G Model
]SS-8821; No.of Pages 14

The Journal of Systems and Software xxx (2011) XXX-xxx

Contents lists available at SciVerse ScienceDirect X "

Ssfoms

of
ans

d Softwara
Ll

T

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Data management for component-based embedded real-time systems:
The database proxy approach

Andreas Hjertstrom*, Dag Nystrém, Mikael Sjodin

Midlardalen Real-Time Research Centre, Visterds, Sweden

ARTICLE INFO ABSTRACT

Article history:

Received 13 August 2010

Received in revised form 24 October 2011
Accepted 25 October 2011

Available online xxx

We introduce the concept of database proxies intended to mitigate the gap between two dis-
joint productivity-enhancing techniques: component based software engineering (CBSE) and real-time
database management systems (RTDBMS). The two techniques promote opposing design goals and their
coexistence is neither obvious nor intuitive. CBSE promotes encapsulation and decoupling of compo-
nent internals from the component environment, whilst an RTDBMS provide mechanisms for efficient
and predictable global data sharing. A component with direct access to an RTDBMS is dependent on

g;’g‘gords" that specific RTDBMS and may not be useable in an alternative environment. For components to remain
RTDBMS encapsulated and reusable, database proxies decouple components from an underlying database resid-
Real-time ing in the component framework, while providing temporally predictable access to data maintained in

a database. Our approach provide access to features such as extensive data modeling tools, predictable
access to hard real-time data, dynamic access to soft real-time data using standardized queries and con-
trolled data sharing; thus allowing developers to employ the full potential of both CBSE and an RTDBMS.
Our approach primarily targets embedded systems with a subset of functionality with real-time require-
ments. The implementation results show that the benefits of using proxies do not come at the expense

Embedded systems

of significant run-time overheads or less accurate timing predictions.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

This paper proposes database proxies (Hjertstrom et al., 2010)
as a solution to integrate a real-time database management system
(RTDBMS) (Adelberg et al., 1996; Ramamritham et al., 2004) into a
component-based software engineering (CBSE) (Buschmann et al.,
1996; Crnkovic and Larsson, 2002) setting. Database proxies are
automatically generated glue code synthesized from the system
architecture that translates data between components ports and
an RTDBMS residing in the component framework.

Data management of embedded real-time systems is becoming
increasingly important as systems evolve from simple stand-alone
devices into becoming complex systems, often interconnected with
its surrounding environment. This trend has lead to that developers
are confronted with a substantial amount of functions, design-time
and run-time data that needs to be managed. In addition, develop-
ers are increasingly faced with new requirements such as secure
and dynamic data sharing and advanced diagnostics. To reduce the
resulting complexity, model driven development (OMG UML, 2011)
and CBSE, are increasingly used in industry today. However, these

* Corresponding author. Tel.: +46 21 107322; fax: +46 21 103110.
E-mail addresses: andreas.hjertstrom@mdh.se (A. Hjertstrom),
dag.nystrom@mdh.se (D. Nystrom), mikael.sjodin@mdh.se (M. Sjodin).

0164-1212/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j,jss.2011.10.036

techniques mainly focus on the functional aspects of the software,
and rarely target management of data.

The introduction of database proxies enables a clear separation
of system functionalities and data management, thereby letting
developers focus more on the functional behavior of the system
rather than developing in-house specialized solutions for managing
data. Predictable access to hard real-time data, dynamic run-time
data access, secure data sharing and data modeling tools are just
some of the benefits that the usage of database proxies in con-
junction with an RTDBMS can provide. Both CBSE and RTDBMS,
aims to reduce complexity and enhance productivity when devel-
oping these systems. CBSE promotes encapsulation of functionality
into reusable software entities that communicate through well
defined interfaces and that can be assembled as building blocks.
This enables a more efficient and structured development where,
for instance, available components can be reused or COTS (com-
mercial of the shelf) components effectively can be integrated in
the system to save cost and increase quality.

An RTDBMS provides a blackboard storage architecture to
share global data predictably and efficiently by providing
concurrency-control, temporal consistency, overload management
and transaction management. The usage of an RTDBMS allows
real-time systems to be built around a data layer, supporting safe
sharing of data between applications, both proprietary as well as
third party software. Access to data is made through standardized

Please cite this article in press as: Hjertstrom, A., et al., Data management for component-based embedded real-time systems: The
database proxy approach. J. Syst. Software (2011), doi:10.1016/j.jss.2011.10.036

dx.doi.org/10.1016/j.jss.2011.10.036
dx.doi.org/10.1016/j.jss.2011.10.036
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:andreas.hjertstrom@mdh.se
mailto:dag.nystrom@mdh.se
mailto:mikael.sjodin@mdh.se
dx.doi.org/10.1016/j.jss.2011.10.036

G Model
JSS-8821; No.of Pages 14

Database proxy characteristics

1. Database proxies are automatically generated as glue code
in the synthesized architecture, leaving the component code
unchanged.

2. Components can gain access to an RTDBMS in the component
framework with maintained encapsulation and decoupling.

3. Components with soft real-time requirements can access multi-
ple data items using dynamic run-time queries without blocking
hard real-time data accesses.

4. Components can be reused regardless of the existence of a
database in the component framework.

2 A. Hjertstrom et al. / The Journal of Systems and Software xxx (2011) XXx-xxX
~_.~-DBUnaware " .__DBUnaware--..
_componéntA—| | Components .
A A
DB Glue Code DB
Synthesized i Loy,
Architecture
(O
Component RTDBMS
Framework

Fig. 1. Database proxies connecting components to an RTDBMS.

query languages, providing advanced access control mechanisms.
This implies that potentially unsafe software, such as third party
software, can be granted access to data in a controlled man-
ner. Furthermore, RTDBMSs significantly cuts time to market by
providing high-level query languages, supporting logging, diag-
nostics, monitoring, and efficient data modeling (Schulze et al.,
2009).

However, the coexistence between the techniques is non-trivial
since their design goals are contradicting.

The techniques offered by an RTDBMS allow the internal repre-
sentation and management of data to be decoupled from the data
usage. However, RTDBMSs promotes the use of shared data with
potentially hidden dependencies amongst data-users.

CBSE, on the other hand, strives to decouple components from
the context in which they are deployed. One aspect of this is that
a component should not have should not have hidden dependen-
cies on the existence of certain data-elements. This decoupling is
achieved by encapsulating component-functionality and making
visible only a component-interface describing a component’s pro-
vided and required services.

Using an RTDBMS in existing component-based systems would
require RTDBMS specific code to be used from within a compo-
nent. This introduces negative side effects that violate several basic
principles of CBSE, for instance:

1. A component with direct access to the database from within,
violates the component’s aim to be encapsulated and only com-
municate through its interface.

2. Direct access to shared data introduces hidden dependencies
between components.

3. If an RTDBMS is called from inside the component, the compo-
nent is dependent on that specific RTDBMS and cannot be used
in an alternative setting.

In order to succeed with the integration of an RTDBMS into
a component framework, we present the concept of database
proxies.

As illustrated in Fig. 1, a database proxy is part of the synthe-
sized architecture, thus external to the component. The purpose
of the database proxy is to enable for components to interact with
an RTDBMS using their normal interfaces. This is possible since the
coupling, i.e. the database proxy, between the component and the
RTDBMS is embedded in the component framework.

The database proxies are used to bind and integrate compo-
nents to form the final running system. By decoupling components
from the database, and placing the database in the component
framework, the decision to use a database or some other data
management strategy is removed from the component level and
becomes a system design decision.

In our previous work, database proxies was limited to only sup-
port native data types e.g. integer, char, float, etc., from one port
to another (Hjertstrém et al., 2010). The work has now been aug-
mented so that components can have efficient and predictable
access to complex data structures to/from multiple ports of the
same component in hard real-time. In addition, data transfers
between components can be extracted to the database, for log-
ging purposes or to share data, without interfering with the regular
component communication.

The remainder of this paper is structured as follows: in Section 2,
we present motivation for the approach. Section 3 present the spe-
cific problems that our approach targets, related work and state
of practice. In Section 4, we present the system model. Section
5 gives a detailed description of the database proxy and its con-
stituent parts. Further, in Section 6, we illustrate our ideas with
an implementation example. Finally, we show a performance and
real-time predictability evaluation in Section 7 and conclude the
paper in Section 8.

2. Motivation

The characteristics of today’s embedded systems are changing.
According to Fiirst (2010) and Grimm (2003), 90% of all innovations
within the automotive industry stems from software and electron-
ics. In a high end vehicle there can be more than 800 functions, 70
ECUs, and thousands of signals need to be managed (Albert, 2004).
This has led to increasingly complex and costly to development of
embedded systems.

When developing modern large scale IT systems, the use of stan-
dardized platforms as a base for service-oriented architectures,
error recovery, etc. is widely used. They provide features such as
several abstraction layers, virtualization techniques and scalability.
However, in resource constrained embedded systems with lim-
ited memory size, limited computing capacity and demand for low
energy consumption, this approach is not sufficient since abstrac-
tion layers and virtualization techniques add to the amount of
resources needed (Liggesmeyer and Trapp, 2009).

Within the embedded community, modern techniques such as
model driven development and component-based software engi-
neering are widely used to reduce complexity and increase the
understanding and reusability of software functions by elevating
the abstraction level (OMG UML, 2011; AUTOSAR, 2011; Akerholm
et al., 2007). However, these techniques do not include methods
and tool support for efficient and management of data.

Many of today’s systems are developed by different subcon-
tractors in form of whole applications or just individual functions,
sometimes each with their own in-house developed solution for
how to manage data. In addition, it has been shown that doc-
umentation and structured management of internal ECU data
is sometimes almost non-existent and dependent on individual
developers own solutions (Hjertstrom et al., 2008).

The increasing need for more structured, flexible, reliable and
secure data management techniques to coordinate data both at

Please cite this article in press as: Hjertstrom, A., et al., Data management for component-based embedded real-time systems: The
database proxy approach. J. Syst. Software (2011), doi:10.1016/j.jss.2011.10.036

dx.doi.org/10.1016/j.jss.2011.10.036

G Model
]SS-8821; No.of Pages 14

A. Hjertstrom et al. / The Journal of Systems and Software xxx (2011) XxXx-xxX 3

run-time and at design-time is continuously pointed out has been
pointed out as major challenges for the future (Schulze et al., 2009;
Nystrom et al., 2002; Brooks et al., 2008).

As stated by Pretschner et al. (2007) and Broy (2006), a stan-
dardized and overall data model and management system has great
potential as a solution to deal with the distributed and uncoordi-
nated data in these complex systems. Furthermore, Schulze et al.
(2009) and Saake et al. (2009) point out that the ad hoc and/or rein-
vented management of data for each ECU with individual solutions
using internal data structures, can lead to concurrency and incon-
sistencies problems. In addition, maintainability, extensibility and
flexibility of the system decreases.

Furthermore, sophisticated techniques for diagnostics, error
detection, logging and secure data sharing are much needed to
improve reliability and system quality. Due to the ineffective diag-
nostics and error tracing techniques, less than 50% of the replaced
ECUs were, in fact, defect (Pretschner et al., 2007). Much of the
diagnostics messages and logging that can be retrieved from these
systems are statically predefined at design time. An example of this
isinthe AUTOSAR standard (AUTOSAR, 2011a).In techniques a such
as the Program Monitoring and Measuring System (PMMS), it is up
to the user to specify pre-conditions and insert code in order to
collect data (Delgado et al., 2004). This put high demands on devel-
opers to predict future needs of, for instance, service technicians.
In difference, the flexible and dynamic behavior of an RTDBMS can
provide any single data element or a set of data elements with a
single query, providing that the user is granted access.

Secure data sharing is becoming increasingly important when
systems are opening up to the surrounding environment using
techniques such as CAR2CAR communication (AUTOSAR, 2011)
and/or connecting to PDAs, smart phones, GPS, etc. The diversity of
these devices have led to in-house proprietary solutions to enable
a connection to the infotainment system (Gereon Weiss and Eilers,
2011). A proposed standardized solution to this could be to use a
data management system, such as an RTDBMS (Schulze et al., 2009;
Saake et al., 2009). An RTDBMS provides both access control to data
as well as dynamic data access using a well known standard query
language (SQL). In addition, in order to achieve a separation of data
management and application logic, a general data management
infrastructure is needed (Hdrder, 2005).

The usage of an RTDBMS when designing and building real-time
embedded systems could not only aid developers with standard-
ized tool support for modeling system data at design-time (Shan
Chen, 1976), but also provide predictable and efficient routines for
managing data at run-time. This could, as an example shorten time-
to-market, since developers can manage complex data structures
with a single database query instead of using complex program-
ming routines.

It is thereby well established that CBSE and RTDBMS are two
important technologies for future development of embedded real-
time systems. An integration of these two technologies is not trivial
and requires new methods that can bridge the gap between their
contradictive design goals.

3. Background

In CBSE, a component encapsulates functionality and only
reveals aninterface of provided and required services. Acomponent
which communicates with a database outside its revealed interface,
i.e., directly from within the component-code, introduces a number
of unwanted side effects such as hidden dependencies and limited
reusability. We define such a component to be database aware.

To utilize the benefits of CBSE, a component must be fully decou-
pled from the database. From a components perspective, it should
not matter if the consumed or produced data originates in data
structures or in a database. We define a component to be database

Lack of CBSE
Consideration

Lackof Data
Management
Consideration

In house tech.
Proprietary
AUTOSAR

Encapsulation

e
B %,

P |

i ™ [Embedded
.:H Customizable
n, Predictable |
E" + |Decoupling

e
i

Fig. 2. Combining CBSE and DBMS is an open problem.

unaware if it has no notion of an underlying data storage. Further-
more, a database unaware component does not introduce any side
effects such as database communication outside the component’s
specified interface, thus retaining the reusability of the component.

The usage of an RTDBMS in a CBSE framework should not intro-
duce any side effects that violate CBSE principles (Crnkovic and
Larsson, 2002; Szyperski, 1997).

For the purpose of this paper, we define a component to be side
effect free, with respect to the introduction of an RTDBMS, if it is:

e Reusable: A component can still be used in another setting, with
or without an RTDBMS.

e Substitutable: A component should be substitutable by a compo-
nent implementing the same interface; regardless if an RTDBMS
is used or not.

e Without implicit dependencies: A component should not intro-
duce implicit dependencies such as database access from within
a component.

e Using only interface communication: A component may only com-
municate through its interface. Our approach does not consider
management of the internal state in a component.

3.1. Solution requirements

This section identifies a number of requirements, R1-R3, which
needs to be fulfilled in order to enable the introduction of an
RTDBMS into a CBSE-setting.

R1 The decision to use an RTDBMS should be made on system level
in order to be integrated in existing development models and
systems.

R2 The usage of an RTDBMS should not introduce any side effects
to the components.

R3 The real-time predictability of the system should not be com-
promised by using an RTDBMS.

3.2. Related work and state of practice

The research which explicitly aims at combining CBSE and an
RTDBMS is novel. Fig. 2 illustrates that there is a gap between CBSE
and RTDBMS techniques.

Within the CBSE community there are specialized in-house and
proprietary techniques such as Koala (van Ommering, 2000) or
global automotive initiatives such as AUTOSAR (2011a). However,
these techniques do not prioritize data management. As an exam-
ple, AUTOSAR provides a uniform way for managing data e.g., save
and load data from non volatile memory. However there is no uni-
form technique to manage run-time data in RAM.

Lau and Taweel (2006) presented a research direction within
CBSE on how to manage data by having data flow and data access
completely encapsulated within connectors. In this way, compo-
nents only encapsulate computation. Another approach by Lau and
Taweel (2007) is to encapsulate data inside components to achieve
encapsulated reusable building blocks, where data is included.

Please cite this article in press as: Hjertstrom, A., et al., Data management for component-based embedded real-time systems: The
database proxy approach. J. Syst. Software (2011), doi:10.1016/j.jss.2011.10.036

dx.doi.org/10.1016/j.jss.2011.10.036

G Model
JSS-8821; No.of Pages 14

4 A. Hjertstrom et al. / The Journal of Systems and Software xxx (2011) XXx-xxX

Efforts within the database community, illustrated in the right-
most part in Fig. 2, aim at developing solutions to downsize and
optimize RTDBMSs to suite embedded systems. There are solutions
for componentizing and/or customizing the database management
system to only include features that is actually used in a partic-
ular resource constrained system (Saake et al., 2009). In addition,
there are also techniques, such as database pointers, that can man-
age both soft and hard real-time transactions predictably (Nystrom
et al., 2003). These techniques are available in both research-based
and commercial RTDBMSs (Mimer, 2011; Nystréom et al., 2004;
Polyhedra, 2011).

Both the CBSE and the RTDBMS community have solutions suit-
able for their respective areas. However, in between CBSE and
RTDBMSs, there is a gap with respect to data management, illus-
trated in Fig. 2. The lack of research within this area has left
this gap as an open problem. The aim of this paper is to bridge
this gap.

There are mechanisms within the RTDBMS community that
aims to simplify the database access by hiding some of the under-
lying complexity as well as making the access to the RTDBMS more
efficient. The standardized interface-language SQL defines the fol-
lowing mechanisms (ISO SQL, 2008):

e Pre-compiled statements enable a developer to bind a certain
database query to a statement at design-time. The statement
is compiled once during the setup phase, instead of compiling
the statement for each use during run-time. This has a decou-
pling effect since the internal database schema is hidden. Each
statement is bound to a specific name that is used to access the
data.

Views are virtual tables that represent the result of stored queries.
A database view has a similar decoupling effect as pre-compiled
statements since schema changes can be masked to users by
enabling a user to receive information from several tables per-
ceived as a single table.

Stored procedures enable developers to decouple logical functions
from the application and move them into the database. A stored
procedure is a program used when several SQL statements need
to be executed within the database in order to achieve the result.
This is achieved with a single call to the procedure.

Functions are programs within the database, similar to a stored
procedure. A function performs a desired task and must return a
single value.

These mechanisms provide partial decoupling of a component
from the DBMS. However none of them are completely sufficient
to use in a component-based setting, since:

1. The database is still accessed from within the component code,
not through the component’s defined interface. (Violation of
R1-R2.)

2. The component is still only partially decoupled from the
database since the database name, login details and connection
code still need to reside in the component. A component using
these mechanisms is therefore no longer generic or reusable.
(Violation of R1-R2.)

3. The requirements expressed by the components interface do not
reflect the components internal database dependency. (Violation
of R2.)

4. These mechanisms are not intended for real-time performance
(typically only non-real time DBMS support is available), e.g.,
the usage of these mechanisms alone would be a violation
of R3.

Y

9 | _ — o
2 — |2 2 |+— 32
e e 3 — 2
g _ |39 RMBMS 2%« _ S
(o) o o [e]
a2 L T 11— 3

(%]

N~

Fig. 3. RTDBMS architectural overview.

4. System model

The tools and techniques in this paper primarily target data
intensive, and complex, component-based embedded real-time
systems with a large degree of control functions, such as vehic-
ular, industrial and robotic control-systems. These applications
involve both hard real-time functionality that include safety-
critical control-functions, as well as soft real-time functionality.

Our techniques are equally applicable to distributed and cen-
tralized systems (however current implementations as described
in latter sections, are for single node systems).

To clarify some terms that will be used throughout this paper,
we define;

1. Anative data type to be abasic data type such as an integer,
char or float.

2. Acomplex data type tobe a C-struct or an array that consists
of a number of native data types.

3. Afixed-length data asadatathathave a fixed size. An exam-
ple of this is a single struct containing only native data types.

4. A variable-length data as a data that can vary in size. An
example of this is an array of structs.

We consider a system where functionality is divided into the
following classes of tasks:

Hard real-time tasks, that control critical functionality, use hard
real-time transactions (Stankovic and Zhao, 1988) to read and write
values from sensors/actuators and execute real-time control loops.
Hard real-time tasks communicate with fairly simple data struc-
tures such as native data types and more complex but fixed-length
data structures such as a C-struct. Variable-length data are not sup-
ported since hard real-time tasks require predictable access to data
elements.

Soft real-time tasks, that control less timing sensitive functional-
ity. Soft real-time tasks uses soft real-time transactions (Stankovic
and Zhao, 1988) to read and write variable-length complex data
structures typically to present statistical information, logging, or
used as a gateway for service access to the system by technicians in
order to perform system updates. Soft real-time tasks could also be
used for fault management and perform ad hoc queries at run-time.

In order to support a predictable mix of both hard and soft
real-time transactions, we consider an RTDBMS with two separate
interfaces where hard real-time predictability is not compromised
by soft transactions. Note that we allow both hard, and soft tasks
to access any data element, thus we do not separate between hard
and soft data elements.

Fig. 3 illustrates an RTDBMS which has a soft interface that uti-
lizes aregular SQL query interface to enable flexible access from soft
real-time tasks. For hard real-time transactions, a database pointer
(Nystrém et al., 2004) interface is used to enable the application
to access individual data elements or a set of data elements in the
database with hard real-time performance. Two RTDBMSs that pro-
vide these types of interfaces are COMET (Nystrom et al., 2004) and
Mimer SQL Real-Time Edition (Mimer, 2011).

Please cite this article in press as: Hjertstrom, A., et al., Data management for component-based embedded real-time systems: The
database proxy approach. J. Syst. Software (2011), doi:10.1016/j.jss.2011.10.036

dx.doi.org/10.1016/j.jss.2011.10.036

G Model
]SS-8821; No.of Pages 14

A. Hjertstrom et al. / The Journal of Systems and Software xxx (2011) XxXx-xxX 5

1 TASK oilTemp(void){
//Initialization part

2 int temp;

3 DBPointer xdbp;

4 bind(&dbp, "Select TEMP from ENGINE

where SUBSYSTEM='o0il’");

//Control part

5 while(1){

6 temp=readOilTempSensor();
7 write(dbp,temp);
8 waitForNextPeriod();
}
}

Fig. 4. An /O task that uses a database pointer.

4.1. Database pointers

Database pointers (Nystrom et al., 2003) are pointer variables
that are used for real-time access to data in a real-time database,
see Fig. 4. The figure shows an example of an I/O task that periodi-
cally reads a sensor and propagates the sensor value to the database
using a database pointer, in this case the data element, oil tem-
perature, in the engine relation. The task consists of two parts, an
initialization part (lines 2-4) executed when the system is starting
up, and a periodic part (lines 5-8) scanning the sensor in real-time.
During the initialization part (lines 2-4) the database pointer is
created and bound to a data element in the database.

During the control part of the task in Fig. 4, the write func-
tion writes the new value temp to the database pointer. During this
operation, only a few lines of non-blocking code (with a bounded
number of instructions) that performs type checking, synchroniza-
tion with other accesses with the same data element, and writing
of the data are executed.

Database pointers can be bound to either individual single data
elements, or to sets of data. Depending on the organization of the
data in a set, different types of database pointers are used (Mimer,
2011):

Single database pointer: A single database pointer can only be
bound to an individual data element, e.g., an integer, string or a
float. This type of pointer is useful for storing sensor and actuator
values. The data element is the atomic unit, i.e., a single database
pointer provides atomic reads and writes of a single value. This
implies that a single database pointer does not have any trans-
actional properties such that atomic commits of multiple single
value database pointers.

Multicolumn database pointer: A multicolumn database pointer is
bound to a set of attributes (columns) of a single database record
(row in a table). When a multicolumn database pointer is read or
written, all data in the set are read or written atomically. This pro-
vides a simple transactional behavior, in the sense that a snapshot
of data can be kept consistent.

Multirow database pointer: A multirow database pointer is bound
to a certain attribute but spans a set of database records in a table.
When a multirow database pointer is bound, the pointer is set to
point at the first element in the set. Writes to the database pointer
are performed on a row by row basis, and after each write, the
pointer is set to point to the next element in the set. When all
elements in the set have been written to, the pointer is reset to
point to the first element again.

Multicolumn-multirow database pointer: Amulticolumn-multirow
database pointer combines the functionality of a multicolumn
database pointer and a multirow database pointer thus being able
to bind a matrix of data elements. These pointers are especially
suited for event logging where for example log event information,
event data and a timestamp can be logged in a database for future
analysis.

The cost and predictability of database pointer execution is,
as shown in the performance evaluation in Section 7, compara-
ble to the performance of a shared variable that is protected by a
semaphore.

Since database pointers can co-exist with relational (SQL) query
management, data can be shared between hard and soft real-time
tasks. However, in order to maintain real-time predictability in a
concurrent system, some form of concurrency-control is needed.
The 2-version database pointer concurrency algorithm (2V-DBP)
(Nystrom et al., 2004) uses a 2-version versioning algorithm that
guarantees that database pointers will never be aborted or sub-
jected to unpredictable blocking. 2V-DBP allow soft real-time
transactions to concurrently access the data without experiencing
blocking or aborts due to operations through database pointers.

4.2. System architecture and modeling

In the application design and modeling we employ a pipe-and-
filter (Buschmann et al., 1996) component model where data is
passed between components (filters) using connections (pipes).
The entry point for the connection to the components is the inter-
face (port). Fig. 5 shows an example of a component-based system
design and modeling architecture.

The communication between components in the system is made
by connecting output-ports, where a component provides data, to
input-ports where components receives data. An output-port can
be connected to one or many input-ports.

5. Database proxies

A database proxy consists of pieces of code that translates data
from a components port to a database call and further on to an
RTDBMS residing in the component framework and vice versa.
These pieces of code are neither a part of the component nor a part
of the RTDBMS, instead database proxies are automatically gener-
ated glue code synthesized from the system architecture e.g., the
structure and behavior of the system, see Fig. 1. A database proxy
contains the following parts:

e [nput/output ports that connect to one or many ports of a compo-
nent or a pair of connected components.

e [nitialization code that connects to the RTDBMS and initiate
database accesses.

e Data translation code that performs database accesses (database
reads and write) and translates the result to a data set that match
the component ports.

e Uninitialization code that closes database accesses and discon-
nects from the RTDBMS.

Fig. 6 gives an overview of the different proxy parts which will
be presented more in detail in the remainder of this section.

A database proxy achieves decoupling between the components
and the RTDBMS by enabling components to remain encapsulated
and reusable. From a component perspective, communication to
the RTDBMS is transparently performed through the regular in-
and out ports in the component interface.

Please cite this article in press as: Hjertstrom, A., et al., Data management for component-based embedded real-time systems: The
database proxy approach. J. Syst. Software (2011), doi:10.1016/j.jss.2011.10.036

dx.doi.org/10.1016/j.jss.2011.10.036

G Model
JSS-8821; No.of Pages 14

6 A. Hjertstrom et al. / The Journal of Systems and Software xxx (2011) XXx-xxX

System design and modeling

Component
1

Sensor

Component
2

- Actuator

o Component
3

Component HMI

-

Fig. 5. System design and modeling.

From an RTDBMS perspective, decoupling is achieved by encap-
sulating the underlying database schema from the components,
only allowing data access to database proxies through pre-comp-
iled statements, views, stored procedures or database pointers.

As a result, database proxies target requirements R1-R3 pre-
sented in Section 3.1, since database proxies are:

e Automatically generated from the system architecture. The deci-
sion to use an RTDBMS has been moved from component level to
system level. (Targets R1)

e Implemented as glue code, leaving the component code
unchanged, and all communication is still performed through the
components interface. No side-effects are introduced. (Targets
R2)

e Uses database pointers, that provides hard real-time guaranties.
(Targets R3)

To support the different requirements of hard and soft real-time
tasks (see Section 4), we distinguish between two proxy types, hard
real-time database proxies (hard proxies) that is used by hard real-
time tasks and soft real-time database proxies (soft proxies) that is
used by soft real-time tasks.

Database proxies can have one of the following configurations:

1. Aread proxy is used toretrieve data from the database and output
the data to a component. This is illustrated by proxies connected
to components Consumer_1-3 to the right in Fig. 7 which each
is provided with data from a read proxy.

2. A write proxy is used either to update or to insert data that is
provided by a component to the database. An update is used to
refresh data that is already in the database. An insert is used to
add a new data e.g., a new row, in a dynamic database table. An
example of a write proxy connected to component Producer is
illustrated to the left in Fig. 7.

3. A proxy through is connected as a communication link between
two components. The proxy through is used to listen in on a reg-
ular component connection and propagate data to the database
as a write proxy. The result is normal communication between
the components. However, a copy of the value is stored in the
database for example to; perform logging, usage by other com-
ponents or to be accessed in cross platform communication and
telematic services. An example is illustrated in Fig. 8.

5.1. Proxy ports

The entry point of the database proxy is through a port or a set
of ports. A port is an interface entity for receiving/sending different
data elements to its connected components. A graphical example
of proxies with a single port or multiple ports is illustrated in Fig. 7.
The ports of a read proxy or a write proxy are always connected to a
single component with a one to one mapping between the number
of proxy ports and component ports. However, a proxy through is
always connected to a pair of components and there is a one to one
mapping between the number and types of input and output ports.

A proxy port receives or sends data which can be of two types,
either a native data type or a complex data type.

A complex data type will however be transformed for further
processing by the proxy into a set of native data types and vice versa.
An example is illustrated in Fig. 6 where the complex data type in
Port_2is transformed into data elements (b-d) by the proxy and put
into an ordered data set. In a similar manner the transformation can
be performed in the other direction, elements in the ordered set to
the complex data type.

5.2. Proxy data sets

Database proxy’s supports either read or write operations. The
data flow and data transformation from a proxy port to the database
is thereby made in two directions.

Input/Output

Ports

Port_1
inta;

]

Native
" datatype

Port_2
struct{
intb,c.d;

=)

port_n

\ Complex

i data type
I
1
1

”

Proxy

{ Initialization code \

Data translation code

Ordered Data Set

—

(a,b,c d)

Data Element.. -

Database

\ Uninitialization code /

Fig. 6. Database proxy overview.

Please cite this article in press as: Hjertstrom, A., et al., Data management for component-based embedded real-time systems: The
database proxy approach. J. Syst. Software (2011), doi:10.1016/j.jss.2011.10.036

dx.doi.org/10.1016/j.jss.2011.10.036

G Model

]SS-8821; No.of Pages 14

A. Hjertstrom et al. / The Journal of Systems and Software xxx (2011) XXx-xxx

<<Component>>
Producer
Headers:

rc\Producer.c
Eg;aFunc Producer

E<Write D...

<< Read DBPro..

olumns:

Models:
Attributes:
Bind ports:

<< Read DBPro..

H—M
ttributes:

olumns:

—q

l<<Component>>
Consumer_1

Headers:

Bind ports:

I<<Component>>
Consumer_2

eaders:

odels:

<< Read DBPro..

ttributes:
Bind ports:

I<<Component>>
Consumer_3
eaders:
odels:
ttributes:
Bind ports:

Fig. 7. Single-port and multi-port proxies.

The data type of each port connected to a write proxy is trans-
formed into an ordered data set. An ordered data set consists of a
number of data elements which are all native data types. A com-
plex data type will therefore be transformed into a set of native data
types and included as data elements in the ordered data set. This
ordered data set is then directly mapped to a database query where
each data element in the ordered set corresponds to a specific row
and column in the database.

An example is illustrated in Fig. 6 where Port_1 has a native data
type a and Port_2 has a complex data type that includes three the
native data types. a is directly put in the ordered data set whereas
the complex data type is transformed into elementsb, canddand
putin the ordered data set for further transformation via a database
query to the database.

The flow of a read proxy is the opposite. A database query pro-
vides the proxy with data elements that match the ordered data set.
Each data element is then transformed into a type that matches the
type of the individual output port/ports.

Since both native and complex data types are known during sys-
tem development, the transformation routines are created during
the glue-code generation.

5.3. Hard real-time database proxies

Hard proxies are intended for hard real-time components,
which need efficient and deterministic access to individual data
elements or a predefined set of data elements. Typical usages of
hard proxies are for hard real-time data that is shared between
several hard real-time components, or a mix of hard and soft real-
time components. Hard proxies are implemented using database
pointers.

Aproxy withan ordered data set that consists of a single data ele-
ment utilizes a single database pointer for predictable data access.
However, a proxy with an ordered data set which consists of two
or more data elements, utilizes a multi-column database pointer,
as stated in Section 4.1, to perform an atomic update or read of a
defined set of columns on a single row in the database.

In order to be predictable, a hard proxy only translates native
data types and fixed-length complex data types. This implies that

no unpredictable type conversions or translations that require
unbounded iterations are allowed. A complex data type, such as a
C-struct or an array must be of fixed-length. A hard proxy ordered
data set is therefore always directly related to a fixed number of
columns on a single row in the database.

Regardless of the number of ports, the database pointer interface
will always ensure an atomic update/read of all data elements in
the ordered data set.

By using database pointers, that provide hard real-time guar-
anties, to access individual/multiple data items in a database, our
requirement R3 is satisfied.

A hard real-time database proxy:

e Communicates with the database through a database pointer,
thereby providing predictable data access.

e Reads or updates multiple data items atomically.

¢ Translates native and complex data types between components
and database, using predictable data translation mechanisms.

Hard real-time database proxies can also be used to perform
efficient and predictable logging. In this case, a table is defined with
a fixed number of rows which are updated sequentially as a circular
buffer using a multirow database pointer that automatically moves
to the next row at the end of each transaction.

5.4. Soft real-time database proxies

Soft proxies are intended for soft real-time components, which
usually have a more dynamic behavior and thus might have a need
for more complex variable-length data. Typical usages for soft prox-
ies include graphical interface components, logging components,
and diagnostics components. Therefore, soft proxies emphasize
support for more complex data structures by using a relational
interface provided by SQL, towards the RTDBMS.

A soft real-time database proxy;

e Communicates with the database through a relational interface,
thereby providing a flexible data access.

i<<Component>> [<<Pass DBProxy>> [<<Component>>
Headers: I % i;leaders:

Models: odels:
Attributes: Data_Out L J Data_In Attributes:

Bind ports: Bind ports:

Fig. 8. Proxy through.

Please cite this article in press as: Hjertstrom, A., et al., Data management for component-based embedded real-time systems: The
database proxy approach. J. Syst. Software (2011), doi:10.1016/j.jss.2011.10.036

dx.doi.org/10.1016/j.jss.2011.10.036

G Model
JSS-8821; No.of Pages 14

8 A. Hjertstrom et al. / The Journal of Systems and Software xxx (2011) XXx-xxX

Managed by database proxy
A
[| |

> Query > > Result set > > C-struct >

select Subsystem, SystemTemp struct{
Temp from Engine join char[20] SubSystem;

Gearbox order by int Temp;
Subsystem; JTable_SystemTemp;
Table_SystemTemp vector([];

Managed by component

Subsystem Temp

EngineOil 110
GearboxOil 60
WaterTemp 90

Fig. 9. Description of TABLE type.

¢ Translates complex data types, thereby providing means for com-
ponents to access complex data.

Since the relational interface is capable of accessing complex
data, more elaborate data translation is needed in order for the
components to remain database unaware. To solve this, a special
data template denoted TABLE is introduced. A TABLE is automati-
cally instantiated as a C language representation of a record (row)
in a relational table, and the database proxy produces (or receives)
a vector of these instantiations. The component model is then aug-
mented to allow components to communicate using ports with data
types matching the instance of the TABLE.

Consider the following example (see Fig. 9):

e A component used to log temperatures in a vehicle needs infor-
mation about all temperature variables that exist in the system
and their current value.

e Aninstance ofa TABLE called Table_SystemTemp is created in the
generation of glue-code, represented by a C-struct containing the
members SubSystem and Temp.

e The type of the port in the component is then set by the compo-
nent developer to a (Table_SystemTemp *).

e The database proxy is then implemented using a query that
matches the members in the TABLE.

¢ The translation glue code iterates through the result set from the
database and fills the vector with data from the result set.

Introducing a TABLE data template does not make components
database aware since components still can communicate using
a TABLE instance in absence of a database. Table 1 presents an
overview of the similarities and differences between hard proxies
and soft proxies presented in Sections 5.3 and 5.4.

5.5. Extended system design and modeling
We complement the classical architectural view, presented in

Section 4.2, with a new additional design view, the CBSE database-
centric view. This new view identifies which component ports are

Table 1

Hard and soft proxy support overview.
Proxy support Hard proxy Soft proxy
Database interface Database pointer SQL
Predictable data access X -
Flexible data access - X
Allowed for hard task X -
Allowed for soft task X X
Multi value support X X
Multi port support X X
Database read X X
Database update X X
Database insert - X
Support complex data type X X
Support fixed-length data X -
Support variable-length data - X

connected, via different types of database proxies, to data elements
in an RTDBMS. An example of this is illustrated in Fig. 10. The
notation simplifies the view of the system by removing the actual
connection between the producing and consuming component,
thus replacing it with a database symbol.

To enable traceability, this view can be transformed at any
time to reveal the data flow through the connections such as
shown in Fig. 5. This is similar to an off-page connector that is used
when designing electrical schemas which involve a large number
of components and connections. A connection ends in a symbol
or an identification name that is displayed at each producer and
consumer. Displaying all connections in a complex schematic dia-
gram would make the electrical schema impossible to read. This
approach is also being used by CBSE-tools such as Rubus Integrated
Component Environment (Rubus ICE) (Arcticus Systems, 2011).

During system design, an architect or developer can utilize both
traditional data passing through connections or viaan RTDBMS pro-
viding a blackboard data management architecture. An RTDBMS
can be used as the single source of memory management or it
is possible to utilize a mix of both connections and an RTDBMS
when additional data management is needed to meet the system
requirements.

As an example, the usage of an RTDBMS could be considered
useful when several components and tasks share data and/or there
is a need to perform logging, diagnostics or to display information
on an HMI. However, if two components share a single data item
that is of no additional interest, it is probably not necessary to map
that item to the RTDBMS.

5.6. Database proxy example

Fig. 11, which has been simplified for readability, shows a simple
example of how the glue-code generated from the database proxy
specification for hard and soft database proxies of different types
are implemented. In the upper left of the figure, the architecture
of two tasks is displayed. Task_1 is a hard real-time task that con-
sists of components C1 and C2. Task_2 is a soft real-time task that
consists of component C3.

Task_1 implements two hard database proxies. Component
C1 uses a database proxy to read a native data type from the
database, filters it and outputs the result to component C2. C2
writes its output to the database using a single database proxy
to achieve an atomic write of data from two ports. This is illus-
trated by hardProxy Multi_wl_w2 (), where the two input values
are sequentially written by the call to function writeDBPInt ()
and atomically committed by setMulticol (). These data items
can then be used by any other component in the system using a
database proxy.

Task_2 shows an example of a soft database proxy implementa-
tion where component C3 reads a type Table Mode * which include
the two values updated by the proxy connected to two ports in
Task_1. The flow pointed out by the arrows in Fig. 11, for the hard
real-time task, Task_1.c, is also valid for the flow in the soft real-
time task, Task 2.c.

The flow of the execution can be divided in three phases, initial-
ize, running task and un-initialize.

Phase 1: Initialize

1. application.c is the main application file. Before the task/tasks
containing a database proxy/proxies are called, the database is
initialized by calling the bBInit () function declared in the sep-
arate DBProxy.c file.

2. Each task’s individual, initialization function, initDB_Task_1 ()
and initDB_Task_2 () respectively, is called to bind hard proxy
real-time database pointers and to setup soft proxy real-time
statements.

Please cite this article in press as: Hjertstrom, A., et al., Data management for component-based embedded real-time systems: The
database proxy approach. J. Syst. Software (2011), doi:10.1016/j.jss.2011.10.036

dx.doi.org/10.1016/j.jss.2011.10.036

G Model

]SS-8821; No.of Pages 14
A. Hjertstrom et al. / The Journal of Systems and Software xxx (2011) XXx-xxx 9
. Database Proxies
Extended system design and
modeling environment
—0-{
Actuator
o Component
Sensor Component Proxy 3
1 Through
B
Hmi
L om Com;:onent
b
Synthesis
i Application
Task allocation » At.trlbute | Gluecode » 23
assignment

Fig. 10. Database view of application model.

Phase 2: Task execution

1. The database proxies are included in the task files, Task_1.c and
Task_2.c.

2. The database proxies are declared as separate functions which
are called before the component call if it is connected to an input
port in order to read the required value/values.

3. If the database proxy is connected to an output port the call
to the database proxy is made after the component’s call to
write/update the database.

Phase 3: Un-initialize

1. When the task has completed its execution, DBUninit () is
called.
2. DBUninit () un-initializes the database connections in all tasks.

6. Implementation
To demonstrate the practicability of database proxies and as

a proof of concept, we have implemented our approach. Three
existing tools and technologies, namely the SaveComp Component

Task_1.c (code simplified for readability)

Task_2.c (code simplified for readability)

t | #include DBProxy.h
i declare DBPointer dbp1;

intinitDB_Task_1(){
bind_DBP(...);

}

intuninit_Task_1(){
unbind_DBP(...);

—

}

void hardProxy_r1(int *r1){
readDBPInt(..., r1);

}

void hardProxy_Multi_w1_w2(

int *wl, int *w2){

writeDBPInt(..., wl);
writeDBPInt(..., w2);
setMulticol();

}
»void Task_1(){

L

Iintrl, wil;

ETask A wil
E c1 Cc2
e S S ey SRS w2
iTask _2 i
' G|
DBProxy.h
DBProxy.c
——> |int DBInit(){
setupDbSession();
initDB_Task_1();—T
initDB_Task_2();
Application.c I
main(>lint DBUninit(){
endDBSession();
BBInit()' unlnit_Task_1();
start Task_10); [F o= unlnit_Task_2();
start Task_2(); ! i p
1
DBUnInit(); R et .
I

hardProxy_r1(&rl);
1 | call_Component_C1(r1);

call_Component_C2(...);

hardProxy_Multi_w1(&w1);
}

#include DBProxy.h
Session sess;
Statement stmnt;

intinitDB_Task_2(){
BeginSession(sess, ...);
BeginStatement(sess,...,&stmt);

}

int uninit_Task_2(){
EndStatement(&stmnt);
EndSession(&sess);

}

void softProxy_r2(Table_Mode *log){
Fetch(stmnt);
Getlnt(stmt, log[0].read);
Fetch(stmnt);
Getlnt(stmt, log[1].read);

}

void Task_2(){

Table_Mode *log;
softProxy_r2(log);
call_Component_C3(log);

}

4

Fig. 11. Hard and soft proxy glue-code generation example.

Please cite this article in press as: Hjertstrom, A., et al., Data management for component-based embedded real-time systems: The
database proxy approach. J. Syst. Software (2011), doi:10.1016/j.jss.2011.10.036

dx.doi.org/10.1016/j.jss.2011.10.036

G Model
JSS-8821; No.of Pages 14

10 A. Hjertstrom et al. / The Journal of Systems and Software xxx (2011) XXx-xxX

Technology (SaveCCT) (Akerholm et al., 2007), Mimer Real-Time
edition (Mimer RT) (Mimer, 2011) and the embedded data com-
mander (EDC) (Hjertstrom et al., 2009), have been used to manage
the different parts of the development. A brief introduction and
the role of these tools and technologies are presented in the fol-
lowing three parts of this section. In the last two parts, presents
our development framework and discuss the predictability of our
implementation.

6.1. SaveCCT component technology

The SaveComp Component Technology (SaveCCT) (Akerholm
et al,, 2007) distinguishes between manual design, automated
activities, and execution. The developer can create his/her
applicationin the graphical tool Save Integrated Development Envi-
ronment (Save-IDE). Automated synthesis activities generate code
used to glue components together and group them into tasks.
The tasks can then be executed on a real-time operating system.
SaveCCT is intended for applications with both hard and soft real-
time requirements.

In our implementation, the SaveCCT synthesis has been
extended to also support database proxies.

6.2. Mimer SQL real-time edition

The Mimer SQL Real-Time Edition (Mimer RT) (Mimer, 2011)
is a real-time database management system intended for applica-
tions with a mix of hard and soft real-time requirements. Mimer RT
implements the database pointer interface to access real-time data
in an efficient and deterministic manner. All hard real-time data
access is performed in main-memory using predictable real-time
algorithms. Mimer RT supports single, multirow and multicol-
umn database pointers, which can be flushed to persistent storage
without interrupting real-time predictability of read and write
operations.

For soft real-time database access SQL queries are used. To
enable both flexibility and predictability, Mimer RT combines
the traditional client/server architecture with a shared memory
approach in which all real-time clients access the real-time data
directly through shared memory areas. This enable efficient and
predictable access to real-time data without introducing sources of
unpredictability otherwise found in most traditional database man-
agers. Examples of such sources are; context-switches between
client and server, query management, index lookups, disc I/O,
and data searches. Synchronization between concurrent database
pointers and soft real-time SQL-queries are performed using opti-
mized and predictable real-time locks with bounded blocking
times.

6.3. Embedded data commander tool-suite

The embedded data commander (EDC) is a tool-suite intended
for high-level data management of run-time data. The tool suite
has been extended with new functionality to support SaveCCT.

Save-IDE generated description files are used by EDC in order
to model the database and generate a database definition file. A
database proxy description file is also generated using the Save-
IDE description files and the database model. The database proxy
description file is then used by Save-IDE to generate the glue code.

A database proxy definition is represented in XML. Fig. 12 shows
an example of a hard proxy description using Mimer RT. The XML
code is disposed as follows. (1) The id of the signal and which
component it resides in. (2) The definition of type and pointer dec-
laration. (3) The function used to bind the database pointer with a
pre-compiled statement. In this example however represented by

1.<SIGNAL id="P_FindFB W" component="Find">
2 .<SNIPPETDEF type="int Fi_ FindFB;"

pointerdefine="MimerRTDbp dbp_ P_FindFB_W;"/>

3.<SNIPPETINIT bindquery="MimerRTBindDbp (
&hrtsess,&dbp P FindFB W,DBP_DEFAULT,
L"SELECT state FROM Mode WHERE

Subsystem="£ind");"/>

4 ,<UPDATECALL call="MimerRTPutInt (&
dbp P FindFB W,Fi FindFB);"/>
5.</SIGNAL>

Fig. 12. Hard proxy representation.

an SQL query to enhance readability. (4) The type of call to use, in
this case an update call since it is a write proxy. (5) End of proxy
definition.

6.4. The database proxy development framework

In our implementation of the database proxy development
framework (see Fig. 13), SaveCCT is used to manage the develop-
ment chain from system design to target code generation. EDC is
used to model and generate database definition files and database
proxy description files. Mimer RT manages all database activities
at run-time.

In our framework, the system architect can utilize a database as
an additional design feature. If a database is included in the design,
the generated system description file is extracted from SaveCCT to
the EDC in order to perform the data modeling and generate a
database proxy descriptions file. These files are then weaved together
using the code generator in SaveCCT to form the C-code for the tar-
get system. A database definition file is also generated from the EDC
to setup Mimer RT.

6.5. Predictability of implementation

For hard proxies, the generated code contains no unbounded
behavior and WCET and memory usage can easily be statically

System Architect ‘\‘ _,"’ Data Administrator "‘-.\
< 1 \ ,
. Sylstem . i Data 4
eveiopmen | Modeling Tool
Tool !

y

System
Description File

el

Database Proxy
Description File

Database
Definition File

Code
Generator

 Mimer SQL
Real-Time Edition

N

Deployment

Target

~ - L

Fig. 13. Database proxy development framework.

Please cite this article in press as: Hjertstrom, A., et al., Data management for component-based embedded real-time systems: The
database proxy approach. J. Syst. Software (2011), doi:10.1016/j.jss.2011.10.036

dx.doi.org/10.1016/j.jss.2011.10.036

G Model

]SS-8821; No.of Pages 14
A. Hjertstrom et al. / The Journal of Systems and Software xxx (2011) XXx-xxx 11
< <Component > > Fo_Folo ‘L.rﬁ‘g’

i
" hutax

_lﬂ

Multi-Port Proxy

Fo_Se \tut-'s mtuttc
Brdports: ¢ A_Folow Fheotth t=:
Fo_SensdR <Wiite D... .
Single—Port,
_FolowFB : :
e Native Value
Proxies

<Clochk> > &
pustzmibin) Through A i)
L0 000 <!
1] _ModeSensC F‘awﬂ i
=n Single—Port,
Rttributes: =
Native Value | ModeSenst m
Proxies = w i “
A_TunStee
Subsystem
1 1)
b S IMulti-Port Prox
Through
ISubsystem 2 T;w R
I - = <Pass DB.. "
| Eeed™ 0, 5%
' ¢Il- o
1
1 A_FndThottk
1
1

<Wiite D....

Fig. 14. Graphical representation of implementation.

bounded (although such analysis is beyond the scope of this paper).
Also, the database-pointer interface of Mimer RT provides the same
functions that has been proven temporally and spatially predictable
within the COMET project (Nystrom et al., 2004). Thus, our imple-
mentation is suitable for use in hard-real time systems.

Soft proxies do not affect the predictability properties of the
system.

7. Performance evaluation

This section presents the results of a performance evaluation
where we have implemented an embedded control system and
measured execution times and memory overheads. The aim of
the evaluation is to measure if the database proxies will have an
impact on the observed worst- or average-case execution time and
how it will affect memory consumption of the system compared
to using internal data structures. Two separate implementation
configurations are evaluated. (1) Using only single-port, native val-
ues database proxies and (2) a more complex configuration which
includes logging and a mix of single-port, native value database
proxies and multi-port proxy through.

7.1. The application

To evaluate our approach, an application that includes two sub-
systems and two configurations has been implemented using the
Save-IDE. The implementation is done according to Fig. 14, which
utilizes a mix of both internal data structures and an RTDBMS. The
application consists of seven components and simulates a truck
that first follows a line. At the end of the line, the truck turns for a
certain amount of time until it finds the line and starts following it
again (see Fig. 15).

The first subsystem consists of a hard real-time control loop
including six components that are periodically executed every
10 ms.

In configuration (1), six single-port, native value proxies are used
in a feedback loop. The feedback values read by the three proxies
are then used as input to the Modechange component in the same

subsystem. In addition, these values are also used as input via a
proxy to the second soft real-time HMI subsystem.

In configuration (2), four proxy through is added to the six prox-
ies in configuration (1). This more complex configuration is used to
monitor and log the output from components Sensor, Follow, Turn
and Find. For each component there is a log that consists of a 1000
rows that is updated as a circular buffer.

The second subsystem consists of a soft real-time HMI compo-
nent that is periodically executed every 20 ms. Common for the two
subsystems is that they share data that needs to be protected. How-
ever, when a database proxy is used, this is managed automatically
by the database.

In order to measure the impact of introducing database proxies
in a CBSE system under typical workload conditions, a standard
worst case execution time benchmark code called ndes has been
used as workload in the control components. The workload is a
part of a collection of benchmark codes used by different research
groups and tool vendors around the world to mimic the behavior
of a typical embedded system (The Worst-Case, 2011).

7.2. Benchmarking setup
We have conducted a performance evaluation with four

different implementations variants, and the above stated two
configurations of the truck application. Each implementation is

-
rd
/
I 2: Tum N 3:Find
\ N
\ N
Wi N p—

1: Follow

Fig. 15. Truck application.

Please cite this article in press as: Hjertstrom, A., et al., Data management for component-based embedded real-time systems: The
database proxy approach. J. Syst. Software (2011), doi:10.1016/j.jss.2011.10.036

dx.doi.org/10.1016/j.jss.2011.10.036

G Model

JSS-8821; No.of Pages 14
12 A. Hjertstrom et al. / The Journal of Systems and Software xxx (2011) XXx-xxx
Configuration 1 Configuration 2
Execution time (psec) Execution time {psec)
14000 14000
12000 12000
10000 10000
8000 8000
6000 6000
2000 2000
°) ¥ j Job No Y ' ' '
1 501 1001 1501 1 501 1001 1501 Job No
Test 1: No Database Test 1: No Database
Exf:gggn time (psec) E:%%l.(l)tlon time (psec)
12000 12000
10000 10000
8000 8000
6000 6000
4000 4000
2000 2000
o T T T 0 T T
1 501 1001 1501 JobMNo 1 501 1001 1501 *oPNe
Test 2: Database Proxies Test 2: Database Proxies
Execution time (usec) E:E‘géﬁon time (usec)
14000
12000 12000
10000 10000
8000 8000
6000 6000
4000 4000
2000 2000
0 . r r 0 T T T
1 501 1001 1501 JobNo 1 501 1001 1501 JobNo
Test 3: Database Pointersin Components Test 3: Database Pointers in Components
Execution time (isec) Test Config | ACET WCET | AVG(%)| wc (%)
14000 (psec) | (usec)
12000 | 1 1 878 1098 - -
10000 I | 2 i 894 1122 1.82 2.19
2000 | | [l | I 3 1 872 1084 - 0.68 -1.28
6000 4 1 6771 | 825434 | 771.18 | 75176.14
4000 1 2 896 1114 = =
2000 2 2 966 1187 7.81 6.55
5 . . . 3 2 961 1194 7.25 7.18
1 501 1001 1501 Job No ACET: Average execution time (psec) AVG%: Average percental change
Test 4: SQL callsin Components WCET: Observed worst-case executiontime (usec) WC%: Worst-case percental change

Fig. 16. Evaluation results from configurations 1 and 2.

evaluated using both configurations, except for the usage of reg-
ular SQL in configuration 2. In this evaluation, the result from the
usage of SQL in configuration 1 covers our interest by showing that
it is not a predictable solution.

The tests have been performed on a Hitachi SH-4 series pro-
cessor (Hitachi, 2011) with VxWorks v6 (VxWorks, 2011) as
real-time operating system. Furthermore, Mimer RT, SaveCCT and
EDC have been used throughout the implementation. The descrip-
tions of the four implementations (shown in Fig. 16), are as
follows:

Test 1 A baseline implementation using internal data structures
without any database connection. All component glue-code
is generated by Save-IDE. Protection of shared data is hand
coded using semaphores.

Test 2 An implementation using database unaware components
that is generated by Save-IDE. The hard real-time subsystem
utilizes hard real-time database proxies to manage access
to the database. The soft real-time subsystem utilizes a soft
real-time database proxy to manage access to the database.
The RTDBMS manages protection of all shared data.

Test 3 An implementation using database aware components. The
access to the database is made from within the components
using database pointers. The components are generated by
Save-IDE. However, the code to access the RTDBMS has been
hand coded. The RTDBMS manages all protection of shared
data.

Test 4 An implementation using database aware components with
access to a non real-time database from within the com-
ponent using regular SQL queries without hard real-time

Please cite this article in press as: Hjertstrom, A., et al., Data management for component-based embedded real-time systems: The
database proxy approach. J. Syst. Software (2011), doi:10.1016/j.jss.2011.10.036

dx.doi.org/10.1016/j.jss.2011.10.036

G Model
]SS-8821; No.of Pages 14

A. Hjertstrom et al. / The Journal of Systems and Software xxx (2011) XXx-xxx 13
Execution time (usec) Table 2
1050 Application code size.
Access method Code size Change (%)
1000
8 ~ . No database 653512 bytes -
. R e ow B an ey 4 g K N :
.,.".':'_‘.. L S e R L R Pt il Database pointers 666 564 bytes 1.99
950 = Database proxies 666 988 bytes 2.06
n Config 1 No DB
A s 4 ¢ ¢
900 -'L—‘:Qj‘.t:,.f\.‘-- f‘,u‘-&i‘;f.“-"ﬁh‘lﬂ‘.‘ﬂ’ andhi, a5 4 Config 1 Proxy
S A B ER AR A IR T ST R — integrating a real-time database client with the calls hand coded
555 in the component code introduces 1.99% extra code size. By using
= Config 2 Proxy database proxies that have been automatically generated, the code
size grows with as little as 2.06%.
Lol Introducing a real-time database server in the system of
course also introduces extra memory consumption, but embedded
750+ Job No database servers are becoming smaller and smaller. The Mimer SQL

1 11 21 31 41 51 61 71 81 91

Fig. 17. Execution time evaluation results for 100 executions.

performance. The components are generated by Save-IDE.
Thus, the SQL queries inside the components have been hand
coded. The DBMS manages protection of shared data.

7.3. Proxy real-time performance results

Fig. 16 shows the result of the execution times for 1800 exe-
cutions of the hard real-time control applications for the four
test-cases explained in Section 7.2 and the two configurations
explained in Section 7.1.

The graphs clearly illustrate that the introduction of a real-time
database using database pointers, either directly in the component-
code or through database proxies, does not affect the real-time
predictability and adds little extra execution time overhead. On
the other hand, using SQL queries directly in the component-code
severely affects both predictability and performance negatively.

The table in the lower right hand corner of Fig. 16 shows the
evaluation results for each test and configuration. The change of
the Average Case Execution Time (ACET) and observed Worst Case
Execution Time (WCET) in the two rightmost columns shows the
change in percent, compared to our baseline, Test 1.

For the first three tests, the ACET and WCET values do not differ
from one test to another with more than a few percent. Test four,
configuration 1 does, as could be expected, not perform anywhere
near the other tests.

As this evaluation aims to measure and evaluate the perfor-
mance of database proxies, Test 2 is most interesting. Configuration
1 shows that the ACET is increased by only 1.82% and the WCET by
2.19%. For configuration 2, which includes more complex opera-
tions the result shows that the ACET is increased by 7.81% and the
WCET by 6.55%.

Fig. 17 shows more detailed information of the first 100 execu-
tions for both configurations of Test 1 and Test 2. The evenness of
the results clearly illustrates that the usage of database proxies in
combination with an RTDBMS such as Mimer RT is predictable, and
the amount of overhead in average and worst-case execution time
is limited. Furthermore, these results confirm our predictability of
implementation discussion in Section 6.5.

Our conclusion is that the slight decrease in ACET and WCET for
Test 3 is the result of optimized synchronization primitives used
by Mimer RT compared to the regular POSIX semaphore routines
used in Test 1.

7.4. Memory consumption results

Table 2 shows how the client code size changes when using
different data management methods. As can be seen in the table,

database family that is used in this evaluation has a code footprint
ranging from 273 kb for the Mimer SQL Nano database server, up
to 3.2 Mb for the Mimer SQL Engine for enterprise systems.

The RAM usage for Mimer SQL Nano is as low as 24 kb. The
limited increase of client code size, as well as the small size of mod-
ern embedded database servers makes the memory overhead for
database proxies in conjunction with a real-time database afford-
able for many of today’s real-time embedded systems. This added
code size and memory overhead should also be considered in bal-
ance with the added value of the techniques.

8. Conclusions

This paper presents the database proxy approach which enables
an integration of real-time database management systems into a
component-based software engineering framework. While main-
taining strict component encapsulation, we achieve benefits such
as the possibility to access data via standard SQL interfaces,
concurrency-control, temporal consistency, and transaction man-
agement. In addition, a new possibility to use dynamic run-time
queries to aid in logging, diagnostics and monitoring is introduced.

The motivation for our approach stems from observations of
industrial practices and documented needs for a standardized and
overall data model and management system to deal with the
distributed and uncoordinated data in these complex systems.
Furthermore, it is clearly stated that the ad hoc/reinvented man-
agement of data as well as individual solutions using internal data
structures, can lead to concurrency- and inconsistency problems
and decreases maintainability, extensibility and flexibility of the
system (Schulze et al., 2009; Hjertstrom et al., 2008; Pretschner
et al., 2007; Saake et al., 2009).

To evaluate our approach, an implementation that covers the
whole development chain has been performed, using both research
oriented and commercial tools and techniques. The system archi-
tecture is implemented in Save-IDE. The architectural information
is then generated and exported to a data management tool, where
the database proxies and interface to the database is created. The
data management tool then generates the database proxy informa-
tion back to Save-IDE for further generation of glue-code and tasks
for the entire system.

To validate our approach further, a series of execution time
tests has been performed on the generated C-code for a research
application. These tests show that our approach using native value
communication, only increases the average and the worst-case exe-
cution time with approximately 2%. In addition, complex database
proxies connected to several ports of a component which performs
atomic updates of circular logs, each consisting of 1000 rows, only
increases the average execution time with approximately 7.8% and
the worst-case execution time with approximately 6.5%. Further-
more, the memory overhead, also about 2%, introduced by database
proxies can be affordable for many classes of embedded systems.

Please cite this article in press as: Hjertstrom, A., et al., Data management for component-based embedded real-time systems: The
database proxy approach. J. Syst. Software (2011), doi:10.1016/j.jss.2011.10.036

dx.doi.org/10.1016/j.jss.2011.10.036

G Model
JSS-8821; No.of Pages 14

14 A. Hjertstrom et al. / The Journal of Systems and Software xxx (2011) XXx-xxX

We conclude that the database proxy approach enables an
RTDBMS to be successfully integrated into a component-based soft-
ware engineering framework. This enables developers to utilize the
benefits from an RTDBMS which offers a range of valuable features
that can solve current and future issues when developing, main-
taining and evolving real-time embedded systems at a minimal cost
with respect to resource consumption.

Acknowledgement

This work is supported by the Swedish Foundation for Strategic
Research within the PROGRESS Centre for Predictable Embedded
Software Systems.

References

Akerholm, M., Carlson, J., Fredriksson, J., Hansson, H., Hikansson, J., Méller, A.,
Pettersson, P., Tivoli, M., 2007. The save approach to component-based devel-
opment of vehicular systems. Journal of Systems and Software 80 (5), 655-667.

Adelberg, B., Kao, B., Garcia-Molina, H., 1996. Overview of the STanford Real-time
Information Processor (STRIP). SIGMOD Record 25 (1), 34-37.

Albert, A., 2004. Comparison of Event-Triggered and Time-Triggered Concepts with
Regard to Distributed Control Systems, 235-252.

Arcticus Systems, Rubus ICE, www.arcticus-systems.com/html/prod-rubus-
ice.html.

AUTOSAR Open Systems Architecture, 2011. http://www.autosar.org.

Brooks, R.R,, Sander, S., Deng,]., Taiber, J., 2008. Automotive system security: chal-
lenges and state-of-the-art. In: Proceedings of the 4th Annual Workshop on
Cyber Security and Information Intelligence Research: Developing Strategies to
Meet the Cyber Security and Information Intelligence Challenges Ahead, ACM,
pp. 26:1-26:3.

Broy, M., 2006. Challenges in automotive software engineering. In: ICSE '06: Pro-
ceedings of the 28th International Conference on Software Engineering, ACM,
pp. 33-42.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Sommerlad, P.,
Stal, M., 1996. Pattern-Oriented Software Architecture: A System of Patterns,
vol. 1. John Wiley and Sons.

Car 2 Car communication consortium, 2011. http://www.car-to-car.org.

Crnkovic, L, Larsson, M., 2002. Building Reliable Component-Based Software Sys-
tems. Artech House.

Delgado, N., Gates, A.Q., Roach, S., 2004. A taxonomy and catalog of runtime
software-fault monitoring tools. IEEE Transactions on Software Engineering 30,
859-872.

Fiirst, S., 2010. Challenges in the design of automotive software. In: Proceedings
of the Conference on Design, Automation and Test in Europe, DATE 10, Euro-
pean Design and Automation Association, 3001 Leuven, Belgium, Belgium, pp.
256-258.

Gereon Weiss, M.Z,, Eilers, D., 2011. Towards Automotive Embedded Systems with
Self-X Properties. InTech.

Grimm, K., 2003. Software technology in an automotive company - major challenges.
In: Software Engineering, International Conference on Software Engineering,
p. 498.

Harder, T., 2005. DBMS architecture - still an open problem. In: Proc. Datenbanksys-
teme in Business, Technologie Und Web (Btw 2005). Springer, pp. 2-28.

Hitachi SH-4 32-bit RISC CPU Core Family, 2011. http://www.hitachi.com/.

Hjertstrom, A., Nystrom, D., Sjodin, M., 2010. Database proxies for component-
based real-time systems. In: 22nd Euromicro Conference on Real-Time

Systems. IEEE Computer Society, pp. 79-89, doi:http://doi.ieeecomputersociety.
org/10.1109/ECRTS.2010.26.

Hjertstrém, A., Nystrom, D., Nolin, M., Land, R., 2008. Design-time management of
run-time data in industrial embedded real-time systems development. In: Pro-
ceedings of 13th IEEE International Conference on Emerging Technologies and
Factory Automation, Germany, pp. 1285-1293.

Hjertstrom, A., Nystrom, D., Sjodin, M., 2009. A data-entity approach for component-
based real-time embedded systems development. In: 14th IEEE International
Conference on Emerging Technology and Factory Automation, IEEE Press, pp.
170-177.

ISO SQL 2008 Standard, 2009. Defines the SQL Language, http://www.iso.org/
iso/home.htm.

Lau, K.-K., Taweel, F.M., 2006. Towards encapsulating data in component-based
software systems. In: CBSE, pp. 376-384.

Lau, K.-K., Taweel, F.,2007. Data encapsulation in software components. In: Proc.
10th Int. Symp. on Component-based Software Engineering, LNCS, vol. 4608.
Springer-Verlag, pp. 1-16.

Liggesmeyer, P., Trapp, M., 2009. Trends in embedded software engineering. IEEE
Software 26, 19-25.

Mimer SQL Real-Time Edition, Mimer Information Technology, Uppsala, Sweden,
http://www.mimer.se.

Nystréom, D., TeSanovic, A., Norstrom, C., Hansson, J., Bankestad, N.-E., 2002. Data
management issues in vehicle control systems: a case study. In: Proceedings of
the 14th Euromicro Conference on Real-Time Systems, IEEE Computer Society,
pp. 249-256.

Nystrom, D., TeSanovic, A., Norstrom, C., Hansson, J., 2003. Database pointers: a pre-
dictable way of manipulating hot data in hard real-time systems. In: Proceedings
of the 9th International Conference on Real-Time and Embedded Computing
Systems and Applications, pp. 623-634.

Nystréom, D., TeSanovi¢, A., Nolin, M., Norstrom, C., Hansson, J., 2004. COMET: a
component-based real-time database for automotive systems. In: Proceedings of
the Workshop on Software Engineering for Automotive Systems, IEEE Computer
Society, pp. 1-8.

Nystréom, D., Nolin, M., TeSanovi¢, A., Norstrom, C., Hansson, J., 2004. Pessimistic
concurrency control and versioning to support database pointers in real-time
databases. In: Proceedings of the 16th Euromicro Conference on Real-Time Sys-
tems, IEEE Computer Society, pp. 261-270.

OMG UML, 2011. The Unified Modeling Language UML, http://www.uml.org/.

Polyhedra In-Memory Database, 2011, September. http://www.enea.com.

Pretschner, A., Broy, M., Kruger, LH., Stauner, T., 2007. Software engineering for
automotive systems: a roadmap. Future of Software Engineering, 55-71.

Ramamritham, K., Son, S.H., Dipippo, L.C., 2004. Real-time databases and data ser-
vices. Journal of Real-Time Systems 28 (2/3), 179-215.

Saake, G., Rosenmiiller, M., Siegmund, N., Kdstner, C., Leich, T., 2009. Downsizing
data management for embedded systems. Egyptian Computer Science Journal,
1-13.

Schulze, S., Pukall, M., Saake, G., Hoppe, T., Dittmann, J., 2009. On the need of data
management in automotive systems. In: Freytag, J.C., Ruf, T., Lehner, W., Vossen,
G. (Eds.), BTW Vol. 144 of LNI GI. , pp. 217-226.

Shan Chen, P.P., 1976. The entity-relationship model: toward a unified view of data.
ACM Transactions on Database Systems 1, 9-36.

Stankovic,].A., Zhao, W., 1988. On real-time transactions. SIGMOD Record 17, 4-18.

Szyperski, C., 1997. Component Software Beyond Object-Oriented Programming.
Addison-Wesley Professional.

The Worst-Case Execution Time (WCET) Analysis
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html.

van Ommering, R., 2000. The Koala component model for consumer electronics soft-
ware. In: Computer, [EEE Computer Society, Ch. The Koala Component Model,
pp. 78-85.

VxWorks Real-Time Operating System, by Wind River, 2011. http://www.windriver.
com/.

Project, 2011.

Please cite this article in press as: Hjertstrom, A., et al., Data management for component-based embedded real-time systems: The
database proxy approach. J. Syst. Software (2011), doi:10.1016/j.jss.2011.10.036

dx.doi.org/10.1016/j.jss.2011.10.036
http://www.autosar.org
http://www.car-to-car.org
http://www.hitachi.com/
http://www.iso.org/iso/home.htm
http://www.mimer.se
http://www.uml.org/
http://www.enea.com
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.windriver.com/

	Data management for component-based embedded real-time systems: The database proxy approach
	1 Introduction
	2 Motivation
	3 Background
	3.1 Solution requirements
	3.2 Related work and state of practice

	4 System model
	4.1 Database pointers
	4.2 System architecture and modeling

	5 Database proxies
	5.1 Proxy ports
	5.2 Proxy data sets
	5.3 Hard real-time database proxies
	5.4 Soft real-time database proxies
	5.5 Extended system design and modeling
	5.6 Database proxy example

	6 Implementation
	6.1 SaveCCT component technology
	6.2 Mimer SQL real-time edition
	6.3 Embedded data commander tool-suite
	6.4 The database proxy development framework
	6.5 Predictability of implementation

	7 Performance evaluation
	7.1 The application
	7.2 Benchmarking setup
	7.3 Proxy real-time performance results
	7.4 Memory consumption results

	8 Conclusions
	Acknowledgement
	References

