
Mälardalen University Press Licentiate Thesis
No.136

Software Testing in Agile
Development

Technological and Organisational
Challenges

AdnanČaǔsevíc

June 2011

School of Innovation, Design and Engineering
Mälardalen University

Väster̊as, Sweden

Copyright c© AdnanČaušević, 2011
ISSN 1651-9256
ISBN 978-91-7485-015-4
Printed by Mälardalen University, Västerås, Sweden

Abstract

The contemporary industrial trend towards agile software development brings
forth new concerns, challenges as well as opportunities. One of the main issues
concerns the quality of the final product, for which testing is the well-known
assurance mechanism. However, how to perform testing usingexisting ex-
pertise in an agile environment presents a challenging issue for the software
industry. This can potentially create confusion and contraproductivity which
can lead to a situation where testing teams and their practices are considered
obstacles for the full implementation of agile processes within an organisation.

This thesis identifies and addresses test-related organisational and techno-
logical challenges in an agile environment. In this context, we propose a new
role for traditional testers which enables them to integrate with the agile team
as well as fully exploit their knowledge in the new context. We have conducted
an elaborate industrial survey on the preferences and practices with respect to
the contemporary aspects of software testing, and identified test-driven devel-
opment as an important technological area for improvement.A subsequently
performed systematic review on empirical evidence relatedto test-driven de-
velopment revealed a list of factors which may limit its widespread industrial
acceptance and usage. Knowledge of testing was identified asone of those fac-
tors and we further attempted to confirm its significance through a controlled
experiment performed with master students.

Our future works aim to confirm these research findings in wider as well as
industrial settings, and investigate other limiting factors in detail, with the aim
of providing guidelines for achieving better utilisation of testers and testing
practices.

i

Acknowledgements

This thesis could not have been done without the great support of my supervi-
sor Sasikumar Punnekkat and my co-supervisors Daniel Sundmark and Ivica
Crnković. Thank you guys for your leadership, patience andknowledge you
shared so unselfishly. Even though this thesis was my destination, your super-
vision made me realise how the journey itself mattered the most.

As a Ph.D. student I was relying on my supervisors support in publish-
ing research results, but co-authoring with researchers out of my comfort zone
greatly improved my collaboration and interaction skills.Indeed this is some-
thing I am very thankful for to Abdulkadir Sajeev, Rikard Land, Frank Lüders,
and Iva Krasteva.

Travelling to conferences and research project meetings isanother link in
the chain of experience a graduate student should have. Thank you Stig Lars-
son, Sigrid Eldh, and Radu Dobrin for being an often travel companion in this
phase of my study. Mingling is so much easier with you guys around.

When not travelling, I had to share my office space with reallygreat room-
mates: Srinivasan Jayakanth (JK), Stefan Björnander, Kathrin Dannmann, Eti-
enne Borde, Aleksandar Dimov, Andreas Johnsen, Vijayalakshmi Saravanan
(Viji), Hüseyin Aysan, Abhilash Thekkilakattil, and Jiale Zhou. Thank you
guys for being silent, but also cheerful and always ready fora small talk.

It’s not very easy to focus on the research when there are administrative
issues hanging above your head. Luckily, I had administrative people around
me to always rely on. Thank you Harriet Ekwall, Gunnar Widforss, Monica
Wasell, Susanne Fronnå, Carola Ryttersson, and Malin Rosqvist.

Directly or indirectly, many senior researchers at MDH haveprovided help
to my Ph.D. studies. Thank you Hans Hansson, Kristina Lundqvist, Paul Pet-
tersson, Cristina Seceleanu, Thomas Nolte, Dag Nyström, Damir Isović, Jan
Carlson, and Tiberiu Seceleanu mostly for isolating me fromthe world of fund-
ing but also for having the time for me and my questions.

iii

iv

As a person I am very dependant on the communication and interaction
with other human beings, and MDH could not be a better choice to get many
interesting discussions during the coffee breaks, travelsor other social events.
Thank you Ana Petričić, AnǎZivković, Aneta Vulgarakis, Antonio Cicchetti,
Barbara Gallina, Batu Akan, Branka Pavetić, Farhang Nemati, Federico Ci-
ccozzi, Giacomo Spampinato, Hongyu Pei-Breivold, Jagadish Suryadevara,
Josip Maraš, Juraj Feljan, Leo Hatvani, Luka Lednički, Mehrdad Saadatmand,
Mikael Åsberg, Moris Behnam, Nikola Petrović, Rafia Inam, Saad Mubeen,
Séverine Sentilles, Stefan Bygde, Svetlana Girs, Thomas Leveque, and Yue Lu
for sharing a few moments of your life with me.

I would like to express my gratitude to my parents Zuhdija andŠefika
Čaušević as well as to my sister AzraČaušević for their unconditional sup-
port and love through all of my life. I appreciate your smile and understand
your tears.

I would like to thank to my wife AidaČaušević for supporting me and
believing that I can achieve much more. If I have to start thisjourney again I
could not imagine anyone else beside me except you. I love you!

And last, but most certainly not the least, I would like to thank to my daugh-
ter Alina Čaušević for making me a complete person. Your smile, yourbite,
your hug, your cry... everything of yours helps me move forward. I love you,
too.

AdnanČaušević
Västerås, June 21, 2011

List of Publications

Papers Included in the Licentiate Thesis1

Paper A An Industrial Survey on Contemporary Aspects of Software
Testing, AdnanČaušević, Daniel Sundmark and Sasikumar Punnekkat,
In proceedings of the International Conference on SoftwareTesting (ICST),
Paris, France, April 2010

Paper B Factors Limiting Industrial Adoption of Test Driven Develop-
ment: A Systematic Review, Adnan Čaušević, Daniel Sundmark and
Sasikumar Punnekkat, In proceedings of the International Conference
on Software Testing (ICST), Berlin, Germany, March 2011

Paper C Impact of Test Design Technique Knowledge on Test Driven
Development: A Controlled Experiment, AdnanČaušević, Daniel Sund-
mark and Sasikumar Punnekkat, In submission

Paper D Redefining the role of testers in organisational transitionto
agile methodologies, Adnan Čaušević, A.S.M. Sajeev and Sasikumar
Punnekkat, In proceedings of International Conference on Software, Ser-
vices & Semantic Technologies (S3T), Sofia, Bulgaria, October, 2009

1The included articles are reformatted to comply with the licentiate thesis specifications

v

vi

Other relevant publications

Conferences, Workshops and Poster Sessions

• Reuse with Software Components - A Survey of Industrial State of Prac-
tice, Rikard Land, Daniel Sundmark, Frank Lüders, Iva Krastevaand
AdnanČaušević, International Conference on Software Reuse, Springer,
Falls Church, VA, USA, September, 2009

• A Survey on Industrial Software Engineering, AdnanČaušević, Iva Kra-
steva , Rikard Land, A.S.M. Sajeev and Daniel Sundmark, Poster session
at International Conference on Agile Processes and eXtremeProgram-
ming in Software Engineering (XP2009), p 240241, Springer,Sardinia,
Italy, Editor(s):P. Abrahamsson, M. Marchesi, and F. Maurer, May, 2009

Technical Reports

• An Industrial Survey on Software Process Practices, Preferences and
Methods, AdnanČaušević, Iva Krasteva , Rikard Land, A.S.M. Sajeev
and Daniel Sundmark, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-
233/2009-1-SE,Mälardalen Real-Time Research Centre, M¨alardalen Uni-
versity, March, 2009

Contents

I Thesis 1

1 Introduction 3
1.1 Background . 4

1.1.1 Agile Development 4
1.1.2 Software Testing . 6
1.1.3 Test-driven development 7

1.2 Motivation and Problem Description 8
1.3 Outline of thesis . 8

2 Research Summary 9
2.1 Research Methodology . 10
2.2 Research Process . 10

2.2.1 Technological perspective 11
2.2.2 Organisational perspective 13

2.3 Contribution . 14
2.3.1 Paper A . 14
2.3.2 Paper B . 15
2.3.3 Paper C . 15
2.3.4 Paper D . 16

3 Related Work 17
3.1 Technological perspective . 17

3.1.1 Empirical Studies on TDD 18
3.1.2 Test-related research 19

3.2 Organisational perspective 19
3.2.1 Transitioning to Agile 20

vii

viii Contents

4 Conclusions and Future Work 21

Bibliography 23

II Included Papers 29

5 Paper A:
An Industrial Survey on Contemporary Aspects of Software Test-
ing 31
5.1 Introduction . 33
5.2 Research Method . 34

5.2.1 Categorization of Respondents 34
5.2.2 Question Selection 35
5.2.3 Scales Used for Answers 36

5.3 Testing Practices and Preferences 36
5.3.1 Agile vs. Non-Agile 37
5.3.2 Distributed vs. Non-distributed 40
5.3.3 Domain . 41
5.3.4 Safety-criticality . 43
5.3.5 Testers vs. Non-Testers 45

5.4 Techniques and Tools . 46
5.5 Satisfaction of Current Practice 49

5.5.1 Satisfaction within Different Categories of Respondents 49
5.5.2 Satisfaction with Particular Testing Practices 50

5.6 Conclusion . 52
5.7 Acknowledgments . 53
Bibliography . 55

6 Paper B:
Factors Limiting Industrial Adoption of Test Driven Develo pment:
A Systematic Review 57
6.1 Introduction . 59
6.2 Research Method . 60

6.2.1 Search Process . 60
6.2.2 Paper Exclusion Process 61
6.2.3 Data Extraction Process 62
6.2.4 Data Synthesis . 63

6.3 Results and Analysis . 63

Contents ix

6.3.1 Empirical Studies of TDD 63
6.3.2 Reported Effects of and on TDD 66
6.3.3 Factors Limiting Industrial Adoption of TDD 67

6.4 Discussion . 73
6.4.1 Threats to Validity 73
6.4.2 Implications for Research 74
6.4.3 Implications for Industry 76

6.5 Conclusion . 76
6.6 Acknowledgments . 77
Bibliography . 79

7 Paper C:
Impact of Test Design Technique Knowledge on Test Driven Devel-
opment: A Controlled Experiment 87
7.1 Motivation . 89

7.1.1 Problem Statement 89
7.1.2 Research Objective 89
7.1.3 Context . 90
7.1.4 Paper Outline . 90

7.2 Related Work . 90
7.2.1 TDD and testing knowledge 90
7.2.2 Experiments in TDD 91

7.3 Experimental Design . 91
7.3.1 Goals, Hypotheses, Parameters, and Variables 91
7.3.2 Experiment Design 95
7.3.3 Subjects . 96
7.3.4 Objects . 96
7.3.5 Instrumentation . 97
7.3.6 Data Collection Procedure 97
7.3.7 Validity Evaluation 98

7.4 Execution . 98
7.4.1 Sample . 98
7.4.2 Preparation . 98
7.4.3 Data Collection Performed 99
7.4.4 Validity Procedure 99

7.5 Analysis . 100
7.5.1 Descriptive Statistics 100
7.5.2 Data Set Reduction 103
7.5.3 Hypothesis Testing 104

x Contents

7.6 Interpretation . 106
7.6.1 Evaluation of Results and Implications 106
7.6.2 Limitations of the Study 107
7.6.3 Lessons Learned . 108

7.7 Conclusions and Future Work 109
7.7.1 Relation to Existing Evidence 109
7.7.2 Impact . 109
7.7.3 Future Work . 110

Bibliography . 113

8 Paper D:
Redefining the role of testers in organisational transitionto agile
methodologies 117
8.1 Introduction . 119
8.2 Transition to agile . 120

8.2.1 Organisational goal for transition 120
8.2.2 Parameters of transition 120
8.2.3 Options for testers during transition 121

8.3 Models for Transition of Testers 122
8.3.1 Sumrell’s approach 122
8.3.2 Gregory-Crispin approach 122

8.4 Our approach . 123
8.4.1 Comparison of the models 124
8.4.2 Motivation for the new role 125

8.5 Evaluation plan . 125
8.6 Conclusions and future work 126
Bibliography . 129

I

Thesis

1

Chapter 1

Introduction

Traditional software development life cycle has become inadequate to preserve
quality of software products when organisations attempt toshorten their time-
to-market. In many cases the quality control is often reduced or postponed due
to the reduced deadlines or overrun of the development phase[1] [2]. Organisa-
tions are in need of a new process that will value quality in each stage of their
product development without interfering with the product delivery schedule.
They are increasingly turning their interest to agile methodologies [3].

Agile is, indeed, a software development philosophy that will battle with
short delivery schedules by creating a product with fewer features instead of
lowering quality standards of the same product. The problemis that many
proven cases of agile development in large scale environment are specific to
each organisational setting and their best practices cannot be easily imple-
mented within another organisation. Of course, at the same time, we can only
guess the number of unsuccessful agile development attempts in organisations,
without publicly available reports on their failures (in literature known as pub-
lication bias [4]). However, during our involvement in FLEXI, an EU-ITEA2
funded Project [5], we became aware from our industrial partners, of many of
issues related to the transition from the traditional lifecycle to the Agile ap-
proach. One of the reason for such issues, could be in fact that organisations
are trying to reuse techniques and tools from traditional development process
that may not be applicable within particular agile practices, and blamely Agile
development processes may not be fully justifiable.

3

4 Chapter 1. Introduction

The research presented in this thesis, originated from sucha premise and
investigates if traditional approaches to software testing with existing practices
in place could be utilised to full extent within agile development.

1.1 Background

In this thesis we will be using several concepts from three different areas, viz.,
Agile development, Software testing and Test-Driven Development. We now
present some key concepts from these areas, before providing the details on the
contributions of this thesis.

1.1.1 Agile Development

Agile development is considered a relatively young software engineering dis-
cipline that emerged from industrial needs for a software development process
where the main focus should be on the customer and their business needs. The
idea is to have a constant communication channel with the customer by itera-
tively providing working software product with currently most needed business
values built in. Historically, the idea behind an agile approach is actually not
new. It was reported [6] that NASA Project Mercury (first US human space-
flight program in 1960s) used time-boxed iterations with tests written before
each increment - an activity very similar to what is known today as a test-driven
development (TDD).

Agile is not a software development process by definition, but rather a phi-
losophy based on a set of principles. These principles are listed in the so called
“Agile Manifesto” [7]. Since understanding of agile is relying on those twelve
principles, we are listing them here:

1. Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

2. Welcome changing requirements, even late in development.
Agile processes harness change for the customer’s competi-
tive advantage.

3. Deliver working software frequently, from a couple of weeks
to a couple of months, with a preference to the shorter time-
scale.

4. Business people and developers must work together daily
throughout the project.

1.1 Background 5

5. Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

6. The most efficient and effective method of conveying informa-
tion to and within a development team is face-to-face conver-
sation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The spon-
sors, developers, and users should be able to maintain a con-
stant pace indefinitely.

9. Continuous attention to technical excellence and good de-
sign enhances agility.

10. Simplicity - the art of maximizing the amount of work not
done - is essential.

11. The best architectures, requirements, and designs emerge
from self-organizing teams.

12. At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

Agile Manifesto [7]

By following these principles, organisations are committing to have a continu-
ous feedback with customer and provide value to their business needs.

Several software development processes use some of those principles, like:
eXtreme Programming (XP), Scrum, Dynamic Systems Development Method
(DSDM), Feature Driven Development (FDD), etc. usually referring to them
asagile software development methods. Aside from following agile principles,
each of those methods contains differentagile practices. Pair programming
(PP), test-driven development (TDD) and continuous integration (CI) are just
a few to mention.

An overview of one Scrum iteration (sprint), as an example ofagile devel-
opment process, is shown in Figure 1.1. Prioritised productbacklog is used
to select user stories for the upcoming sprint. By dividing them into concrete
tasks, they become part of the current sprint backlog. During the period of 2-4
weeks only items in the current sprint are completed on a daily basis. After
each sprint a potentially shippable product increment should exist.

6 Chapter 1. Introduction

2-4

weeks

24
hours

Product backlog Sprint backlog Product increment

Figure 1.1: One sprint overview in Scrum process

1.1.2 Software Testing

Software testing is a major activity in software development and has two main
goals:

• to confirm a software solution is behaving as per its requirements, and

• to find faults in a software which are leading to its misbehaviour.

It is important to note how testing cannot be used as a proof offault free
software. A famous quote from Edsger Dijkstra [8] is describing this as: “Test-
ing can only show the presence of errors, not their absence”.One of the reasons
why we cannot claim there are no faults in software is in fact that exhaustive
testing of any, especially complex systems, is just not possible due to the high
number of variables influencing its final outcome.

Commonly, there are three levels of testing of software systems [9]:

• System level- has the purpose of testing overall system functioning from
a user perspective.

• Integration level - has the purpose of testing interconnections between
various components/modules during their integration phase.

• Unit level - has the purpose of testing functional and non-functional
properties of a single unit/module/component of the system.

Software testing is a widely researched domain of its own with a multi-
tude of techniques and tools proposed for industrial practice. A comprehensive
discussion on this vast research domain is beyond the scope of this thesis and
hence not attempted.

1.1 Background 7

1.1.3 Test-driven development

Test-driven development (TDD), sometimes referred as test-first programming,
is a practice within the extreme programming development method proposed
by Kent Beck [10]. TDD requires the developers to construct automated unit
tests in the form of assertions to define code requirements before writing the
code itself. In this process, developers evolve the systemsthrough cycles of
testing, development and refactoring. This process is shown in Figure 1.2.

Write

Test

Test Fail

Write

Code

Test

Pass

Refactor

Figure 1.2: Test-driven development practice overview

In their experiment, Flohr and Schneider [11] prescribed TDD activities to
students as a list of next activities:

1. Write one single test-case

2. Run this test-case. If it fails continue with step 3. If thetest-
case succeeds, continue with step 1.

3. Implement the minimal code to make the test-case run

4. Run the test-case again. If it fails again, continue with step
3. If the test-case succeeds, continue with step 5.

5. Refactor the implementation to achieve the simplest design
possible.

8 Chapter 1. Introduction

6. Run the test-case again, to verify that the refactored imple-
mentation still succeeds the test-case. If it fails, continue
with step 5. If the test-case succeeds, continue with step 1,if
there are still requirements left in the specification.

Flohr and Schneider [11]

1.2 Motivation and Problem Description

Today’s business needs are demanding from software organisations to accept
a constant pace of change as it reflects the current market andeconomic de-
mands. According to the agile philosophy delivering an evolving software
product without having a predefined set of requirements thatwill be changed
at a later stage is something companies should not fight against, but rather
embrace. Agile software development is one representativeof the current in-
dustrial solutions to this challenge.

But this comes with a price. Adopting agile development for many organ-
isations creates not only a phase shift in thinking on how to develop software
but it also introduces significant amount of changes to theirdaily activities [12].
These changes consist of facilitating continuous product integration, ability to
prioritise tasks, committing to its delivery all the way through daily stand-up
meetings and burn-down charts.

In particular, changes affecting testing teams and testersmay create ad-
ditional confusion with respect to understanding who is responsible for the
product quality and how to allocate time for this activity. In agile develop-
ment, quality is everyone’s responsibility and having in mind that traditional
testing can consume even more than 50% of the total development time [9],
testers do have a concern of ensuring how this time will be allocated in agile
development.

1.3 Outline of thesis

This thesis consists of two main parts. The first part is organised as follows:
Chapter 2 presents a summary of the research conducted with description of
the research process and its major contributions. Chapter 3provides related
work with respect to both technological and organisationalperspectives of our
research. Thesis conclusion and guidelines for future workare outlined in
Chapter 4. The second part of the thesis consists of Chapters5 through 8
which represent research publications included in this thesis.

Chapter 2

Research Summary

Overall goal of our research efforts is:

to identify deficiencies in current testing practices in agile development
environments and provide validated methods of better utilization of testers

and testing techniques.

In order to help organisations successfully utilise agile practices, we set out to
investigate how well software testing fits with the state of the practice of agile
philosophy or the agile manifesto. The goal of this researchcould be viewed
from two dimensions:

• Technological, defined with the top-level research question:
RQ-1: What are the technological challenges of traditional software
testing in agile?

• Organisational, defined with the top-level research question:
RQ-2: What are the organisational challenges of traditional software
testing in agile?

From the technological perspective, the goal is to identifytest related practices,
methods, techniques, improvements or practice adoptions which will provide
most benefit to an organisation. It is also required to identify limiting factors
for usage of such practices in an industrial environment.

From an organisational or process point of view, the goal is to define a new
role for testers during an organisational transition towards agile methodology.
It is our belief that this role will enhance the stature of testers as well as enable
the company to effectively deploy the testers in the new environment.

9

10 Chapter 2. Research Summary

2.1 Research Methodology

The research is based on empirical methodologies includinganalysis of quali-
tative and quantitative data. Literature and industrial surveys were performed
in order to perceive the state of the art and state of the practice. Experiences
from industry on this topic were collected and summarised with the research
in a reusable form on a higher level of abstraction intended to be provided as
guidelines for transition organisations.

2.2 Research Process

In Figure 2.1 an overview of the conducted research process is presented.

Challenges of

Software Testing in

Agile Development

RQ-1.1

RQ-1.2
Technological

perspective

RQ-2
Organisational

perspective

Paper A

Paper D

RQ-1.3

RQ-1.4

Paper B

RQ-1.5

Paper C

RQ-2.1

RQ-1

Figure 2.1: Research process overview

2.2 Research Process 11

2.2.1 Technological perspective

As a starting point in detailed investigation of the top-level research question
within the technological perspective (RQ-1), we decided tostart the process by
forming next research question:

RQ-1.1: What are the current industrial preferences and practices related to
the contemporary trends on software testing?

To address this question, we decided to join our effort with several other re-
searchers in order to define and execute a questionnaire through an online web
based survey [13]. With this survey we specifically targetedindustrial opinion
on the usage of the current and preferred industrial practices and methods on
software testing. During the formulation, execution and analysis of this empir-
ical study, the subsequent research question evolved as:

RQ-1.2: Can we identify the factor in which the preference and practice show
maximum difference?

After analysis phase was performed on the collected data, out of 22 exam-
ined test related practices, test-driven development (TDD) gained the highest
score of “dissatisfaction”. This means that among the respondents, the accu-
mulated absolute difference between the preferred and the actual level of usage
of TDD was highest. Further analysis revealed that the preferred level of us-
age of TDD was significantly higher than the actual level at which it has been
practised. This result was interpreted as “Respondents would like to use TDD
to a significantly higher extent than they actually do presently”. This was an
interesting finding for which we could not provide any clear and obvious rea-
sons why this situation exist in industry. In order to get thebroader view of the
problems related to usage of TDD, the next research questionwas formulated
as:

RQ-1.3: How can we get a deeper insight on the factor with maximum differ-
ence?

Realising that TDD as a practice should be investigated further we had to
make a decision on how to proceed with the research process. One alternative
was to further investigate industrial opinions by performing directed interviews
with selected organisations. Another could be to organise anew questionnaire

12 Chapter 2. Research Summary

survey with specific and directed questions relating to the usage of TDD. The
problem with those solutions was that they are all providingan industrial per-
spective to the usage of TDD which we to some extent already gained from our
first survey. We thought that academic opinions on the usage of TDD should
also be considered in our research since after looking at some initial search
results we noticed a growing number of empirical publications directly investi-
gating benefits of TDD. For those reasons we decided to perform a systematic
literature review on empirical studies of TDD.

When completed, the systematic literature review brought forward a list
of 48 empirical studies on TDD, conducted in academic, industrial or mixed
settings. Study participants were students as well as professionals. This result
lead to forming a new research question:

RQ-1.4: Can we identify and list limiting factors of TDD from the results of
the literature study?

Empirical studies, identified in the systematic literaturereview, were per-
formed with different experiment designs (number of participants, complexity
of problems, duration of study, etc.) making it difficult to directly compare the
findings and easily create a common conclusion. We decided toidentify and
list all negative, neutral or positive effects of or on TDD and group them in
common effect areas. Especially, we noted effects of TDD with explicit claims
on requirements for a successful usage of TDD. In order for effect area to be
considered as a limiting factor, next criteria had to be fulfilled:

• The effect area had to contain at least two studies with observations of
negative effects of or on TDD

• The effect area had to contain more studies with observations of negative
effects of or on TDD than studies with observations of positive effects of
or on TDD

• Negative effects in the effect area had to be observed in at least one study
performed in an industrial setting

Applying those criteria on selected research publicationsidentified and
listed seven potential limiting factors of industrial adoption of TDD: increased
development time, insufficient TDD experience/knowledge,lack of upfront de-
sign, domain and tool specific issues, lack of developer skill in writing test
cases, insufficient adherence to TDD protocol, and legacy code.

2.2 Research Process 13

Out of these seven factors, we decided to explore one factor in detail to
confirm its impact and see what kind of guidelines could be provided. “Lack
of testing knowledge” came as the first obvious choice due to our own research
leanings as well as due to the potential for independent exploration and per-
ceived impact. The next research question was formed as:

RQ-1.5: Can we confirm significance of testing knowledge as a limitingfactor
for TDD adoption?

During the autumn of 2010 a controlled experiment with master students
was performed as part of the course on Software Verification and Validation
provided by Mälardalen University. The objective of the experiment was to
investigate if developers who were educated on general testing knowledge will
be able to utilise TDD more effectively. As a result of the experiment we
noticed that students had difficulties creating negative test cases.

2.2.2 Organisational perspective

In order to perform detailed investigation of the top-levelresearch question
within the organisational perspective (RQ-2), we setup thenext specific re-
search question:

RQ-2.1: What to do with traditional testing department when an organisation
transits to agile development process, where tester’s roles seems to be ambigu-
ous and diminished?

In this investigation we considered several options for traditional software
testers during their organisation’s transition towards agile software develop-
ment. Among various alternatives we proposed a new role of: “Project Men-
tor” for testers. With this role we wanted to emphasise testers ability to com-
municate with development team on technical aspects of software development
while at the same time being able to recognise the value for the customer by
understanding the overall functional behaviour of the system.

14 Chapter 2. Research Summary

2.3 Contribution

Since the thesis is written as a collection of papers, its contributions are sum-
marised with contributions from each individual research paper. Relation be-
tween research paper contribution and research questions is presented in Ta-
ble 2.1.

Paper A Paper B Paper C Paper D
RQ-1 X X X

RQ-1.1 X

RQ-1.2 X

RQ-1.3 X

RQ-1.4 X

RQ-1.5 X

RQ-2 X

RQ-2.1 X

Table 2.1: Relation between research questions and publications

2.3.1 Paper A

An Industrial Survey on Contemporary Aspects of Software Testing, Adnan
Čaušević, Daniel Sundmark and Sasikumar Punnekkat, In proceedings of the
International Conference on Software Testing (ICST), Paris, France, April 2010

Summary Using data from an industrial survey [13] a state of the practice
paper was written. The survey in addition to confirming some popular be-
liefs also lists several noteworthy findings from the perspectives of respondent
categories such as safety-criticality, agility, distribution of development, and
application domain. These findings clearly depict negativediscrepancies be-
tween the current practices and the perceptions of the respondents. This paper
covers RQ-1.1 and provide contribution to RQ-1.2 by identifying test-driven
development (TDD) as a factor with maximum difference between current and
preferred practice.

My contribution I was the main author of this paper contributing with data
analysis (performed using custom made software, developedby me for this

2.3 Contribution 15

purpose). Co-authors supervised the process and helped in formulating find-
ings and descriptive statistics.

2.3.2 Paper B

Factors Limiting Industrial Adoption of Test Driven Development: A System-
atic Review, AdnanČaušević, Daniel Sundmark and Sasikumar Punnekkat,
In proceedings of the International Conference on SoftwareTesting (ICST),
Berlin, Germany, March 2011

Summary As a direct result of investigation from Paper A, a systematic lit-
erature review on TDD was performed. After initial keyword search on seven
major research databases, results yielded 9462 publications. In several steps
we removed publications that are not of an interest having 48publications as
the final number of our systematic review. With this activityRQ-1.3 was ad-
dressed. The process of extracting effects areas on or of TDDfrom selected
research publications and identifying limiting factors contributed to RQ-1.4.
Seven limiting factors were identified viz., increased development time, insuf-
ficient TDD experience/knowledge, lack of upfront design, domain and tool
specific issues, lack of developer skill in writing test cases, insufficient adher-
ence to TDD protocol, and legacy code.

My contribution I was the main author of this paper contributing in obtain-
ing collection of papers from the search databases, filtering and removal as well
as analysis of findings presented in selected collection of papers. Co-authors
helped to filter the papers and also performed reading of selected list of publi-
cations to validate the findings.

2.3.3 Paper C

Impact of Test Design Technique Knowledge on Test Driven Development:
A Controlled Experiment, AdnanČaušević, Daniel Sundmark and Sasikumar
Punnekkat, (In submission)

Summary Among the seven limiting factors identified from the systematic
study in Paper B, knowledge of testing was selected to be further investigated
as part of a controlled experiment with master students in order to address re-
search question RQ-1.5. The experiment was designed aroundcourse on Soft-
ware Verification and Validation at Mälardalen University. Participants were

16 Chapter 2. Research Summary

divided into two groups solving two problems on two different occasions, be-
fore and after the course. The analysis was performed on the collected source
code and test scripts created by students, as well as questionnaire survey re-
sponses. Results are showing positive improvements of testcode coverage
but no statistically significant difference exist between pre- and post- course
groups. Qualitative analysis of data revealed lack of negative test cases result-
ing in students inability to detect bugs related to unspecified behaviours.

My contribution I was the main author of the paper, contributing in setting
up the pre-requirements for the experiment (lab instructions, problems user
stories, SVN, etc.), collecting data points and performingthe analysis. Co-
authors helped in study design, analysis of the data and in writing section on
statistical analysis.

2.3.4 Paper D

Redefining the role of testers in organisational transitionto agile methodolo-
gies, AdnanČaušević, A.S.M. Sajeev and Sasikumar Punnekkat, In proceed-
ings of International Conference on Software, Services & Semantic Technolo-
gies (S3T), Sofia, Bulgaria, October, 2009

Summary This paper provides a state of the art analysis of tester rolein Ag-
ile organisation and propose a new role called “Project Mentor”. A major task
of project mentors is to manage the expectations of the customers and other
stake holders. This requires domain knowledge and the ability to speak in
the language of the customers, which often programmers lack. Similarly, for
managers, recognising the limitations of programmers is also a difficult task.
Managers without a technical background often fail to understand difficulties
which are faced by programmers on a daily basis. Testers as project mentors,
we believe, will be in a position to better appreciate these difficulties and trans-
late them to other stake holders with the help of their domainknowledge. A
mentor’s role of helping others to implement quality in their daily activities
could contribute significantly to the success of the project. This paper directly
address research question RQ-2.1.

My contribution Idea for this paper originated from a discussion with vis-
iting professor Abdulkadir Sajeev. I was the main author of this paper but the
writing process was an iterative contribution of all authors.

Chapter 3

Related Work

Since our research is based on challenges from two fairly different perspec-
tives, technological and organisational, we are presenting here related work
from both of them independently.

3.1 Technological perspective

Agile does not have a formal definition behind its processes which makes it
very hard for academic researchers to measure the quality impacts it can pro-
duce and in specific to reason about its claimed success. Whatresearchers
can do is to perform a series of empirical studies in academicor industrial
settings for the purpose of evaluating quality improvements introduced with
agile methodologies. Another aspect of investigation about agile development
are the growing number of claimed success stories from industry that are pre-
sented to the community. By contributing with their experience and lessons
learnt from projects with varying size and duration, industry is making a sig-
nificant impact on the current body of knowledge that should not be neglected.

The central research paper on agile methodologies is ”Empirical Studies
of Agile Software Development: A Systematic Review” [14]. This system-
atic literature review provides information regarding up to date findings w.r.t.
empirical evidence of agile software development. It also provided additional
insights for our own systematic literature review of empirical studies on TDD.
Another additional resource on general understanding of agile methods is a
chapter of Williams [15] within Advances in Computers book series where she
describes different agile principles, practices and methodologies.

17

18 Chapter 3. Related Work

3.1.1 Empirical Studies on TDD

Several publications with empirical finding were also used in our research. In
this section we are grouping them by the aim of the study itself.

Benefits of TDD

Müller & Hagner [16] performed an experiment with studentsdivided into
two groups, test-first and traditional, with focuses on the programming effi-
ciency, the reliability of the resultant code and program understanding. Flohr
& Schneider [11] had an experiment with students divided into two groups
(test-first and classical-test) for the purpose of investigating impact of test-first
development process. Gupta & Jalote [17] performed an experiment with stu-
dents divided in two groups (TDD and waterfall) evaluating the impact of TDD
on designing, coding, and testing. Data is obtained by questionnaire and forms.
Kollanus & Isomöttönen [18] performed experiment with students on under-
standing TDD and perception on difficulties of TDD. Data was collected by
questionnaire.

Quality of produced code

George & Williams [19] had professional developers from three companies
in TDD and waterfall-like control groups to investigate code quality improve-
ments. Another controlled experiment of Janzen & Saiedian [20] examined the
effects of TDD on internal software design quality. The experiment was con-
ducted with undergraduate students in a software engineering course. Janzen
et al. [21] had empirical studies in three industry short courses investigating
effects of test-driven development (TDD) on internal software quality. Vu et
al. [22] performed an experiment with students divided in two experimental
groups (test-first and test-last) in a year-long software engineering course eval-
uating productivity, internal and external quality of the product, and the per-
ception of the methodology.

Productivity improvements

Geras et al. [23] executed experiment with professional developers divided in
two groups working on two problems using test-first and test-last processes to
investigate productivity and software quality. Huang & Holcombe [24] had a
controlled experiment with students that investigated thedistinctions between
the effectiveness of test-first and test-last approaches.

3.2 Organisational perspective 19

Quality of tests
Erdogmus et al. [25] performed an experiment with undergraduate students di-
vided into two groups (test-first and test-last) investigating test per unit effort,
quality and productivity. Madeyski [26] had an experiment with students di-
vided in test-first and test-last groups examining branch coverage and mutation
score indicator of unit tests.

Impact of experience
Müller & Höfer [27] investigated conformance to TDD of professionals and
novice TDD developers. Höfer & Philipp [28] performed an experiment with
professionals and students investigating if expert programmers conform to TDD
to a higher extent than novice developers.

3.1.2 Test-related research

One of the key papers on software testing is: “A Survey on Testing Technique
Empirical Studies: How Limited is our Knowledge” [29]. Thispaper provides
a valuable analysis of maturity level of the knowledge on testing techniques.
Several research activities with the focus on agile and testing are also identified
in literature. Schooenderwoert et al. [30] are discussing different agile test
techniques for embedded systems while Paige et al. [31] are creating discussion
around extreme programming development for high integritysystems. Eunha
et al. [32] are describing a test automation framework for agile development
and testing with more focus on the developer side of testing.

3.2 Organisational perspective

A seminal document for agile development is the “Agile Manifesto” [7] ex-
plaining the main agile principles and goals behind its philosophy. This docu-
ment represents a main point in our investigation on how to adopt the process
while still conforming to the agile principles. By looking into some industrial
reports it is possible to see how IBM is transitioning their team to agile [33],
how Microsoft [34] is overcoming communication problems with testers or
how the Israeli Air Force [35] is adding value to their team byintroducing an
outside professional tester. Some organisations are even willing to share their
lessons learnt from mistakes in adopting agile [36].

20 Chapter 3. Related Work

3.2.1 Transitioning to Agile

We are relating our work with two approaches from the organisational perspec-
tive on how to address the role of testers issue while transitioning to agile devel-
opment. Sumrell [37] reports on the experience in transitioning from Waterfall
to Scrum. One of the major issues was to decide how to transform the QA team
and their testing strategies to the new environment. The approach taken for the
QA team is to continue to have the primary responsibility of testing, but share it
with developers and project managers. Instead of testers waiting until the parts
are ready for test, the new approach would be a quicker build cycle so that the
QA team can do its work rather than having to wait. Retrainingis needed for
QA personnel to be able to instrument code for testing ratherthan rely on pre-
vious practices of automated testing strategies. However,unit testing becomes
largely the responsibility of the developers. We can identify several character-
istics of this approach. One, the role of tester is somewhat diminished because
some of the testing is now done by the developer. The tester requires retraining
on the technical side. The tester needs to work more closely with developers
and project managers thus requiring a higher level of group working skills. We
hypothesise that in such an environment, a tester needs to begiven adequate
training for this transition, otherwise, it is likely that he or she will fail in the
new environment where they are not in control of quality, andbecomes just
another member of a team.

Gregory and Crispin [38] discuss in detail the role of testers in agile devel-
opment. Their recommendation is to make testers a part of thedevelopment
team. The role of testers is to help clarify customer requirements, turn them
into tests, and help developers understand the customer requirements better.
Testers need to speak the domain language of the customer andthe technical
language of the developers. The characteristics of this approach include an
increased role for testers as the link between customers anddevelopers in addi-
tion to their role of testing. It is a shift in their work environment as they move
from the Quality Assurance Division to be part of development pairs or groups.
They probably will need retraining on interpersonal skillsto work closely with
customers and developers more than they are used to in the past.

Chapter 4

Conclusions and Future
Work

This thesis represents a set of activities conducted as partof a research pro-
cess in order to identify and address potential challenges of software testing
in agile development. By performing various empirical studies (questionnaire
survey, literature review and controlled experiment) we brought upfront test-
driven development as a noteworthy testing research direction, investigating
why this practice is not utilised to a higher extent within industrial settings.

During our investigation of the current body of knowledge, we identified 18
effect areas out of which 7 are considered as limiting factors on the industrial
adoption of TDD, namely, increased development time, insufficient TDD ex-
perience/knowledge, lack of upfront design, domain- and tool-specific issues,
lack of developer skill in writing test cases, insufficient adherence to TDD pro-
tocol, and legacy code.

We set up a controlled experiment with master students to investigate if
developers knowledge of testing can affect adoption of TDD.Two groups of
students were using TDD to solve two juxtaposing problems before and after
the course on Software Verification and Validation. It is noticeable that code
coverage increased in both groups after the course, but we could not identify
any statistically significant difference between the groups. Further analysis of
students achievements revealed lack of test cases with the focus on negative
testing.

From an organisational perspective of agile adoption, we investigated pos-
sible options for transition of traditional testers into anagile environment. We

21

22 Chapter 4. Conclusions and Future Work

propose to define a new role for testers called “Project Mentor” which will em-
phasise their understanding of the complete system from a user perspective,
but also utilise their technical knowledge in communication with developers.

In summary, the main contributions of this thesis are:

• The identification of TDD as a practice which is not used to theextent
industry would prefer.

• Listing seven potentially limiting factors for industrialadoption of TDD

• Pointing out student’s inability to write negative test cases during con-
trolled experiment

• Proposing the need for augmenting the TDD with the new process steps
or specific testing knowledge

• Proposing the “Project Mentor” role for traditional testers in an agile
environment

Concerning future work, the process of identifying limiting factors for in-
dustrial adoption of TDD was conducted using peer-reviewedscientific publi-
cations that have been addressing validity threats of theirempirical study. In
order to confirm significance of identified limiting factors our future work will
focus on obtaining insights from industrial reports which were not covered in
our previous study due to the validity requirements. This will be done in com-
bination with industrial interviews to cover the full scopeof obstacles for full
utilisation of test-driven development approach.

As indicated by our study, TDD also needs to be supplemented with new
process steps or test design techniques, which could potentially further enhance
the robustness and the reliability of the system. In this context, we will inves-
tigate how TDD can be augmented for achieving improved code quality while
keeping its fundamental principles.

In a long term research perspective, we also intent to perform an industrial
case study investigating how experienced developers couldbenefit from testing
knowledge and what kind of specific testing knowledge they need in order to
increase the quality of the code artefacts they produce.

Apart from conforming the existing contributions of our research, our fu-
ture work will focus on approaching as close as possible to the goal set up at
the very beginning of our research:

to identify deficiencies in current testing practices in agile development
environments and provide validated methods of better utilization of testers

and testing techniques.

Bibliography

[1] Annual Testing Survey. Technical Report Suite 350, Quality Assurance
Institute, 7575 Dr. Phillips Blvd., Orlando, FL 32819, 1994.

[2] Pankaj Jalote.An integrated approach to software engineering (3rd Edi-
tion). Springer-Verlag New York, Inc., New York, NY, USA, 2005.

[3] Mikael Lindvall, Victor R. Basili, Barry W. Boehm, Patricia Costa, Kath-
leen Dangle, Forrest Shull, Roseanne Tesoriero, Laurie A. Williams, and
Marvin V. Zelkowitz. Empirical Findings in Agile Methods. In Pro-
ceedings of the Second XP Universe and First Agile Universe Conference
on Extreme Programming and Agile Methods - XP/Agile Universe 2002,
pages 197–207, London, UK, 2002. Springer-Verlag.

[4] Barbara Kitchenham and Stuart Charters. Guidelines forperforming Sys-
tematic Literature Reviews in Software Engineering. Technical Report
EBSE 2007-001, Keele University and Durham University Joint Report,
2007.

[5] FLEXI ITEA2 Project. http://www.flexi-itea2.org/.

[6] C. Larman and V.R. Basili. Iterative and incremental developments. a
brief history.Computer, 36(6):47 – 56, june 2003.

[7] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith,Andrew
Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve
Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto
for Agile Software Development. http://www.agilemanifesto.org/, 2001.

[8] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, editors.Structured pro-
gramming. Academic Press Ltd., London, UK, 1972.

23

24 Bibliography

[9] Ian Sommerville.Software engineering (6th ed.). Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2001.

[10] Kent Beck.Extreme programming explained: embrace change. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[11] Thomas Flohr and Thorsten Schneider. Lessons Learned from an XP
Experiment with Students: Test-First Needs More Teachings. In Jrgen
Münch and Matias Vierimaa, editors,Product-Focused Software Process
Improvement, volume 4034 ofLecture Notes in Computer Science, pages
305–318. Springer Berlin / Heidelberg, 2006.

[12] Barry Boehm and Richard Turner. Management Challengesto Im-
plementing Agile Processes in Traditional Development Organizations.
IEEE Software, 22:30–39, 2005.

[13] Adnan Causevic, Iva Krasteva, Rikard Land, A. S. M. Sajeev, and Daniel
Sundmark. An Industrial Survey on Software Process Practices, Prefer-
ences and Methods. (ISSN 1404-3041 ISRN MDH-MRTC-233/2009-1-
SE), March 2009.

[14] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software de-
velopment: A systematic review.Information and Software Technology,
50(9-10):833 – 859, 2008.

[15] Laurie Williams. Agile Software Development Methodologies and Prac-
tices.Advances in Computers, 80:1–44, 2010.

[16] M.M. Müller and O. Hagner. Experiment about test-firstprogramming.
Software, IEE Proceedings -, 149(5):131 – 136, October 2002.

[17] Atul Gupta and Pankaj Jalote. An Experimental Evaluation of the Effec-
tiveness and Efficiency of the Test Driven Development. InProceedings
of the First International Symposium on Empirical SoftwareEngineering
and Measurement, ESEM ’07, pages 285–294, Washington, DC, USA,
2007. IEEE Computer Society.

[18] Sami Kollanus and Ville Isomöttönen. UnderstandingTDD in academic
environment: experiences from two experiments. InProceedings of the
8th International Conference on Computing Education Research, Koli
’08, pages 25–31, New York, NY, USA, 2008. ACM.

Bibliography 25

[19] Boby George and Laurie Williams. A structured experiment of test-driven
development. Information and Software Technology, 46(5):337 – 342,
2003.

[20] David S. Janzen and Hossein Saiedian. On the Influence ofTest-Driven
Development on Software Design.Software Engineering Education and
Training, Conference on, pages 141–148, 2006.

[21] David S. Janzen, Clark S. Turner, and Hossein Saiedian.Empirical soft-
ware engineering in industry short courses. Software Engineering Edu-
cation Conference, Proceedings, pages 89–96, 2007.

[22] John Huan Vu, Niklas Frojd, Clay Shenkel-Therolf, and David S. Janzen.
Evaluating Test-Driven Development in an Industry-Sponsored Capstone
Project. InProceedings of the 2009 Sixth International Conference on
Information Technology: New Generations, pages 229–234, Washington,
DC, USA, 2009. IEEE Computer Society.

[23] A. Geras, M. Smith, and J. Miller. A Prototype EmpiricalEvaluation of
Test Driven Development. InProceedings of the Software Metrics, 10th
International Symposium, pages 405–416, Washington, DC, USA, 2004.
IEEE Computer Society.

[24] Liang Huang and Mike Holcombe. Empirical investigation towards the
effectiveness of Test First programming.Inf. Softw. Technol., 51:182–
194, January 2009.

[25] Hakan Erdogmus, Maurizio Morisio, and Marco Torchiano. On the Effec-
tiveness of the Test-First Approach to Programming.IEEE Transactions
on Software Engineering, 31:226–237, 2005.

[26] Lech Madeyski. The impact of Test-First programming onbranch cover-
age and mutation score indicator of unit tests: An experiment. Inf. Softw.
Technol., 52:169–184, February 2010.

[27] Matthias Müller and Andreas Höfer. The effect of experience on the test-
driven development process.Empirical Software Engineering, 12:593–
615, 2007.

[28] Andreas Höfer and Marc Philipp. An Empirical Study on the TDD Con-
formance of Novice and Expert Pair Programmers. In Will Aalst, John
Mylopoulos, Norman M. Sadeh, Michael J. Shaw, Clemens Szyperski,

26 Bibliography

Pekka Abrahamsson, Michele Marchesi, and Frank Maurer, editors,Ag-
ile Processes in Software Engineering and Extreme Programming, vol-
ume 31 ofLecture Notes in Business Information Processing, pages 33–
42. Springer Berlin Heidelberg, 2009.

[29] N. Juristo, A. M. Moreno, and S. Vegas. A Survey on Testing Technique
Empirical Studies: How Limited is our Knowledge. InProceedings of
the 2002 International Symposium on Empirical Software Engineering,
pages 161–, Washington, DC, USA, 2002. IEEE Computer Society.

[30] Nancy Van Schooenderwoert and Ron Morsicato. Taming the Embedded
Tiger - Agile Test Techniques for Embedded Software. InProceedings
of the Agile Development Conference, pages 120–126, Washington, DC,
USA, 2004. IEEE Computer Society.

[31] Richard F. Paige, Howard Chivers, John A. McDermid, andZoë R.
Stephenson. High-integrity extreme programming. InProceedings of
the 2005 ACM symposium on Applied computing, SAC ’05, pages 1518–
1523, New York, NY, USA, 2005. ACM.

[32] Eunha Kim, Jongchae Na, and Seokmoon Ryoo. Developing aTest Au-
tomation Framework for Agile Development and Testing. In Will Aalst,
John Mylopoulos, Norman M. Sadeh, Michael J. Shaw, Clemens Szyper-
ski, Pekka Abrahamsson, Michele Marchesi, and Frank Maurer, editors,
Agile Processes in Software Engineering and Extreme Programming, vol-
ume 31 ofLecture Notes in Business Information Processing, pages 8–12.
Springer Berlin Heidelberg, 2009.

[33] Susan D. Shaye. Transitioning a Team to Agile Test Methods. InPro-
ceedings of the Agile 2008, pages 470–477, Washington, DC, USA, 2008.
IEEE Computer Society.

[34] Michael Puleio. How Not to Do Agile Testing. InAGILE ’06: Proceed-
ings of the conference on AGILE 2006, pages 305–314, Washington, DC,
USA, 2006. IEEE Computer Society.

[35] David Talby, Orit Hazzan, Yael Dubinsky, and Arie Keren. Agile Soft-
ware Testing in a Large-Scale Project.IEEE Softw., 23:30–37, July 2006.

[36] Kay Johansen and Anthony Perkins. Establishing an Agile Testing Team:
Our Four Favorite “Mistakes”. InProceedings of the Second XP Universe
and First Agile Universe Conference on Extreme Programmingand Agile

Methods - XP/Agile Universe 2002, pages 52–59, London, UK, 2002.
Springer-Verlag.

[37] Megan Sumrell. From Waterfall to Agile - How does a QA Team Tran-
sition? InAGILE ’07: Proceedings of the AGILE 2007, pages 291–295,
Washington, DC, USA, 2007. IEEE Computer Society.

[38] Lisa Crispin and Janet Gregory.Agile Testing: A Practical Guide for
Testers and Agile Teams. Addison-Wesley Professional, 2009.

II

Included Papers

29

Chapter 5

Paper A:
An Industrial Survey on
Contemporary Aspects of
Software Testing

AdnanČaušević, Daniel Sundmark and Sasikumar Punnekkat
In proceedings of the International Conference on SoftwareTesting (ICST),
Paris, France, April 2010

31

Abstract

Software testing is a major source of expense in software projects and a proper
testing process is a critical ingredient in the cost-efficient development of high-
quality software. Contemporary aspects, such as the introduction of a more
lightweight process, trends towards distributed development, and the rapid in-
crease of software in embedded and safety-critical systems, challenge the test-
ing process in unexpected manners. To our knowledge, there are very few
studies focusing on these aspects in relation to testing as perceived by different
contributors in the software development process.

This paper qualitatively and quantitatively analyses datafrom an indus-
trial questionnaire survey, with a focus on current practices and preferences
on contemporary aspects of software testing. Specifically,the analysis focuses
on perceptions of the software testing process in differentcategories of re-
spondents. Categorization of respondents is based on safety-criticality, agility,
distribution of development, and application domain. While confirming some
of the commonly acknowledged facts, our findings also revealnotable discrep-
ancies between preferred and actual testing practices. We believe continued
research efforts are essential to provide guidelines in theadaptation of the test-
ing process to take care of these discrepancies, thus improving the quality and
efficiency of the software development.

5.1 Introduction 33

5.1 Introduction

Software testing, as a practice, has been able to successfully evolve over time
and provide efficient and constant support for improvementsin software qual-
ity. On the other hand, testing is still notorious for its massive resource con-
sumption within software projects. To this date, much of theresearch efforts
on software testing have been focusing on designing new techniques, as well as
investigating their effectiveness in real development contexts. However, dur-
ing the entire history of software development, testing methods and techniques
have struggled to keep up with the ever faster evolution and trends in software
development paradigms. We cannot expect any favourable change in this state
of affairs, unless a conscious effort is made in anticipating the trends, learning
the stakeholder mindsets, and pinpointing the problem areas. It is our belief
that such an effort could help in efficiently allocating the testing resources to-
ward a specific context or in proactively deciding the testing research agenda
in general. To our knowledge, there exist no detailed investigations with such
a perspective. The research presented in this paper is a small step in this direc-
tion, in that it specially focuses on the stakeholder perspectives on some con-
temporary aspects related to testing. The specific researchquestion we address
in this paper is:Is it possible to identify and list main discrepancies between
current and preferred testing practices that could be considered as obstacles
for software testing practitioners?

By qualitatively and quantitatively analysing the resultsof a recent ques-
tionnaire survey on practices and preferences in industrial software develop-
ment, with respect to the above research question, we have identified a number
of areas and practices where the preferred practice significantly differs from
what is perceived as the actual current practice. We believethat these areas and
practices assist in pointing out directions for future research within software
testing.

The contributions of this paper are three-fold:

• A qualitative analysis on practices and preferences in testing of different
contemporary categories of software development professionals (Sec-
tion 5.3).

• A qualitative analysis on techniques and tools used in contemporary test-
ing (Section 5.4).

• A quantitative analysis of satisfaction with current testing practice among
different categories of respondents (Section 5.5).

34 Paper A

5.2 Research Method

We base our analyses in this paper on data from a recent industrial survey on
software development practices and preferences. This survey was a combined
effort of several researchers with diverse research foci, all integrated to one
study to minimise the responders time. The survey was performed using a
web-based questionnaire, and the invitation was distributed among industrial
software development companies using, e.g., the FLEXI and NESSI European
project networks. More information about the questionnaire, as well as all data,
is available as a technical report [1]. The questions pertinent for our research
were embedded in the larger set of questions and were formulated in such a
way as to provide the list of discrepancies indirectly rather than asking the
questions in a direct way which could be either provocative or could result in a
no response since some of the respondents may not want to present themselves
as opinionated.

5.2.1 Categorization of Respondents

In our analysis, we categorize survey respondents according to five aspects of
contemporary software development, namely:

1. Agility of Development Process

2. Distribution of Development

3. Domain of Product(s)

4. Safety-Criticality of Product(s)

5. Amount of Testing performed by Respondent

In order to categorize respondents according to these aspects, we make use
of a set of categorizing questions. For example, a respondent belongs in the
“Agile” category of respondents if the answer to the question “Our current
software development process is:” is “ Agile”.

Note that any respondent may be included in several non-mutually exclu-
sive categories. For example, a respondent might be categorized as atester,
working with safety-criticalsoftware in anon-distributeddevelopment (ex-
amples of mutually exclusive categories aretestersandnon-testers, anddis-
tributed andnon-distributed). The domain categories are not mutually exclu-
sive, as some respondent companies develop software for multiple domains.

5.2 Research Method 35

This cross-coupling between categories was an intentionaloutcome of our re-
search objective of unearthing more inter-related answersfrom the respondents
indirectly.

The categorization of respondents and the categorizing questions can be
viewed in Table 5.1.

Categorizing Criterion
Categorizing question and response Category

Question Response
Agility of
Development Process

Our current software
development process
is:

“Agile” Agile
Other Non-agile

Distribution of
Development

In our team: all of the
team members are
collocated in one
building

Yes Distributed
No Non-distributed

Safety-Criticality
of Product(s)

If the software
developed in our
current project fails,
the maximum damage
could be the loss of:

“Many
lives” or “A
single life”

Safety-critical

Other Non-safety-
critical

Amount of testing
performed by
Respondent

At work, I perform the
following activities
[indicate how often on
a scale of 0 to 7]:
[testing]

1-7 Testers
0 Non-testers

Domain of
Product(s)

The software we build
in our project is:

Web
Software

Web

Desktop
Software

Desktop

Embedded
software

Embedded

Table 5.1: Categorization of Respondents

5.2.2 Question Selection

Since the amount of questions in the survey data is quite large (a total of 260
questions were included in the questionnaire), we wanted tofocus only on
questions that explicitly or implicitly related to the testing process. For the ex-
plicitly test-related questions, this process was trivial, but for the more implicit

36 Paper A

questions, the process was subjective. Our rationale was that, for a question
to be test-related, the practice queried on needs to directly affect the testing
process. An example of such an implicitly test-related question is the question
“Management should encourage regular interaction between developers and
customers/business people”, since regular interaction between developers and
customers directly may affect how acceptance testing is performed.

Moreover, for each contemporary aspect, we selected and studied a subset
of test-related questions that specifically applied to thatparticular contempo-
rary aspect. For example, the question “We never have to wait for source code
in order to start the testing process” is highly interesting in a distributed devel-
opment context, where communication between different development teams
may be impaired by, e.g., geographical and cultural distances within the organ-
isation.

5.2.3 Scales Used for Answers

Respondents were providing their opinion by selecting one of the options from
a given scale of answers against each question. Two different scales (with 7
or 8 divisions) were used in our survey depending on the type of question.
The 7-scale options represent: “Very strongly disagree”, “Strongly disagree”,
“Disagree”, “Neither agree nor disagree”, “Agree”, “Strongly agree”and “Very
strongly agree”. For certain analyses, 7-scale answers were mapped to numer-
ical values in the (-3, 3) interval. This would mean that a “-2” value should
be interpreted as the respondent strongly disagrees with the statement provided
in the question, whereas a “1” should be interpreted as the respondent agrees.
The 8-scale answers were used for questions in which respondent were asked to
provide the level of usage for some testing types. This way they could choose
an option from 0 to 7 where 0 means they never use it and 7 they always use it.

In Section 5.3, Table 5.3 to Table 5.7 present the data from the questions
where the used scale is implicitly assumed from left to rightas the headings
of the columns with numeric values. The numerical values in turn represent
the number of respondents in that particular group who have answered that
particular question with the same answer option.

5.3 Testing Practices and Preferences

For a better understanding of our targeted respondents group, a general overview
of respondent demographics for the complete survey is presented in Table 5.2.

5.3 Testing Practices and Preferences 37

Gender
Male 73
Female 10

Age

25-29 13
30-34 22
35-39 25
40-49 14
50-59 6

Education qualification

Udergraduate or lower 3
Bachelor degree 21
Postgraduate degree 45
PhD or above 14

IT work experience

1-4 years 16
5-8 years 22
9-12 years 18
13-16 years 14
More than 16 years 13

Team size

I am not in a team 6
1-5 people 25
6-10 people 22
11-15 people 10
16-20 people 6
21-50 people 9
More than 50 people 4

End product of project is

a software part/component which is to be integrated15
a software service 4
a software system that will be used by end users39
other 5

Table 5.2: Respondent Demographics

Now we analyze data regarding practices and preferences in testing in the
different categories of respondents. Please note that somequestions are con-
ditional based on earlier responses which as a result provide less number of
responders compared to the complete survey. This analysis is performed on
five different aspects where each aspect is individually presented within its ap-
propriate subsection.

5.3.1 Agile vs. Non-Agile

In the remainder of this section, we will use the term “agile respondents” to
refer to the group of respondents who claim that agile is their current develop-
ment process. Similarly, we will use the term “non-agile respondents” to refer

38 Paper A

to the group of respondents that claim to use any other development process
(e.g., waterfall, adaptive, ad-hoc, etc.).

Regular interaction with customers is a central theme in agile development
[2] and it can as a benefit provide a continuous assistance in creating and val-
idating acceptance tests. However, looking at the responses from the agile
respondents (see Table 5.3), there are (clear) indicationsthat this agile practice
is not followed to the extent they would prefer. To some extent, customer in-
teraction is limited to elicitation of requirement and acceptance testing. This is
true also for the non-agile respondents, but they are, to a larger extent, happy
with the current practice.

The agile respondents are not averse to changes, especiallycompared to
the non-agile respondents, who have a slight tendency to discourage customers
from changing requirements. Moreover, in the preferred practice, the agile
respondents would like to be even less restrictive to change, whereas the non-
agile respondents would like to discourage customers in changing requirements
even more.

Changing working software is, as expected, favoured and even more pre-
ferred among the agile respondents. Surprisingly, the non-agile respondents do
not mind such changes, even though they are less enthusiastic than the agile
respondents.

Changes to working software with the specific purpose of improving the
structure of the code (i.e., refactoring) is highly preferred among both groups,
but the agile respondents appear to be following this practice to a significantly
higher extent (albeit not quite at the desired level). It could probably be claimed
that the high acceptance of changes to working code is a result of confidence
provided by the regression suites created by a test-driven development practice
[3]. However, this is not a conclusion we can draw solely based on our data.

Test driven development (TDD) is one of the most prominent practices used
in agile development. However, our respondents, especially the ones working
in agile processes, are leaning towards disagreement that this practice is in
place at their current organisation. Both groups are agreeing their preference is
to use this practice to a higher extent.

As a summary, we can observe two facts from this data:

1. Respondents working in agile processes are not happy withcurrent test
first practice (possibly because they are in an early phase ofadoption)

2. Non-agile respondents are unknowingly following agile testing prac-
tices.

5.3 Testing Practices and Preferences 39

Interaction with customers/business people should be for captur-
ing the requirements at the beginning of the project and thenfor
acceptance testing at the end of the project

Current Practice
Agile 1 0 4 1 2 1 2

Non-Agile 1 5 3 10 12 4 1

My preference
Agile 3 2 2 0 1 1 2

Non-Agile 4 5 4 4 6 11 2

Customers/ business people should be discouraged from changing
requirements once they are specified

Current Practice
Agile 4 0 3 2 1 1 1

Non-Agile 1 4 6 10 10 3 1

My preference
Agile 4 2 3 2 0 1 0

Non-Agile 1 2 9 5 9 8 2

Once a piece of code starts working, it should rarely be modified

Current Practice
Agile 3 1 3 2 1 0 0

Non-Agile 2 4 6 13 6 4 1

My preference
Agile 3 2 4 1 0 0 0

Non-Agile 0 9 8 7 4 6 1

Regular changes to working code should be encouraged if they
improve the code in some way (e.g. its design, its structure etc.)

Current Practice
Agile 0 0 0 2 4 3 1

Non-Agile 1 4 6 13 8 2 0

My preference
Agile 0 0 0 0 2 6 2

Non-Agile 0 1 5 8 11 7 3

Test cases should be written before writing code

Current Practice
Agile 1 2 4 1 2 0 0

Non-Agile 1 7 11 8 5 3 0

My preference
Agile 1 1 1 0 3 4 0

Non-Agile 2 0 5 6 9 12 1

Table 5.3: Survey data for Agile vs. Non-Agile

40 Paper A

5.3.2 Distributed vs. Non-distributed

By answering the question if all of the team members are collocated in one
building, responders are grouped into distributed and non-distributed categories.
Questions were asked only to responders who claim to have some testing ac-
tivities at their work, i.e., the distributed and the non-distributed respondents
make up disjoint subsets of the testers category. Collecteddata is presented in
Table 5.4.

Please indicate how strongly you agree or disagree with the following statements
with respect to your testing experience in current organisation

We never have to wait for
source code in order to start the
testing process

Distributed 3 2 4 1 3 3 2

Non distributed 0 3 4 7 2 0 2

The necessary infrastructure
for executing test cases is
always in place

Distributed 0 2 7 0 6 2 1

Non distributed 0 5 7 3 1 0 2

There are no changes done on
code during integration testing

Distributed 2 5 3 0 8 0 0

Non distributed 1 3 10 2 0 1 1

During integration testing, I do
not mind code to be changed
while I am testing it

Distributed 2 1 9 1 5 0 0

Non distributed 1 0 4 6 6 1 0

Table 5.4: Survey data for Distributed Development

When it comes to not having source code available on time to start the test-
ing process, testers working in distributed environments give very diverse an-
swers. In average, they can be considered the same, as most ofnon-distributed
responders, who claimed they neither agree nor disagree this problem exist
in their organisation. Since we expected testers working indistributed envi-
ronments to experience this problem in higher extend, we canonly claim that
working in distributed development is not a main cause of delays in source
code delivery within our respondents.

Not having a proper infrastructure for testing in place could potentially
slowdown the testing process. We expected this in particular to be a problem
for distributed development, and even though answers were again diverse they
were very close to neither agree nor disagree that problem with missing in-
frastructure exists. However, non-distributed respondents to a slightly higher

5.3 Testing Practices and Preferences 41

extent indicated to experience the problem of not having necessary infrastruc-
ture in place. Again we could claim within our responders that the problem
with not having a proper infrastructure for testing is not directly related to us-
ing distributed development process.

Changes done on code could produce further delays and introduce com-
plexity during integration testing. One would naturally expect this to be in
much higher degree present in distributed development rather than non-distribu-
ted. Our data shows this is not entirely true for our respondents. Both groups
tend to disagree there are no changes on code during integration testing with
slightly higher level of disagreement within non-distributed respondents. On
the other hand, respondents working in distributed development prefer to dis-
agree that they do not mind code to be changed while they are testing it dur-
ing integration. Non-distributed respondents preferences point out to neither
agreement nor disagreement with this statement.

We expected to recognize potential challenges with testingrelated to dis-
tributed development by analysing our data, but as presented in this section, we
did not find any such problems among our respondents.

5.3.3 Domain

In the domain categorization, respondents were categorized according to an-
swers to the following question: “The software we build in our project is:”.
Possible answers were “Desktop”, “Web” or “Embedded”. In contrast to the
other respondent categorizations in this paper, the domaincategories are non-
mutually exclusive. Hence, if respondents are working in companies develop-
ing products in several domains, they are included in all these domain cate-
gories. Survey data for the domain categorization is presented in Table 5.5.

In the domain categorization, our expectation was to find that a lack of test-
ing infrastructure would cause problems for testing particularly in the embed-
ded system domain, mainly due to problems of hardware/software co-design
and hardware availability in early stages of development. We further believed
that this would negatively affect the time available for testing. Moreover, as
commonly stated (e.g., in [4]), we hypothesized that development of web and
desktop software would, to a larger extent, be influenced by lightweight and ag-
ile methods, whereas development of industrial and embedded software would
typically follow a more traditional, plan-driven process.There is, however, no
support for the latter assumption in the data, as development method seems to
be independent of software domain among our respondents.

We do note a more prominent lack of availability of a proper testing infras-
tructure in the embedded system domain, but not fully to the extent we might

42 Paper A

Please indicate how strongly you agree or disagree with the following statements
with respect to your testing experience in current organization:

The necessary infrastructure
for executing test cases is
always in place

Desktop 0 2 4 2 0 2 2

Web 0 2 4 0 5 2 0

Embedded 0 4 6 1 2 2 0

I have enough time to test the
software before its deployment

Desktop 1 3 0 3 3 2 0

Web 0 1 5 1 4 2 0

Embedded 0 2 5 3 2 3 0

In our project we use the following testing types

Unit testing
Desktop 1 1 0 0 0 2 0 1

Web 0 1 0 1 0 2 3 4

Embedded 1 2 1 2 1 3 0 2

Functional black-box testing of
the whole system

Desktop 1 0 1 0 2 0 1 1

Web 2 0 0 1 3 0 4 1

Embedded 1 0 0 0 3 1 2 5

Performance testing (including
load and stress testing)

Desktop 1 0 2 0 0 0 1 2

Web 2 1 0 0 1 1 2 4

Embedded 1 0 1 1 2 2 3 2

In my opinion, the ideal level for each of the following testing types in our project
should be

Unit testing
Desktop 0 1 0 0 0 1 0 4

Web 0 1 0 0 1 1 2 6

Embedded 1 2 1 1 0 1 3 3

Functional black-box testing of
the whole system

Desktop 1 0 0 0 0 2 1 2

Web 1 0 0 0 0 4 2 4

Embedded 1 0 0 0 0 2 2 7

Performance testing (including
load and stress testing)

Desktop 1 0 1 0 0 2 0 2

Web 1 0 0 1 1 3 2 3

Embedded 1 0 0 0 3 2 0 6

Table 5.5: Survey data for Application Domain

5.3 Testing Practices and Preferences 43

have expected. Furthermore, it is worth mentioning that this deficiency does
not seem to significantly affect the experienced sufficiencyof time available
for testing, which is quite equal between the domains.

Regarding the importance of different testing types, in thecurrent practice,
web development seems to put a large emphasis on unit testing, whereas em-
bedded system development to a higher degree focuses on functional system
testing. In the desktop system development category of respondents, there is
no clear indication of a coherent current practice.

Comparing the current practice with what is considered the ideal practice,
there are a few noteworthy discrepancies. Generally, amongall categories of
respondents, there is a preference towards more rigorous testing at all levels,
particularly visible in the functional system-level testing. Notable is also the
degree in which embedded system developers would like to increase load and
stress testing, a practice where they feel that the current level of practice is
insufficient.

5.3.4 Safety-criticality

Prior to the analysis of respondent data, we expected safety-critical respondents
to lean towards more traditional types of development and testing in the cur-
rent practice, but we were curious and more hesitant regarding their preferred
practice.

When it comes to customer involvement, there is a significantdifference
between the safety-critical respondents, and the non-safety-critical respondents
(see Table 5.6). The safety-critical respondents to a largeextent limit customer
interaction to requirements elicitation in the beginning of the project, and ac-
ceptance testing at the end of the project. This is somethingthat cannot be
seen in the group of non-safety-critical respondents, where the current prac-
tice varies. Interestingly, the safety critical respondent preference is to further
decrease customer involvement, whereas most non-safety critical respondents
would prefer an increase.

Discouraging customers/business people to change requirements is a prac-
tice which both groups neither agree nor disagree to currently exists in their
organisation. We expected safety-critical environment tobe more resistant to
change than non-safety-critical respondents, but within our respondents this is
not a case. Interestingly, the preference of both groups does not change signif-
icantly from the current practice. We could say that changing requirements is
not something our respondents would agree easily with, but it is rather some-
thing they must accept, regardless of software criticality.

44 Paper A

Both the safety-critical and the non-safety-critical categories of respon-
dents state that writing test cases before writing code is mostly not consid-
ered as the current practice. However, while the non-safety-critical respondents
seem quite willing to change this situation, the safety-critical respondents show
no interest as a group in changing towards a more test-drivendevelopment.
This is noteworthy considering the fact that empirical studies seem to ascribe
test-driven developed code a high external code quality [5][6] [7]. For fairness
sake, it is not trivial to see how such a practice would affect, and be affected
by, other specific aspects of safety-critical system development, e.g., fulfilment
of safety certification standards.

Interaction with customers/business people should be for capturing the requirements
at the beginning of the project and then for acceptance testing at the end of the
project

Current practice
Safety-critical 0 0 0 2 2 3 1

Non-safety-critical 2 4 7 8 12 2 2

My preference
Safety-critical 0 1 0 0 0 5 2

Non-safety-critical 7 5 6 3 7 7 2

Customers/ business people should be discouraged from changing requirements
once they are specified

Current practice
Safety-critical 2 0 2 2 2 0 0

Non-safety-critical 3 3 7 10 9 4 1

My preference
Safety-critical 3 0 3 0 1 2 0

Non-safety-critical 3 3 9 7 8 7 1

Test cases should be written before writing code

Current practice
Safety-critical 1 1 4 1 1 0 0

Non-safety-critical 1 8 9 8 6 3 0

My preference
Safety-critical 1 0 3 2 1 1 0

Non-safety-critical 2 1 2 3 11 15 1

Table 5.6: Survey data for Safety-Criticality

5.3 Testing Practices and Preferences 45

5.3.5 Testers vs. Non-Testers

Programming should start only after the design is completed

Current practice
Testers 2 6 10 9 10 1 0

Non-Testers 1 2 1 2 2 1 0

My preference
Testers 4 5 6 7 5 9 2

Non-Testers 1 0 1 1 2 4 0

The main focus of the team should be to get the code to work

Current practice
Testers 0 1 3 6 11 13 4

Non-Testers 0 2 1 1 3 0 1

My preference
Testers 0 2 6 5 6 13 6

Non-Testers 0 2 1 2 2 2 0

The main focus of the team should be on the production of all artefacts (e.g. design
documents, requirements documents) not just code

Current practice
Testers 1 3 5 9 16 4 0

Non-Testers 0 0 3 3 3 0 0

My preference
Testers 1 2 3 7 10 12 3

Non-Testers 0 0 1 1 1 4 2

Once a piece of code starts working, it should rarely be modified

Current practice
Testers 5 4 7 13 3 4 0

Non-Testers 0 1 2 2 4 0 0

My preference
Testers 3 9 11 7 2 3 1

Non-Testers 0 2 1 1 2 3 0

Table 5.7: Survey data for Testers vs. Non-testers

Based on responders’ answers to question on how often they perform test-
ing activities, we grouped their response into two categories: Testers and Non-
testers. We expected to have insights into differences on how testing related

46 Paper A

activities are seen from these roles. Data is presented in Table 5.7.
Testers and non-testers opinions whether programming should start only af-

ter the design is completed, do not differ significantly. Both groups are stating
this is, to some extent, present in their current practice but importantly to no-
tice, both groups equally point out preference on having this practice in place.
Similar results can be seen in question if the main focus of the team should
be on the production of all artefacts and not just code. Neither testers nor
non-testers agree or disagree this practice exist in their current organisations.
However, both group preferences show high level of agreement that team focus
should be tailored towards generating all artefacts of software development.

Question if the main focus of the team should be to get the codeto work
show us some difference in group opinions. Testers think that this philosophy
is slightly present in their current organisation, while non-testers tend to dis-
agree. Both groups seem satisfied with their current practice since preference
on this idea does not change. Another philosophy was investigated by a ques-
tion on if once a piece of code starts working, it should rarely be modified.
Here, testers show tendency to disagree that this approach exist in their current
organisation, while non-testers neither agree nor disagree with it. Interestingly,
testers’ preferences are to further disagree with this practice, while non-testers
show some level of agreement this practice should exist in organisations.

5.4 Techniques and Tools

Respondents, who previously stated to perform testing activities at work, were
additionally asked questions regarding tools and techniques currently in use
within their organisation. Those questions did not have anypredefined an-
swers since we expected the respondents to provide us with inside information
about existing testing practices. We expect that an appropriate grouping of in-
formation (for e.g.. domain-wise) could be beneficial for new practitioners.
Table 5.8 and Table 5.9 present the respondents answers followed by our qual-
itative analysis of the data.

Based on the provided responses (shown in Table 5.8) we notice, as ex-
pected, that it is very common for organisations to have defined levels of test-
ing. Those levels are usually unit, integration and system level testing. Besides
having testers, testing activities are also performed by developers. In most
cases, unit level testing using a white box approach is a responsibility of de-
velopers, whereas integration and system level testing aredone by dedicated
testers performed mostly as black box testing. Interestingly, we have not found
a big presence of automation effort in testing.

5.4 Techniques and Tools 47

Which testing technique do you use in your organisation? (ifyou are not sure
of the name of the technique, try to explain in short how you perform testing)
Unit testing, integration testing and functional testing.
Low level: Lint, Code coverage, Manual code review. High level: Integration
test, Regression test (to verify legacy functionality), Function test (verify new
stuff), System test (from an end user perspective)
White box unit testing
unit testing w test coverage strategies (all statements, black-box behaviour) sys-
tem testing with real hardware done by or together with our customer
No automated testing, only interactive. Though, we have tools which measures
coverage as well as performance bottlenecks.
unit testing by developers, per use case manual testing doneby testers
No technique as we just do prototypes. We dont test it towardstest documents,
since just on user tests.
Module test, integration test on dedicated hardware, test on complete machine
1. Manually develop and debug using whatever equipment available using
PC/Windows or actual target hardware. 2. Module testing on workstation plat-
form using PC/Windows in a repetitive form. 3. Manual repetitive integration
tests on actual target hardware platform. 4. Automated tests on actual hardware
and/or system. (not all tests use have automated test cases)
White-box (developers testing their code using debuggers)Black-box (on sys-
tem level) Unit testing (not so common) Automatic testing (no so common)
Limited regression testing, limited automated user interface testing
It varies from project to project. My current project writesunit tests at the same
time as the code, and different people do system testing.
Ad hoc testing, i.e. testing only specific functionality rather than full regression
testing for each release.
Testframe
Vast test automation, explorative testing, black-box - white-box, etc, etc...
manual testing
Unit Testing and Integration Testing (White box) by the development team.
Black Box (System Testing and Performance Testing) by an independent Test
Team
Unit tests, integration & regression tests.
Use case testing State transition testing Classification tree method Boundary
value analysis
Ad hoc
Different in different projects.
Acceptance testing against functional and non-functionalrequirements, creating
system test automation in business value order. Unit testing and module testing
done by developers.
User-story approach, old-fashioned test-case approach, exploratory testing, test
automation, TDD
Component testing done by designers during development. Function testing
before delivery to integration branch. Integration testing. System/load testing.

Table 5.8: Respondent Answers on Techniques in use

48 Paper A

With respect to tools used as support for testing (shown in Table 5.9), from
respondent answers we can notice that there is utilization of both open source
and proprietary tools. However, open source testing tools seem to be mostly
used for unit testing whereas for higher level of testing, a proprietary tool is in
place. Even a few in-house developed testing tools are stated in the answers.

Do you use any tools for testing within your organisation? Please provide us
with their names:
Not any specific tool.
Expect/TCL, Jcat (java based tool), Perl. Also some proprietary testing plat-
forms based on previously named tools.
NUnit
internally developed tool, simple script on top of a CAN & I/Osimulator and
same scripts using real CAN & I/O when software is downloadedon target.
Two tools named something with ”coverage” and ”perform” (cannot remember
the company behind)
JUnit, JEmitter
PC-Lint and/or Programming Research QA C for static analysis, MSDevStudio
for code coverage analysis of test cases, homebrewed testing harness suited for
the current development tools, RTOS supported functions for timing analysis.
JTAG/BDM-debuggers for on-target testing. National Instruments LabView us-
ing automated test cases derived from requirement tools.
TestComplete (tool for automatic tests)
Yes. Do not know.
Again it varies from project to project. I think my current project uses JUnit,
but I have no time to get involved.
Not personally.
code coverage, JUnit(UnitTest)
change control, bug tracking, test case management, etc., etc.
Proprietary in most cases.
Check, valgrind
tcl/expect, Test-RT
Test Director CTE Test execution tools (self-made, using Labview and Perl)
NUnit for developer tests
No
Our proprietary test automation system
In-house test automation
TTCN. Load/traffic generators (not sure of name, SipP?).

Table 5.9: Respondent Answers on Tools in use

5.5 Satisfaction of Current Practice 49

5.5 Satisfaction of Current Practice

Our third and final analysis in this paper is a quantitative analysis on the sat-
isfaction of current testing practices. If one agrees that knowledge of required
process improvements is, to some extent, intrinsic within software develop-
ment organisations, this information may provide valuableguidelines for fu-
ture research directions in this area. Below, we will discuss dissatisfactionof
current practice rather thansatisfaction. This might seem overly negative, but
is rather an effect of measuring the absolute value of the difference between the
perceived current and the preferred practices. Hence, a high value indicates a
high degree of dissatisfaction. Needless to say, a low degree of dissatisfaction
equals a high degree of satisfaction.

Here, individual dissatisfaction of current testing practices is defined as the
mean absolute difference between the perceived current practice, and the pre-
ferred practice for all testing-related questions for a single respondent. Dissat-
isfaction among a category of respondents is defined as the mean of all individ-
ual dissatisfactions for the respondents within that category. Formally, given
the setR of respondents in a particular category, and the setQ of test-related
questions, the dissatisfactiondQ,R is defined by

dQ,R =
1

|Q||R|

∑

q∈Q

∑

r∈R

|cq,r − pq,r|

where,cq,r andpq,r refer to the current and the preferred practice of question
q as reported by the respondentr.

5.5.1 Satisfaction within Different Categories of Respondents

For the categorization used in Section 5.3, the dissatisfaction results are shown
in Table 5.10.

As can be seen in the table, the differences between the categories are not
remarkably large. The difference between the most dissatisfied category of
respondents (non-distributed) and the most satisfied category of respondents
(safety-critical) is 0.359, corresponding to little over one third of a grade per
question and respondent on a 7-grade scale. Nevertheless, the safety-critical
respondents stand out as the most satisfied categories of respondents. This can
possibly be attributed to the fact that the training levels in such organisations
are very high and focused which make them fully believe in andbe confident
of the activities and practices. Further investigation will be necessary to con-
firm that such a conclusion is justifiable from a technological point of view. It

50 Paper A

Respondent category Dissatisfaction
Safety-critical respondents 0.660
Agile respondents 0.728
Desktop respondents 0.821
Embedded respondents 0.875
Distributed respondents 0.880
Web-based respondents 0.910
Testers 0.931
Non-testers 0.933
Non-safety-critical respondents 0.983
Non-agile respondents 0.995
Non-distributed respondents 1.019

Table 5.10: Dissatisfaction within categories of respondents

is also worth mentioning that the satisfaction of current testing practice among
respondents doing distributed development is actually higher than that of re-
spondents doing non-distributed development. The obviousassumption would
be that distributed development puts additional strains onthe efficiency of test-
ing. A possible explanation of these results might be that a distribution of
development enforces the software development organization to be more con-
scious about its testing strategy.

5.5.2 Satisfaction with Particular Testing Practices

In order to analyse the dissatisfaction with regards to a particular practice, de-
noted bydq,R, we make use of a special case of the above equation, whereq is
the question on the practice of interest andQ = {q}.

dq,R =
1

|R|

∑

r∈R

|cq,r − pq,r|

It should also be noted that a high dissatisfaction in a question only tells us
that there is a large difference between the current and the preferred practice.
It does not explicitly tell us the nature of this dissatisfaction, nor does it mean
that respondents agree on whether the practice queried on should be increased
or decreased. A prime example of this is the question “Once a piece of code
starts working, it should rarely be modified”, which has a dissatisfaction of
0.935, which is quite high in relation to the total data set. However, taking into

5.5 Satisfaction of Current Practice 51

account whether the respondents want an increase or a decrease of the practice
(mathematically, this is equivalent to disregarding the absolute value operation
on the difference between current and preferred practice),we end up with a
value of 0.109, indicating that there is almost an equal desire to increase the
practice as it is to decrease it, among the set of respondents.

Question Dissatisfaction
Changing working code should not be encouraged but
cannot be prevented

0.500

Testing should be a defined phase in project develop-
ment

0.587

Procedures and processes should be allowed to be
changed often if the change brings in an improvement

0.652

Project planning should be incremental, one iteration at
a time

0.681

How much functionality is in the current working code
should be the sole criteria for determining progress of
the project

0.696

Table 5.11: Questions with the Lowest Degree of Dissatisfaction

In Table 5.11, the five questions with the lowest degree of dissatisfaction
are presented. Notably, two out of the three questions with the lowest degree of
dissatisfaction concern changes to working code for the purpose of quality im-
provement or customer satisfaction. Considering the fact that these statements
are mostly agreed to by the respondents, it seems to be generally accepted, both
in theory and in practice, that changes are inevitable in thesoftware develop-
ment process, even though they may pose difficulties.

Table 5.12 displays the five statements with the highest degree of dissatis-
faction. Out of all the queried practices, test-driven development seems to be
the practice where the difference between the preferred practice and the current
practice is most significant. Further analysis of the questionnaire data reveals
that the cause of this dissatisfaction is that test-driven development is not prac-
tically used to the extent that is desired by the respondents. As already shown
in Section 5.3, this is true both for agile- and non-agile respondents.

The question “Programming should start only after the design is com-
pleted”, is notable not only because of its high degree of dissatisfaction, but
also that because it polarized respondents to such an extent. Seven respondents
recognized this as the current practice, and would like a decrease. On the other
hand, twenty respondents felt that the programming starts too soon and should

52 Paper A

Question Dissatisfaction
Test cases should be written before writing code 1.609
Programming should start only after the design is com-
pleted

1.271

Comprehensive documentation should be an essential
part of software development

1.250

There should be general guidelines and principles for
software development but not detailed rules

1.204

Management should encourage regular interaction be-
tween developers and customers/business people

1.200

Table 5.12: Questions with the Highest Degree of Dissatisfaction

be postponed until the design is completed.
For the remaining three questions in the table, the dissatisfaction in the

practices is due to the fact that the practices are preferred, but not followed.

5.6 Conclusion

In this paper we present our analysis results from an industrial questionnaire
survey on the current software development practices and preferences, specifi-
cally in relation to testing. The survey has unique featuressuch as strategic em-
bedding of multi-purpose questions and categorisation of respondents on con-
temporary aspects which enable us to gain qualitative insights. The survey in
addition to confirming some popular beliefs also lists several noteworthy find-
ings from the perspectives of respondent categories such assafety-criticality,
agility, distribution of development, and application domain. These findings
clearly depict negative discrepancies between the currentpractices and the per-
ceptions of the respondents, thus meeting our research objective presented in
the introduction.

One of the noteworthy testing research directions from an industrial per-
spective seems to be test driven development as indicated bythe results of the
survey. Our ongoing research work attempts to refine these findings through
directed interviews as well as through further investigations in a wider context.
We are also working on the definition of a methodology for dynamically in-
corporating such findings in the management decisions on strategic challenges
such as introduction of new technologies, processes, and effort allocations in
relation to testing.

5.7 Acknowledgments 53

5.7 Acknowledgments

This work was supported by the VINNOVA through the ITEA2 project FLEXI.
The authors want to express their thanks to all the questionnaire respondents
and the people involved in earlier phases of this research.

Bibliography

[1] Adnan Causevic, Iva Krasteva, Rikard Land, A. S. M. Sajeev, and Daniel
Sundmark. An Industrial Survey on Software Process Practices, Prefer-
ences and Methods. (ISSN 1404-3041 ISRN MDH-MRTC-233/2009-1-
SE), March 2009.

[2] Geir Kjetil Hanssen. Agile Customer Engagement: a Longitudinal Quali-
tative Case Study. InIn Proceedings of International Symposium on Em-
pirical Software Engineering (ISESE) (Rio de, 2006.

[3] Kent Beck.Test Driven Development. Addison Wesley, November 2002.

[4] Jussi Ronkainen and Pekka Abrahamsson. Software development under
stringent hardware constraints: Do agile methods have a chance. InPro-
ceedings of the Fourth International Conference on ExtremeProgramming
and Agile Processes in Software Engineering 2003, pages 73–79, 2003.

[5] Laurie Williams, E. Michael Maximilien, and Mladen Vouk. Test-driven
development as a defect-reduction practice. InIn Proceedings of the 14th
IEEE International Symposium on Software Reliability Engineering, pages
34–45. IEEE Computer Society, 2003.

[6] Artem Marchenko, Pekka Abrahamsson, and Tuomas Ihme. Long-Term
Effects of Test-Driven Development A Case Study. In Will Aalst, John
Mylopoulos, Norman M. Sadeh, Michael J. Shaw, Clemens Szyperski,
Pekka Abrahamsson, Michele Marchesi, and Frank Maurer, editors, Ag-
ile Processes in Software Engineering and Extreme Programming, vol-
ume 31 ofLecture Notes in Business Information Processing, pages 13–22.
Springer Berlin Heidelberg, 2009.

55

[7] Boby George and Laurie Williams. A structured experiment of test-driven
development. Information and Software Technology, 46(5):337 – 342,
2003.

Chapter 6

Paper B:
Factors Limiting Industrial
Adoption of Test Driven
Development:
A Systematic Review

AdnanČaušević, Daniel Sundmark and Sasikumar Punnekkat
In proceedings of the International Conference on SoftwareTesting (ICST),
Berlin, Germany, March 2011

57

Abstract

Test driven development (TDD) is one of the basic practices of agile software
development and both academia and practitioners claim thatTDD, to a certain
extent, improves the quality of the code produced by developers. However, re-
cent results suggest that this practice is not followed to the extent preferred by
industry. In order to pinpoint specific obstacles limiting its industrial adoption
we have conducted a systematic literature review on empirical studies explicitly
focusing on TDD as well as indirectly addressing TDD. Our review has identi-
fied seven limiting factors viz., increased development time, insufficient TDD
experience/knowledge, lack of upfront design, domain and tool specific issues,
lack of developer skill in writing test cases, insufficient adherence to TDD pro-
tocol, and legacy code. The results of this study is of special importance to the
testing community, since it outlines the direction for further detailed scientific
investigations as well as highlights the requirement of guidelines to overcome
these limiting factors for successful industrial adoptionof TDD.

6.1 Introduction 59

6.1 Introduction

Test-driven development (TDD) is an essential part of eXtreme Programming
(XP), as proposed by Kent Beck [1]. TDD (referred as test-first programming
as well) requires the developers to construct automated unit tests in the form
of assertions to define code requirements before writing thecode itself. In this
process, developers evolve the systems through cycles of test, development and
refactoring.

In a recent industrial survey [2], we examined the difference between the
preferred and the actual level of usage for a number of contemporary test-
related practices. Out of 22 examined practices, TDD gainedthe highest score
of “dissatisfaction”(i.e., the accumulated absolute difference between the pre-
ferred and the actual level of usage). Moreover, the preferred level of usage
of TDD was significantly higher than the actual level. Hence,the nature of
this dissatisfaction could be stated as “Respondents wouldlike to use TDD to
a significantly higher extent than they actually do”.

Building upon these previous results, the aim of the currentstudy was to
investigate potential factors that are limiting the industrial adoption of TDD.
Here, a factor could translate to a method, technique, effect, experience, tool,
or similar, that either exists, or missing, or is newly introduced in a particular
organisation. The specific research question we address in this paper is:

RQ: Which factors could potentially limit the industrial adoption
of TDD?

In order to identify such limiting factors, a systematic literature review of
empirical studies on TDD was undertaken. Partly based on concerns of an in-
sufficient number of studies due to publication bias [3], thereview was not re-
stricted to studies reporting on failure to implement TDD. Instead, we decided
to expand the scope of the study and to systematically searchfor primary em-
pirical studies of TDD, including (1) studies where TDD was the main focus,
(2) studies where TDD was one of the investigated practices,and (3) studies
where TDD was used in the experimental setting while investigating something
else. In case any of the studies reported issue(s) with any specific factors, this
was noted. By qualitatively and quantitatively analysing the reported issues
on TDD within the selected papers, we have identified a numberof limiting
factors. The contributions of this paper are three-fold:

• A qualitative analysis on the effects of a set of factors on TDD, based on
reported primary studies

60 Paper B

• Identification of a set of factors limiting the adoption of TDD in industry

• Discussions on the implications for research and industry of these factors

The remainder of the paper is organised as follows: Section 6.2 provide
details of the research method used, Section 6.3 presents results and analysis
while Section 6.4 discuss the findings of our investigation.The paper is con-
cluded by Section 6.5 where conclusion and future work are presented.

6.2 Research Method

A systematic literature review is an empirical study where aresearch ques-
tion or hypothesis is approached by collecting and aggregating evidence from
a number of primary studies through a systematic search and data extraction
process. In this process we followed the guidelines for conducting a system-
atic literature review proposed by Kitchenham [3].

6.2.1 Search Process

The review process started with the development of a review protocol. This
protocol described the purpose of the review, defined the research questions as
well as preliminary inclusion and exclusion criteria, and provided details on
the search string and the databases in which it would be applied.

As for inclusion and exclusion criteria, the search aimed atidentifying full-
length English language peer-reviewed empirical studies focusing on TDD,
including academic and industrial experiments, case studies, surveys and liter-
ature reviews. Short papers (in our case, below six pages), tutorials, work-in-
progress papers, keynotes, and pure industrial lessons learned were excluded.

Source Search Date
IEEExplore 2010-02-12

ACM Digital Library 2010-02-15
ScienceDirect 2010-02-11
EI Compendex 2010-02-12
SpringerLink 2010-02-12

ISI Web of Science 2010-02-11
Wiley Inter Science Journal Finder 2010-02-16

Table 6.1: Searched databases

6.2 Research Method 61

Scientific databases in the software engineering field were selected based
on the aim of getting a wide and exhaustive coverage of published studies on
TDD. The list of selected databases is provided in Table 6.1.Within each of
these databases, a search was performed using the followingBoolean search
string:

“tdd” OR “test driven development” OR “test-driven development” OR “test
driven design” OR “test-driven design” OR “test first” OR “test-first” OR
“integration driven development” OR “integration-drivendevelopment”

The resulting list of primary studies was collected in the EndNote reference
management program in order to facilitate the paper exclusion process.

6.2.2 Paper Exclusion Process

Following the initial search, which yielded a total of 9.462papers, exclusion
was performed in multiple stages:

1. In the first stage, duplicate papers were removed, and papers were ex-
cluded based on formal criteria (e.g., exclusion of short papers) and on
title (typically off-topic papers). A total of 509 papers passed this stage.

2. In the second stage, papers were excluded based on abstracts. A total of
150 papers passed this stage.

3. In the third and final exclusion stage, papers were excluded based on
full text. In this stage, each paper was read by at least two researchers.
To assess the quality and suitability of each study with respect to the
review objective, we made use of a review form similar to the screening
questions in the quality assessment form used by Dybå and Dingsøyr in
their review of empirical studies of agile development [4].Specifically,
we investigated (1) if the paper was a research paper, (2) if it was an
evaluation of TDD, (3) if the research aims were clearly stated, and (4)
if the paper had an adequate description of context/setting. In order to
pass the stage, a paper had to fulfill both criteria (1) and (2)as well as
either (3) or (4). A total of 48 papers passed this stage.

Paper exclusion disagreements were resolved through in-depth discussions
between the authors.

62 Paper B

Extracted study details
General study information Publication type, year, author, etc.
Study setting Academic, industrial or semi-industrial
Domain of study objective Web, business system, embedded system, etc.
Study type Case study, experiment, survey or literature re-

view
Number of subjects
Length of study
Level of experience of subjects Novice, medium, experienced

Focus level of TDD in study
The main focus of the study is TDD
One focus of the study is TDD
TDD is not a focus of the study, but it is used to
study something else

Table 6.2: Extracted study details

6.2.3 Data Extraction Process

In the first step of the data extraction, study details regarding, e.g., study setting
and domain, were extracted for all included studies (see Table 6.2). In this step,
data extraction was relatively straightforward. However,in the cases where
the data of interest was omitted or unclearly stated in the primary study (e.g.,
failure to mention the level of subjects’ previous experience of TDD), the data
was omitted from extraction.

The extraction of TDD effects was more complicated. Here, a two-step
evolutionary approach was used. In the first step, each selected paper was read
by one researcher to identify explicitly stated effects of TDD observed in the
study. At this stage, there was no discrimination between negative, neutral
or positive effects of TDD. This stage of the review also extracted explicit
claims on requirements for a successful adoption of TDD. Thereason for not
only extracting negative effects of TDD was that we believe that the resulting
partial view would diminish the possibilities of performing a balanced analysis
of limiting factors. Once the first step of the data extraction was finished, 10
studies were omitted from further analysis. These studies were either studies
that were also reported in other included papers, or contained no explicitly
reported effects of TDD.

In the second step, the resulting matrix of TDD effects and primary studies
was reviewed for consistency by all authors. The aim was to make sure that the
claimed effects had been interpreted similarly in the extraction process.

6.3 Results and Analysis 63

6.2.4 Data Synthesis

Based on the 18 TDD effect areas extracted in the previous step, we defined the
limiting factors for the industrial adoption of TDD as effect areas conforming
to the following rules:

i. The effect area contained at least two studies with observations of
negative effects of or on TDD

ii. The effect area contained more studies with observations ofnegative
effects of or on TDD than it contained studies with observations of pos-
itive effects of or on TDD

iii. Negative effects in the effect area were observed in at leastone study
performed in an industrial setting.

6.3 Results and Analysis

This review identified 48 empirical studies concerning TDD.38 of those in-
cluded explicit claims on the effects of TDD. This section provides the study
details of the larger set of identified studies, as well as an analysis of the limit-
ing factors of TDD, based on the effects of TDD stated in the primary studies.

6.3.1 Empirical Studies of TDD

An overview of the primary studies on TDD included in our review is given in
Table 6.3. Out of the 48 included studies, 25 were experiments, 20 were case
studies, 2 were surveys, and one was a mix of a case study and anexperiment.
50% of the studies were performed in an academic setting, 46%were stud-
ies performed in an industrial setting and 4% were mixed academic/industrial
studies. Over half of the included studies (58%) included professional soft-
ware engineers in the group of study subjects. Most includedstudies (67%)
were studies with TDD as the primary focus of investigation.

Besides the study quality screening used for paper exclusion, we made no
further attempt of explicitly evaluating the quality of each included primary
study. Even though some additional insights might have beengained by such a
quality assessment, we believe that this value would have been limited by the
heterogeneity of the included studies.

64
P

aperB

Study Setting Type Subjects Focus level
Abrahamson et. al (2005) [5] Industrial1 Case Study Professionals TDD explicit primary focus
Bhat & Nagappan (2006) [6] Industrial Case Study Professionals TDD explicit primary focus
Canfora et. al (2006) [7] Industrial Experiment Professionals TDD explicit primary focus
Canfora et. al (2006) ISESE [8] Industrial Experiment Professionals TDD explicit primary focus
Cao & Ramesh (2008) [9] Industrial Case Study ProfessionalsTDD explicit focus, but not main focus
Chien et. al (2008) [10] Academic Experiment Students TDD explicit focus, but not main focus
Damm & Lundberg (2006) [11] Industrial Case Study Professionals TDD explicit primary focus
Damm & Lundberg (2007) [12] Industrial Case Study Professionals TDD explicit primary focus
Domino et. al (2007) [13] Academic Experiment Students TDD explicit focus, but not main focus
Domino et. al (2003) [14] Academic Experiment Students TDD not in focus, but used in study setup
Erdogmus et. al (2005) [15] Academic Experiment Students TDD explicit primary focus
Filho (2006) [16] Academic Experiment Students TDD not in focus, but used in study setup
Flohr & Schneider (2005) [17] Academic Experiment Students TDD explicit primary focus
Flohr & Schneider (2006) [18] Academic Experiment Students TDD explicit primary focus
George & Williams (2003) [19] Industrial Experiment Professionals TDD explicit primary focus
Geras et. al (2004) [20] Academic Experiment ProfessionalsTDD explicit primary focus
Gupta & Jalote (2007) [21] Academic Experiment Students TDDexplicit primary focus
Hfer & Philipp (2009) [22] Academic Experiment Mixed TDD explicit primary focus
Huang & Holcombe (2009) [23] Academic Experiment Students TDD explicit primary focus
Janzen & Saiedian (2006) [24] Academic Experiment Students TDD explicit primary focus
Janzen & Saiedian (2008) [25] Mixed Exp./Case Study Mixed TDD explicit primary focus
Janzen et. al (2007) [26] Academic Experiment Professionals TDD explicit primary focus
Kobayashi et. al (2006) [27] Industrial Case Study Professionals TDD explicit focus, but not main focus
Kollanus & Isomttnen (2008) [28] Academic Experiment Students TDD explicit primary focus
Layman et. al (2006) [29] Industrial Case Study Professionals TDD explicit focus, but not main focus
LeJeune (2006) [30] Academic Case Study Students TDD explicit focus, but not main focus

6.3
R

esults
and

A
nalysis

65

Study Setting Type Subjects Focus level
Huang et. al (2007) [31] Academic Experiment Students TDD explicit focus, but not main focus
Madeyski (2006) [32] Academic Experiment Students TDD explicit focus, but not main focus
Madeyski (2007) [33] Academic Experiment Students TDD not in focus, but used in study setup
Madeyski (2008) [34] Academic Experiment Students TDD not in focus, but used in study setup
Madeyski (2010) [35] Academic Experiment Students TDD explicit primary focus
Madeyski & Szaa (2007) [36] Industrial Case Study Professionals TDD explicit primary focus
Marchenko et. al (2009) [37] Industrial Case Study Professionals TDD explicit primary focus
Maximilien & Williams (2003) [38] Industrial Case Study Professionals TDD explicit primary focus
Miŝić (2006) [39] Mixed Survey Mixed TDD explicit focus, but not main focus
Müller & Hagner (2002) [40] Academic Experiment Students TDD explicit primary focus
Müller & Hfer (2007) [41] Academic Experiment Mixed TDD explicit primary focus
Nagappan et. al (2008) [42] Industrial Case Study Professionals TDD explicit primary focus
Salo & Abrahamsson (2007) [43] Industrial1 Case Study Professionals TDD not in focus, but used in study setup
Sanchez et. al (2007) [45] Industrial Case Study Professionals TDD explicit primary focus
Sfetsos et. al (2006) [46] Industrial Survey Mixed TDD explicit focus, but not main focus
Sherrell & Robertson (2006) [47] Academic Case Study Students TDD explicit focus, but not main focus
Siniaalto & Abrahamsson (2007) [48] Industrial Case Study Professionals TDD explicit primary focus
Siniaalto & Abrahamsson (2008) [49] Industrial Case Study Professionals TDD explicit primary focus
Slyngstad et. al (2008) [50] Industrial Case Study Professionals TDD explicit primary focus
Wastnus & Gross (2007) [51] Industrial Case Study Professionals TDD explicit primary focus
Williams et. al (2003) [52] Industrial Case Study Professionals TDD explicit primary focus
Vu et. al (2009) [53] Academic Experiment Students TDD explicit primary focus

Table 6.3: Empirical Studies of TDD

1Close-to-Industry setting as defined in [44]

66 Paper B

6.3.2 Reported Effects of and on TDD

In order to identify limiting factors of industrial adoption of TDD, all included
studies were searched for explicit claims on effects of TDD (i.e., cause-effect
relationships where TDD was the causing factor), as well as explicit claims on
effects on TDD (i.e., cause-effect relationships where some factor caused an
effect on the way TDD was performed). We denote these effect areas of TDD,
and Table 6.4 presents the 18 effect areas found in the search. A total count for
the number of studies making claims regarding each effect isalso given in the
table.

Sl.No. Description Count
1 Development time 18
2 Experience/knowledge 4
3 Design 3
4 Refactoring 2
5 Skill in testing 3
6 TDD adherence 8
7 Code quality 18
8 Cost 1
9 Code coverage 8
10 Complexity 7
11 Time for feedback 5
12 Domain and tool specific issues 10
13 Code size 3
14 Perceptions 15
15 Communication & (customer) collaboration 1
16 Legacy code 2
17 Defect reproduction 1
18 Documentation 1

Table 6.4: Areas of Effect of TDD

Again, note that effects were included in this data extraction regardless of
whether they were mentioned in a positive, neutral or negative context. As
mentioned above, the collection of included primary studies exhibited great
heterogeneity. As a consequence, description of TDD effects ranged from
purely quantitative data (e.g., ratio scale metrics on codecomplexity [25][51]
or development time [6][19]), to qualitative data based on subjects’ responses
to open-ended survey questions (e.g., nominal or ordinal scale claims on per-

6.3 Results and Analysis 67

ception of TDD [30][43]). Consequently, the items in the resulting list of effect
areas are not necessarily unique and independent. As an example, effect areas
like design, refactoring and complexity are highly related. When doubtful, we
have chosen not to group effect areas, as this would result ina less rich infor-
mation from which to derive the limiting factors of TDD.

A more detailed view of the areas of effect of TDD with respectto the
primary studies is provided in Table 6.6.

6.3.3 Factors Limiting Industrial Adoption of TDD

Based on the effect areas presented in the previous section,we identify seven
limiting factors (LF1-LF7) for industrial adoption of TDD.An overview of
these factors is given in Table 6.5. We now describe each of these limiting
factors in detail together with the observations from the primary studies as
well as providing motivations for their inclusions.

Label Description
LF1 Development time
LF2 Experience/knowledge
LF3 Design
LF4 Skill in testing
LF5 TDD adherence
LF6 Domain and tool specific issues
LF7 Legacy code

Table 6.5: Limiting Factors for TDD Adoption

68
P

aperBStudy

Effect

D
ev

el
op

m
en

t
tim

e

E
xp

er
ie

nc
e/

kn
ow

le
dg

e

D
es

ig
n

R
ef

ac
to

rin
g

S
ki

ll
in

te
st

in
g

T
D

D
ad

he
re

nc
e

C
od

e
qu

al
ity

C
os

t

C
od

e
co

ve
ra

ge

C
om

pl
ex

ity

T
im

e
fo

r
fe

ed
ba

ck

D
om

ai
n

an
d

to
ol

sp
ec

ifi
c

is
su

es

C
od

e
si

ze

P
er

ce
pt

io
ns

C
om

m
un

ic
at

io
n

&
cu

st
om

er
co

lla
bo

ra
tio

n

L
eg

ac
y

co
de

D
ef

ec
tr

ep
ro

du
ct

io
n

D
oc

um
en

ta
tio

n

Abrahamson et. al (2005) [5] - - -
Bhat & Nagappan (2006) [6] - +
Cao & Ramesh (2008) [9] - - +
Damm & Lundberg (2007) [12] -
Domino et. al (2007) [13] ! =
Erdogmus et. al (2005) [15] =
Filho (2006) [16] +
Flohr & Schneider (2005) [17] -
Flohr & Schneider (2006) [18] + = !
George & Williams (2003) [19] - + + +
Geras et. al (2004) [20] ! ! !
Gupta & Jalote (2007) [21] + -
Höfer & Philipp (2009) [22] ! ! !
Huang & Holcombe (2009) [23] - -
Janzen & Saiedian (2006) [24] + - +
Janzen & Saiedian (2008) [25] + + !
Janzen et. al (2007) [26] + +
Kobayashi et. al (2006) [27] + + +
Kollanus & Isomttnen (2008) [28] - - - !
Layman et. al (2006) [29] - - -
LeJeune (2006) [30] - + +
Madeyski (2010) [35] = -

6.3
R

esults
and

A
nalysis

69

Study

Effect

D
ev

el
op

m
en

t
tim

e

E
xp

er
ie

nc
e/

kn
ow

le
dg

e

D
es

ig
n

R
ef

ac
to

rin
g

S
ki

ll
in

te
st

in
g

T
D

D
ad

he
re

nc
e

C
od

e
qu

al
ity

C
os

t

C
od

e
co

ve
ra

ge

C
om

pl
ex

ity

T
im

e
fo

r
fe

ed
ba

ck

D
om

ai
n

an
d

to
ol

sp
ec

ifi
c

is
su

es

C
od

e
si

ze

P
er

ce
pt

io
ns

C
om

m
un

ic
at

io
n

&
cu

st
om

er
co

lla
bo

ra
tio

n

L
eg

ac
y

co
de

D
ef

ec
tr

ep
ro

du
ct

io
n

D
oc

um
en

ta
tio

n

Marchenko et. al (2009) [37] - - + + ! ! - - +
Maximilien & Williams (2003) [38] -/= ! + + +
Miŝić (2006) [39] +
Müller & Hagner (2002) [40] -/=
Müller & Höfer (2007) [41] ! ! !
Nagappan et. al (2008) [42] - ! +
Salo & Abrahamsson (2007) [43] - - +
Sanchez et. al (2007) [45] - + +
Sfetsos et. al (2006) [46] - + - !
Sherrell & Robertson (2006) [47] -
Siniaalto & Abrahamsson (2007) [48] + -
Siniaalto & Abrahamsson (2008) [49] ! !
Slyngstad et. al (2008) [50] + +
Wastnus & Gross (2007) [51] + + + + + - +/-
Williams et. al (2003) [52] = + +
Vu et. al (2009) [53] - + - +/! - ! +

Table 6.6: Mapping Between Effect Observations and PrimaryStudies

Table legend:
+ positive mentioning of a particular effect = no effect was reported for a particular effect
- negative mentioning of a particular effect ! effect was mentioned as an important observation

70 Paper B

LF1: Increased development time
Description: By development time, we refer to the time required to im-
plement a given set of requirements. Time required for development of
software product is relatively easy to measure. It is however a matter of
discussion whether the time for corrective re-work (e.g., based on failure
reports from later testing stages) should be included in thedevelopment
time or not.
Observations: Nine included primary studies in the review reported
negative experience with respect to the time for development. Six were
industrial studies with professionals (five case studies and one experi-
ment) and three were academic studies with students (two experiments
and one case study). Five studies did report positive effecton develop-
ment time when using TDD, but this was mostly when the overallproject
time was captured.
Discussion: Development time could be considered a business-critical
factor for adopting new practices within an organisation. Depending on
the maturity of the organization, an up-front loss (in this case, increased
development time) might overshadow a long-term gain (e.g.,decreased
overall project time, or increased product quality both of which were re-
ported in many of our included studies). Hence, internal organizational
pressure might risk the proper usage of TDD.

LF2: Insufficient TDD experience/knowledge
Description: By TDD experience/knowledge, we refer to the degree of
practical experience, as a developer or similar. or theoretical insight in
TDD.
Observations: Two industrial case studies with professional develop-
ers attributed problems of implementing TDD to lack of TDD educa-
tion/experience. Moreover, two other studies report significant differ-
ences in the way of applying TDD between experienced TDD develop-
ers and novice TDD developers.
Discussion: When observing collected data from the included primary
studies, we noticed that participants in the experiments (either students
or professionals) were mostly provided with some training or tutorial on
how to perform TDD. In several cases [43], the knowledge improved as
participants would progress with the experiment. We expectthat lack of
knowledge or experience with TDD could create problems in its adop-
tion.

6.3 Results and Analysis 71

LF3: Insufficient design
Description: Design, in this context, refers to the activity of structur-
ing (or re-structuring) the system or software under development or in
evolution in order to avoid architectural problems, and to improve archi-
tectural quality. Detailed up-front software design is a common practice
of plan-driven development methodologies. TDD emphases ona small
amount of up-front design, and frequent refactoring to keepthe architec-
ture from erosion.
Observations: Three primary studies reported architectural problems
when using TDD. These were two academic experiments with students
and one industrial case study with professionals.
Discussion: There is no massive empirical support that the lack of design
should be considered as a limiting factor for industrial adoption of TDD.
However, there are a handful of studies reporting problems regarding
lack of design in TDD, particularly in the development of larger, more
complex systems. Moreover, the lack of upfront design has been one of
the main criticisms of TDD since its introduction and even ifthe evi-
dence supporting this criticism is sparse, so is the evidence contradicting
it [57].

LF4: Insufficient developer testing skills
Description: By developer testing skill, we refer to the developer’s abil-
ity to write efficient and effective automated test cases.
Observations: Two of the included primary studies report negative ex-
periences with developers’ testing. One study is an academic experiment
with student subjects, where it is reported that students expressed diffi-
culties to come up with good test cases. The other study is an industrial
case study with mixed professional and student subjects where lack of
developer testing skills was stated as a limiting factor.
Discussion: Since TDD is a design technique where the developer un-
dertakes development by first creating test cases and then writes code
that makes the test cases pass, it relies on the ability of thedeveloper to
produce sufficiently good test cases. Additionally, Geras [20] reports on
the risk it brings to adopt TDD without having adequate testing skills and
knowledge. We find it interesting that there are no explicit investigations
of the quality of test cases produced by developers in TDD.

72 Paper B

LF5: Insufficient adherence to the TDD protocol
Description: By adherence to the TDD protocol, we refer to the de-
gree to which the steps of the TDD practice are followed. For example,
are test cases always created and exercised to failure before the corre-
sponding code is written? TDD is a defined practice with fairly exact
guidelines on how it should be executed.
Observations: Related to this limiting factor, there are two types of ob-
servations that are of relevance. First, three industrial case studies, with
professionals as subjects, report negative experiences with developer ad-
herence to the TDD protocol. Reasons for abandoning the TDD protocol
included time pressure, lack of discipline, and shortage ofperceived ben-
efits. Second, two additional industrial case studies, withprofessionals
as subjects, reported correlations between low TDD adherence and low
quality. It is noteworthy that these observations were madein organiza-
tions where TDD was the preferred development method.
Discussion: The combined view of the five above mentioned industrial
case studies motivate the inclusion of the lack of TDD adherence as a
limiting factor. Basically, the studies state that (1) it isimportant to ad-
here to the TDD protocol, and (2) developers do stray from theprotocol
in several situations. It is however far from certain that there is a clean-
cut cause-effect relationship between low TDD adherence and low qual-
ity. Not unlikely, confounding factors (e.g., tight development deadlines)
might lead to both low TDD adherence and poor quality.

LF6: Domain- and tool-specific limitations
Description: By domain- and tool-specific limitations, we refer to tech-
nical problems in implementing TDD (e.g., difficulties in performing
automated testing of GUIs). Generally, the TDD practice requires some
tool support in the form of automation framework for test execution.
Observations: Nine studies reported negative experiences with respect
to domain and tool-specific issues. Five of them were industrial case
studies with professionals as subjects, one was an industrial survey with
both student and professional respondents and three were academic ex-
periments with student subjects. The single most reported issue is the
problem of automatically testing GUI applications, but also networked
applications seem to be problematic in terms of automated testing.
Discussion: Proper tool support for test automation is vital for the suc-
cessful adoption of TDD. With the wide variety of studies reporting
domain- and tool-specific issues as a limiting factor in the adoption of

6.4 Discussion 73

TDD, the factor would be difficult to ignore.

LF7: Legacy code
Description: By legacy code, we refer to the existing codebase in a de-
velopment organization. Legacy code often represent decades of devel-
opment efforts and investments, and serve as a backbone bothin existing
and future products.
Observation: Two industrial case studies with professionals as sub-
jects report problems with handling the legacy codebase in an adoption
of TDD. Particularly, the automated regression test suiteson unit level
(which are natural consequences of long-term TDD development), are
often missing for legacy code.
Discussion: TDD, in its original form, does not discuss how to handle
legacy code. Instead, the method seems to assume that all code is de-
veloped from scratch, using TDD as the development method. As this
is seldom the case in large development organization, adoption of TDD
might be problematic. A lack of automated regression suitesfor legacy
code hampers the flexibility provided by the quick feedback on changes
provided by the regression suites, and may leave developersmore anx-
ious about how new changes may unexpectedly affect existingcode.

6.4 Discussion

In this section we are discussing threats to validity of our research as well as
implications of our results on research and industry.

6.4.1 Threats to Validity

Typically, four types of validity are discussed in empirical research (i.e.,con-
struct validity, internal validity external validity and reliability) [54]. Below,
the threats to these validities in our study are discussed.

Construct Validity refers to the correctness in the mapping between the
theoretical constructs that are to be investigated, and theactual observations of
the study. In a systematic review, the validity of the study constructs is inherited
from the construct validity in the included primary studies. In our case, this
validity threat concerned both the actual treatment of the primary studies (i.e.,
TDD) and the effect on study outcomes (e.g, quality or development time).

First, in order to measure the effects of TDD in an empirical study, one must
be sure that TDD is actually used within the study. This problem was handled

74 Paper B

differently in different studies. Some studies merely assumed that TDD was
used by the set of subjects as instructed [16], some studied used manual su-
pervision [5], and some studies used elaborate tools to ensure TDD adherence
[20]. Second, with respect to outcome measures (i.e., the effects of TDD), the
construct validity is different for different constructs.Most metrics for, e.g.,
complexity are formally defined and measured, and are hence not subjects to
threats to construct validity. However, constructs like design quality and devel-
oper skill are subject to interpretation in each primary study. In the review, we
sought to mitigate this threat by performing the data extraction in two phases,
with the second phase focusing on a conformance in the interpretation of pri-
mary study constructs between the authors.

Internal Validity concerns the proper analysis of data. Given the het-
erogeneity of the included primary studies in the review, internal validity is
a subject of concern, particularly in statistical analysisof the extracted data.
However, we draw no generalized statistical conclusions regarding the effects
of TDD. Rather, our contribution is a set of directions for future research and
industrial guidelines, based on a qualitative analysis of the extracted data.

External Validity relates to the possibility to generalize the study results
outside its scope of investigation. The variety of study setting, type and domain
serves to limit the external validity threat of the review, particularly in the cases
where limiting factors are found across several studies in different domains.
Also, by collecting study details, we had the possibility todifferentiate results
based on particular study details.

Reliability concerns the degree of certainty with which a replication of
this study, e.g., by a different set of researchers, would yield the same study
outcome. As the search strategy, as well as the inclusion andexclusion criteria,
is explicitly given in this study, the main reliability threat concerns the analysis
resulting in the aggregation from reported effects of TDD tolimiting factors.
Particularly effects with low construct validity may be interpreted differently
in replicated reviews. Hence, we have sought to describe theresearch process,
including the data analysis, in a transparent manner.

6.4.2 Implications for Research

Test driven development was and still is under constant investigation of re-
searchers who are providing evidence of claimed benefits which this practice
can bring to a software development team. These benefits can be also seen
in our mapping table (Table V) between effect observations and primary stud-
ies. Most noticeable positive effect is a code quality improvement which is

6.4 Discussion 75

one of the reasons why TDD is gaining interest. Also we can seethat primary
studies are reporting a positive perception of participants towards TDD. This
is something our previous study [2] also revealed.

Having those two benefits empirically addressed (quality improvement and
positive perception of practice) we propose that the next empirical evaluation
on TDD should include a direct investigation on the impact ofthe limiting
factors we presented in Section 6.3.

Next studies could focus on a limiting factor of developmenttime (LF1) to-
gether with the lack of TDD experience factor (LF2) to investigate if the actual
learning curve could be generating additional time for the development. How-
ever, it is important for researchers to clearly state if increased development
time was reported during unit development or it is reflected on overall project.
This is something we had difficulties extracting from primary studies.

By providing more complex algorithms or working in a different domain
of investigation (safety-critical systems on embedded device for example) re-
searchers could investigate how lack of up-front design (LF3) influence adop-
tion of TDD. Even in a student experiment setup, Kollanus [28] noted that
slightly complex application required more of up-front design.

TDD is a development technique which requires from developers to write
test cases. We noticed that primary studies are not directlyinvestigating how
these test cases are designed and whether designing test cases for TDD is dif-
ferent from how experienced testers are performing it. By investigating LF4
with independent teams of experienced testers and developers with the focus
on efficiency and quality of test design, researchers could gain insights on is-
sues such as 1) whether lack of quality in tests is limiting adoption of TDD,
and 2) the right level of testing education required for developers to perform
TDD.

Regarding LF5, TDD adherence needs to be further evaluated.A first step
would be to make sure that all studies examining the effects of TDD also has
some means of measuring TDD adherence in the experimental setting. Par-
ticularly in industrial case studies, it would be valuable to investigate TDD
adherence over time, with variations in, e.g., TDD experience, workload and
type of development task. Such observations should be correlated with result-
ing measurements on quality and development time.

Regarding the more technical limiting factors (i.e., the domain- and tool-
specific issues (LF6), and the lack of automated regression suites for legacy
code (LF7)), it is our belief that research could contributewith improved meth-
ods and techniques for different aspects of test automation, including auto-
mated test case generation, test case execution and test case evaluation.

76 Paper B

6.4.3 Implications for Industry

This review identifies a set of potentially limiting factorsof industrial adoption
of TDD, based on aggregated observations from TDD usage in various different
settings. Consequently, a set of industrial guidelines canbe derived from the
study results.

First, the limiting factors that are controllable and specific to the adopting
organization should be taken into account prior to TDD adoption. Specifically,
proper training on TDD practice (relating to LF2) and test case design (relat-
ing to LF4) should be provided before the adoption. Additionally, strategic
recruitments of experienced TDD developers, who might serve as TDD men-
tors could limit the problems related to lack of TDD experience. Moreover,
TDD adoption should be considered in the light of the organizational domain
(relating to LF6). For example, are the developed systems heavy on graphical
user interaction? Is there proper tool support in the existing development in-
frastructure for the level of test automation required by TDD? In addition, if
the adopting organization includes a significant legacy codebase lacking auto-
mated regression test suites (relating to LF7), there should be a strategy of how
to handle this that does not collide with the TDD developmentprotocol.

Second, the limiting factors that are general and TDD-inherent should be
considered and monitored in the adopting organization (with respect to that or-
ganization’s motives for adopting TDD). Specifically, it should be considered
whether a small increase in (unit-level) development time,if observed, would
be acceptable to reach other expected benefits of TDD (relating to LF1). More-
over, it would be advisable to track the architectural quality (both based on
metrics of architectural quality attributes and developerperception) to ensure
that the lack of upfront design does not lead to architectural erosion (relating to
LF3). In addition, although the enforcing TDD protocol uponthe developers
might not be a good idea, it might still be advisable to keep track of the effects
on, e.g., quality, in situations where the TDD protocol is not followed (relating
to LF5).

6.5 Conclusion

In this paper we present our analysis results from a systematic review of the em-
pirical studies reported in the literature on the effects ofvarious factors on Test
Driven Development. We identified 18 effects, out of which 7 were deemed
as limiting factors on the industrial adoption of TDD. Thesefactors were in-
creased development time, insufficient TDD experience/knowledge, lack of up-

6.6 Acknowledgments 77

front design, domain and tool specific issues, lack of developer skill in writing
test cases, insufficient adherence to TDD protocol, and legacy code. We also
provided reasons for their inclusion as well as discussionson the various im-
plications of these factors. We also outlined the future research and industrial
challenges in the light of these findings.

From the perspective of the software testing community, this study throws
open the following interesting research challenges to be addressed:

• What is the optimum level of testing knowledge essential fora TDD
developer to be efficient?

• Are there any fundamental changes warranted by the TDD approach in
the test design techniques?

• How to integrate the TDD perspective of testing and the testers’ perspec-
tive of traditional development to provide a unified theory for bringing
synergy between development and testing efforts in a more productive
manner?

• In what new roles [55] and how testers could contribute with their knowl-
edge and experience in the adoption of TDD process within an organisa-
tion?

6.6 Acknowledgments

This work was supported by MRTC (Mlardalen Real-Time Research Centre)
and the SWELL (Swedish software Verification & Validation ExceLLence)
research school. Authors would like to express their gratitude to Dr. Stig
Larsson for valuable comments to the review protocol.

Bibliography

[1] Kent Beck and Cynthia Andres.Extreme Programming Explained: Em-
brace Change (2nd Edition). Addison-Wesley Professional, 2004.

[2] Adnan Causevic, Daniel Sundmark, and Sasikumar Punnekkat. An Indus-
trial Survey on Contemporary Aspects of Software Testing. In Proceed-
ings of the 3rd International Conference on Software Testing, Verification
and Validation (ICST), pages 393–401, 2010.

[3] Barbara Kitchenham and Stuart Charters. Guidelines forperforming Sys-
tematic Literature Reviews in Software Engineering. Technical Report
EBSE 2007-001, Keele University and Durham University Joint Report,
2007.

[4] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software de-
velopment: A systematic review.Information and Software Technology,
50(9-10):833 – 859, 2008.

[5] Pekka Abrahamsson, Antti Hanhineva, and Juho Jäälinoja. Improv-
ing Business Agility Through Technical Solutions: A Case Study on
Test-Driven Development in Mobile Software Development. In Busi-
ness Agility and Information Technology Diffusion, volume 180/2005 of
IFIP International Federation for Information Processing, pages 227–
243. Springer Boston, 2006.

[6] Thirumalesh Bhat and Nachiappan Nagappan. Evaluating the efficacy
of test-driven development: Industrial case studies. InISCE’06 - 5th
ACM-IEEE International Symposium on Empirical Software Engineer-
ing, September 21, 2006 - September 22, 2006, volume 2006 ofISCE’06
- Proceedings of the 5th ACM-IEEE International Symposium on Empir-

79

80 Bibliography

ical Software Engineering, pages 356–363, Rio de Janeiro, Brazil, 2006.
Association for Computing Machinery.

[7] Gerardo Canfora, Aniello Cimitile, Felix Garcia, MarioPiattini, and Cor-
rado Aaron Visaggio. Evaluating advantages of test driven development:
A controlled experiment with professionals. ISCE’06 - Proceedings of
the 5th ACM-IEEE International Symposium on Empirical Software En-
gineering, 2006.

[8] G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C. A.Visaggio. Pro-
ductivity of test driven development: A controlled experiment with pro-
fessionals. Product-Focused Software Process Improvement, Proceed-
ings, 4034:383–388, 2006.

[9] Lan Cao and Balasubramaniam Ramesh. Agile requirementsengineering
practices: An empirical study.IEEE Software, 25(Compendex):60–67,
2008.

[10] L. R. Chien, D. J. Buehrer, C. Y. Yang, and C. M. Chen. An Evaluation
of TDD Training Methods in a Programming Curriculum.2008 Ieee In-
ternational Symposium on It in Medicine and Education, Vols1 and 2,
Proceedings, pages 660–665, 2008.

[11] Lars-Ola Damm and Lars Lundberg. Results from introducing
component-level test automation and Test-Driven Development. Journal
of Systems and Software, 79(7):1001–1014, 2006.

[12] Lars-Ola Damm and Lars Lundberg. Quality impact of introducing
component-level test automation and test-driven development. Software
Process Improvement, Proceedings, 4764:187–199, 2007.

[13] Madeline Domino, Rosann Collins, and Alan Hevner. Controlled experi-
mentation on adaptations of pair programming.Information Technology
and Management, 8:297–312, 2007.

[14] Madeline Ann Domino, Rosann Webb Collins, Alan R. Hevner, and Cyn-
thia F. Cohen. Conflict in collaborative software development, 2003.

[15] Hakan Erdogmus, Maurizio Morisio, and Marco Torchiano. On the Effec-
tiveness of the Test-First Approach to Programming.IEEE Transactions
on Software Engineering, 31:226–237, 2005.

Bibliography 81

[16] Wilson P. Paula Filho. Quality gates in use-case drivendevelopment.
In Proceedings of the 2006 international workshop on Softwarequality,
WoSQ ’06, pages 33–38, New York, NY, USA, 2006. ACM.

[17] Thomas Flohr and Thorsten Schneider. An XP Experiment with Students
Setup and Problems. In Frank Bomarius and Seija Komi-Sirvi¨o, editors,
Product Focused Software Process Improvement, volume 3547 ofLecture
Notes in Computer Science, pages 95–111. Springer Berlin / Heidelberg,
2005.

[18] Thomas Flohr and Thorsten Schneider. Lessons Learned from an XP
Experiment with Students: Test-First Needs More Teachings. In Jrgen
Münch and Matias Vierimaa, editors,Product-Focused Software Process
Improvement, volume 4034 ofLecture Notes in Computer Science, pages
305–318. Springer Berlin / Heidelberg, 2006.

[19] B. George and L. Williams. A structured experiment of test-driven devel-
opment.Information and Software Technology, 46(5):337–342, 2003.

[20] A. Geras, M. Smith, and J. Miller. A Prototype EmpiricalEvaluation of
Test Driven Development. InProceedings of the Software Metrics, 10th
International Symposium, pages 405–416, Washington, DC, USA, 2004.
IEEE Computer Society.

[21] Atul Gupta and Pankaj Jalote. An Experimental Evaluation of the Effec-
tiveness and Efficiency of the Test Driven Development. InProceedings
of the First International Symposium on Empirical SoftwareEngineering
and Measurement, ESEM ’07, pages 285–294, Washington, DC, USA,
2007. IEEE Computer Society.

[22] Andreas Höfer and Marc Philipp. An Empirical Study on the TDD Con-
formance of Novice and Expert Pair Programmers. In Will Aalst, John
Mylopoulos, Norman M. Sadeh, Michael J. Shaw, Clemens Szyperski,
Pekka Abrahamsson, Michele Marchesi, and Frank Maurer, editors,Ag-
ile Processes in Software Engineering and Extreme Programming, vol-
ume 31 ofLecture Notes in Business Information Processing, pages 33–
42. Springer Berlin Heidelberg, 2009.

[23] Liang Huang and Mike Holcombe. Empirical investigation towards the
effectiveness of Test First programming.Inf. Softw. Technol., 51:182–
194, January 2009.

82 Bibliography

[24] David S. Janzen and Hossein Saiedian. On the Influence ofTest-Driven
Development on Software Design.Software Engineering Education and
Training, Conference on, pages 141–148, 2006.

[25] D. S. Janzen and H. Saiedian. Does test-driven development really im-
prove software design quality?IEEE Software, 25(2):77–84, 2008.

[26] David S. Janzen, Clark S. Turner, and Hossein Saiedian.Empirical soft-
ware engineering in industry short courses. Software Engineering Edu-
cation Conference, Proceedings, pages 89–96, 2007.

[27] Osamu Kobayashi, Mitsuyoshi Kawabata, Makoto Sakai, and Eddy
Parkinson. Analysis of the interaction between practices for introducing
XP effectively. ICSE ’06, pages 544–550, 2006.

[28] Sami Kollanus and Ville Isomöttönen. UnderstandingTDD in academic
environment: experiences from two experiments. InProceedings of the
8th International Conference on Computing Education Research, Koli
’08, pages 25–31, New York, NY, USA, 2008. ACM.

[29] Lucas Layman, Laurie Williams, and Lynn Cunningham. Motivations
and measurements in an agile case study.Journal of Systems Architecture,
52(11):654–667, 2006.

[30] Noel F LeJeune. Teaching software engineering practices with Extreme
Programming.J. Comput. Small Coll., 21(3):107–117, 2006.

[31] Liang Huang, C. Thomson, and M. Holcombe. How good are your
testers? An assessment of testing ability. InTAIC-PART 2007, pages
82 –88, 2007.

[32] Lech Madeyski. [the impact of pair programming and test-driven devel-
opment on package dependencies in object-oriented design -an experi-
ment.

[33] Lech Madeyski. On the effects of pair programming on thoroughness
and fault-finding effectiveness of unit tests.Product-Focused Software
Process Improvement, Proceedings, 4589:207–221, 2007.

[34] Lech Madeyski. Impact of pair programming on thoroughness and fault
detection effectiveness of unit test suites.Software Process: Improvement
and Practice, 13(3):281–295, 2008.

Bibliography 83

[35] Lech Madeyski. The impact of Test-First programming onbranch cover-
age and mutation score indicator of unit tests: An experiment. Inf. Softw.
Technol., 52:169–184, February 2010.

[36] Lech Madeyski and Ł ukasz Szał a. The impact of test-driven develop-
ment on software development productivity - An empirical study. Soft-
ware Process Improvement, Proceedings, 4764:200–211, 2007.

[37] Artem Marchenko, Pekka Abrahamsson, and Tuomas Ihme. Long-Term
Effects of Test-Driven Development A Case Study. In Will Aalst, John
Mylopoulos, Norman M. Sadeh, Michael J. Shaw, Clemens Szyperski,
Pekka Abrahamsson, Michele Marchesi, and Frank Maurer, editors,Ag-
ile Processes in Software Engineering and Extreme Programming, vol-
ume 31 ofLecture Notes in Business Information Processing, pages 13–
22. Springer Berlin Heidelberg, 2009.

[38] E. M. Maximilien and L. Williams. Assessing test-driven development at
IBM. 25th International Conference on Software Engineering, Proceed-
ings, pages 564–569, 2003.

[39] Vojislav B. Mišić. Perceptions of extreme programming: an exploratory
study.SIGSOFT Softw. Eng. Notes, 31:1–8, March 2006.

[40] M.M. Müller and O. Hagner. Experiment about test-firstprogramming.
Software, IEE Proceedings -, 149(5):131 – 136, October 2002.

[41] Matthias Müller and Andreas Höfer. The effect of experience on the test-
driven development process.Empirical Software Engineering, 12:593–
615, 2007.

[42] Nachiappan Nagappan, E. Maximilien, Thirumalesh Bhat, and Laurie
Williams. Realizing quality improvement through test driven develop-
ment: results and experiences of four industrial teams.Empirical Soft-
ware Engineering, 13(3):289–302, 2008.

[43] Outi Salo and Pekka Abrahamsson. An iterative improvement process for
agile software development.Software Process: Improvement and Prac-
tice, 12(1):81–100, 2007.

[44] Outi Salo and Pekka Abrahamsson. Empirical Evaluationof Agile Soft-
ware Development: A Controlled Case Study Approach. In5th Inter-
national Conference on Product Focused Software Process Improvement,
2004.

84 Bibliography

[45] Julio Cesar Sanchez, Laurie Williams, and E. Michael Maximilien. On
the sustained use of a test-driven development practice at IBM. Proceed-
ings - AGILE 2007, pages 5–14, 2007.

[46] P. Sfetsos, L. Angelis, and I. Stamelos. Investigatingthe extreme pro-
gramming system - An empirical study.Empirical Software Engineering,
11(2):269–301, 2006.

[47] Linda B. Sherrell and Jeff J. Robertson. Pair programming and agile
software development: experiences in a college setting.J. Comput. Small
Coll., 22(2):145–153, 2006.

[48] Maria Siniaalto and Pekka Abrahamsson. A comparative case study on
the impact of test-driven development on program design andtest cover-
age. Proceedings - 1st International Symposium on Empirical Software
Engineering and Measurement, ESEM 2007, pages 275–284, 2007.

[49] M. Siniaalto and P. Abrahamsson. Does test-driven development improve
the program code? Alarming results from a comparative case study. Bal-
ancing Agility and Formalism in Software Engineering, 5082:143–156,
2008.

[50] Odd Petter N. Slyngstad, Jingyue Li, Reidar Conradi, Harald Rnneberg,
Einar Landre, and Harald Wesenberg. The impact of test driven devel-
opment on the evolution of a reusable framework of components - An
industrial case study. Proceedings - The 3rd InternationalConference on
Software Engineering Advances, ICSEA 2008, pages 214–223,2008.

[51] H. Wastnus and H. G. Gross. Evaluation of test-driven development -
An industrial case study.Enase 2007: Proceedings of the Second In-
ternational Conference on Evaluation of Novel Approaches to Software
Engineering, pages 103–110, 2007.

[52] Laurie Williams, E. Michael Maximilien, and Mladen Vouk. Test-driven
development as a defect-reduction practice. InIn Proceedings of the
14th IEEE International Symposium on Software ReliabilityEngineering,
pages 34–45. IEEE Computer Society, 2003.

[53] John Huan Vu, Niklas Frojd, Clay Shenkel-Therolf, and David S. Janzen.
Evaluating Test-Driven Development in an Industry-Sponsored Capstone
Project. InProceedings of the 2009 Sixth International Conference on
Information Technology: New Generations, pages 229–234, Washington,
DC, USA, 2009. IEEE Computer Society.

[54] Claes Wohlin, Per Runesson, Martin Höst, Magnus C. Ohlsson, Björn
Regnell, and Anders Wesslén.Experimentation in Software Engineering
– An Introduction. Kluwer Academic Publishers, 2000.

[55] Adnan Causevic, Abdulkadir Sajeev, and Sasikumar Punnekkat. Redefin-
ing the role of testers in organisational transition to agile methodologies.
In International Conference on Software, Services & SemanticTechnolo-
gies (S3T), October 2009.

Chapter 7

Paper C:
Impact of Test Design
Technique Knowledge on
Test Driven Development:
A Controlled Experiment

AdnanČaušević, Daniel Sundmark and Sasikumar Punnekkat
In submission

87

Abstract

Agile development approaches, in spite of the skepticism ontheir appropri-
ateness in high reliability applications, are increasingly being followed and
favored by the industry. Test Driven Development (TDD) is a key agile prac-
tice and recent research results suggest that the successful adoption of TDD
depends on different limiting factors, one of them being insufficient developer
testing skills. The goal of this paper is to investigate if developers who are
educated on general testing knowledge will be able to utilize TDD more effec-
tively. We conducted a controlled experiment with master students during the
course on Software Verification & Validation (V&V) where source code and
test cases created by each participant during the labs as well as their answers
on a survey questionnaire were collected and analyzed.

Descriptive statistics indicate improvements in statement coverage. How-
ever, no statistically significant differences could be established between the
pre- and post-course groups of students. By qualitative analysis of students’
tests, we noticed a lack of negative test cases resulting in non-detection of bugs.
Students did show preference towards TDD in surveys. The experiment was
conducted in an academic setting with student subjects, potentially threatening
the external validity of the results.

Although further research is required to fully establish this, we believe that
identifying specific testing knowledge which is complementary to the testing
skills of a new TDD developer would enable developers to perform their tasks
in a more efficient manner resulting in improved reliabilityof software prod-
ucts.

7.1 Motivation 89

7.1 Motivation

Test Driven Development (TDD), also known as test-first programming, is an
essential part of eXtreme Programming (XP) [1]. TDD requires the develop-
ers to construct automated unit tests in the form of assertions to define code
requirements before writing the code itself. In this process, developers evolve
the systems through cycles of test, development and refactoring. In a recent
industrial survey [2], we examined the difference between the preferred and
the actual level of usage for several test-related practices. Among the 22 exam-
ined practices, surprisingly, TDD gained the highest scoreof ‘dissatisfaction’.
This means that the accumulated absolute difference between the preferred and
the actual levels of usage was highest in the case of TDD. The nature of this
dissatisfaction could be stated as “Respondents would liketo use TDD to a
significantly higher extent than they actually do currently”.

Subsequently we explored the current body of knowledge through an em-
pirical systematic literature review [3] to identify the limiting factors which
prevents the successful adoption of TDD. Insufficient developer testing skill
was identified as one of the important limiting factors as part of the study.

7.1.1 Problem Statement

TDD in its essence teaches developers how to perform software development
providing some indirect basic testing skills, for example based onpositive test-
ing (i.e. testing to show that the software “works” using valid input). We are
interested in identifying specific testing knowledge whichis complementary
to the testing skills of a new TDD developer. We believe that such a strat-
egy would enable developers to perform their tasks in a more efficient manner
resulting in higher quality of software products.

7.1.2 Research Objective

Using the form originated from GQM [4], the research objective of this study
can be expressed as follows:

To analyzethe effect of testing knowledge on TDDfor the pur-
pose ofevaluation of factors affecting the outcome of TDDwith
respect to thefactors’ limiting effect on the usage of TDDfrom the
point of view of the software developerin the context ofeXtreme
Programming software development.

90 Paper C

7.1.3 Context

To perform analysis with respect to the above objective, an experiment was
organised as lab activities with master students enrolled in the Software Ver-
ification and Validation course at Mälardalen University during the autumn
semester of 2010.

7.1.4 Paper Outline

This paper is structured according to the reporting guidelines provided by
Jedlitschka and Pfahl [5] (although some minor deviations from the reporting
guidelines were made). In section 7.2 we present the relatedresearch works
followed by the experimental design in section 7.3. Section7.4 presents the
details of execution of our experiment. The treatment and analysis of the col-
lected data are given in section 7.5. In section 7.6, we present statistical infer-
ences followed by conclusions and future research planned in section 7.7.

7.2 Related Work

Test-driven development is a practice derived from experience which makes it
very difficult to prove its efficiency in a formal way. This is one of the reasons
why many experiments on TDD are conducted in order to provideempirical
evidence of its claimed quality improvements.

In this section we present related work on empirical investigations of TDD
identified in our recent systematic literature review [3], grouped w.r.t two as-
pects: (i) related to testing knowledge and (ii) general experiments on TDD.

7.2.1 TDD and testing knowledge

Sfetsos et al. [6] performed an industrial survey on advantages and difficulties
that software companies experienced when applying XP. Test-first was among
the investigated practices. During interviews, developers pointed to difficulties
in writing tests at the very beginning of the project.

Geras et al. [7] performed an experiment with professionalsin academic
environment providing subjects with two programs for development, one using
test-last and one using test-first process. One of the conclusions made from the
experiment is that without adequate training and having proper testing skills it
is risky to adopt TDD.

7.3 Experimental Design 91

Kollanus & Isomöttönen [8] analysed students’ perceptions and difficulties
on TDD in an educational context experiment. As part of theirconclusions
they present different difficulties students had when designing tests. Generally,
students find it difficult to design appropriate test cases and to design tests in
small steps.

7.2.2 Experiments in TDD

In Table 7.1 we present experiments in TDD selected from [3] outlining ex-
periment environment (industrial or academic) and type of subjects (students,
professionals or mixed). A brief description of the aim and major results of
each TDD study is also presented.

7.3 Experimental Design

This section details the design of the experiment. Further practical experiment
setup information, e.g., for replication purposes, can be found at the first au-
thor’s webpage1.

7.3.1 Goals, Hypotheses, Parameters, and Variables

The goal of the experiment was to test the effect of knowledgein software
testing ondevelopment speed, artefact qualityanddeveloper perceptionwhen
using TDD. In order to do so, the following null and alternative hypotheses
were formulated:

• Development Speed:

– Hs
0. When using TDD, there is no significant difference between

the development speed of developers with or without knowledge in
software testing.

– Hs
a. When using TDD, developers with knowledge in software

testing develop faster.

1http://www.mrtc.mdh.se/˜acc01/tddexperiment/

92
P

aperC
Authors Year Experiment settings Subjects

Müller & Hagner [9] 2002 Academic Students
Aim: To evaluate benefits of test-first programming compared to traditional approach.
Results:Test-first does not accelerate programming, produced programs are not more reliable but test-first support better under-
standing of program.
George & Williams [10] 2003 Industrial Professionals
Aim: To evaluate quality improvements of test-driven development compared to a waterfall-like approach.
Results: Test-driven development produces higher quality code withthe tendency of developers spending more time on coding.
Geras et al. [7] 2004 Academic Professionals
Aim: To investigate developer productivity and software quality when comparing test-driven and traditional development ap-
proaches.
Results: There were little or no differences in developer productivity but frequency of unplanned test failure was lower for
test-driven development.
Erdogmus et al. [11] 2005 Academic Students
Aim: To evaluate functional tests in test-driven development when compared to traditional test-last approach.
Results: Test-first students created on an average more tests and tended to be more productive. There was no significant
difference in quality of produced code between two groups.
Flohr & Schneider [12] 2006 Academic Students
Aim: To investigate the impact of test-first compared to clasical-testing approach.
Results: No significant differences could be established, but students did show a preference towards test-first approach.
Janzen & Saiedian [13] 2006 Academic Students
Aim: To examine the effects of TDD on internal quality of softwaredesign.
Results:Positive correlation between productivity and TDD, but no differences in internal quality. Perception on TDD was more
positive after the experiment.
Müller & Höfer [14] 2007 Academic Mixed
Aim: To investigate the conformance to TDD of professionals and novice TDD developers.
Results: Experts complied more to the rules of TDD and produced test with higher quality.

7.3
E

xperim
entalD

esign
93

Janzen et al. [15] 2007 Academic Professionals
Aim: To investigate effects of TDD on internal code quality.
Results: Programmers’ opinions on TDD improved after the experimentbut internal code quality had no significant difference
between test-first and test-last approach.
Gupta & Jalote [16] 2007 Academic Students
Aim: To evaluate the impact of TDD on designing, coding and testing when compared with traditional approach.
Results: TDD improves productivity and reduce overall development effort. Code quality is affected by test effort regardless of
the development approach in use.
Kollanus & Isomöttönen [8] 2008 Academic Students
Aim: To improve understanding on TDD in educational context.
Results: Students expressed difficulties with following TDD approach and designing proper tests. Regardless, they believed in
the claimed benefits of TDD.
Höfer & Philipp [17] 2009 Academic Mixed
Aim: To compare conformance to TDD of experts and novice programmers.
Results: Experts refactored their code more than novice programmers, but they were also significantly slower.
Huang & Holcombe [18] 2009 Academic Students
Aim: To investigate the effectiveness of test-first approach compared to the traditional (test-last) development.
Results: Test-first teams spent more time on testing than coding compared to test-last teams. There was no linear correlation
between effort spent on software testing and the software external quality.
Vu et al. [19] 2009 Academic Students
Aim: To investigate how test-first and test-last methodologies affects internal and external quality of the software.
Results: Test-last team was more productive and created more tests. Students indicate preference towards test-first approach.
Madeyski [20] 2010 Academic Students
Aim: To investigate how Test-first programming can impact branchcoverage and mutation score indicator.
Results: The benefits of the Test-first practice can be considered minor in the specific context of this experiment.

Table 7.1: Research publications on experiments in TDD

94 Paper C

• Artefact Quality:

– Hq
0. When using TDD, there is no significant difference between

the quality of the artefacts produced by developers with or without
knowledge in software testing.

– Hq
a. When using TDD, developers with knowledge in software

testing produce artefacts of a higher quality.

• Developer Perception:

– Hp
0. There is no significant difference in the perception of TDD

between developers with or without knowledge in software testing.

– Hp
a. Developers with knowledge in software testing have higher

preference towards TDD than those without knowledge in software
testing.

Construct Variable name Description Scale type
Development
Speed

User Stories Number of user stories finished
within lab session.

Ratio

Artefact
Quality

Defects Number of defects found in code
implementation by independent
test suite.

Ratio

Artefact
Quality

Coverage Statement coverage of test suite
when applied to code implemen-
tation.

Ratio

Artefact
Quality

Complexity Cyclomatic complexity of the
code implementation.

Ratio

Developer
Perception

Ease of use The ease of use with which the
steps of TDD could be followed.

Ordinal

Developer
Perception

Preference Subjects’ perception of TDD. Ordinal

Table 7.2: Experiment Response Variables

Thedevelopment speed, artefact qualityanddeveloper perceptionare op-
erationalized in a list of response variables, provided in Table 7.2.

7.3 Experimental Design 95

In this experiment, the factor ofknowledge in software testingis opera-
tionalized using a 10-weeks half-time advanced-level academic course in Soft-
ware Verification and Validiation. The course contents has been inspired partly
by industrial certification courses (e.g., the ISTQB foundation- and advanced-
level certification courses [21]), and partly by scientific courses and syllabi
(e.g., the software testing course contents proposed by Ammann and Offutt [22]).
For the purpose of this experiment, a subject is said to have knowledge in soft-
ware testing if (s)he has taken part in the course lectures and exercises, and not
to have knowledge in software testing otherwise. This is supported by the data
collected in a survey at the beginning of the experiment where we asked stu-
dents to provide information about their testing experience. Fifteen out of 22
students had no experience at all and 5 students reported to have 1-6 months
of testing experience. Only 2 students claimed to have 2-3 years of testing
experience.

An overview of the lecture topics of the course is provided inTable 7.3.

Lecture topic Time
Introduction to software testing and testing fundamentals. 2h.
The test processes. 2h.
Workshop. 3h.
How to practically write test cases. 2h.
Code inspection and security testing. 3h.
Test design techniques. 6h.
Static program analysis. 2h.
Real-time testing. 2h.

Table 7.3: Overview of the Software Verification and Validation course con-
tents.

7.3.2 Experiment Design

The experiment design is detailed in Figure 7.1. Two groups of subjects (Group
A and Group B) worked on two different problems (Problem 1 andProblem 2)
as part of the labs, one before and one after the course (usingTDD on both the
occasions). During both the labs they used the Eclipse [23] integrated devel-
opment environment (IDE) to create software solutions in Java programming
language and the jUnit [24] testing framework for writing executable tests.

96 Paper C

Upon completion of each of the labs, the subjects answered a set of questions
in an online survey system.

Lab 2

Group A Problem 1

Problem 2Group B

S

u

r

v

e

y

C

o

u

r

s

e

S

u

r

v

e

y

Problem 2

Problem 1

Lab 1

Figure 7.1: Design of Experiment

7.3.3 Subjects

The subjects of the experiment were software engineering master students en-
rolled in the Software Verification and Validation course atMälardalen Uni-
versity during the autumn semester of 2010. The experiment was part of the
laboratory work within the V&V course, and the subjects earned credits for
participation. Students were informed that the final grade for the course would
be obtained from the written exam and their performance during labs would
not affect their grades.

7.3.4 Objects

As stated above, the experiment used two specific software development prob-
lems for the experiment, namely: (i) Roman numerals conversion (Problem 1)
and (ii) bowling game score calculation (Problem 2). The specifications for
Problem 1 were written by us (in the form of a list of user stories) for the pur-
pose of this experiment, whereas the specifications for Problem 2 (also a list of
user stories) were based on the Bowling Game Kata (i.e., the problem also used
by Kollanus and Isomöttönen to explain TDD [8]). Detailedinformation about
the problems and their user stories are provided on first author’s webpage2.

2http://www.mrtc.mdh.se/ acc01/tddexperiment/

7.3 Experimental Design 97

TDD Steps:

1. Write one single test-case

2. Run this test-case. If it fails continue with step 3. If the
test-case succeeds, continue with step 1.

3. Implement the minimal code to make the test-case run

4. Run the test-case again. If it fails again, continue with
step 3. If the test-case succeeds, continue with step 5.

5. Refactor the implementation to achieve the simplest de-
sign possible.

6. Run the test-case again, to verify that the refactored im-
plementation still succeeds the test-case. If it fails, con-
tinue with step 5. If the test-case succeeds, continue with
step 1, if there are still requirements left in the specifica-
tion.

Figure 7.2: TDD steps for development.

7.3.5 Instrumentation

As one way of ensuring that subjects properly followed the steps of TDD, we
provided the instructions for TDD prescribed by Flohr and Schneider [12] (see
Figure 7.2).

To avoid problems with subjects’ unfamiliarity with the jUnit testing frame-
work and/or the Eclipse IDE, subjects were given an Eclipse project code
skeleton with one simple test case. Since this was all located in a subversion
(SVN) repository, instructions on how to obtain code from SVN and import it
in Eclipse was also provided to students.

7.3.6 Data Collection Procedure

Teams were instructed to upload their source codes in a SVN repository. This
way the lab instructor had a complete log of subjects’ activities and an option
to obtain code from specific points in time.

The subjects answered survey questions using quiz assignments in the Black-
board3 learning management system for the course. The data from thesurveys
were then exported in comma separated values (.csv) file format.

3www.blackboard.com

98 Paper C

7.3.7 Validity Evaluation

During experimental design the following validity threatswere identified and
addressed:

1. Maturation
The experiment was designed to provide different problems to subjects
on different occasions in order to eliminate the factor of maturation.

2. Problem complexity
By solving different problems at each instance of the lab we eliminated
the issue of problem complexity.

3. Subjects randomisation
Subjects were assigned into teams by the first-come first-serve method.
Teams were assigned to groups in an alternating manner.

7.4 Execution

Upon defining the experimental plan and with the start of the V&V course, all
pre-requirements for experiment execution were in place.

7.4.1 Sample

Twenty-eight students participated in the experiment. Since the experiment
plan was to have students working in pairs, we instructed students during the
introduction class to individually find a classmate that they would like to work
with and send an e-mail request to the lab instructor in orderto obtain a team
number. Students were informed that their lab work would be used for the ex-
periment, but they were not provided any details on the goal of the experiment
itself. Also, we explicitly stated that their performance during the lab would
not influence the final grade of the V&V course in any way. The final grade
was determined by the written exam.

7.4.2 Preparation

Team numbers were assigned in sequential order based on the time of receipt
of the e-mail requested by the lab instructor. Problems for the teams were
assigned in an alternating manner between the two immediateteams (ex., if

7.4 Execution 99

team i was assigned problem 1, one team i+1 was assigned problem 2 and
team i+2 was assigned problem 1 again etc.).

Since the lab work was time-boxed to 3 hours, a Java code skeleton was
created for students. It contained a program class with one empty method
returning zero and a test class with one assert statement validating the previ-
ous mentioned method. This skeleton was made to be directly imported into
Eclipse as an existing project.

For each team a corresponding subversion (SVN) repository was created
with read/write permissions assigned only to students within the given team
and to the lab instructor. To avoid difficulties in setting upSVN and importing
project in Eclipse, an instruction on the usage of SVN and Eclipse was provided
to the students.

7.4.3 Data Collection Performed

As explained to students in the lab instruction document, after creating a new
test or after changing code in order to pass the existing tests, a SVN commit
command had to be executed. This way the lab instructor had a complete log
of activities during the lab and an ability to obtain source code of the team
at any given point in time. The absence of some students from any of the lab
sessions were clearly visible from their SVN repository since the date of source
code was not the same as the date of the lab. Such data was excluded from the
analysis.

7.4.4 Validity Procedure

During the execution of the experiment the following validity threats were
specifically considered:

1. Non-adherence to TDD
We had to ensure that students are following TDD as per the instructions
provided before the lab. Due to the nature of TDD it was not feasible for
the lab instructor to follow in real-time if all the studentswere perform-
ing TDD in a correct manner. This was analysed later using SVNlog and
also by looking at students survey responses where they wereexplicitly
asked to which extent did they follow the instructions for development.

2. Reuse of an existing online solution
Internet access existed in the lab and students could potentially find com-
plete solutions to the problems from the web. The instructoraddressed

100 Paper C

this issue by explaining to the students that (i) they have tocomplete
the lab by solving one user story at the time and writing a specific test
case for that user story, (ii) this lab work will not increasenor decrease
their final grade and (iii) the strict university rules aboutplagiarism are
relevant for the lab as well.

Based on the above measures and aspects we can confidently state that these
validity threats are avoided during this study.

7.5 Analysis

The analysis section summarizes the data collected as well as the treatment of
the data.

7.5.1 Descriptive Statistics

Based on initial experimental plan of response variables (see Table 7.2) a de-
scriptive analysis was performed for each variable independently.

First, considering the development speed construct, Figure 7.3 presents per-
centage of user stories finished during the experiment sessions as mean values

Group A before

the course working

on Problem 1

User stories finished during labs

Group A after

the course working

on Problem 2

Group B before

the course working

on Problem 2

Group B after

the course working

on Problem 1

Mean value

0

20

40

60

80

10

30

50

70

Figure 7.3: Performance mean values with error bars

7.5 Analysis 101

Group A before

the course working

on Problem 1

Coverage

Group A after

the course working

on Problem 2

Group B before

the course working

on Problem 2

Group B after

the course working

on Problem 1

Mean value

60

70

80

90

100

110

65

75

85

95

105

Figure 7.4: Code coverage mean values with error bars

Group A before

the course working

on Problem 1

Complexity

Group A after

the course working

on Problem 2

Group B before

the course working

on Problem 2

Group B after

the course working

on Problem 1

Mean value

0

10

20

30

40

5

15

25

35

Figure 7.5: Code complexity mean values with error bars

with standard error deviation. As the figure shows, the development speed was
relatively unaffected in both groups before and after the course.

Second, considering the artefact quality construct, Figures 7.4, 7.5, and 7.6
present percentage of statement coverage of students’ testsuites, cyclomatic

102 Paper C

Group A before

the course working

on Problem 1

Defects

Group A after

the course working

on Problem 2

Group B before

the course working

on Problem 2

Group B after

the course working

on Problem 1

Mean value

0

2

4

6

1

3

5

7

Figure 7.6: Defects found mean values with error bars

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8

Lab 1

Lab 2

Ease of TDD usage

Impossible Straightforward

Figure 7.7: How difficult was it to follow steps for development

complexity of the code, and the number of defects detected byan independent
test suite respectively. These measures are given as mean values with standard
error deviations. In the case of code coverage, it can been seen that both post-
test groups had better mean values than the pre-test groups.In the complexity
and defects metrics, the differences between the experiment objects seem to
obscure such visible results, if they exist.

7.5 Analysis 103

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8

Lab 1

Lab 2

Consider TDD in future development

No I will always use those Steps

Figure 7.8: Students perception of TDD

Finally, Figures 7.7 and 7.8 provide results related to the developer percep-
tion construct. The first of these figures presents the sum of student responses
on the ease of use with which the steps of TDD are followed in labs. Possible
responses varies from 0 to 7 where 0 means impossible to follow and 7 means
that following TDD was straightforward. Data is presented for both instances
of labs. Figure 7.8 presents the sum of student responses on the perception of
TDD. Possible responses vary from 0 to 7 where 0 means they will not consider
using TDD in future development and 7 means they will always use TDD. Data
is presented for both instances of labs. Generally, students found TDD to be
a preferable development method that is easy to use. However, there is no ob-
vious difference between the pre-experiment and post-experiment perceptions
on this matter.

7.5.2 Data Set Reduction

Source codes of 17 teams (9 from Group A and 8 from Group B) and 28 student
responses in survey questionnaires were collected for analysis. The difference
of 6 students were due to the fact that some students did not fill in the ques-
tionnaire but did perform the lab.

When the actual source code analysis was performed additional data points
had to be removed. The projects of teams 4 and 13 were excludeddue to sev-
eral syntax errors which made the complete solution uncompilable and irrele-
vant for any of the analysis. During code coverage analysis ahuge deviation

104 Paper C

occurred with Team 14. A detailed analysis revealed that students did not write
any test cases during the lab but they subsequently submitted tests in SVN.
Since this was opposite from the TDD practice stated in theirlab instructions,
data from this team was also excluded.

After removing data from those three teams, in final we had data points
from:

• 14 teams (7 from Group A and 7 from Group B) for source code analysis
and

• 22 student responses for survey questionnaire analysis.

7.5.3 Hypothesis Testing

Hypothesis testing was performed in two steps: First, theMann-Whitney non-
parametric test was used to ensure that the differences in response variable data
between the experiment groups and between the experiment objects were sta-
tistically nonsignificant. Theα was set to 0.05, and consequently a resultingz

score of more than 1.96 or less than -1.96 was required to showa significant
difference between the objects or the groups.

The result of this analysis is shown in Table 7.4. As can be seen from the
table, there were no significant differences between the experiment objects or
groups, with the exception of a significant difference in object complexity. This
parameter is consequently omitted from further analysis.

Second, on the basis of the nonsignificant differences between experiment
objects and groups, theWilcoxon signed rank test for paired nonparametric
data was used in order to test the null hypotheses of the experiment. As in
the Mann-Whitney case, theα was set to 0.05. The result of this analysis is
shown in Table 7.5. For a null hypothesis to be rejected, it isrequired that
min(W+,W−) ≤ Critical W holds. As shown in the table, none of the exper-
iment’s null hypotheses can be rejected based on the collected data.

7.5
A

nalysis
105

Development speed Artefact quality Developer perception
User Stories Defects Coverage Complexity Ease of use Preference

Group A vs. Group B -0.16 -0.80 -0.34 -1.36 -0.30 1.34
Roman vs. Bowling 0.02 -1.91 0.05 -2.64 0.19 0.09

Table 7.4: Mann-Whitney z scores for differences between experiment groups and objects. A significant difference in
complexity between the experiment objects is found.

Construct (Null hypothesis) Parameter W+ W
−

min(W+,W−
) Critical W

Development speed (Hs

0) User Stories 52.5 52.5 52.5 21 (14 non-zero differences)
Artefact quality (Hq

0) Defects 22.5 13.5 13.5 4 (8 non-zero differences)
Artefact quality (Hq

0) Coverage 25 80 25 21 (14 non-zero differences)
Artefact quality (Hq

0) Complexity Not tested
Developer perception (Hpe

0) Ease of use 30 25 25 8 (10 non-zero differences)
Developer perception (Hpp

0) Preference 30 15 15 6 (9 non-zero differences)

Table 7.5: Testing of null hypotheses of the experiment using the Wilcoxon signed-rank test

106 Paper C

7.6 Interpretation

7.6.1 Evaluation of Results and Implications

When looking at the descriptive statistics results of code coverage variable we
can notice a positive increase in performances of both the groups when compar-
ing before and after the course results. Even though there was no statistically
significant differences in code coverage values (no null hypotheses could be
rejected), we would like to emphasise that, on an average, the best performing
group before the course was still worse than the worst group after the course.

max(A,B)precourse < min(A,B)postcourse

The level of complexity of the students program solutions changed for both
groups from one lab to another, but this change had one direction for Group
A and another for Group B. What we can only conclude from this data is that
solutions for Problem 1 are of higher complexity than solutions for Problem 2.

We expected the number of defects variable to provide us witha direct way
of evaluating the impact of testing knowledge. An independent suite of test
cases for each problem was created but we could not use it to the full extent
since different teams finished different number of user stories. This resulted
that every team had on an average four bugs and in most cases those could
have been found by test cases designed using negative test design technique.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8

Lab 1

Lab 2

How strictly TDD was followed

Not at all Completely

Figure 7.9: Students adherence to TDD

7.6 Interpretation 107

Students claimed they adhered to the TDD practice during theexperiment
to a high extent, which could be seen from the survey data presented in Fig-
ure 7.9. The ease of usage of TDD practice was also reported toa high extent
(Figure 7.7) but interestingly students did not feel the same about their prefer-
ence of using TDD in future development (Figure 7.8).

7.6.2 Limitations of the Study

Typically, four types of validity are discussed in empirical research (i.e.,con-
struct validiity, internal validity, external validityandreliability) [25].

Construct validity refers to the correctness in the mapping between the
theoretical constructs that are to be investigated, and theactual observations
of the study. Some of the constructs investigated in this study are not triv-
ially defined, and may be subject to debate (particularly in the case ofartefact
quality and testing knowledge). In order to mitigate this problem, we have
used standard software engineering metrics (e.g., complexity and coverage),
and provided detailed information on the operationalization of each construct
involved in the experiment.

Internal validity concerns the proper analysis of data. The statistical strat-
egy used in this paper was to first eliminate the possibility of major confound-
ing variables affecting the result (i.e., testing for differences between experi-
ment objects or groups), and second, to test the null hypotheses. Furthermore,
as the normality of the data could not be assumed, we used non-parametric tests
to conduct these hypothesis tests. However, regardless of the strategy used, it
is without question a fact that the sample size of the data wassmall, which is
a major limitation for statistical analysis (and potentially also a cause for the
inability for null hypothesis rejection). The only way to resolve this matter is
through replications of the experiment.

External validity relates to the possibility to generalize the study results
outside its scope of investigation. As many of the previously published ex-
periments on TDD (see Table 7.1), this experiment is performed in a course
setting and suffers from the consequent threats to externalvalidity (e.g.,stu-
dent subjects, small scale objects, short experiment duration). It is, however,
uncertain to what extent this affects the results, as we are not examining a prac-
tice (TDD) directly, but rather assessing whether the practice improves given
the acquisition of a certain knowledge.

Reliability concerns the degree of certainty with which a replication of
this study, e.g., by a different set of researchers, would yield the same study
outcome. Here, as the experiment package and guidelines aremade available

108 Paper C

for replication purposes, the major reliability threat relates to the replicated
execution of the V&V course. On the other hand, without having any deeper
insight as to what specific testing knowledge would be beneficial for TDD, this
needs to be considered for future work.

7.6.3 Lessons Learned

• Usage of SVN repository
The SVN repository enabled the lab instructor to access the source code
and the test cases with the proper timestamps. SVN facilitated easier
management and organisation of the experimental artefactswith appro-
priate access rights.

• Survey questionnaires
After each lab, participants answered a series of questionsin an online
survey system. This provided valuable qualitative insights into the ex-
periment design and execution.

• Lab instructions
By providing students with detailed instructions for the lab we min-
imised the possibility of misinterpretation by the students as well as the
need for manual interaction with the lab instructor.

• Code skeleton
By providing students a code skeleton at the beginning of thelab we
eased the learning curve and the students were able to start with the ex-
periment immediately.

• Inability to enforce larger participation
We had 65 students at the start of the experiment, but due to various
reasons we ended up with a data set from 28 students only. We think that
the experiment would have provided more statistically significant results
if we could motivate a larger participation.

• Predefined time-boxing
Instead of providing fixed time duration of the lab, it would have been
better for the experiment to require a specified number of user stories
that had to be completed by the participants. This would haveenabled
us to use the same independent test suite for every solution provided by
the participants in a automated manner whereas in the current setup we

7.7 Conclusions and Future Work 109

had to distinguish the participants based on the number of user stories
completed and manually conduct the testing.

Additional Observations

Upon execution of an independent test suite on the participants source code we
noticed that 95% of the errors observed were related to unspecified behaviours.
Detailed analysis of source code and test suites revealed that in both occasions
(pre- and post-course) students mostly used positive test design techniques,
which is referred in literature as “positive test bias” [26]. In many of these
cases usage of negative test design techniques would have enabled the students
to capture those errors easily.

We believe that the root cause for this observation could be the fundamental
implicit orientation of TDD towards positive test design techniques since the
goal is always to create the test case for a given requirement. This points
towards the need for specific test design knowledge such as negative test design
techniques to be provided to the developers adopting TDD in their development
process together with the basic testing knowledge.

7.7 Conclusions and Future Work

In this section a summary of the study results with directions for future work
are presented.

7.7.1 Relation to Existing Evidence

In related works section we mentioned three research paperswhere participants
of their studies expressed difficulties with testing and/orconstructing test cases.
Opinions of the subjects of our study pointed out that testing knowledge had
a relatively significant positive impact on how they performed TDD as can be
seen in Figure 7.10. However, based on qualitative data fromour experiment,
we also inferred that our respondents had problems with creating negative test
cases.

7.7.2 Impact

A growing number of research publications empirically evaluating TDD im-
plicitly suggest that TDD will most likely provide benefit ofhigher code qual-
ity to the organisation which decide to implement this development process.

110 Paper C

0

2

4

6

8

10

12

14

-3 -2 -1 0 1 2 3

Impact of testing knowledge on TDD

Significant negative

impact

Significant positive

impact

Figure 7.10: Students opinion on impact of testing knowledge on TDD

However, to the best of our knowledge, there are no reports onfailure of im-
plementing or adopting TDD within a specific organisation. In this context a
more relevant research question could be: where and why TDD will not work
and how to overcome those factors?

Our experiment is a initial attempt to address this researchquestion from
an orthogonal perspective by evaluating specifically whether testing knowledge
can support TDD in practice or it could be considered as a limiting factor (as
stated in [3]). Though the present study is inconclusive, itopens up several
interesting challenges for the research community. We believe that identifying
specific testing knowledge which is complementary to the testing skills of a
new TDD developer that would enable developers to achieve performance effi-
ciency and higher quality of software products, will have a great impact on the
industrial adoption of TDD.

7.7.3 Future Work

In this study we presented a detailed experiment with students as subjects, mak-
ing it more accessible for other researchers to replicate orperform a similar
experiment. Alongside of providing more evidence on how general testing
knowledge supports TDD in practice, we think an evolving experiment should
be created with more specific focus. This experiment would bea possibility to
directly investigate the effect of knowledge of negative testing on TDD prac-
tice. It could be designed in a way to provide education to subjects specifically

7.7 Conclusions and Future Work 111

on how to design test cases for unspecified system behavioursand use that
knowledge when performing TDD of software systems.

TDD per se provides an excellent opportunity for improving code quality
by imbibing “test culture” in the development community. Adherence to TDD
results in the generation of automated and executable test cases during the de-
velopment phase itself, thus improving the testability of the system require-
ments. However, as indicated by our study, TDD needs to be supplemented
with new process steps or test design techniques, which could potentially fur-
ther enhance the robustness and the reliability of the system.

In a long term research perspective, we also intent to perform an industrial
case study investigating how experienced developers couldbenefit from testing
knowledge and what kind of specific testing knowledge they need in order to
increase the quality of the code artefacts they produce.

Acknowledgments

This work was supported by the SWELL (Swedish software Verification &
Validation ExceLLence) research school through VINNOVA (Swedish Gov-
ernmental Agency for Innovation Systems) and the OPEN-SME EU FP7 re-
search project.

Bibliography

[1] Kent Beck.Extreme programming explained: embrace change. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[2] Adnan Causevic, Daniel Sundmark, and Sasikumar Punnekkat. An Indus-
trial Survey on Contemporary Aspects of Software Testing. In Proceed-
ings of the 3rd International Conference on Software Testing, Verification
and Validation (ICST), pages 393–401, 2010.

[3] Adnan Causevic, Daniel Sundmark, and Sasikumar Punnekkat. Factors
Limiting Industrial Adoption of Test Driven Development: ASystematic
Review. InProceedings of the 4th International Conference on Software
Testing, Verification and Validation (ICST), 2011.

[4] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The Goal
Question Metric Approach. InEncyclopedia of Software Engineering.
Wiley, 1994.

[5] Andreas Jedlitschka and Dietmar Pfahl. Reporting Guidelines for Con-
trolled Experiments in Software Engineering. In R. Jefferyet al., editor,
Proceedings of the 4th International Symposium on Empirical Software
Engineering (ISESE 2005), pages 94–104. IEEE Computer Society, 2005.

[6] P. Sfetsos, L. Angelis, and I. Stamelos. Investigating the extreme pro-
gramming system - An empirical study.Empirical Software Engineering,
11(2):269–301, 2006.

[7] A. Geras, M. Smith, and J. Miller. A Prototype Empirical Evaluation of
Test Driven Development. InProceedings of the Software Metrics, 10th
International Symposium, pages 405–416, Washington, DC, USA, 2004.
IEEE Computer Society.

113

114 Bibliography

[8] Sami Kollanus and Ville Isomöttönen. Understanding TDD in academic
environment: experiences from two experiments. InProceedings of the
8th International Conference on Computing Education Research, Koli
’08, pages 25–31, New York, NY, USA, 2008. ACM.

[9] M.M. Müller and O. Hagner. Experiment about test-first programming.
Software, IEE Proceedings -, 149(5):131 – 136, October 2002.

[10] Boby George and Laurie Williams. A structured experiment of test-driven
development. Information and Software Technology, 46(5):337 – 342,
2003.

[11] Hakan Erdogmus, Maurizio Morisio, and Marco Torchiano. On the Effec-
tiveness of the Test-First Approach to Programming.IEEE Transactions
on Software Engineering, 31:226–237, 2005.

[12] Thomas Flohr and Thorsten Schneider. Lessons Learned from an XP
Experiment with Students: Test-First Needs More Teachings. In Jrgen
Münch and Matias Vierimaa, editors,Product-Focused Software Process
Improvement, volume 4034 ofLecture Notes in Computer Science, pages
305–318. Springer Berlin / Heidelberg, 2006.

[13] David S. Janzen and Hossein Saiedian. On the Influence ofTest-Driven
Development on Software Design.Software Engineering Education and
Training, Conference on, pages 141–148, 2006.

[14] Matthias Müller and Andreas Höfer. The effect of experience on the test-
driven development process.Empirical Software Engineering, 12:593–
615, 2007.

[15] David S. Janzen, Clark S. Turner, and Hossein Saiedian.Empirical soft-
ware engineering in industry short courses. Software Engineering Edu-
cation Conference, Proceedings, pages 89–96, 2007.

[16] Atul Gupta and Pankaj Jalote. An Experimental Evaluation of the Effec-
tiveness and Efficiency of the Test Driven Development. InProceedings
of the First International Symposium on Empirical SoftwareEngineering
and Measurement, ESEM ’07, pages 285–294, Washington, DC, USA,
2007. IEEE Computer Society.

[17] Andreas Höfer and Marc Philipp. An Empirical Study on the TDD Con-
formance of Novice and Expert Pair Programmers. In Will Aalst, John

Mylopoulos, Norman M. Sadeh, Michael J. Shaw, Clemens Szyperski,
Pekka Abrahamsson, Michele Marchesi, and Frank Maurer, editors,Ag-
ile Processes in Software Engineering and Extreme Programming, vol-
ume 31 ofLecture Notes in Business Information Processing, pages 33–
42. Springer Berlin Heidelberg, 2009.

[18] Liang Huang and Mike Holcombe. Empirical investigation towards the
effectiveness of Test First programming.Inf. Softw. Technol., 51:182–
194, January 2009.

[19] John Huan Vu, Niklas Frojd, Clay Shenkel-Therolf, and David S. Janzen.
Evaluating Test-Driven Development in an Industry-Sponsored Capstone
Project. InProceedings of the 2009 Sixth International Conference on
Information Technology: New Generations, pages 229–234, Washington,
DC, USA, 2009. IEEE Computer Society.

[20] Lech Madeyski. The impact of Test-First programming onbranch cover-
age and mutation score indicator of unit tests: An experiment. Inf. Softw.
Technol., 52:169–184, February 2010.

[21] The International Software Testing Qualifications Board (ISTQB).
http://www.istqb.org.

[22] Paul Ammann and Jeff Offutt.Introduction to Software Testing. Cam-
bridge University Press, Cambridge, UK, 2008. ISBN 0-52188-038-1.

[23] Eclipse. http://www.eclipse.org.

[24] jUnit Framework. http://www.junit.org.

[25] Claes Wohlin, Per Runesson, Martin Höst, Magnus C. Ohlsson, Björn
Regnell, and Anders Wesslén.Experimentation in Software Engineering
– An Introduction. Kluwer Academic Publishers, 2000.

[26] Laura M. Leventhal, Barbee Teasley, Diane S. Rohlman, and Keith In-
stone. Positive Test Bias in Software Testing Among Professionals: A
Review. In Selected papers from the Third International Conference
on Human-Computer Interaction, pages 210–218, London, UK, 1993.
Springer-Verlag.

Chapter 8

Paper D:
Redefining the role of testers
in organisational transition
to agile methodologies

AdnanČaušević, A.S.M. Sajeev and Sasikumar Punnekkat
In proceedings of International Conference on Software, Services & Semantic
Technologies (S3T), Sofia, Bulgaria, October, 2009

117

Abstract

Many challenges confront companies when they change their current software
development process to an agile development methodology. Those challenges
could be rather difficult but one that requires considerableattention isthe inte-
gration of testing with development. This is because in heavyweight processes,
as in the traditional waterfall approach, testing is a phaseoften conducted by
testers as part of a quality assurance team towards the end ofthe development
cycle whereas in the agile methodology testing is part of a continuous devel-
opment activity with no specific “tester” role defined.

In this paper we consider several options for testers when anorganisation
transit to agile methodology, and propose a newproject mentorrole for them.
This role aims to utilize the knowledge that testers alreadyhave in both the
business domain and the development technology together with their expertise
in quality practices. This role will enhance the stature of testers as well as
enable the company to effectively deploy the testers in the new environment.
Motivations and benefits for this role are presented in this paper together with
our plan for evaluation of this proposal.

8.1 Introduction 119

8.1 Introduction

Software development processes have evolved over time in line with projects
becoming costlier and complex. The biggest change since Royce [1] proposed
the Waterfall model came with the introduction of Agile methodologies. Un-
like heavyweight processes such as the Waterfall model, agile processes has en-
couraged customer involvement throughout the developmentcycle. However,
initially agile processes were implemented in smaller projects with smaller
teams where the risk of trying out a new process was relatively small. In-
creasingly, larger organisations are looking at transition of their processes to
agile methodologies [2].

Testing is a prominent and continuous activity in agile processes. Paradox-
ically, however, testers who migrate from heavyweight processes could find
their role to be diminished when their organisation implements agile processes.
The reasons for this paradox include:

• the shift from testing being a high profile quality control phase to a low
profile routine (daily build and test) activity

• the developers having the responsibility to test the units they build

• the need for regular interaction between developers and testers as the
system gets built incrementally

Those who transition from a heavyweight process to an agile method some-
times feel that they are being micromanaged because of the constant interaction
with project leaders [3]. Testers who had the role of policing the quality of the
product could feel even more out of place in an agile environment, unless the
transition is gradual, made with the cooperation of the testers and with ade-
quate training. The important question to consider is not whether we need a
role for testers when transitioning to an agile process but what role will they
transit into.

In this paper, we study different models for the transition of a tester’s role
from a heavyweight process to an agile environment. We intend to test the
models to assess their suitability for transitions in the real world. The rest of
the paper is organised as follows. In Section 8.2 we discuss the issues involved
in transition to agile with respect to the role of testers. InSection 8.3 we dis-
cuss two other approaches from the literature. Section 8.4 presents theproject
mentormodel. In Section 8.5 we outline evaluation strategies to check the va-
lidity of the approach and finally Section 8.6 provides the conclusions together
with the future work.

120 Paper D

8.2 Transition to agile

Before investigating possible options for a tester or testing team organisation
should define goals and parameters of transition in order to choose the appro-
priate option for existing testers within the company.

8.2.1 Organisational goal for transition

Organisation should clearly define its goal for the proposedtransition to agile
environment.

One of the possible goals could be to reduce the number of employees and
often the first target is the testing team. Every employee is avaluable asset to
the company and when observed as a resource testers are much more valuable
than often perceived. If down-sizing is the main goal of transition then it must
cover other teams as well and not only the testing department.

Most common goal for a company would be to maintain current number of
employees with minimum or no investment during the transition process. The
only concern for having this goal is a period of transition that could take longer
than necessary. Testers will have to learn and adopt to a new process as they
enter the transition. However, without any formal trainingor right motivation,
they could have suspicion whether agile is a correct way of doing development.

Setting up an efficient transition process as an organisational goal would
require to have existing number of employees in place and if possible hire
additional experts. Most importantly, provide significantinvestment in training
of the personnel. This company goal will provide employee trust in the whole
process of transition and raise motivation for its successful implementation.

8.2.2 Parameters of transition

Different parameters should take into consideration when making the transition
decision. Possible parameters could be:

1. To what extent: Pure agile or Hybrid?

Some companies can adopt their development process to agilemethod-
ology only up to certain extent. On micro level, software engineering
can be done in agile manner, but on a macro level things might look
like developed in stages (waterfall). Example for this set-up would be in
companies where product development include hardware and software
parts.

8.2 Transition to agile 121

2. Physical Location/Distribution of teams

Consideration regarding physical location of the development and the
testing teams is important because some options would not bepossible to
successfully implement if teams are distributed. Also, if one of the team
itself is distributed among several locations that could create obstacles in
implementing certain options for transition.

8.2.3 Options for testers during transition

Here we describe several options for the organisation regarding testers in tran-
sition to agile. For each of options we also describe their pros and cons.

1. “Fire the testing team”

Process change should not start by firing existing employees. This can
lead to wrong assumptions on how efficient new methodology will actu-
ally perform. Also, educating software tester and adoptingto company
context or even a project requires significant amount of resources. If
reducing number of employees is a goal for transition process, then it
should be extended to all teams within a company.

2. “Convert them to developers”

Converting testers to active developers would be a reasonable option to
consider, but it is not reasonable to expect testers to become developers
without any formal education and specially in a short time period. Big
risk with this option is a longer period to completely achieve transition.

3. “Ask them to write test cases with developers”

One of the first challenges for developers transitioning to agile will be
writing unit tests and understanding test driven development principles.
Putting testers to work with them could be a working solutionbut only
in a short term perspective.

4. “Provide them with a new role Project Mentor”

This option represent the proposal of this paper in which we are trying to
get more added value to testers in agile environment by providing them
a new role of mentoring the whole project development process. This
option and motivation for it are explained in Section 8.4.

122 Paper D

8.3 Models for Transition of Testers

In this section, we are discussing two existing approaches for solving tester
role while transitioning to agile environment.

8.3.1 Sumrell’s approach

Sumrell [4] reports their experience in transitioning fromWaterfall to Scrum.
One of the major issues was to decide how to transform the QA team and their
testing strategies to the new environment. The approach taken for the QA team
is to continue to have the primary responsibility of testing, but share it with
developers and project managers. Instead of testers waiting until the parts are
ready for test, the new approach would be a quicker build cycle so that the
QA team can do its work rather than having to wait. Retrainingis needed
for QA personnel to be able to instrument code for testing rather than rely
on previous practices of automated testing strategies. However, unit testing
becomes largely the responsibility of the developers.

We can identify several characteristics of this approach. One, the role of
tester is somewhat diminished because some of the testing isnow done by the
developer. The tester requires retraining on the technicalside. The tester needs
to work more closely with developers and project managers thus requiring a
higher level of group working skills. We hypothesise that insuch an environ-
ment, a tester needs to be given adequate training for this transition, otherwise,
it is likely that he or she will fail in the new environment where they are not in
control of quality, and becomes just another member of a team.

8.3.2 Gregory-Crispin approach

Gregory and Crispin [5] discuss in detail the role of testersin agile develop-
ment. Our model has some similarities with their approach. Their recommen-
dation is to make testers a part of the development team. The role of testers is
to help clarify customer requirements, turn them into tests, and help developers
understand the customer requirements better. Testers needto speak the domain
language of the customer and the technical language of the developers.

The characteristics of this approach includes, an increased role for testers as
the link between customers and developers in addition to their role of testing.
A shift in their work environment as they move from the Quality Assurance
Division to be part of development pairs or groups. They probably will need

8.4 Our approach 123

retraining on interpersonal skills to work closely with customers and develop-
ers more than they are used to in the past.

8.4 Our approach

We create a new role:project mentorin the transition from a heavyweight to an
agile process. This role is different from the role of a coachwhich is promoted
in some of the agile processes. While a coach’s role is to helppeople adopt
and implement the agile process, the role of the mentor in a project is (1) to
interact with all stake holders, primarily the customers and developers and (2)
to ensure that all stake holders contribute to the quality ofthe product under
development.

Managing the expectations of customers is a difficult task inany software
development project. A major task of project mentors is to manage the expec-
tations of the customers and other stake holders. This requires domain knowl-
edge and the ability to speak in the language of the customers, which often
programmers lack. Similarly, for managers, recognising the limitations of pro-
grammers is also a difficult task. Managers without a technical background
often fail to understand difficulties which are faced by programmers on a daily
basis. Project mentors, we believe, will be in a position to better appreciate
these difficulties and translate them to other stake holderswith the help of their
domain knowledge.

Agile processes try to improve quality by making quality everybody’s busi-
ness, not just of a quality assurance division. Testing is spread through out the
development process, not just at the end of the process-chain. Agile process
are sometimes called test-driven methodologies [6] for this reason. However, a
drawback of this approach is that while everyone is expectedto produce quality,
not everyone is trained in quality assurance. A mentor’s role of helping others
to implement quality in their daily activities could contribute significantly to
the success of the project.

We argue that the testers in a heavyweight process model are the best cate-
gory of people for this new role as project mentors in an agiletransition. The
reasons are:

• As Gregory and Crispin [5], pointed out, testers have the domain knowl-
edge to interact with customers as well as the technical knowledge to in-
teract with developers. They have acquired these skills in order to imple-
ment their domain-oriented blackbox testing and the structure-oriented

124 Paper D

whitebox testing strategies. Therefore, testers are in an ideal position to
become the link between the customers and the programmers.

• Testers are trained to be quality assurance personnel. In many heavy-
weight process organisations, they are part of the quality assurance divi-
sion. Thus it is much easier for them to transfer their quality assurance
skills and mentor other personnel in inculcating the much-desired quality
culture in the agile process.

We believe that there are several benefits for transforming testers as project
mentors while transitioning from a heavyweight to agile process. Some of them
are:

• Managers sometimes express more confidence in their testersthan pro-
grammers because programmers tend to sometimes promise andnot de-
liver (the code is 99% complete syndrome) whereas testers tell what is
going wrong (i.e., the defects discovered).

• Testers are likely to become less effective or even demoralised if they are
asked to be developers, because it may be difficult for them toidentify
themselves with this new role easily . On the other hand, an enhanced
role such as project mentoring is likely to boost their morale.

• The role of project mentors which includes helping customers to write
their acceptance tests and developers to write their unit tests utilises the
testers’ talent in an appropriate manner in the new process environment.

• Testers are no longer confined to a single location (the quality assurance
division), instead they are made ”agile” and are distributed throughout
the project locations, consistent with the agile philosophy.

8.4.1 Comparison of the models

Table 8.1 provides a comparison of the two existing models from literature
and the “Project Mentor” model with respect to various aspects of concern
testers may have while transitioning from traditional heavyweight to an agile
methodology. Comparison is based from a testers perspective covering follow-
ing aspects (1) Testers’ stature (2) Additional skills needed (3) Responsibility
and (4) Mobility.

8.5 Evaluation plan 125

Aspect of concern
Sumrell’s Gregory-Crispin The project
experience approach mentor model

Testers’ stature Little change Slightly reduced Enhanced
Additional skills Both technical and

Mainly people skills Mainly people skills
needed people skills

Responsibility
Share with developers, Share with

A unique role
project managers developers

Mobility Little change Little change Enhanced

Table 8.1: Models Comparison on Testers role from Heavyweight to Agile

8.4.2 Motivation for the new role

There are reports [7] [8] of Test Driven Development as a practice which im-
prove quality and provide benefit to testing in general. But in order to gather
testers practice and preference in particular, an industrial survey [9] on software
process practices, preferences and methods is conducted. Analysing data from
this survey, we found out that testers preference is highly oriented thowards
incremental design, code and delivery of software. Testersare supporting fre-
quent meetings with project members for the purpose of update on progress,
but only if those meetings are planned in advance. They are also positive
thowards having test cases written prior writing code. Interestingly, most of
testers agrees that managers should clearly define each teammembers role.
We think that those testers preferences are indicating highmotivating reasons
for including them in agile development with the specificproject mentorrole.

8.5 Evaluation plan

In order to evaluate the validity of the proposed model we have developed the
following research hypotheses:

H1: Testers in current heavyweight processes have significant concerns about
their transition to an agile process.

H2: Testers who have changed their role to developers when the organisation
moved from a heavyweight process to an agile process were nothappy
to change roles.

H3: Testers favour a role of project mentors (as defined in this paper) in an
agile environment in preference to a developer role or a tester role shared
with developers.

126 Paper D

H4: Managers look favourably at testers transitioning into a role of project
mentors (as defined in this paper).

To test the above hypotheses there are two approaches we can take, quantitative
and qualitative. Quantitative analysis will be based on a survey of a sample of
the population of testers and managers. A survey instrumentwill be developed
with items to assess testers’ views on the above issues. The survey data will be
statistically analysed to test for significance.

If a quantitative approach proves to be infeasible there areseveral qualita-
tive solutions possible. One is the method of using case studies. In this case we
will choose a limited number of organisations including ones that have already
converted to agile process method and others which are considering transition-
ing to agile process methods. Data gathering will involve predominantly semi
formal interviews with predetermined questions (with the option of asking clar-
ifying questions).

8.6 Conclusions and future work

Agile process methodology started as a small team small project method for
less riskier projects. Recently, the interest in the methodology has grown
and large organisations are seriously looking at transitioning from their heavy
weight processes to agile methods. One of the major challenges in the transi-
tion of personnel is how to find appropriate roles for testerswhen testing is not
a stand-alone major phase in the development process. In this paper we have
presented our views on the issue of dealing with the testing teams within a
company while transitioning from a heavyweight to agile processes. We argue
that it would be beneficial for the organisation to clearly define its goals and
options during the transition process. We have also presented the standard op-
tions followed by transition managers together with two approaches proposed
recently by researchers. We have proposed a new role called “Project mentor”
for the testers in the new agile environment, and presented its advantages. In
this role testers could effectively use their business domain knowledge as well
as technical expertise to become the main liaison between customers and de-
velopers in order to manage their expectations and goals, aswell as assist in
both in writing test cases and testing the system as it evolves. We also sketched
briefly our evaluation plan which we intend to take up in our future work. Our
ongoing work also tries to address appropriate implementation strategies for
the proposed project mentor role.

8.6 Conclusions and future work 127

Acknowledgments

The authors would like to acknowledge the partial support provided by FLEXI-
ITEA2 project1 and PROGRESS research centre2.

1http://www.flexi-itea2.org
2http://www.mrtc.mdh.se/progress

Bibliography

[1] Winston W. Royce. Managing the Development of Large Software Sys-
tems: Concepts and Techniques. InTechnical Papers of Western Electronic
Show and Convention (WesCon), 1970.

[2] Sridhar Nerur, RadhaKanta Mahapatra, and George Mangalaraj. Chal-
lenges of migrating to agile methodologies.Commun. ACM, 48:72–78,
2005.

[3] Mike Cohn and Doris Ford. Introducing an Agile Process toan Organiza-
tion. Computer, 36, June 2003.

[4] Megan Sumrell. From Waterfall to Agile - How does a QA TeamTran-
sition? InAGILE ’07: Proceedings of the AGILE 2007, pages 291–295,
Washington, DC, USA, 2007. IEEE Computer Society.

[5] Lisa Crispin and Janet Gregory.Agile Testing: A Practical Guide for
Testers and Agile Teams. Addison-Wesley Professional, 2009.

[6] Kent Beck and Cynthia Andres.Extreme Programming Explained: Em-
brace Change (2nd Edition). Addison-Wesley Professional, 2004.

[7] Boby George and Laurie Williams. An initial investigation of test driven
development in industry. InSAC ’03: Proceedings of the 2003 ACM sym-
posium on Applied computing, pages 1135–1139, New York, NY, USA,
2003. ACM.

[8] David Janzen and Hossein Saiedian. Does Test-Driven Development Re-
ally Improve Software Design Quality?IEEE Softw., 25(2):77–84, 2008.

129

[9] Adnan Causevic, Iva Krasteva, Rikard Land, A. S. M. Sajeev, and Daniel
Sundmark. An Industrial Survey on Software Process Practices, Prefer-
ences and Methods. (ISSN 1404-3041 ISRN MDH-MRTC-233/2009-1-
SE), March 2009.

