durations by assuming the worst-case task executions
and error overheads. One should note that the derived minimum inter-
arrival times are actually upper bounds which may never be reached.
This is due to the nature of the inexact worst-case assumptions, such as
the WCETs of the tasks, which correspond to upper bounds rather than
exact worst-case values. The fault duration combinations and the cor-
responding upper bound TF values are then used to find the conditional
probabilities of schedulability which are actually lower bounds for the ex-
act probabilities. Finally, the lower bound probability of schedulability
is computed as a cumulative sum of these individual conditional lower
bound probabilities, i.e. by unconditioning the probability of schedu-
lability with respect to the fault durations. The steps involved in the
methodology are illustrated in Figure 4.6 and briefly described below.

STEP 1: The analysis begins by finding an upper bound for the
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Probability mass 
function f(l)

Error rate λ and 
mission length L

Task
attributes

Find the the upper bound for the number of 
bursts (n) that can hit any instance of the 

tasks in the task set

STEP 1

STEP 2Perform sensitivity analyses to find TF for each
combination of n fault durations

Calculate the probability of schedulability for 
each fault duration combination and the 

respective TF value
STEP 3

p F 

Use f(l) to calculate the cumulative 
probability of schedulability

STEP 4

Figure 4.6: Methodology overview - PRTA for task scheduling under
error bursts

maximum number of error bursts that can hit any task in the task
set while the task set is still schedulable. To do this, a sensitivity
analysis is performed to derive the maximum number of bursts
that can hit the task task with the longest deadline by assuming
that all faults have the shortest possible duration.

STEP 2: In this step, a set of sensitivity analyses is performed for
each combination of n fault durations specified in the probability
mass function f(l) in order to derive the minimum inter-arrival
time between faults (TF ) under which the task set is still schedu-
lable.

STEP 3: The goal of this step is to derive the probabilities that the
actual inter-arrival times between bursts will not be shorter than
the calculated minimum inter-arrival times by taking into account
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λ and the mission time L.

STEP 4: Finally, based on the probability mass function f(l), as
well as the derived probabilities for each fault duration combina-
tion, the cumulative probability of schedulability is derived.

4.3.2 Response Time Analysis under Error Bursts

In this subsection, an RTA is presented that identifies whether a given
task set is schedulable when affected by faults with random durations
and a minimum inter-arrival time TF . One should note that if the fault
duration is greater than or equal to the minimum inter-arrival time be-
tween bursts, every burst can start before the end of the previous one,
hence the bursts can potentially affect the whole mission time. If this is
the case, or if the fault duration is greater than the minimum inter-arrival
time of the task whose WCRT is to be calculated, the schedulability of
this task cannot be guaranteed.

The main differences between the error characteristics in the tradi-
tional single error model and the burst model are:

• An error burst may consist of multiple errors

• An error burst may affect multiple tasks

Hence, the worst-case scenario required for calculating the WCRTs is not
the same in case of error bursts as compared to the model introduced in
[23].

The set of faults interfering with task i, i.e., arriving after the release
of τi, is denoted by {Fj j = 1, 2, ..., n}.

Definition 1. The worst-case error overhead I
errj
i for task i caused

by fault Fj is the largest amount of time required by the task alternates,
τk ∈ Γ, to recover from the effects of fault Fj, in the interval between
the release time of task i and its completion.

Remark 4.1. An important observation is that, while the worst-case
error overhead accounts for all the alternates required for recovery (in-
cluding the successful ones), it excludes all the primaries, since, although
affected by errors, those are already taken into account in the interfer-
ence from the higher priority tasks and task i’s own primary execution,

i.e., Ci and
∑
j∈hp(i)

⌈
Ri

Tj

⌉
Cj.
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Remark 4.2. Another observation following Definition 1 is that, in
the general case, a burst causes its worst-case error overhead when its
interference (i.e., overlap) with the executions of the first and last task
it affects is minimized. Hence, it has to start ε before the completion of
the first affected task, and end ε after the start of the last affected task
(where ε is an arbitrarily small real number).

Lemma 4.1. The worst-case error overhead I
errj
i caused by fault Fj

with duration lj on the highest priority task τh ∈ Γ is given by

I
errj
h = 2Ch + lj − ε (4.6)

jl

1 2

h

jerr
hI

Erroneous primary Erroneous alternate Successful execution Error overhead

Figure 4.7: Worst-case error overhead for the highest priority task τh

Proof. In this case, following the Remark 4.2, the worst-case error over-
head occurs in the scenario when the burst starts very close (ε before)
the completion of the primary version of the task, and ends ε after the
start of the last failed execution. The scenario is illustrated in Figure
4.7 where the sum of the computation requirements of all alternates ex-
cept last one equals l − ε. Hence, I

errj
i = 2Ch + lj − ε. (In Figure 4.7,

ε = ε1 + ε2)

Lemma 4.2. If a burst hits task i, where i gives the priority level of
the task, its worst-case error overhead occurs under the following three
conditions:
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1. the burst starts ε before the completion of τi and ends ε after the
start of execution of the last failed execution,

2. the burst hits all tasks with higher priorities than task i, if any,

3. τ i and all its higher priority tasks are preempted by their respective
next higher priority task (if any), ε after their start of execution.

Proof. The basic idea is that the burst, in order to cause the most dam-
age, should leave outside the fault duration as much wasted computa-
tions as possible. The first condition is a direct result of the Remark 4.2
and Lemma 4.1. In this case, the largest amount of wasted computation
on task i outside the burst occurs when the burst hits τi, ε before its
completion and ends ε after the start of the last failed execution. Now,
in order to maximize the damage, the burst should hit as many tasks
as possible during its occurrence, since each additional task hit by the
burst will eventually recover and, hence, contribute with at least one
extra successful alternate (except the failed ones) to the worst-case error
overhead. The maximum number of tasks the burst can hit in addition to
τi is given by all higher priority tasks than τi (proving condition 2). This
scenario, in its turn, is only possible if all higher priority tasks preempt
each other in increasing priority order, and all preemption points occur
during the burst. Additionally, in order to leave as much wasted compu-
tation as possible outside the burst. i.e., after the end of the burst, all
preemptions should occur as early as possible during the affected tasks’
executions.

Theorem 4.3. The worst-case error overhead for task i caused by fault
Fj with duration lj is:

I
errj
i = max

k∈hep(i)
(Ck +

∑
m∈hep(k)

Cm + α) (4.7)

where

α =


0, if k 6= h

and Ch − (lj − ε) ≥ Ch

lj − ε+ Ch − Ch, if k 6= h

and Ch − (lj − ε) < Ch

lj − ε, otherwise

τh is the highest priority task in the task set Γ and ε is an arbitrarily
small positive real number.
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Proof. Following Lemma 4.2, the worst-case error overhead I
errj
i con-

sists of three elements: a) the longest remaining execution of the failed
alternate of the first task hit by the burst, b) one successful alternate
from each higher or equal priority task, and c) the additional contribu-
tion α to I

errj
i from the highest priority task τh ∈ Γ. While a) and b) are

given by the worst-case execution requirements of the tasks’ alternates,
α may vary depending on the relation between the fault duration and
the WCETs of the highest priority task τh and its alternate.

Following Lemma 4.1, in the general case, the largest contribution α
of τh to I

errj
i cannot exceed the fault duration lj minus ε.

α = lj − ε (4.8)

However, if τh is not the first task hit by the burst (in which case
its α would be given by Equation 4.8, following Lemma 4.1) α can be
further refined depending on the relation between the fault duration, the
WCETs of the highest priority task τh and its alternate. The reason is
twofold:

1. If l > Ch + ε, the burst always ends after the completion of τh. In
this case, from the duration of the fault (that started ε before τh)

Ch is subtracted (that is accounted in the Ihpi in the RTA), and
the last failed alternate is added (that started ε after the end of
the burst) as shown in Figure 4.8.

α = lj − ε+ Ch − Ch (4.9)

From the equation above it is obvious that, if the WCET of τh is
grater than the one of its alternate, i.e., Ch > Ch, α is less than
given by Equation 4.8.

2. If l ≤ Ch + ε, the burst may end before τh completes (note that
the burst still can end after the completion of τh, in case τh exe-
cutes less than its WCET). Here there are two possible cases that
potentially give the worst-case error overhead:

Case 1: The burst ends before the completion of τh, and τh executes
for its WCET. In this case, the first alternate of τh will suc-
cessfully complete its execution as illustrated in Figure 4.9.
Hence,

α = 0 (4.10)



4.3 PRTA for Task Scheduling under Error Bursts 101

CASE 1

l

l
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Figure 4.8: Error overhead when l > Ch + ε

Case 2: The burst ends after the completion of τh due to τh’s execution
less than its WCET. According to the Lemma 4.2, in order
to generate the worst-case error overhead, the burst needs
to end ε after the start of τh. Hence, α consists of the failed
alternate that started ε before the end of the burst, from which
the difference between the worst-case execution requirements
Ch and l must be subtracted (that is already accounted in the

Ihpi in the RTA),

α = Ch − (Ch − (lj − ε)) (4.11)

and it is identical with Equation 4.9. This scenario is illus-
trated in Figure 4.10.

α is obtained from equations 4.8, 4.9 and 4.10 as follows:

α =


0, if k 6= h

and Ch − (lj − ε) ≥ Ch

lj − ε+ Ch − Ch, if k 6= h

and Ch − (lj − ε) < Ch

lj − ε, otherwise

(4.12)
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Figure 4.9: Error overhead when l ≤ Ch + ε and the error burst ends
before τh completes

However, the worst-case error overhead I
errj
i does not necessarily

occur when τi is the first task hit by Fault Fj . Figure 4.11 shows an
example of this phenomenon while calculating the worst-case error over-
head caused by the burst on task C. In Figure 4.11 a), if task C is the
first task hit by the burst, the error overhead is equal to 13, leading to a
response time of C equal to 19. However, in this scenario, the worst-case
error overhead IerrC occurs when the first task hit by the burst is B, and
equals 15. Implicitly, the response time of C is 21. Hence, the worst-
case error overhead for task i caused by a fault with duration lj is given
by the maximum function of a) the remaining execution of the failed
alternate of the first task τk ∈ hep(i) hit by the burst, b) one successful
alternate from each τm ∈ hep(k) , and c) the additional contribution α
to I

errj
i from the highest priority task τh ∈ Γ:

I
errj
i = max

k∈hep(i)
(Ck +

∑
m∈hep(k)

Cm + α)

where α is given by Equation 4.12, which concludes the proof.
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CASE 2BCASE 2B

l
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Figure 4.10: Error overhead when l ≤ Ch + ε and the error burst ends ε
after τh completes

The total interference Ii experienced by task i is the sum of the
maximum interference caused by the higher priority tasks, Ihpi , and the
maximum interference caused by error bursts Ierri .

∀τi ∈ Γ, Ii = Ihpi + Ierri

Note that Ihpi is given by the traditional RTA [8, 49]:

Ihpi =
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj

Consequently, the worst-case error interference that needs to be ac-
counted for, in the RTA, is obtained by the summing up the the worst-
case error overheads, I

errj
i , of each Fault Fj that is assumed to interfere

with task i’s execution. In this case, the maximum interference caused
by the error bursts caused by faults with a minimum inter-arrival time
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Figure 4.11: worst-case error overhead occurs when τi is not the first
task hit by the error burst

TF on task i in the interval (0, Ri] is,

Ierri =

⌈
Ri
TF

⌉∑
j=1

I
errj
i

Hence, the equation that gives the WCRT for task i under error bursts
is:

Ri = Ci +Bi + Ihpi + Ierri (4.13)

4.3.3 Probabilistic Schedulability Bounds

In this section, it is assumed that, during a mission, if the actual short-
est interval between any two error bursts W is less than the derived
minimum inter-arrival time between faults TF , then the task set is un-
schedulable. Hence, the probability of unschedulability Pr(U), is equal
to Pr(W < TF ), i.e., the probability of schedulability of a given task set
is translated to the derivation of the probability that, during the mission
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time L, no two consecutive error bursts arrive with an inter-arrival time
shorter than the derived TF .

As outlined in the beginning of this section, Equation 4.1, which de-
rives an upper bound of Pr(W < TF ), is used to calculate the lower
bound for the probability of schedulability (or the upper bound for the
probability of unschedulability) for each derived TF value. Later, the de-
rived lower bounds for the probability of schedulability, corresponding to
each fault duration combination, Prlb(S comboi) = 1−Prub(U comboi),
as well as the probability values for each fault duration combination de-
rived from the probability mass function f(l) are used to calculate the
lower bound for the cumulative probability of schedulability Prlb(S) for
the given task set.

Prlb(S) =
∑

comboi

(Prlb(S comboi)Pr(comboi) (4.14)

4.3.4 Illustrative Example

The proposed methodology is illustrated with a simple example. A single
processor system is assumed on which a task set consisting of 4 tasks as
shown in Table 4.7 is allocated. Priorities are ordered from 1 to 4 where
4 is the lowest priority. The time unit is milliseconds. The mission

Task P C Calt T = D

A 1 4 4 80
B 2 4 4 80
C 3 2 2 60
D 4 6 3 100

Table 4.7: Example task set

time is assumed to be one hour (L = 1h), and a discrete probability
distribution for the fault duration l is given as shown in Figure 4.12.
Expected number of bursts in unit time is assumed as λ = 5.

STEP 1: First step is to derive an upper bound for the maximum
number of bursts (n) that can hit any task in the task set for which
the task set is guaranteed to be schedulable. In order to do that,
a sensitivity analysis is performed assuming the shortest possible
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Figure 4.12: Example probability mass function f(l)

fault duration (1ms) for each burst occurrence. The analysis shows
that the shortest feasible minimum inter-arrival time is TF = 38ms.
The response times of the tasks in the example task set are shown
in the third column of Table 4.8 assuming TF = 38ms. If a slightly

Task D = T R (TF = 38) R (TF = 37)

A 80 28 28
B 80 36 36
C 60 32 32
D 100 76 144 (UNSCH)

Table 4.8: Worse-case response times for TF = 38 and TF = 37

shorter minimum inter-arrival time (TF = 37ms) is assumed, then
the analysis shows that the schedulability of task D cannot be
guaranteed as shown in the last column of Table 4.8. The analysis
performed in this step would indicate that, if all task deadlines are
met, no more than three bursts can hit any task instance during
the mission:

max
i∈Γ

(⌈
Di

TF

⌉)
=

100

38
= 3

STEP 2: Then Equation 4.13 is used to perform a set of sensitivity
analyses for each combination of 3 fault durations and found the
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minimum inter-arrival times between bursts, at which the task set
is guaranteed to be schedulable as shown in the fourth column of
Table 4.9. Note that the maximum number of bursts derived in
the first step (n = 3) is an upper bound, which is actually never
reached in this example. This is the reason why changing the values
of l3 does not vary the TF value.

STEP 3: Using Equation 4.1, a lower bound for the probabilities of
schedulability is derived for each fault duration combination and
the corresponding TF ’s as shown in the last column of Table 4.9.

l1 l2 l3 TF P lb(S comboi)

1 1 1-10 38 9.99604x10−1

1 2 1-10 40 9.99583x10−1

1 3-10 1-10 45 9.99553x10−1

2 1 1-10 40 9.99583x10−1

2 2 1-10 46 9.99521x10−1

2 3 1-10 48 9.995x10−1

2 4-10 1-10 49 9.9949x10−1

3 1 1-10 46 9.99521x10−1

3 2 1-10 48 9.995x10−1

3 3 1-10 50 9.99479x10−1

3 4-10 1-10 53 9.99448x10−1

4 1 1-10 48 9.995x10−1

4 2 1-10 56 9.99417x10−1

4 3-10 1-10 57 9.99406x10−1

5 1 1-10 50 9.99479x10−1

5 2-10 1-10 63 9.99344x10−1

6 1-10 1-10 67 9.99302x10−1

7 1-10 1-10 71 9.99261x10−1

8 1-10 1-10 75 9.99219x10−1

9 1-10 1-10 - 0
10 1-10 1-10 - 0

Table 4.9: Lower bound probabilities of schedulability

STEP 4: Finally, Equation 4.14 is used to find a lower bound for
the cumulative probability of schedulability. Based on the derived
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lower bounds for the probabilities of schedulability for each fault
duration combination, as well as the probability of each of the
combination derived from the individual fault duration probabil-
ities, the cumulative probability of schedulability is calculated as
P (S) = 0.9702797789. This analysis shows that the example task
set is schedulable at least with a probability of 0.9702797789 dur-
ing a 1h mission where λ = 5, for the fault duration probabilities
given by f(l).

4.4 PRTA for Message Scheduling under Er-
ror Bursts

Networked embedded systems used in many critical real-time applica-
tions rely on dependable communication. Research so far has focussed
on rather simplistic error models which assume only singleton errors
separated by a minimum inter-arrival time. However, these systems are
often subject to faults that manifest as error bursts of various lengths
during message transmissions and these have an adverse effect on the
message response times that needs to be accounted for.

This section presents an approach that combines a schedulability
analysis for real-time message scheduling instantiated to Controller Area
Network (CAN) and a sensitivity analysis in order to derive accurate
probabilistic schedulability guarantees for FT real-time messages. The
schedulability analysis presented in this section extends the existing RTA
for CAN [96, 20, 19, 73, 69] to cope with burst errors modeled with
an improved accuracy that enables the specification of a range of new
parameters including e.g., fault duration and intensity.

In this section a distributed real-time architecture is assumed, con-
sisting of sensors, actuators and processing nodes communicating over
CAN. The communication is performed via a set of periodic messages.
For the sake of generality, a message i is assumed to include mi frames,
hence the worst-case transmission time Ci of the message in an error free
scenario is:

Ci = mi f
max τbit (4.15)

where fmax is the maximum frame size in number of bits, and τbit is
the time it takes to transmit a single bit on CAN. However, the analysis
presented in this section applies to the particular case of single frame
messages as well.
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While CAN communication is non-preemptive during the frame trans-
missions, messages composed of more than one frame can preempt each
other at the frame boundaries. Additionally, the non-preemptiveness
of message frames may cause a higher priority message to be blocked
by a lower priority message for at most one frame length, if the high
priority message is released during the transmission of a lower priority
frame. This priority inversion phenomenon can affect all messages ex-
cept the lowest priority one, and only once per message period, before
the transmission of the first message frame [29].

Each fault may affect the system for a certain duration. Depending
on the duration of a fault and the minimum inter-arrival time between
errors within a fault, a fault can materialize into a burst of errors, only
a single error, or no error at all during its length. However it is assumed
that at least one error occurs during each fault exposure, since analysis
assumes the worst-case scenario. For the sake of presentation, the term
error burst is used for both error bursts and single errors.

The duration of the faults is very much domain specific, and in this
section, it is assumed that the information regarding the probability
distribution of the fault durations is available. Errors may occur any
time during the fault as long as they satisfy the minimum inter-arrival
time condition derived from the sensitivity analyses. In this section, each
error in message frames is assumed to be detected as soon as it occurs
by the built in CAN error detection mechanisms and upon each error
in a frame, an identical frame to the erroneous frame is scheduled for
re-transmission following the error frame.

Other error model related parameters that are assumed to be given
are the rate that the observed system is hit by errors caused by inde-
pendent faults λ and the the mission time L of the system. This section
assumes that at most one burst may hit any message instance, hence TF
is equal to the largest period of all the messages in the message set.

4.4.1 Methodology Overview

The ultimate goal of this approach is to find the probability that the
message set is schedulable under a given fault and error hypothesis. The
methodology is outlined in the following steps, and illustrated in Figure
4.13.

• STEP 1: In this step, a series of sensitivity analyses is performed
for each l in the probability mass function f(l) in order to derive
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Probability mass 
function f(l)

Error rates λ and λerror

and mission length L
Message
attributes

STEP 1
Perform sensitivity analyses to find TE for each

fault duration l

Calculate the upper-bound for the probability
of violating the TE criterion for each l, 

as well as the upper-bound for the probability
f i l i h T i i

STEP 2

of violating the TF criterion

STEP 3
Calculate the lower bound for the

probability of schedulabilityprobability of schedulability

Figure 4.13: Methodology overview - PRTA for message scheduling un-
der error bursts

the minimum inter-arrival times of errors within error bursts, TE ,
for which the message set is guaranteed to be schedulable.

• STEP 2: In this step, first an upper-bound for the probability
of violating the minimum inter-arrival time requirement between
errors within a burst, TE , for each fault duration l is calculated.
Then, this probability bound on the fault duration is unconditioned
and an upper-bound for the probability of violating the minimum
inter-arrival time requirement between errors within bursts under
faults of random length, during the whole mission is derived. In
this step, separately, an upper-bound for the probability of vio-
lating the minimum inter-arrival time requirement between faults,
TF , during the whole mission is derived.

• STEP 3: Finally, in the last step, an upper-bound for probability
of unschedulability, i.e. lower bound for the probability of schedu-
lability, which is shown to be the union of the upper-bounds of the
probabilities of at least one occurrence of any two faults arriving
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less than TF apart or at least one occurrence of any two errors
within a burst, arriving less than TE apart during a mission of
length L is calculated.

In the next subsection, a schedulability analysis under error bursts
is presented which is the main tool to perform the outlined analysis.

4.4.2 Response Time Analysis under Error Bursts

In this subsection, an RTA is presented that identifies whether a given
message set is schedulable when affected by error bursts caused by faults
with a given duration l and a combination of error inter-arrival time
thresholds (minimum inter-arrival time of faults TF and errors within
a burst TE). The presented RTA is based on the RTA of CAN under
periodic messages and sporadic faults introduced by Tindell et al. [96],
where an additional term, Ierri , for the maximum error interference is
added to Equation 4.16:

qi = Ierri +Bi +
∑

j∈hp(i)

⌈
qi + Jj + τbit

Tj

⌉
Cj (4.16)

Assuming the burst error model, the WCRT calculations will differ
in the following cases depending on the minimum inter-arrival time of
the errors within an error burst TE :

CASE 1: TE ≤ (emax+ fmax)τbit: In this case, if the errors within
an error burst occur with a separation of TE , it may not be pos-
sible to transmit any frame between any two consecutive errors
during the burst. Therefore, the worst-case error overhead Ierri in
Equation 4.16 becomes:

Ierri = (fmax + emax)τbit + l (4.17)

The error overhead includes the transmission time of the largest
frame in the worst-case scenario, i e., when the first error in the
burst hits its last bit. The other components of error overhead
are the transmission time of the largest error frame and the whole
duration of the fault, since in the worst-case, no frame can be trans-
mitted during this time. Figure 4.14 shows a worst-case scenario
in Case 1. The largest message frame and the largest error frame
in Equation 4.17 are the frames before and after the error burst
respectively.
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Figure 4.14: Worst-case error overhead (Case 1)

CASE 2: TE > (emax+fmax)τbit: In this case, one or more frames
can successfully be transmitted between two errors within an error
burst. Therefore only certain sections during the exposure to the
fault may contribute to the error induced overhead. The worst-case
error overhead, Ierri , in this case, is given by:

Ierri = (fmax + emax)τbit

+

(⌊
l

TE

⌋
(emaxτbit

+ (TE − emaxτbit − ε) mod fmaxτbit + ε)

)
+ x (4.18)

where TE > 0, ε < τbit and

x =

 a, if a ≤
⌊
l
TE

⌋
b⌊

l
TE

⌋
b, if

⌊
l
TE

⌋
b < a

a = l mod TE

b = fmaxτbit

− (TE − emaxτbit − ε) mod fmaxτbit + ε



4.4 PRTA for Message Scheduling under Error Bursts 113

The error overhead in this case includes the transmission time of
the largest frame, the largest error frame, and the error overhead
during l. Note that in this case, the error overhead during l is
strictly less than the fault duration l, however, Equation 4.18 is
written in a general form and can be used for both cases.

The first term (fmax + emax)τbit in Equation 4.18 gives the worst-
case error overhead caused by the first error in the burst and is
equal to the sum of the largest message frame and the largest er-
ror frame. The second term gives the worst-case error overhead
caused by a single error during the burst (except the first error)
multiplied by the maximum number of errors that can occur during
the error burst minus one (the first error) assuming that the errors
arrive with an exact inter-arrival time of TE . The product term
bl/TEc of the second term in Equation 4.18 gives the maximum
number of errors that can occur during an error burst minus one.
The product term emaxτbit + (TE − emaxτbit− ε) mod fmaxτbit + ε
of the second term includes the transmission time of the largest
error frame and the largest message frame that can contribute to
Ierri . The last term x in Equation 4.18 gives the additional over-
head caused by the errors whose relative arrival times are larger
than TE . One should note that, the error overhead for a single
error arrived with the minimum inter-arrival time TE , plus the ad-
ditional overhead per error caused by late arrivals can at most be
equal to (fmax+emax)τbit. Therefore, the worst-case value for x is
equal to either the total amount of time that can be distributed to
the error inter-arrival times for late arrivals (a), or the difference
between the overhead assuming all errors hit the largest possible
message in the last bit and the overhead assuming all errors arrive
with the minimum inter-arrival time between errors within a burst
(bl/TEcb), whichever is smaller. Figure 4.15 shows three different
scenarios in Case 2. In the first scenario (a = 0) the fault duration
is an integer multiple of the minimum inter-arrival time between
the errors in the burst (l/(TE) ∈ N∗), hence in the worst-case all
errors arrive with a relative arrival time equal to TE and x = 0. In
the second scenario (a ≤ 2b), if the errors arrive with arrival times
equal to the minimum inter-arrival time TE , then after the last
error in the burst there is still a time equal to a until the end of
the fault. As shown in Figure 4.15, in the worst-case scenario, the
errors arrive later than their relative minimum inter-arrival times,
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Figure 4.15: Worst-case error overhead (Case 2)

and the sum of the differences between the worst-case arrival times
and the minimum inter-arrival times is equal to a. However, in the
third scenario (b = 0), even though there is still a time after the last
error arrival until the end of the fault, late arrivals cannot increase
the overhead as it is already at maximum ((fmax + emax)τbit per
error). In a scenario where b > 0 and bl/TEcb < a, the additional
overhead caused by late arrivals can at most be equal to bl/TEcb.

In this section, all successfully transmitted frames between two errors
in a burst are assumed to have the maximum frame size. If these frames
are shorter than the maximum frame size, the error related interference
may be larger than the value calculated by Expression 4.17. However,
this increase in the error interference is bounded by the total sum of
the differences between the actual frame sizes and the maximum frame
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size, i.e, the increase in the error interference is never larger than the
cumulative reduction in the frame sizes. Hence, the RTA holds for the
general case when message frame sizes are less than maximum, i.e., the
analysis never calculates an optimistic value.

4.4.3 Probabilistic Schedulability Bounds

This subsection makes the same assumption as Burns et al. made in
[23], which states that, during a mission time L, if the actual interval
between any two error arrivals W is less than the assumed minimum
inter-arrival time TF , then the system is unschedulable. They presented
an upper bound for the probability of any two error arrivals violating
this minimum inter-arrival time constraint, assuming that L is an even
integer multiple of TF (L/(2TF ) ∈ N∗), Prub(W < TF ) > Pr(W < TF ),
as shown below:

Prub(W < TF ) = 1 + [e−λTF (1 + λTF )]
L

TF
−1

− 2[e−2λTF (1 + 2λTF )]
L

2TF (4.19)

In addition to the unschedulability criterion given above, the system
is also assumed to be unschedulable if the actual shortest time interval
between any two error arrivals within an error burst is less than the
assumed minimum inter-arrival time TE for that burst. First step to-
wards finding an upper bound for the probability of this unschedulability
criterion is to find an upper bound for the probability of violating the
minimum inter-arrival time between errors within a single burst caused
by a fault of a given duration.

Lemma 4.4. Let the fault duration l be an even integer multiple of the
minimum inter-arrival time TE (l/(2TE) ∈ N∗). Then an upper bound
for the probability of any two errors arriving less than TE apart within
a duration l is:

Prubsingle burst(l)(W
burst < TE) = 1

+ [e−λ
errorTE (1 + λerrorTE)]

l
TE
−1

− 2[e−2λerrorTE (1 + 2λerrorTE)]
l

2TE (4.20)

Proof. The proof is similar to the proof made in [23] for the upper bound
of Pr(W < TF ) with the following differences:
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• The minimum inter-arrival time between faults TF is substituted
with the minimum inter-arrival time between errors within the
burst TE

• The mission time L is substituted with the fault duration l.

Next step is to uncondition on the fault duration and to find an
upper bound for the probability of violating the minimum inter-arrival
time requirement between errors within bursts caused by faults with
random durations, during the whole mission.

Theorem 4.5. Let TE be the minimum inter-arrival time for errors
within a burst caused by a fault of duration l, l be an even integer multiple
of TE (l/(2TE) ∈ N∗) and f(l) be the probability mass function for the
fault durations. Then an upper bound for the probability of violating the
minimum inter-arrival requirement between errors within a burst caused
by a fault of random duration, during a mission of length L is:

Prub(W burst < TE) = 1−

(
1

−
lmax∑
l=lmin

f(l)Prubsingle burst(l)(W
burst < TE)

)λL
(4.21)

where lmin and lmax are the lengths of the shortest and the longest faults
in f(l) respectively.

Proof. Error bursts arrive as a Poisson process with rate λ. Once a
burst arrives, errors within a burst arrive according to a Poisson process
at rate λerror until the burst ends, with the duration of the fault caus-
ing the burst being distributed according to f(l). Lemma 1 shows the
upper bound for the probability that two errors within a single burst are
separated by less that TE under the condition that the fault duration
is l. To remove the condition on the fault duration, i.e., in order to
find the probability that two errors arrive less than TE apart within a
single burst caused by a fault of random duration, all the probabilities
Prubsingle burst(l)(W

burst < TE) for each fault duration l multiplied by the
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probability of that fault duration f(l) is summed:

Prubsingle burst(random)(W
burst < TE) =

lmax∑
l=lmin

f(l)Prubsingle burst(l)(W
burst < TE)

In order to find the upper bound for the probability of any anomalies
within bursts in a mission, the expected number of error bursts during
the mission, λL, is used which is also a random variable following a
Poisson process with the arrival rate λ during a mission of length L.
First, the lower bound for the probability of no anomalies during a
single burst caused by a fault of random duration is calculated:

1−
lmax∑
l=lmin

f(l)Prubsingle burst(l)(W
burst < TE)

Then the lower bound for the probability of no anomalies during the
whole mission is found:(

1−
lmax∑
l=lmin

f(l)Prubsingle burst(l)(W
burst < TE)

)λL

Finally, the upper bound for the probability of at least one anomaly
during the entire mission is shown to be:

1−

(
1−

lmax∑
l=lmin

f(l)Prubsingle burst(l)(W
burst < TE)

)λL

Finally, the derivation of an upper bound for the probability of un-
schedulability is presented which is the union of the upper bounds of the
two presented criteria of unschedulability, viz. the probability of any two
faults arriving less than TF apart or any two errors within a burst arriv-
ing less than TE apart (where TE is defined according to the length of the
fault) during a mission of length L, (Pr(W < TF ) ∪ Pr(W burst < TE)).
In the proposed approach, the cause(s) of these two events are assumed
to be independent. As an example, the probability of driving a car
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through a path close to police stations or airports, thus exposing it to
EMI which in turn result in error bursts is assumed to be independent
from the factors contributing to potential occurrence of errors within a
burst such as the intensity of the EMI, and the distance to the source of
EMI.

Theorem 4.6. Let ((L/(2TF ) ∈ N∗) and (l/(2TE) ∈ N∗)) for each
(l, TE) pair. Then an upper bound for Pr(W < TF ) ∪ Pr(W burst < TE)
is:

Pr(W < TF ) ∪ Pr(W burst < TE) <

Prub(W < TF ) + Prub(W burst < TE)

− Prub(W < TF )Prub(W burst < TE) (4.22)

Proof. The general rule for finding the union of two events A and B, i.e.,
the probability of A or B occurring, can be expressed as follows:

Pr(A) ∪ Pr(B) = Pr(A) + Pr(B)− Pr(A) ∩ Pr(B)

As the two events are assumed to be independent, the intersection of A
and B, i.e., the probability of A and B occurring, can be rewritten as
follows:

Pr(A) ∩ Pr(B) = Pr(A)Pr(B)

So the union of A and B becomes:

Pr(A) ∪ Pr(B) = Pr(A) + Pr(B)− Pr(A)Pr(B)

Since the upper bounds for each event is known, the theorem is proved
if the following inequality can be shown to be correct:

Pr(A) + Pr(B)− Pr(A)Pr(B) <

Prub(A) + Prub(B)− Prub(A)Prub(B) (4.23)

It is known that {Pr(A), P r(B), P rub(A), P rub(B)} ∈ [0, 1]. From the
following given inequalities,

Pr(A) < Prub(A)

Pr(B) < Prub(B)
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the below equalities are derived:

Pr(A) + εA = Prub(A)

Pr(B) + εB = Prub(B) (4.24)

where εA, εB > 0. Prub(A) and Prub(B) in the Inequality 4.23 are
substituted with Pr(A) + εA and Pr(B) + εB respectively:

Pr(A) + Pr(B)− Pr(A)Pr(B) <

Pr(A) + εA + Pr(B) + εB − (Pr(A) + εA)(Pr(B) + εB)

Pr(A) + Pr(B)− Pr(A)Pr(B) <

Pr(A) + εA + Pr(B) + εB − Pr(A)εB − Pr(B)εA

− Pr(A)Pr(B)− εAεB

Pr(A) + Pr(B)− Pr(A)Pr(B) is subtracted from both sides of the
inequality, and it is rearranged as follows:

0 < εA + εB − Pr(A)εB − Pr(B)εA − εAεB

0 < εA(1− Pr(B)) + εB(1− Pr(A))− εAεB
εA(1− Pr(B)) + εB(1− Pr(A)) > εAεB

Both sides of the inequality is divided by εAεB :

(1− Pr(B))

εB
+

(1− Pr(A))

εA
> 1

Here, it is enough to show that each of the terms on the left hand side
of the inequality is greater than or equal to 1:

1− Pr(B) >= εB

1− Pr(A) >= εA

If εA and εB are substituted with Pr(A)ub − Pr(A) and Pr(B)ub −
Pr(B) respectively (using Equation set 4.24), the following inequalities
are obtained:

Prub(A) ≤ 1

Prub(B) ≤ 1

which is always true. Hence, the theorem is proved.
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4.4.4 Illustrative Example

In this example, a distributed embedded system is assumed where 4
devices exchange messages over CAN. The message set consists of 4
messages (1 per device) as shown in Table 4.10 where columns P, N, T
and D represent the priority, number of message frames, period and the
deadline respectively. Priorities are ordered from 1 to 4 where 4 is the

Task P N T D

A 1 8 8 8
B 2 4 8 8
C 3 6 10 10
D 4 6 15 15

Table 4.10: Example message set

Figure 4.16: Example probability mass function f(l)

lowest priority. The time unit is milliseconds. Each message consists of
8 data bytes, hence fmax = 135 and emax = 31 bits. The mission time is
1 hour (L = 1h), the bus speed is 0.5 Mbit/s (τbit = 2µs), and a discrete
probability distribution of the fault durations is given as in Figure 4.16.

Expected number of error bursts and errors within a burst in unit
time are assumed to be λ = 10−1 and λerror = 104 respectively.

• STEP 1: First, the presented schedulability test is used to perform
a series of sensitivity analyses for each error fault duration l in the
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probability mass function f(l) and the corresponding minimum
error inter-arrival times within bursts are derived for which the
message set is guaranteed to be schedulable as shown on Table
4.11.

l TE l TE

1 0 11 0.872
2 0 12 1.142
3 0 13 1.142
4 0.332 14 1.4
5 0.332 15 1.412
6 0.6 16 1.412
7 0.602 17 1.682
8 0.602 18 1.682
9 0.872 19 1.682
10 0.872 20 1.952

Table 4.11: Minimum inter-arrival times between errors within a burst

• STEP 2: In the next step, the statistical formulas presented in
Section 4.4.3 is used to derive the probabilities of unschedulability
for each (l, TE) pair. As l is assumed to be an even integer mul-
tiple of TE , the probabilities are calculated by using the smallest
value greater than TE satisfying this condition. The upper bounds
for the probabilities of violating the minimum inter-arrival time
requirement between errors within a burst caused by a fault of the
specified duration are found as shown in Table 4.12.

In order to uncondition the probability of unschedulability on the
fault duration and to find an upper bound for the probability of
violating the minimum inter-arrival time requirement between er-
rors within bursts caused by faults with random durations, during
the whole mission, Equation 4.21, the probability mass function
f(l) and the probability bounds derived in the previous step are
used. The upper bound for this probability is calculated as 1.3986
x 10−7.

The upper bound probability of violating the minimum inter-arrival
time requirement between error bursts during the whole mission is
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l P rubsingle burst(l)(U) l P rubsingle burst(l)(U)

1 - 11 1.4465 x 10−6

2 - 12 1.7213 x 10−6

3 - 13 2.0201 x 10−6

4 1.9133 x 10−7 14 2.3427 x 10−6

5 2.9893 x 10−7 15 2.6893 x 10−6

6 4.3045 x 10−7 16 3.0576 x 10−6

7 5.8586 x 10−6 17 3.4539 x 10−6

8 7.6517 x 10−6 18 3.8720 x 10−6

9 9.6838 x 10−6 19 4.3140 x 10−6

10 1.1955 x 10−6 20 4.7799 x 10−6

Table 4.12: Upper bound probabilities of unschedulability

calculated as 8.3333 x 10−8 assuming TF = 20ms (largest period)
using Equation 4.19.

• STEP 3: Finally, in the last step, an upper bound for the probabil-
ity of unschedulability (hence a lower bound for the schedulability)
is calculated, which is shown to be the union of the upper bounds
of the probability of at least one occurrence of any two faults ar-
riving less than TF apart or at least one occurrence of any two
errors within a burst, arriving less than TE apart (where TE is de-
termined based on the fault duration) during a mission of length
L.

This analysis shows that the example message set is schedulable with
a probability of at least 0.999997768 during a 1 hour mission where
λ = 10−1, λerror = 104 and fault duration probabilities are as given by
the f(l).

4.5 Summary

Design of dependable real-time systems demands advances in both de-
pendability modeling and scheduling theory in tandem, to provide sys-
tem level guarantees that potential error scenarios are addressed in an
effective as well as efficient manner. This chapter proposes three proba-
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bilistic schedulability analysis frameworks, (i) one for tasks with different
criticality levels, (ii) one for network messages under burst error scenar-
ios and (iii) one for tasks under burst error scenarios. In each frame-
work, a sufficient analysis is presented that accounts for the worst-case
interference caused by errors on the response times of tasks or messages
using a stochastic error model. Further, methods for deriving proba-
bilistic scheduling guarantees from the stochastic behaviour of errors are
presented by performing a joint real-time– and reliability analysis.





Chapter 5

A Cascading
Redundancy Approach

Temporal and spatial redundancy are widely used fault-tolerance ap-
proaches to improve the dependability of real-time systems. Each ap-
proach has a long and successful usage history in various mission/safety
critical applications. However, there have been only a few attempts to
combine these approaches as a unified fault-tolerant design to bring out
their synergies, and appropriate design and analysis tools are still needed
to achieve this goal. An earlier attempt in combining these two redun-
dancy approaches [11] assumed the existence of perfect error detectors,
an overly pessimistic and inflexible bounded error model, and was lacking
a proper response time- and reliability analysis.

The framework described in this chapter addresses those issues and
elaborates the cascading redundancy approach, bringing out the syn-
ergetic effects of an appropriate combination of the temporal and spa-
tial redundancy techniques within a fault-tolerant scheduling framework.
The spatial redundancy stage provides fault-tolerance in both the time
and the value domains with the usage of the real-time voting strategy
Voting on Time and Value (VTV) [14]. It also works as an error detector
in scenarios where the total number of errors exceeds the masking capa-
bility of the spatial redundancy stage. In such scenarios, the temporal
redundancy stage takes over, assuming that there is sufficient time to re-
execute all the replicas before their deadlines. The framework includes a
joint response time and reliability analysis for both an ideal voter, which

125
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does not yield any false negatives or false positives, and real voters, in
case information regarding the real-world performance is available for
the voter.

5.1 System Model

Figure 5.1 illustrates the N-modular redundant configuration that will
be used in this chapter. In this configuration, on each node Nj , a task

N VN1

N2 V2

V1

NN

…

Vnc

…

Figure 5.1: N-modular redundant configuration with temporal redun-
dancy

set Γj is allocated, where tasks represent real-time threads of execution
to be scheduled by a fixed-priority scheduler. Each task i has a min-
imum period Ti, known worst and best-case execution times (WCET
and BCET) denoted by Ci and Cmini respectively, a deadline Di, and a
unique priority Pi. Tasks are assumed to have deadlines equal to, or less
than their periods. The task sets consist of critical and non-critical tasks
where the criticality of a task could be seen as a measure of the impact
of its correct (or incorrect) functioning on the overall system correctness.
To provide fault-tolerance, critical tasks are replicated over a number of
processing nodes.
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The outputs of nc critical tasks are voted by a separate voter corre-
sponding to each critical task, Vk (k = 1, 2, ..., nc), running on a stand
alone node. Upon receiving the outputs from a critical task i, the corre-
sponding voter process starts executing the voting algorithm which has a
known WCET denoted by (Cvoteri ), and either outputs the correct value
at an admissible time, or signals the non-existence of a correct output,
if detected, back to the nodes for a recovery attempt by re-execution. In
this chapter, the voters are assumed to be able to execute in parallel for
the sake of presentation.

Nodes’ clocks are allowed to drift from each other by at most a maxi-
mum deviation δ which is assured by clock synchronization mechanisms.
The voter performs inexact voting [56, 81, 87] in the value domain as-
suming a maximum admissible deviation between any two non-erroneous
outputs, σ. Error detection in the time domain is performed by checking
whether any of the two replica outputs are separated by a time greater
than the worst-case voting jitter VJ i of a critical task i multiplied by the
detector coefficient α. If α is less than one, the detection of the variations
in the time domain caused by faults can be improved which reduces the
false negatives. However, the error detector may identify even error-free
outputs as erroneous, increasing the false positives. An α value less than
one can also be used to shorten the worst-case response time (WCRT)
of the voter. Tuning the α value is an application dependent delicate
task, and the analysis techniques proposed in this chapter aims to assist
the system designer in performing this task.

Errors are assumed to occur randomly with a rate λ per unit time
which not only depends on the system but also on the type of envi-
ronment. Examples of the considered errors are task outputs outside
the specified value ranges, caused by incorrect input values from faulty
sensors, or outside the specified time windows due to EMI on the trans-
missions of messages that carry the sensor values.

5.2 Methodology Overview

The goal of this approach is to improve the dependability of systems us-
ing the proposed fault-tolerant architecture. The analysis framework for
achieving this goal is outlined in Figure 5.2. The inputs to the analysis
framework consist of the task sets allocated to the distributed processing
nodes, the error rate λ determined by the system, the environment char-
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Voter
performance data
(if available)

Error rate λTask
attributes

Calculate worst-case voter response times for 
space redundancy and cascading redundancy. 

Task      
re executions

No
re-executions

feasible?

Perform a sensitivity analysis
t fi d th l t th t kto find the largest α that makes 

task re-executions feasibleYes

Perform a reliability analysis to identify potential 
trade-off scenarios for tuning the α value

Figure 5.2: Methodology overview

acteristics, and, if available, data regarding the voter performance. The
analysis begins with finding the WCRTs of the voters for each critical
task for spatial redundancy and cascading redundancy configurations.
If performing cascading redundancy is infeasible due to deadline misses,
a sensitivity analysis is performed to identify the largest α value that
enables meeting the deadlines. In this chapter, one global α value that
makes all the critical tasks schedulable has been used for the sake of pre-
sentation. Since the α value is configured individually for each voter, one
can also perform a set of sensitivity analyses to find the largest α values
for each task. The final step is the reliability analysis performed for each
task and α value that enables the system designer to decide whether cas-
cading redundancy is necessary/useful or if spatial redundancy alone is
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sufficient for each individual critical task.

5.3 Response Time Analysis

This section proposes a Response Time Analysis (RTA) for the fault-
tolerant unit equipped with both the temporal and the spatial redun-
dancy mechanisms. The conventional RTA calculates the WCRT Ri
for each task i on a single processing node using the following equation
assuming that there are no errors and, hence, no recovery attempts [49]:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj (5.1)

On a loosely synchronized single node whose local clock is allowed
to drift from the real-time by a bounded value (δ/2), the Ri of task i,
relative to time 0, can further be delayed with an amount equal to the
worst-case value of this drift:

Ri = Ri +
δ

2
(5.2)

The WCRT of the voter for task i (Rvoteri ), in case no voter signals
disagreement during the interval in which all the replicas of task i that
contribute to the agreement execute, is equal to the sum of the WCET
of task i’s voter process, Cvoteri , and the largest WCRT among task i’s
replicas, since in the worst-case, the voter needs to wait for the replica
output with the largest WCRT and then finish the execution of the
voting algorithm:

Rvoteri = max
k∈{1..N}

(Rik) + Cvoteri (5.3)

where Rij is the WCRT of the task i’s replica executing on the loosely
synchronized node j.

Bril et al. [17] present the following recursive equation that calculates
the best-case response time Rmini of task i:

Rmini = Cmini +
∑

j∈hp(i)

(⌈
Rmini

Tj

⌉
− 1

)
Cminj (5.4)
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Similar to the above consideration for the WCRTs on processing
nodes that are allowed to drift from the real-time, the best-case response
times may also be affected by this drift with an amount equal to the
worst-case value of the drift:

R
min

i = Rmini − δ

2
(5.5)

Definition 2. The worst-case voting jitter VJij for a critical task
replica i on node j (denoted by τij) is the largest response time of any
replicas of task i except the one on node j, relative to the best-case

response time R
min

ij of the replica of task i on node j, in an error free
scenario.

VJ ij = max
k∈{1..N}\j

(Rik)−Rminij (5.6)

A voter signals a disagreement if the total number of detected node
errors exceeds the number of errors that the voter can tolerate. In the
worst-case, disagreement occurs with a late timing or an omission error.
In that case, the voter needs to wait for the maximum allowed time
deviation between any two replica output delivery times. This value is
equal to the worst-case voting jitter multiplied by the detector coefficient
α.

The WCRT of task i’s voter, in the case a voter signals a disagreement
and the corresponding task is re-executed (denoted byRvoteri (cascading))
includes the following:

• the WCET of task i’s voter process.

and the larger of the following two groups:

• if task i’s voter has reached a disagreement

– the largest sum of the worst-case voting jitter multiplied by
α for task i and two times the largest WCRT among task
i’s replicas, one for the initial execution and one for the re-
execution,

– the WCET of task i’s voter process for the second round of
voting,

• otherwise
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– the largest WCRT among task i’s replicas assuming re-executions
of the replicas of a higher priority critical task,

Rvoteri (cascading) =

max

(
max

k∈{1..N}
(2Rik + αVJ ik) + Cvoteri ,

max
k∈{1..N}

(Rik(recovery in hp))

)
+ Cvoteri (5.7)

where the WCRT of task i assuming a recovery in one of the higher
priority tasks, Ri(recovery in hp), is calculated as follows:

Ri(recovery in hp) =

Ci +
∑

j∈hp(i)

⌈
Ri(recovery in hp)

Tj

⌉
Cj + max

k∈hpc(i)
Ck

where hpc(i) is the set of critical tasks with higher priorities than the
priority of task i.

In Equation 5.7, by assuming two times the largest WCRT among
the WCRTs of task i’s replicas, certain pessimism may be introduced to
Rvoteri (cascading) due to an unnecessary addition of interference from
higher priority tasks depending on their attributes, e.g., in case a higher
priority task is not re-released during the re-execution of task i.

As an alternative approach, one can add the largest sum of the worst-
case voting jitter multiplied by α and the worst-case re-execution time
of the tasks in hepc(i), which is the set of critical tasks with priorities
higher than or equal to the priority of task i,

max
k∈hepc(i)

(αVJ k + Ck)

to Equation 5.1, similar to Burns et al.’s [23] error interference addition
to the conventional RTA [49]. However, differently from Burns et al.’s
approach, this would bring the pessimism of unnecessarily adding a value
equal to the worst-case voting jitter multiplied by α to the WCRT, in case
the re-executed task is not task i. This is because task i’s response time is
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delayed due to the voting jitter only if task i’s voter is causing the delay.
If the disagreement is signalled by another voter, then during the time
that the voter waits for detection of that disagreement, the processors
can be used for serving task i’s replicas. While both approaches are
safe, they can result in different levels of pessimism depending on the
characteristics of the task sets.

5.4 Reliability Analysis

This section presents the reliability analysis for a triple-modular redun-
dant unit using the temporal and spatial redundancy approach equipped
with a voter using the VTV strategy. In this configuration, an error in
one node during the voting process can be masked by the voter and er-
rors in two nodes can be signalled within a bounded time. If all nodes
are erroneous, no guarantee on detection or signalling the errors can be
given [14].

5.4.1 Ideal Voter

An ideal Triple-Modular Redundancy (TMR) voter implementing the
VTV strategy masks all single node errors, as well as signals all double
node errors. However, it cannot provide any guarantees in a triple node
error scenario, hence, it is assumed to fail assuming the worst case [14].
The VTV strategy relies on the following set of assumptions:

A1: error free nodes produce values within a specified admissible value
range after each computation block

A2: error free nodes produce values within a specified admissible time
interval after each computation block

A3: replica outputs with incorrect values do not form (or contribute in
forming) a consensus in the value domain

A4: incorrectly timed replica outputs do not form (or contribute in
forming) a consensus in the time domain

A5: there exist adequate mechanisms, which are significantly less costly
than tight synchronization, that ensure a maximum permissible
replica deviation from the global time
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A6: the failure rate of the voting mechanism is negligibly low, as being
designed and implemented as a highly reliable unit

The reliability of this voter is calculated using the Homogeneous Pois-
son Process assuming a constant error arrival rate denoted by λ.

Let I0
i be the longest time interval for task i, which spans from the

start to the completion of any of its replicas assuming an error free
scenario as shown in Figure 5.3. This time interval is calculated by the
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Figure 5.3: I0
i and I1

i

summing up of the largest WCRT among the WCRTs of all the replicas
maxk∈{1..N}(Rik) and the worst-case drift of the local clock from the
real-time δ/2.

I0
i = max

k∈{1..N}
(Rik) +

δ

2
(5.8)

Let Y ni be a Poisson random variable with parameter λIni . The
probability of having a correct voter output (an agreement in both the
time and the value domains) for task i after the first round of voting is
equal to the probability of having at most one node error during the time
interval in which the nodes execute the replicated tasks. If we assume
a constant length for this interval whose value is equal to its worst-case
(I0
i ), the lower bound probability of having a correct voter output for

task i after the first round of voting becomes:

Prlbi,agreement(0) = Pr(Y 0
i ≤ 1) = e−λI

0
i (1 + λI0

i ) (5.9)

If exactly two errors have occurred during the first round of voting,
and if there is enough time to either re-execute all the three replicas be-
fore their deadlines, or wait for the re-execution of a higher priority task’s
replicas (whichever takes more time), then the lower bound probability
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of having a correct output becomes:

Prlbi,agreement(1) =

Pr(Y 0
i ≤ 1 ∪ (Y 0

i = 2 ∩ Y 1
i ≤ 1)) =

e−λI
0
i (1 + λI0

i ) +
e−λI

0
i (λI0

i )2

2!
e−λI

1
i (1 + λI1

i ) (5.10)

where I1
i is the length of the interval starting from maxk∈{1..N}(Rik) and

lasting until Rvoteri (cascading) (Figure 5.3):

I1
i = Rvoteri (cascading)− max

k∈{1..N}
(Rik) (5.11)

In the above statement, the probabilities Pr(Y 0
i ≤ 1) and Pr(Y 0

i =
2 ∩ Y 1

i ≤ 1) are mutually exclusive since if there is at most one error
during the first interval whose length is equal to I0

i , the second round
of voting is never performed. Hence, for calculating the union of these
probabilities, there is no need to subtract their intersection from their
sum.

5.4.2 Real Voter

A real voter does not always act like an ideal one due to various rea-
sons. For example, assumptions A1 and A2 may not always hold even
with correct execution of the tasks due to, e.g., noise in sensor values.
Special attention during system design and development can be paid to
ensure that the assumptions A5 and A6 will hold for a required extent.
However, the same cannot be done for assumptions A3 and A4, as they
are truly random events. Furthermore, positive rates of voter outputs
may be different than theoretically calculated rates since even erroneous
outputs may end up contributing to an agreement in a correct output if
the magnitude of the error is small, and/or the error is only in one of
the value and the time domains. Obviously, the choice of the α value
contributes to this difference as well.

The lower bound probability of having a correct voter output (a true
agreement in both the time and the value domains) for task i can be
derived from the following probabilities:

• Pri,FP (n, α): The probability that the voter signals a disagreement
where it was possible to reach an agreement (false positive), during
an interval equal to In for a given α.
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• Pri,TP (n, α): The probability that the voter signals a disagreement
which is the correct action to be taken by the voter (true positive),
during an interval equal to In for a given α.

• Pri,FN (n, α): The probability that the voter signals an agreement,
where it is supposed to signal a disagreement according to the
specifications (false negative), during an interval equal to In for a
given α.

Prlbi,agreement(0, α) =

1− (Pri,FP (0, α) + Pri,TP (0, α) + Pri,FN (0, α)) (5.12)

For the case of performing cascading redundancy, the probability of
a correct voter output after re-executions is calculated by the following
equation:

Prlbi,agreement(1, α) = Prlbi,agreement(0, α)+

(Pri,FP (0, α) + Pri,TP (0, α))

(1− (Pri,FP (1, α) + Pri,TP (1, α) + Pri,FN (1, α)))

(5.13)

Note that the above equation is a theoretical assessment of the reli-
ability, although it can be used to derive reliability estimates of a real
voter in case information regarding the voter performance is either avail-
able from usage statistics or derived via simulations/experiments.

5.5 Illustrative Example

The proposed analysis is illustrated with an example. Three processing
nodes are configured as a triple-modular redundant unit as shown in
Figure 5.4. On each node, three tasks are allocated and scheduled by
the fixed-priority scheduling policy, two of which are the replicas of the
two critical tasks (A and B) in the system. These critical tasks have
slow dynamics (T = 200ms), while the third task on each node is a
non-critical task with fast dynamics (T = 10ms). The task sets are
shown in Table 5.1. L, M and H represent the lowest, middle and the
highest priority levels respectively. The time unit is milliseconds. The
non-critical tasks have deadlines equal to their periods, and the critical
tasks have deadlines less than their periods.
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Figure 5.4: Triple-modular redundant configuration with temporal re-
dundancy

5.5.1 Response Time Analysis

The worst and best-case response times and the worst-case voting jitter
are calculated as shown in Table 5.2. The first two columns show the
response times with respect to each local clock (assuming δ = 0), and the
next two columns show the response times, and the last column shows
the voting jitter with respect to the real-time (assuming δ = 2ms).

The response times of the voting processes in cases of only spatial
redundancy and cascading redundancy are calculated by equations 5.3
and 5.7 (for α = 0.5 and α = 1) as shown in Table 5.3. In this example,
the WCETs of the voting processes are assumed to be CvoterA , CvoterB =
1ms. For α = 1, neither task A nor task B can complete before their
deadlines. However, for α = 0.5, they both have sufficient time to re-
execute before their deadlines. If an agreement has been reached for the
replicas of each critical task, then the deadlines are met for both of them.
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Node Task P Cmin C D T

1
A1 L 2 3 65 100
B1 M 10 12 42 100
C H 1 2 10 10

2
A2 L 2 3 65 100
B2 M 10 12 42 100
D H 2 3 10 10

3
A3 L 2 3 65 100
B3 M 10 12 42 100
E H 2 2 10 10

Table 5.1: Example task sets on three nodes

5.5.2 Reliability Analysis of an Ideal Voter

In this example the expected number of errors is assumed as λ = 1 per
1s. The interval lengths I0

i and I1
i for tasks A and B are calculated as

I0
A = 27, I1

A = 35.5 and I0
B = 21, I1

B = 22 respectively using equations
5.8 and 5.11. Assuming an ideal voter, the probabilities of reaching an
agreement in different rounds of voting are calculated using equations
5.9 and 5.10 as shown in Table 5.4.

From these results, it can be concluded that using the cascading re-
dundancy approach brings significant reliability improvements over using
the spatial redundancy approach alone.

5.5.3 Reliability Analysis of a Simulated Voter

To simulate a real voter, the setup shown in Figure 5.5 is implemented
using Matlab/Simulink. Three nodes forming a triple-modular redun-
dant unit and a reference node are simulated, which sample a signal
with random noise and output it after a delay, chosen differently for
tasks A and B, simulating the execution of these tasks. Various kinds of
transient errors (value, timing and omission errors) were injected to the
nodes forming the triple-modular redundant unit. The outputs of the
three nodes were voted using the VTV strategy. All node outputs were
sent to a perfect observer module together with the voter outputs and
the disagreement signals from the voters, in order to determine the false
positive rates and the false negative rates. The drift in the local clocks
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Task Rmin R
R
min

R
VJ

(δ = 2) (δ = 2)

A1 2 19 1 20 24
B1 12 16 11 17 8
C 1 2 0 3 -

A2 2 24 1 25 19
B2 14 18 13 19 4
D 2 2 1 3 -

A3 2 19 1 20 24
B3 14 16 13 17 6
E 2 2 1 3 -

Table 5.2: WCRT of tasks before voting and the worst-case voting jitter

Task α Rvoter Rvoter(cascading)

A
1

26 71 (UNSCH)
B 20 46 (UNSCH)
A

0.5
26 61.5

B 20 42

Table 5.3: Voter response times

from the real-time was simulated by allowing local periods slightly longer
or shorter than the task periods. The execution requirement was also
scaled up or down based on the local period. Whenever the accumulated
drift from the global clock, i.e. the accumulated sum of the difference
between the local period and the real period, reaches the maximum ad-
missible deviation from the real-time (δclock/2 = 1ms), the local clock
is synchronized with the global clock. This is realized by running a syn-
chronization period shorter or longer than the real period with a value
equal to the accumulated difference.

Critical tasks’ true positive, false positive and false negative prob-
abilities for α = 1 and α = 0.5 are found as shown in Table 5.5 after
running the simulations for 100 simulation seconds for each task. In this
table n is the index of the interval length In and simulated by changing
the error probability which depends on the length of In for constant λ.
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Task n Pri,agreement(n)

A
0 (α = 1) 0.9996420
1 (α = 0.5) 0.9999966

B
0 (α = 1) 0.9997826
1 (α = 0.5) 0.9999984

Table 5.4: Probabilities of reaching an agreement after n re-executions
(ideal voter)

N1

VA

Output

Disagreement

Voter

N2

VB

Output

Disagreement

N3

Nref Perfect observer
FPR & FNR

Figure 5.5: Experiment setup

By using an α = 0.5 for critical tasks A and B, re-execution chances
are given to both while still guaranteeing schedulability assuming that
the second round of voting ends up in an agreement. By doing so, the
probability of failure has been decreased by more than an order of mag-
nitude for both tasks as shown in Table 5.6 (calculated by equations 5.12
and 5.13), though task B has benefited from the cascading redundancy
approach more than twice as much.

On the other hand, by reducing α to 0.5, the probability of performing
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Task α n Pri,TP (n, α) Pri,FP (n, α) Pri,FN (n, α)

A
1 0 0.0003 0.0022 0.00019

0.5 0 0.00073 0.00604 0.00012
0.5 1 0.00104 0.00987 0.00014

B
1 0 0.00021 0.00113 0.00003

0.5 0 0.00046 0.00586 0.00001
0.5 1 0.00051 0.00612 0.00001

Table 5.5: Critical tasks’ true positive, false positive and false negative
probabilities for α = 1 and α = 0.5

Task n Pri,agreement(n)

A
0 (α = 1) 0.99731
1 (α = 0.5) 0.99981

B
0 (α = 1) 0.99863
1 (α = 0.5) 0.99995

Table 5.6: Probabilities of reaching an agreement after n feasible re-
executions (simulated voter)

a feasible re-execution for task B is increased by:

PrB,TP (0, 0.5) + PrB,FP (0, 0.5)

PrB,TP (0, 1) + PrB,FP (0, 1)
=

0.00632

0.00134
∼= 4.72

while this increase for task A is

PrA,TP (0, 0.5) + PrA,FP (0, 0.5)

PrA,TP (0, 1) + PrA,FP (0, 1)
=

0.00677

0.0025
∼= 2.71

These results would assist the system designer to decide which α
value to choose for each critical task, based on (i) the individual task re-
liability requirements and (ii) the probability of performing unnecessary
re-executions due to false positives.
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5.6 Summary

This chapter presents a fault-tolerance strategy where error recovery is
performed by either masking up to a specified number of errors with the
use of spatial redundancy, or, in a cascading manner, by first detecting
a disagreement in the spatial redundancy stage and then performing
temporal redundancy. The RTA for the voting process has been revised
to account for the effect of local clocks’ drift from the real-time, the
voting jitter and the selected α value. Using a stochastic error model,
a method for performing reliability analysis has been proposed for both
ideal voters and real voters in case information regarding the real-world
performance is available for the voter. This analysis shows the benefits
and drawbacks of using different α values and allows performing a trade-
off analysis during the design phase for choosing an α value suitable for
the application.





Chapter 6

Summary

Dependability is a fundamental property of safety and mission critical
systems due to the potential hazards they can cause to people and the
environment. Provision of fault-tolerance in the real-time embedded
systems domain is an essential requirement for achieving dependability,
but a delicate task which not only includes predictable assurance of
functional correctness, but also timeliness in an effective and resource
efficient manner.

Safety and mission critical systems have been mainly utilizing fault-
tolerance strategies in order to attain dependability where accurate de-
tection of and effective recovery from errors are crucial. However, in
many cases, conventional fault-tolerance strategies are needed to be re-
designed or adapted to be applicable in the real-time embedded systems
domain, in order to address many important aspects, such as the inclu-
sion of error detection in the time domain. Moreover, computational
resources for providing fault-tolerance are often limited in the embed-
ded systems domain due to the underlying constraints related to, e.g.,
space, weight and cost. Considering these constraints, the design pro-
cess of developing dependable embedded systems involves the selection
of appropriate fault-tolerance strategies to be used in critical parts of the
system. This requires appropriate design and development tools where
the designer can perform various trade-off analyses in order to make
favourable design choices.

A fundamental task towards predicting systems’ dependability is a
realistic and a detailed model of faults and errors. Particularly, the
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behaviour of errors caused by transient and intermittent faults can be
very complex, due to the random behaviour of these errors with often
changing rates during the operational life of the system. One major
challenge in predicting the dependability of real-time systems is how to
combine the techniques used for providing timing guarantees with those
used for providing reliability guarantees. Real-time scheduling research
is based on worst-case guarantees, i.e. it tries to answer the question
if a system is schedulable even if the absolute worst pattern of events
take place together with the absolute longest execution times, whereas,
in case of error events, there may not be a worst-case bound, as these
events are random by their nature. The existing fault-tolerant real-time
research most often assumes worst-case error scenarios (which hold for
a certain probability), and develops timing analysis techniques based on
these assumptions. As a result, in many cases, these analysis techniques
do not permit tuning these assumptions at a later stage, in order to adapt
to a new environment or changing system properties, thus, limiting its
applicability.

Hence, there is a research need for accurately modeling the randomly
occurring complex error scenarios, development of fault-tolerance strate-
gies targeting the real-time embedded systems domain, and techniques
to combine timing and reliability analysis.

6.1 Results

This thesis presents methods for

• stochastically modeling errors,

• providing fault-tolerance in task and message scheduling in embed-
ded real-time systems,

• analyzing the reliability of these systems.

Firstly, a spatial redundancy approach with a majority voting strat-
egy is presented, which performs voting in both the time and the value
domains, applicable for loosely synchronized dependable real-time sys-
tems. Its performance is evaluated against the existing strategies target-
ing similar types of applications, which shows that the presented strategy
outperforms the existing ones.
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Secondly, two methods for providing fault-tolerance using the tem-
poral redundancy approach is presented, targeting task and message
scheduling respectively, for task and message sets with mixed criticality
levels.

Subsequently, a set of probabilistic schedulability analysis techniques
is presented focusing on the mixed criticality levels of task sets, as well as
considering the burst errors in task and message scheduling respectively.

Finally, a cascading redundancy approach that combines the spatial
and temporal redundancy approaches is presented, including a joint tim-
ing and reliability analysis for the proposed approach. This work aims to
demonstrate how the presented concepts can be used in a fault-tolerant
design and analysis framework.

6.2 Conclusions

The fault-tolerant design and analysis framework proposed in this thesis
provides a more accurate modeling of real error scenarios compared to
the fault-tolerance techniques targeting real-time systems using worst-
case error scenarios.

The proposed fault-tolerance techniques focus on addressing the in-
clusion of various essential properties of dependable embedded real-time
systems lacking in many of the existing approaches, such as resource
awareness and consideration of the errors in the time domain.

The proposed probabilistic real-time analysis techniques allow the
system designers to analyze if the dependability measures taken in the
form of fault-tolerance are adequate to satisfy the dependability require-
ments.

6.3 Future Work

This thesis can form a basis for various possible future work in the area of
dependable real-time embedded systems design, including the following:

• Development of Probabilistic Real-Time Analysis (PRTA) techniques
that utilize the proposed stochastic error model to its full extent.

Although each of the proposed probabilistic timing analysis tech-
niques show how to relax various assumptions traditionally made
in dependable real-time research, such as assuming only singleton
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errors, maximum one error burst occurrence per any message in-
stance and error bursts that consist of continuous errors, none of
them do relax all of these assumptions and including them in a
single framework remains as a future challenge.

• Consideration of the mixed criticality of tasks/messages in each of
the proposed PRTA techniques.

The PRTA techniques proposed for task and message scheduling
under burst errors assume that all tasks/messages are critical. A
future challenge is to extend it to address the mixed criticality
nature of safety/mission critical embedded systems.

• Implementation of a fault-tolerant design and analysis framework

Various fault-tolerance strategies and analysis techniques are pre-
sented in this thesis including a demonstration of a possible in-
stantiation of a fault-tolerant design and analysis framework. A
potential future work is to extend this framework by including
other fault-tolerance and analysis techniques used in the embed-
ded real-time system domain, thereby providing a more complete
framework that additionally could be integrated into a develop-
ment environment.
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List of Acronyms

BCET Best-Case Execution Time
CAN Controller Area Network
CMV Compare Majority Voting
CRC Cyclic Redundancy Check
DM Deadline Monotonic
DPS Dynamic Priority Scheduling
ECU Electronic Control Unit
EDF Earliest Deadline First
EMC Electro Magnetic Compatibility
EMI Electro Magnetic Interference
FA Fault-Aware
FMEA Failure Mode and Effects Analysis
FNR False Negative Rate
FPR False Positive Rate
FPS Fixed Priority Scheduling
FPTA Failure Propagation and

Transformation Analysis
FPTC Failure Propagation and

Transformation Calculus
FPTN Fault Propagation and

Transformation Notation
FT Fault-Tolerant

147



148 Chapter A. List of Acronyms

FTA Fault Tree Analysis
ILP Integer Linear Programming
LCM Least Common Multiple
NMR N-Modular Redundancy
PRTA Probabilistic Real-Time Analysis
QMV Quorum Majority Voting
QoS Quality of Service
RM Rate Monotonic
RTA Response Time Analysis
TMR Triple-Modular Redundancy
TNR True Negative Rate
TPR True Positive Rate
V TV Voting on Time and Value
WCET Worst-Case Execution Time
WCRT Worst-Case Response Time



Appendix B

List of Notations

α detector coefficient
Γ task/message set
Γc subset of critical tasks/messages in Γ
Γc subset of critical task/message alternates

in Γ
Γnc subset of non-critical tasks/messages in Γ
ΓFAnc subset of non-critical tasks/messages

with valid FA deadlines in Γnc
Γnon−FAnc subset of non-critical tasks/messages

without valid FA deadlines in Γnc
Γtk subset of tasks/messages in Γ that are

released at time tk
δ maximum deviation in the time domain

between any two replica outputs, in an
error-free scenario, as perceived by the
voter

∆ maximum admissible deviation between
any two voter outputs in the time
domain as per the real-time and
dependability specifications

ε an arbitrarily small real number
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η number of data bytes in a CAN message
frame

λ fault rate
λerror error occurrence rate within a fault
σ maximum admissible deviation in the

value domain between any two replica
outputs

τbit bit time
τi task i
τh task with the highest priority

τ ji jth instance of task i
τij replica of task i on node j
τi alternate task i
Bi non-preemptive transmission of a lower

priority message frame, or the
non-preemptive transmission of a message
frame belonging to the previous instance
of the message i

Ci worst-case transmission/execution time of
task/message i

Ci worst-case execution time of alternate
task i

Cmini best-case transmission/execution time of
task/message i

Cvoteri worst-case execution time of the voter
algorithm for task i

Di relative deadline of task/message i
Di relative deadline of alternate

task/message i

Dj
i relative deadline of the jth instance of

task/message i

Dj
i (FA) relative fault-aware deadline of the jth

instance of non-critical task/message i

Dj
i (FT ) relative fault-tolerant deadline of the jth

instance of critical task/message i

Dj
i (FT ) relative fault-tolerant deadline of the jth

instance of alternate task/message i
e size of a transmitted CAN error frame
emax size of the largest CAN error frame
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est(τi) earliest start time of task i
E total number of erroneous outputs
Et number of outputs that are erroneous in

the time domain
Ev number of outputs that are erroneous in

the value domain
Evt number of outputs that are erroneous in

both the time and the value domains
Eet number of outputs that are erroneous in

the time domain with an early timing
error

Elt number of outputs that are erroneous in
the time domain with a late timing
error

Eevt number of outputs that are erroneous in
both the time and the value domains
with an early timing error

Elvt number of outputs that are erroneous in
both the time and the value domains
with a late timing error

f size of a transmitted CAN message
frame

fmax size of the largest CAN message frame
Fi fault i
G goal function
hep(i) set of tasks/messages with priorities

higher than or equal to that of
task/message i

hepc(i) set of critical tasks/messages with
priorities higher than or equal to that
of task/message i

hp(i) set of tasks/messages with priorities
higher than that of task/message i

hpc(i) set of critical tasks/messages with
priorities higher than that of
task/message i

Ii total worst-case interference from
higher priority tasks/messages or errors
on task/message i
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Ierri worst-case error interference on
task/message i

I
errj
i worst-case error interference on

task/message i caused by fault j

Ihpi worst-case interference from higher
priority tasks/messages on task/message i

Ini the largest interval, for the nth

re-execution of task i’s replicas, which
spans from the start to the completion of
any of its replicas assuming an error free
scenario

Ji worst-case queuing jitter of message i
Jmini best-case queuing jitter of message i
ki number of instances of task i
li duration of fault i
L mission time
mi number of frames forming message i
Mi message i
Mh message with the highest priority

M j
i jth instance of message i

Mt minimum number of replicas required to
form a consensus in the time domain

Mv minimum number of replicas required to
form a consensus in the value domain

n number of tasks/messages
ni number of instances of task i over LCM
nc number of critical tasks
N the number of processing nodes in the

system / modules in an NMR
configuration

Ni node i
Oi offset of task/message i
Pi priority of task/message i

P ji priority of the artifact task/message
(originally the jth instance of
task/message i)

P ji priority of the artifact task/message
alternate (originally the jth instance of
alternate task/message i)
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Prlb a lower bound probability
Prub an upper bound probability
Pr(S) probability of schedulability
Pr(U) probability of unschedulability
Prsingle burst(l)(C) probability within a single burst

caused by a fault with duration l
P rsingle burst(random) probability within a single burst caused

by a fault with random duration
Pri,agreement(n) probability that the voter reaches an

agreement after n re-executions of task
i

Pri,agreement(n, α) probability that the voter reaches an
agreement after n re-executions of task
i for the selected α

Pri,FN (n, α) probability of a false negative for the
selected α during an interval equal to
In for task i

Pri,FP (n, α) probability of a false positive for the
selected α during an interval equal to
In for task i

Pri,TP (n, α) probability of a true positive for the
selected α during an interval equal to
In for task i

qi worst-case queuing delay of message i
ri the number of frames that are required

to be guaranteed for re-transmission
for message i

R(i) reliability requirement of task i
Ri worst-case latency/response time of

message/task i
Ri worst-case latency/response time of

message/task i on a loosely
synchronized node

Rmini best-case latency/response time of
message/task i

Rij worst-case latency/response time of
task i’s replica on node j

Rminij best-case latency/response time of task
i’s replica on node j
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Rvoteri worst-case voter response time for
task i

Rvoteri (cascading) worst-case voter response time for
task i after re-execution of its replicas

TE minimum error inter-arrival time
within a fault

TF minimum fault inter-arrival time
TFi

minimum fault inter-arrival time
specified for task i

Ti period/minimum inter-arrival time of
message/task i

t∗ the correct task/message output
delivery time, as seen by a perfect
observer

ti the time point that
node/task/message i output is
delivered

v∗ the correct task/message output
value, as seen by a perfect observer

vi the output value of
node/task/message i

V Jij worst-case voting jitter of task i on
node j

WF actual minimum fault inter-arrival
time

WE actual minimum error inter-arrival
time
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