
Modeling Security Aspects in Distributed
Real-Time Component-Based Embedded Systems

Mehrdad Saadatmand
Mälardalen Real-Time Research Centre (MRTC)

Mälardalen University, Västerås, Sweden
mehrdad.saadatmand@mdh.se

Thomas Leveque
Orange Labs

Orange, Meylan, France
thomas.leveque@orange.com

Abstract—Model Driven Engineering (MDE) and Component
Based Software Development (CBSD) are promising approaches
to deal with the increasing complexity of Distributed Real-Time
Critical Embedded Systems. On one hand, the functionality
complexity of embedded systems is rapidly growing. On the
other hand, extra-functional properties (EFP) must be taken
into account and resource consumption must be optimized due to
limited resources. However, EFP are not independent and impact
each other. This paper introduces concepts and mechanisms that
allow to model security specifications and derive automatically
the corresponding security implementations by transforming the
original component model into a secured one taking into account
sensitive data flow in the system. The resulted architecture
ensures security requirements by construction and is expressed
in the original meta model; therefore, it enables using the same
timing analysis and synthesis as with the original component
model.

Index Terms—Model-Driven Development, Component model,
Embedded systems, Security.

I. INTRODUCTION

Design of real-time embedded systems is a challenging task.
This is mainly due to the complexity of these systems that orig-
inate from different range of extra-functional properties that
they need to satisfy, while taking into account their limitations
of resources. This gets even more complex when we realize
that the extra-functional properties in these systems are tightly
inter-connected and cannot be considered in isolation [1]. Due
to the nature of real-time embedded systems (e.g. usage of
sensors and actuators and interacting with the environment),
timing properties in these systems are of utmost importance.
However, implications of other properties and aspects, such as
security, on timing properties should also be taken into account
to ensure a correct design.

Security aspects in embedded systems are gaining more and
more attention especially when they are distributed. Introduc-
ing security in the design of an embedded system has impacts
on other properties such as timing, performance, memory
usage, and energy consumption. On the other hand, the usage
and hostile operational environment of embedded systems
makes them also exposed to specific attacks that might not be
that relevant for other systems [2]. For example, smart cards
and wireless sensor networks which are physically exposed,
are quite tamper-prone compared to a bank database server
which is protected from access and isolated physically in a

separate room. There is a need to include security properties
in the design of a distributed real-time embedded system while
still enabling prediction of timing properties.

Model-Driven Engineering (MDE) and Component-Based
Development (CBD) are two promising approaches that can
be used orthogonally to alleviate the design complexity of
real-time embedded systems. Component-Based Development
enables reuse of already existing software units (components)
by developing a system as an assembly of components instead
of building the system from scratch. Model-Driven Engineer-
ing, on the other hand, helps to raise the abstraction level
and perform analysis at earlier phases of development. This
enables the identification of problems in the system design
before reaching the implementation phase [1], [3], [4].

Using benefits of these two approaches, we propose to spec-
ify security needs as annotations on the ProCom component
model [5] and derive the equivalent component model which
implements the security specification. Using our approach, the
designer specifies sensitive data flows with required security
properties and selects an implementation strategy to fulfill
these requirements. Based on this information, a component
model conforming to the original meta-model is generated
which satisfies the security specification and the Worst Case
Execution Time (WCET) of the resulted components is com-
puted. Therefore, same tools and analyses such as timing anal-
ysis and synthesis are applicable for the original component
model and the derived one. As a result, timing implications
of specified security properties are predictable. This approach
facilitates system designers in bringing security aspects into
the design model.

The remainder of the paper is structured as follows. In
Section II, motivation of this work and security challenges
in the design of embedded systems are discussed. Section
III, introduces Automatic Payment System as an example
of distributed real-time embedded systems with security re-
quirements. The suggested approach is described in detail in
Section IV. Implementation and analysis results are explained
in Section V. Section VI discusses related work. Finally , we
conclude the paper and describe future work and directions of
this work in Section VII.

II. MOTIVATIONS

Security is an aspect that is often neglected in the design of

embedded systems. However, the use of embedded systems for
critical applications such as controlling power plants, vehicular
systems control, and medical devices makes security consider-
ations even more important. This is due to the fact that there is
now a tighter relationship between safety and security in these
systems (refer to [6] for definitions of security and safety and
their differences). Also because of the operational environment
of embedded systems, they are prone to specific types of
security attacks such as physical and side channel attacks
[7] that might be less relevant for other types of systems.
Increase in use and development of distributed networked
and connected embedded devices also opens them up to new
types of security issues. Features and devices in a car that
communicate with other cars (e.g. the car in front) or traffic
data centers to gather traffic information of roads and streets,
use of mobile phones beyond just making phone calls and for
purposes such as buying credits, paying bills, and transferring
files (e.g. pictures, music,etc.) are tangible examples of such
usages in a distributed networked environment.

Because of the constraints and resource limitations in
embedded systems, satisfying a non-functional requirement
such as security requires careful balance and trade-off with
other properties and requirements of the systems such as
performance and memory usage. Therefore, introducing se-
curity brings along its own impacts on other aspects of the
systems. This further emphasizes the fact that security cannot
be considered as a feature that is added later to the design
of a system and needs to be considered from early stages of
development and along with other requirements. Considering
the characteristics of embedded systems, major impacts of
security features in these systems are on performance, power
consumption, flexibility and maintainability, and cost [7].
Therefore in the design of embedded systems, implications
of introducing security decisions should be taken into account
and analyzed.

Today, security is mostly taken into account at code level
which requires detailed knowledge about security mechanisms
while there is a need to raise the abstraction level to deal with
the complexity of security implementation.

III. AUTOMATIC PAYMENT SYSTEM

An example of a distributed embedded system with real-
time and security requirements is the Automatic Payment
System that is being designed for toll roads as depicted in
Figure 1. In this system, the purpose is to reduce the waiting
time and thus traffic that is caused by that at tolling stations.

For each tolling station, a camera is used that detects a
vehicle as it approaches the station (e.g. at 100/200 meter dis-
tance), and scans and reads its license plate information. This
information is passed to the payment station subsystem which
then sends the toll fee to the vehicle through a standardly
defined wireless communication channel. The vehicle shows
the amount to pay to the driver through its User Interface (UI)
and the driver inserts a credit card and accepts the payment
to be done. The credit card number is then sent securely to
the payment station which then performs the transaction on

Figure 1. Automatic Payment System for Toll Roads.

it through a (third party) merchant (through a wired Internet
connection at the station). The driver is then notified about the
success of the transaction and receives an OK message to go.
Different objects in this system and the interactions between
them are shown in Figure 2.

Figure 2. Automatic Payment System for Toll Roads.

The system should perform all these operations in a certain
time limit in order to allow a smooth traffic flow. Such time
constraints can be calculated considering the specifications
of camera and required time for detection, traffic and safety
regulations (e.g, allowed speed), and other similar factors. For
example, if the vehicle is detected at 100 meter distance from
the station, and the allowed speed at that point is 20 km/h, then
the system has a strict time window during which it should be
able to store the vehicle information, establish communication,
and send the payment information to it. Different scenarios
can happen in this system. For example, it could happen that
the driver/vehicle fails to provide credit card information, or
the credit card is expired. In this case, the system can log the
vehicle information in a certain database and send the bill later
to the owner, or even it can be set to not open the gate for
the vehicle to pass and also show a red light for other cars
approaching that toll station to stop. Besides the mentioned
timing constraints that exist in this system, the communication
between different nodes and transfer of data need to be secured

and protected. In this system, we have the following security
requirements:

1) Sensitive data such as credit card information should not
be available to unauthorized parties.

2) The vehicle only accepts transactions initiated by the
payment station.

To achieve these requirements, the station needs to authenti-
cate itself to the vehicle so that the vehicle can trust and send
the credit card information. Moreover, sensitive information
that is transferred between different parts should also be
encrypted.

IV. APPROACH

A. General Approach

Our approach aims to introduce security concerns in the
design of embedded systems. The main idea is to identify the
different data entities which need to be confidential and/or
that the sender must be authenticated. From the specification
of security needs at data level and physical platform level, a
transformation is applied on the component model in order to
add security implementation. The resulted system ensures the
security specification.

Component

Model

Data Model

Security

Annotations

Step 1: Transformation

Step 2:

Analyze

Step 3:

Synthesis

Secured

Component

Model

Physical

Input/Output Transformation

/Computation
Model Annotates

Physical

Platform Model

Security

Annotations

Analysis

Results

back annotations
System

Figure 3. Approach Process.

Figure 3 shows the overall process of the approach. The
system is described in several models based on ProCom
component model [5]. While the approach is not ProCom
specific, it relies on the main assumption that a component
model transformation to introduce security implementation
exists which has been proved in ProCom but remains as future
work for other component models. In the remaining, we will
refer to component model to represent the architecture model.
Security needs are specified as annotations on top of the data
model and the physical platform model. A benefit of the
ProCom component model is his ability thanks to its attribute
framework to extend any element with additional attribute.
We use this mechanism to specify our annotations. Having

this information in the model, the following steps are then
performed:

1) The component model which specifies the functional
and extra-functional part of the system is transformed
in a functional equivalent model with added security
implementations;

2) Analysis can be performed on the secured component
model whose result is back annotated (for example with
timing properties) to the original model; and

3) Finally, the system is synthesized.
The considered process is iterative and allows to refine security
specification after evaluating resulted system properties such
as timing properties.

B. ProCom Component Model

While the approach principles seem to be component model
generic, we implemented it using ProCom. The ProCom com-
ponent model targets distributed embedded real-time system
domain. In particular, it enables to deal with resource limi-
tations and requirements on safety and timeliness concerns.
ProCom is organized in two distinct layers that differ in terms
of architectural style and communication paradigm. For this
paper, however, we consider only the upper layer which aims
to provide a high-level view of loosely coupled subsystems.
This layer defines a system as a set of active, concurrent sub-
systems that communicate by asynchronous message passing,
and are typically distributed. Figure 4 shows ProCom design
of the Automatic Payment System example.

Input Message Port

Merchant

SubSystem

Payment

Station

Subsystem

Vehicle

SubSystem CI

Output Message Port

C
C

I

A
s
k
 C

C
I

PT

Ask CI

PI

TA

V
IP

S

Camera

Subsystem

User

Interface

Subsystem

Message Channel

SubSystem

CI: Customer Info
PT: Payment Ticket
TA: Transaction acknowledgement

CCI: Customer Card Info
PI: Payment Info
PS: Payment Status

VI: Vehicle Info

Figure 4. Component Model of the System using ProCom.

A subsystem can internally be realized as a hierarchical
composition of other subsystems or built out of entities from
the lower layer of ProCom. Figure 5 shows the implementation
of the subsystem E as an assembly of two component C1
and C2. Data input- and output ports are denoted by small
rectangles, and triangles denote trigger ports. Connections
between data- and trigger ports define transfer of data and
control, respectively. Fork and Or connectors, depicted as
small circles specify control over the synchronization between
the subcomponents.

C1

C2

Subsystem E

(a) (b)

Figure 5. ProCom SubSystem Implementation.

C. Data Model

As components are usually intended to be reused, data
should also be reused. To this end, we propose to extend
the approach described in [8]. Every data entity is stored in
a shared repository. Its description contains its type (String,
int...), its maximum size and its unit. A data entity can also be
a composite entity defined as a list of data entities. Table I and
Table II show data entities of our example. As described in the

TABLE I
PRIMITIVE DATA ENTITIES.

Data Entity Type Max Size Unit
CCNumber String 16 byte

ExpirationDate String 4 byte
AskCI Empty 0 byte

AskCCI Empty 0 byte
PaymentStatus boolean 1 byte

VehicleNumber String 20 byte
VehicleType Enum 8 byte

AmountToPay float 4 euro

TABLE II
COMPOSITE DATA ENTITIES.

Data Entity Contains
CreditCard CCNumber, ExpirationDate

CustomerInfo VehicleNumber, CreditCard
PaymentTicket AmountToPay, PaymentStatus

PaymentRequest AmountToPay, CreditCard

last section, subsystems communicate through asynchronous
message passing represented by message channels. A message
channel is associated with a list of data entities which defines
the message content. Table III presents mapping between
message channels and data entities for our example. We can
observe that the same data entity can be used several times
in different message channels. The mapping between data
ports of message ports and data entities is based on naming
convention which enables to distinguish between data ports
that require to encrypt/decrypt their data and those that do
not. We call data model the set of data entities which are used
in the related design.

D. Physical Platform And Deployment Modeling

The physical entities and their connections are described in a
separate model called Physical Platform Model (see Figure 6).

TABLE III
MAPPING BETWEEN DATA ENTITIES AND MESSAGE CHANNELS.

Message Channel Data Entities
AskCI AskCI

CI CustomerInfo
PT PaymentTicket

AskCCI AskCCI
PS PaymentStatus

CCI CreditCard
VI VehicleNumber, VehicleType
TA CCNumber, AmountToPay, PaymentStatus
PI PaymentRequest

This model defines the different Electronic Computation Unit
(ECU) called Physical Node including their configuration such
as processor type and frequency, the connections between
physical nodes and the physical platforms which represents
a set of ECU fixed together.

Bank

ECU1 ECU3
ECU4

C
A

N

T
C

P
/IP

WIFI IPSec

Inter Physical Platform
Connection

Physical Platform

Vehicle Station

ECU4ECU2

ECU
Computation Unit allocation
(= Physical Node)

Intra Physical Platform
Connection

Figure 6. Physical Platform Model of the System.

ProCom system deployment is modeled in two steps, intro-
ducing an intermediate level where subsystems are allocated
to virtual nodes that, in turn, are allocated to physical nodes.
In a similar way, message connections are allocated to virtual
message connections which, in turn, are allocated to physical
connections. Figure 7 defines the physical platform and related
mapping of Automatic Payment System model. To simplify
the example, we assume one to one mapping between virtual
node and physical node.

E. Security Properties

Instead of defining the security properties on the architec-
ture, i.e. the component model, we propose to annotate the
data model and compute the required security properties on
the architecture, based on these security requirements. It is an
original part of our approach where designer can think about
sensitive data without considering the architecture models. The
designer applies security properties to identify and annotate
sensitive data in the system, which require to be protected
using some security mechanisms (e.g., confidentiality and

Merchant

SubSystem

Payment
Station

Subsystem

Vehicle

SubSystem

PT

PI

TA

Bank

CI

Ask CI

WIFI IPSec

ECU1 ECU3 ECU4

V
I

C
C

I

A
s
k
 C

C
I

P
S

C
A

N

T
C

P
/IP

Camera
Subsystem

User

Interface

Subsystem

Inter Physical Platform
Connection

Physical Platform

Vehicle Station

ECU4ECU2

ECU
Computation Unit allocation
(= Physical Node)

Intra Physical Platform
Connection

Figure 7. Deployment Model of the System depicting allocation to Physical
Platforms.

encryption, authentication, integrity, etc.). We consider two
types of security properties:

• Confidentiality ensures that the considered information
can not be read by any external person of the system; and

• Authentication which ensures that the considered infor-
mation comes from the expected sender.

Table IV shows security annotations associated to data
entities for our example. In addition to security properties on

TABLE IV
DATA ENTITY SECURITY PROPERTIES.

Data Entity Security properties
CCNumber Confidentiality
VehicleNumber Authentication
AskCI Authentication
AskCCI Authentication
PaymentRequest Authentication
PaymentStatus Authentication

the data model, we define the security properties related to the
physical platform which are independent of any application:

• Exposed defines that the physical platform is potentially
accessible to external persons and that they may be able
to open it and modify physical parts.

• NotAccessible defines that the physical platform is not
considered as accessible to unauthorized persons.

In a similar way, physical connections are annotated:
• NotSecured defines that the physical connection protocol

does not implement reliable security.
• Secured defines that the physical connection is consid-

ered as secured due to its intrinsic security implementa-
tion.

Using these properties, the responsible of the physical
platform annotates physical entities and the physical con-
nections between them in the platform model. Thanks to
these annotations, we can deduce which parts do not need
additional security implementations if it is already provided.
For example, if a link is established using mere TCP/IP, it is

annotated as NotSecured, while in case that IPSec protocol
suite is used for a link, that link is annotated as Secured. This
means that the link is considered trusted and already secured,
and no security component is necessary to be added for the
link. Table V shows the security properties of Automatic
Payment System physical platforms.

TABLE V
SECURITY PROPERTIES OF PHYSICAL ENTITIES.

Physical Platform or Connection Security properties
Vehicle Exposed
Station NotAccessible
Bank NotAccessible
WIFI NotSecured
IPSec Secured
TCP/IP NotSecured
CAN NotSecured

F. Cost of Security Implementations

To satisfy the identified security properties in the system,
different security mechanisms, namely encryption/decryption
algorithms in this paper, can be used. As stated before, using a
security mechanism in the system has its own costs in terms of
timing and performance, power consumption and so on. There-
fore, choosing an appropriate security mechanism is critical
in order to ensure the satisfaction of timing requirements of
the system while fulfilling the security requirements. For this
purpose, and to take into account the timing costs of different
security mechanisms, we rely on the results of studies such
as [9] that have performed these cost measurements. Based
on such methods, we assume the existence of such timing
measurements for the platforms used in our system in the
form of the Table VI. We assume that execution time can be
computed knowing targeting platform, algorithm, key size and
data size. We suggest to provide a timing estimation toolkit
which enable to provide estimate based on measurements. It
can be observed that depending on the targeted platform, some
algorithms may not be supported.

TABLE VI
EXECUTION TIMES AND STRENGTH RANKING OF DIFFERENT SECURITY

ALGORITHMS FOR A SPECIFIC PLATFORM

Strength Rank Algorithm Key Size ET-P1 ET-P2 ET-Pn
1 AES 128 NS 480 . . .
2 3DES 56 292 198 . . .
3 DES 56 835 820 . . .

. . .
(ET-Px: Executime Time on Platform x in bytes per second, NS: Not Supported on corresponding platform)

Table VI shows estimates based on results presented in [9].
These results are related to a specific platform. We do not aim
to explain how to get such table. However we assume that it
is possible to get such estimates.

G. Security Implementation Strategy

As mentioned previously, based on the selected strategy, a
security mechanism is chosen from the table and the com-
ponents implementing it are added to the component model.

The user can then perform timing analysis on the derived
component model to ensure that the overall timing constraints
hold and are not violated. We propose several strategies to
help choosing between all possible security implementations:

• The StrongestSecurity strategy selects the strongest se-
curity implementation available on the platforms;

• The StrongestSecurityAndLimitImplemNb strategy se-
lects the strongest security implementation available on
the platforms which ensures that we use as few as
possible different security implementations since each
message channel can use a different encryption algorithm;

• The LowestExecTime strategy selects the security im-
plementation available on the platforms which has the
lowest execution time;

• The LowestExecTimeAndLimitImplemNb strategy se-
lects the lowest execution time implementation available
on the platforms which ensures that we use as few as
possible different security implementations; and

• The StrongestSecuritySchedulable strategy selects the
strongest security implementation available on the plat-
forms where the system remains schedulable.

The selection is driven by the fact that the same algorithm
must be used for the sender and receiver components which
may be deployed on different platforms which in turn may not
support the same algorithms. The StrongestSecuritySchedula-
ble strategy is hard to implement and will be part of our future
works. However, it is the most interesting one. More complex
security implementation strategies can be considered but are
not covered by this paper. In particular, our future works will
try to define required security strength associated to data and
message channels.

H. Transformation

The transformation is performed in four steps:

1) First, we identify the part of message which needs to be
confidential or authenticated and on which communica-
tion channels;

2) Then, we add components in charge of encryption,
decryption of the identified communication channels;

3) Then, the strategies are used to choose which encryp-
tion algorithm to use and generate the code of added
components; and

4) Finally, the Worst Case Execution Time (WCET) of
added components is estimated.

It relies on the following assumptions:

• The confidentiality is ensured using asymmetric keys; and
• The authentication is ensured using electronic certificates.

The transformation aims to ensure that data decryption is per-
formed once and only once before that data will be consumed
and that data encryption is performed once and only once
when a message should be sent. To illustrate the algorithm,
let’s consider the example in Figure 8. We assume that only
data D1 need to be confidential. The pseudo algorithm of the
transformation is described in Listing 1.

(a) Before transformation, no security

C2

C1

C2

D1

D1

C1
D2

D2

D2

C2

(b) After transformation, secured system

C1

C2

EnD1

Original elementsGenerated elements

ED1

ED1 DeD1

C1

Digest

Digest

D2

D2

D2

Figure 8. Transformation.

Listing 1. Transformation Pseudo Algorithm
msgToSecure = {}
f o r a l l c h a n n e l s M i n component model {
P = M. a l l o c a t e d P h y s i c a l C h a n n e l ;
i f ((M. g e t C o n f i d e n t i a l D a t a () <> {}) o r

(M. g e t A u t h e t i c a t e d D a t a () <> {}) and
(P . i s N o t S e c u r e d ()) and
((P . i s I n t r a P l a t f o r m () and

P . s o u r c e P o r t . p l a t f o r m . i s E x p o s e d ()) o r
(P . i s I n t e r P l a t f o r m ()))

add M i n msgToSecure ;
}

f o r a l l M i n msgToSecure {
P = M. a l l o c a t e d P h y s i c a l C h a n n e l ;

Source = M. s o u r c e P o r t ;
EnD = c r e a t e component

wi th same p o r t s a s Source ;
i f (M. g e t A u t h e t i c a t e d D a t a () <> {})

add one o u t p u t p o r t D i g e s t t o EnD
add one i n p u t p o r t D i g e s t t o Source

EnD . i n C o n n e c t i o n s = Source . i n C o n n e c t i o n s ;
c r e a t e c o n n e c t i o n s where EnD . o u t P o r t s

a r e c o n n e c t e d t o c o r r e s p o n d i n g
Source . i n P o r t s ;

g e n e r a t e EnD i m p l e m e n t a t i o n code

Des t = M. d e s t P o r t ;
DeD = c r e a t e component

wi th same p o r t s a s Des t ;
i f (M. g e t A u t h e t i c a t e d D a t a () <> {})

add one o u t p u t p o r t D i g e s t t o Des t
add one i n p u t p o r t D i g e s t t o DeD

DeD . o u t C o n n e c t i o n s = Des t . o u t C o n n e c t i o n s ;
c r e a t e c o n n e c t i o n s where Des t . o u t P o r t s

a r e c o n n e c t e d t o c o r r e s p o n d i n g

DeD . i n P o r t s ;
g e n e r a t e DeD i m p l e m e n t a t i o n code

}

Encryption/Decryption (in EnD1 and DeD1) is done only
for confidential data while other data are just copied. An
additional port is used to send digest used for authentication.
The decryption component (DeD1) ensures that all message
data will be available at the same time thought output data
ports. This implementation ensures the original operational
semantic of the component model. Then, the security strategy
is used to choose which encryption/decryption algorithm must
be used and what its configuration will be.

V. IMPLEMENTATION

This approach has been experimented partially in PRIDE,
the ProCom development environment. The feasability at
model level of the approach has been validated while the
code generation part remains as future works. The security
annotations have been added using the Attribute framework
[10] which allows to introduce additional attribute to any
model element in ProCom. The model transformation has been
implemented using a QVTo [11] transformation plugged at the
end of the process described in [12]. These experiments aims
to show the benefits at design level of the approach where
timing properties of the overall system can be analysed. The
current implementation only supports the LowestExecTime
and StrongestSecurity strategies. The analysis of estimate
accuracy is out of the scope of this paper.

This paragraph presents some ideas to generate code of
security components. In order to keep the approach generic,
we intend to let certificate specification and other encryption
algorithm specific parameters to be filled in the generated
code. One generator is associated for each algorithm. The
suitability for timing analysis of the generated component code
need to be planned but at least will allow for measurement
based timing analysis as any other ProCom component. While
the system functionality remains the same, the system needs to
react to authentication errors. This problem could be partially
solved by letting opportunity to the developer to add code
to manage authentication errors in the generated code which
leads to define what must be the output data in this specific
case.

VI. RELATED WORK

With the growing complexity of real-time embedded sys-
tems, management of run-time data in these systems has
become more important than before and has gained more
attention. It has become extremely hard for one person to keep
track of all data that is passing through different parts of the
systems. Currently, most design methods based on component
models focus on functional structuring of the system without
considering data flow meaning and semantics [8]. [8] intro-
duces a data-centric approach which models data and proposes
to use real time database for data management at runtime
in real-time embedded systems. It introduces an architectural
view for data entities to complement component-based views.

Unfortunately, it does not address extra-functional properties
such as security. Our work follows a similar approach to model
data entities as a basis to define security specification.

For modeling security features in general, several solutions
have been offered such as UMLsec [13] that is a UML profile
for the specification of security relevant information in UML
diagrams. It is one of the major works in this area and also
comes with a tool suite which enables evaluation of security
aspects and their violations. There are other similar approaches
that have narrower focus like SecureUML [14] that enables
modeling of role-based access controls. However, modeling
security requirements in isolation (from other aspects of the
system) is not enough and become problematic to predict
impact on other extra-functional properties especially for real-
time embedded. There are works such as [2] and [7] that
discuss security issues unique to embedded systems. In [15]
we have proposed and discussed benefits of extending MARTE
[16] modeling language with security annotations to cover the
modeling needs of embedded systems. This work focused on
providing UML stereotypes to specify confidentiality property
of message communication and related timing estimates. Con-
trasting, our work models confidentiality and authentication
properties at higher abstraction level enabling the designer to
focus on sensitive data without thinking about the security
implementation which will be automatically generated.

In [17], a method is introduced to specify security re-
quirements on UML models and check their satisfaction by
relating model-level requirements to code level implementa-
tions. UMLsec is used to include security requirements at
model level, and JML annotation language is used to relate
code blocks back to the security requirements specification,
therefore enables evaluation of security requirement assurance.
While this work is also an MDE based approach for defining
security requirements, it does not provide timing impacts of
security implementation and does not automatically derive
security implementation.

The work described in [18] considers security issues in
model-based development of service-oriented applications. It
proposes a process meta-model for modeling service orches-
tration as a workflow and another one for modeling high-
level security properties. In addition, a more detailed model
is used to specify low level security specification and the tool
generates the security implementation from these models. Our
approach is similar to this work in the sense that it aims to
define security properties at high level of abstraction. While
they focus on automatic service selection and other security
properties such as integrity, our objective is to compute
timing impact of security implementation and target another
application domain. In addition, we identify sensitive part of
messages which need to be secured.

The work in [19], highlights the need to identify sensitive
data and introduces an extension to include security concerns
as a separate model view for web-services based on Web-
Services Business Process Execution Language (WS-BPEL).
However, it does not take into account consequences of
security design decisions on timing.

Studies [9], [20] are two examples of works that measure the
costs of security algorithms. [9] provides performance com-
parisons of several encryption algorithms, and [20] compares
energy consumptions of encryption algorithms on two sensor
motes used for building wireless sensor networks. While the
focus in these works is not on system design, MDE, and CBD
methods, in our work they serve as hints and examples on how
to get costs of security algorithms.

VII. CONCLUSION

Modeling of data in embedded systems is mainly done by
specifying the type of data, while the semantics of transferred
data is needed for security concerns such as identification
of sensitive data. Security, as a non-functional requirement,
spans different parts of a system and needs to be modeled
at all levels (component architecture, data model, physical
platform. . .). In this paper, we presented an approach which
allows to define security specification of embedded systems
at high level of abstraction and to produce automatically the
security implementation.

Our contributions are
• To propose to model data semantic on top of ProCom

architecture model;
• To propose a way to model security properties and needs

as annotations on the different models;
• To provide a transformation of component model which

ensures by construction security specification; and
• To enable timing analysis on secured component model

by computing timing estimates of security components.
All these features help system designers to focus more on

system architecture and timing properties which are critical in
real-time embedded systems, and at the same time, consider
and apply security mechanisms in the design models, without
the need to have deep knowledge about how to implement
different security mechanisms. This also contributes to the aim
and trend of bringing security considerations in higher levels
of abstraction.

As future works, we aim to provide analysis to compute
security system properties such as robustness of the sys-
tem to a specific attack, to provide an algorithm for the
StrongestSecuritySchedulable, evaluation on an industrial use
case and to consider other extra functional properties such as
power consumption of security implementations and to provide
trade-off analysis between security properties and other extra-
functional properties.

REFERENCES

[1] M. Voelter, C. Salzmann, and M. Kircher, “Model driven software
development in the context of embedded component infrastructures,”
in Component-Based Software Development for Embedded Systems, ser.
Lecture Notes in Computer Science, C. Atkinson, C. Bunse, H.-G. Gross,
and C. Peper, Eds., vol. 3778. Springer Berlin / Heidelberg, 2005, pp.
143–163.

[2] S. Gürgens, C. Rudolph, A. Maña, and S. Nadjm-Tehrani, “Security en-
gineering for embedded systems: the secfutur vision,” in Proceedings of
the International Workshop on Security and Dependability for Resource
Constrained Embedded Systems, ser. S&D4RCES ’10. New York, NY,
USA: ACM, 2010, pp. 7:1–7:6.

[3] M. Torngren, D. Chen, and I. Crnkovic, “Component-based vs. model-
based development: a comparison in the context of vehicular embedded
systems,” in Software Engineering and Advanced Applications, 2005.
31st EUROMICRO Conference on, aug.-3 sept. 2005, pp. 432 – 440.

[4] B. Selic, “The pragmatics of model-driven development,” IEEE Soft-
ware, vol. 20, pp. 19–25, September 2003.

[5] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic,
“A Component Model for Control-Intensive Distributed Embedded
Systems,” in Proceedings of the 11th International Symposium on
Component Based Software Engineering (CBSE2008), M. R. Chaudron
and C. Szyperski, Eds. Springer Berlin, October 2008, pp. 310–317.

[6] E. Albrechtsen, “Security vs safety,” NTNU - Norwegian University
of Science and Technology http://www.iot.ntnu.no/users/albrecht/, Ac-
cessed: May 2011.

[7] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan, “Security as a
new dimension in embedded system design,” in Proceedings of the 41st
annual Design Automation Conference, ser. DAC ’04. New York, NY,
USA: ACM, 2004, pp. 753–760, moderator-Ravi, Srivaths.

[8] A. Hjertström, D. Nyström, and M. Sjödin, “A data-entity approach
for component-based real-time embedded systems development,” in
Proceedings of the 14th IEEE international conference on Emerging
technologies & factory automation, ser. ETFA’09. Piscataway, NJ,
USA: IEEE Press, 2009, pp. 170–177.

[9] A. Nadeem and M. Javed, “A performance comparison of data en-
cryption algorithms,” in Information and Communication Technologies,
2005. ICICT 2005. First International Conference on, aug. 2005, pp. 84
– 89.

[10] S. Sentilles, P. Štěpán, J. Carlson, and I. Crnković, “Integration of Extra-
Functional Properties in Component Models,” in 12th International
Symposium on Component Based Software Engineering. Springer, 2009.

[11] I. Kurtev, “State of the art of QVT: A model transformation language
standard,” in Applications of Graph Transformations with Industrial
Relevance, ser. Lecture Notes in Computer Science. Springer Berlin,
2008, vol. 5088, pp. 377–393.

[12] T. Leveque, J. Carlson, S. Sentilles, and E. Borde, “Flexible semantic-
preserving flattening of hierarchical component models,” in 37th EU-
ROMICRO Conference on Software Engineering and Advanced Appli-
cations (SEAA). IEEE Computer Society, August 2011.

[13] J. Jürjens, “Umlsec: Extending uml for secure systems development,”
in UML ’02: Proceedings of the 5th International Conference on The
Unified Modeling Language. London, UK: Springer-Verlag, 2002, pp.
412–425.

[14] T. Lodderstedt, D. A. Basin, and J. Doser, “Secureuml: A uml-based
modeling language for model-driven security,” in Proceedings of the
5th International Conference on The Unified Modeling Language, ser.
UML ’02. London, UK: Springer-Verlag, 2002, pp. 426–441.

[15] M. Saadatmand, A. Cicchetti, and M. Sjödin, “On the need for extending
marte with security concepts,” in International Workshop on Model
Based Engineering for Embedded Systems Design (M-BED 2011),
March 2011.

[16] MARTE specification version 1.0 (formal/2009-11-02), http://www.
omgmarte.org.

[17] J. Lloyd and J. Jürjens, “Security analysis of a biometric authentication
system using umlsec and jml,” in Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems, ser.
MODELS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 77–91.

[18] S. Chollet, P. Lalanda, and G. Pedraza, “Secure Integration of Service-
Oriented Application,” September 2009.

[19] M. Jensen and S. Feja, “A security modeling approach for web-service-
based business processes,” in Proceedings of the 2009 16th Annual IEEE
International Conference and Workshop on the Engineering of Computer
Based Systems, ser. ECBS ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 340–347.

[20] J. Lee, K. Kapitanova, and S. H. Son, “The price of security in wireless
sensor networks,” Journal of Computer Networks, vol. 54, pp. 2967–
2978, December 2010.

http://www.iot.ntnu.no/users/albrecht/
http://www.omgmarte.org
http://www.omgmarte.org

