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Abstract—In this technical report, we introduce an evalua-
tion framework which are centering around four base models,
inspired by an industrial robotic control application. Specif-
ically, such evaluation models are quite complicated from a
task execution and temporal dependencies perspective, making
difficult to perform the corresponding timing analysis.

I. OVERVIEW

In today’s world, industrial real-time embedded systems
(IRTES) are becoming more and more complex. In fact, most
of such systems tend to be probabilistic in nature, which
makes difficult to perform the corresponding timing analysis.
This technical report introduces an evaluation framework
containing 32 evaluation models, which are inspired by one
example of such IRTES. Specifically, in these evaluation
models, there are interesting yet intricate task execution
and temporal dependencies, such as asynchronous message-
passing and globally shared state variables, which may
decide important control-flow conditions with major impact
on task execution time as well as task response time and,
2) runtime changeability of priorities and periods of tasks
and, 3) task offsets. In addition, our evaluation framework is
running on a simulation framework RTSSim, which allows
for simulating models describing the complicated control
flow in tasks from both the functional and temporal behavior
of systems. More details about RTSSim can be found in
the following section. Finally, Section III describes the 32
evaluation models which are centering around four base
models, in terms of system architecture, some interesting
timing characteristics and the model source code in our
simulation framework.

II. RTSSIM SIMULATION FRAMEWORK

The evaluation framework in this work is described by the
modeling language in the RTSSim simulation framework [1],
which allows for simulating system models containing de-
tailed intricate execution dependencies between tasks, such
as asynchronous message-passing, globally shared state vari-
ables, and runtime changeability of priority and period
of tasks. In RTSSim, the system consists of a set of
tasks, sharing a single processor. RTSSim provides typical
RTOS services to the simulation model, such as Fixed-
Priority Preemptive Scheduling (FPPS), Inter-Process Com-
munication (IPC) via message queues, and synchronization
(semaphores). The tasks in a model are described by using C

functions, which are called by the RTSSim framework. The
framework provides an isolated “sandbox”, where time is
represented in a discrete manner using an integer simulation
clock, which is only advanced explicitly by the tasks in the
simulation model, using a special routine, EXECUTE. Calls
to this routine models the tasks’ consumption of CPU time.

All time-related operations in RTSSim, such as timeouts
and activation of time-triggered tasks, are driven by the sim-
ulation clock, which makes the simulation result independent
of process scheduling and performance of the analysis PC.
The response time and execution time of tasks are measured
whenever the scheduler is invoked, which happens for exam-
ple at IPC, task switches, EXECUTE statements, operations
on semaphores, task activations and when tasks end. This,
together with the simulation clock behavior, guarantees that
the measured response time and execution time are exact.

In RTSSim, a task may not be released for execution until
a certain non-negative time (the offset) has elapsed after the
arrival of the activating event. Each task also has a period, a
maximum arrival jitter, and a priority. Periods and priorities
can be changed at any time by any task in the application,
and offset and jitter can both be larger than the period. Tasks
with equal priorities are served on a first come first served
basis. The framework allows for three types of selections
which are directly controlled by simulator input data:

• selection of execution times (for EXECUTE),
• selection of task-arrival jitter,
• selection of task control flow, directly or indirectly

based on environmental input stimulus.

In addition, Monte Carlo simulation can be realized by
providing randomly generated (conforming to the uniform
distribution) simulator input data, and gives output in terms
of a set of traces, each of which contains the measured
Response Time (RT) and Execution Time (ET) data of each
task invocation during simulation.

III. EVALUATION MODELS

This section is split into three parts: Section III-A firstly
introduces, in detail, the four base models, upon which the
other evaluation models are. Next, Section III-B describes
the variations of the base models which are developed by
using system evolution scenarios, before the source code of
the models in RTSSim is given in Section III-C.



A. Four Base Models

As we mentioned previously, the evaluation framework
consisting of 32 evaluation models, are based around four
different base models, which are designed to include some
behavioral mechanisms adopted by an industrial robotic con-
trol system. Specifically, the characteristics of the behavioral
mechanisms in our evaluation models include intricate task
execution and temporal dependencies, e.g., asynchronous
message-passing by sending and receiving messages from
buffers (as shown in lines 1 to 4 in Figure 1), execute
statements representing some computation time taken by the
(sub-)task (as shown in Line 6 in Figure 1), Global Shared
State Variables (GSSVs) used in selecting control branches
in tasks, runtime changeability of task priorities and periods
(as shown in lines 8 to 13 in Figure 1), and task offsets.
Moreover, we have applied system evolution scenarios (to
be introduced in the following section) to these base models
to create more evaluation models.

1 msg = recvMessage(MyMessageQueue);
2 while (msg != NO_MESSAGE){
3 process_msg(msg);
4 msg = recvMessage(MyMessageQueue);}
5
6 execute(for_some_time);
7
8 if (GSSV1 == 1){
9 var1 = 10;

10 tcb->period = 20000;}
11 else{
12 var2 = 5;
13 tcb->period = 10000;}

Figure 1. Iteration-loop wrt. message passing and GSSVs, and runtime
changeability of task priorities and periods in the tasks in the industrial
robotic control system evaluated in our work.

It is interesting to stress that due to the existence of intri-
cate task execution and temporal dependencies in IRTES, an
upcoming RT data may not be independent of the RT data
previously recorded at the same system execution, for the
same task. Furthermore, the timing behavior of the adhering
tasks is also quite complicated. Figure 2 shows an example,
i.e., given a large1 number at sampling, the Probability
Density Function (PDF) histogram of the CTRL task (i.e.,
the most important task under analysis) RT sample in the
evaluation model MV4-1 (and the relevant model source
code is shown in Section III-C4) is clearly conforming to a
multi-modal distribution having several peaks. Particularly,
because of such distinctive feature of our target CIRTES, it is
difficult to bring conventional statistical methods [3] (e.g.,
t-test, z-test and analysis of variance (ANOVA)) into the
context of predicting the worst-case timing behavior of the

1By running the evaluation model MV4-1 (which is one of the most
interesting and complicated evaluation models) for the time up to the upper
bound on the simulation time, i.e., 231 − 1, we have collected 2 000 000
sample elements of the CTRL task RT population, of which the sample
size is sufficiently enough to represent the underlying population [2].

Figure 2. The Probability Density Function (PDF) histogram of a
RT sample of the CTRL task in MV4-1, i.e., the most complicated
evaluation model.

Figure 3. An industrial robotic control system architecture. From the view
point of the number of queues, the main difference between MV4-∗ and
other evaluation models is that there is no Queue SSQ in the other models.

CTRL task in IRTES as shown in [4]. Since one important
assumption, i.e., the underlying population is assumed to
follow a normal distribution cannot be satisfied.

Besides, the four base models are designed to have in-
creasing complexity. To be specific, the differences between
these base models are mainly concerning the contained task
execution and temporal dependencies as well as the number
of sub-tasks, queues and GSSVs, which are increased from
MV1 to MV4, as shown in Table I, making them more
complex. The system architecture of the most complicated
base model MV4, is shown in Figure 3.

B. Model Variations Based upon System Evolution

In order to have a large number of evaluation models,
we simply apply some typical system evolution scenarios
to the four base models, each resulting in a set of new
system models to analyze. In doing this, we either increase
or decrease the execution time of sub-tasks in tasks in our
base models, which reflects the scenarios of the change on
system CPU speed. In practice, such scenarios can happen
e.g., when the system is ported to a new hardware platform,



Table I
MODELS DESCRIPTION AND THE RELEVANT COMPLEXITY. THE LOWER

NUMBERED COMPLEXITY IS LESS COMPLEX, I.E., 1 STANDS FOR THE
SIMPLEST EVALUATION MODEL.

ModelsSub-tasksQueuesGSSVs Description Complexity
MV1* 40 7 8 IPC via the bounded

number of messages
and GSSVs, and task
offsets.

1

MV2* 42 7 8 IPC via the bounded
number of messages
and GSSVs, and run-
time changeability of
priorities of tasks, and
task offsets.

2

MV3* 42 7 8 IPC via the bounded
number of messages
and GSSVs, and run-
time changeability of
priorities and periods
of tasks, and task off-
sets.

3

MV4* 59 12 10 IPC via the
unbounded number
of messages and
GSSVs, and runtime
changeability of
priorities and periods
of tasks, and task
offsets.

4

which thereby is upgraded or downgraded according to new
design requirements.
• For the increase in system CPU speed, we limit our-

selves to use 2, 5 and 10 as relevant factors in the work.
• For the decrease in system CPU speed, we limit our-

selves to use 0.9, 0.8, 0.7 and 0.6 as relevant factors
in the work. It is worth noticing that a factor of 0.5
will result in the corresponding known best-practice
task WCRT longer than the corresponding task period,
i.e., if one would assume the deadline of a task to be
equal to its corresponding period, applying a factor of
0.5 would violate schedulability of the system.

Each of the factors highlighted above is marked as a
postfix to the model name, i.e., MV1-2 represents that the
CPU speed of the model variation MV1-2 is two times as
fast as the CPU speed of the model MV1; In other words,
the corresponding execution time of sub-tasks in MV1-2 is
0.5 times as large as the corresponding ones in MV1.

To summarize, the task parameters used in these evalua-
tion models are shown in Table II, where the CTRL task is
the task under analysis, which is also the task with the most
complicated timing behavior.

C. Pseudo Code of Our Evaluation Models

1) MV 1− ∗:
2) MV 2− ∗:
3) MV 3− ∗:
4) MV 4− ∗:

Table II
TASKS AND TASK PARAMETERS FOR EVALUATION MODELS. THE LOWER

NUMBERED PRIORITY IS MORE SIGNIFICANT, I.E., 0 STANDS FOR THE
HIGHEST PRIORITY. CTRL H AND CTRL L REPRESENT THE CTRL

TASK WITH A HIGHER AND A LOWER PRIORITY RESPECTIVELY.

Task Period (µs) Offset (µs) Priority Models

DRIVE 2 000 12 000 2 MV1-*, MV2-*, MV3-*,
MV4-*

CTRL H 20 000 0 4 MV2-*, MV3-*, MV4-*
IO 5 000 500 5 MV1-*, MV2-*, MV3-*,

MV4-*
CTRL L 10 000 0 6 MV1-*, MV2-*, MV3-*,

MV4-*
PLAN 80 000 0 8 MV1-*, MV2-*, MV3-*,

MV4-*

1 void DRIVE_TASK(TCB* tcb)
2 {
3 int msg;
4 msg = recvMessage(tcb, DDQ, 0);
5 execute(tcb, cDRIVEdecode);
6
7 switch(msg)
8 {
9 case MSG_SLC:

10 execute(tcb, cDRIVEslc);
11 if (ismoving == 0)
12 {
13 ismoving = 1;
14 }
15 break;
16
17 case MSG_SLCD:
18 execute(tcb, cDRIVEslcd);
19 if (ismoving == 1)
20 {
21 ismoving = 0;
22 }
23 break;
24 default:
25 break;
26 }
27
28 msg = recvMessage(tcb, DCQ, 0);
29 if (msg > -1)
30 {
31 switch(msg)
32 {
33 case MSG_GETSTS:
34 execute(tcb, cDRIVEgetsts);
35 sendMessage(tcb, GSQ, MSG_STS_DRIVE, FOREVER);
36 break;
37 default:
38 break;
39 }
40 }
41 }

Figure 4. The RTSSim code of the DRIVE task in MV 1− ∗.
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1 void IO_TASK(TCB* tcb)
2 {
3 int status;
4 int eventsToProcess = 0;
5
6 if (nofEvents > 12)
7 {
8 eventsToProcess = 12;
9 }else{

10 eventsToProcess = nofEvents;
11 }
12
13 while(eventsToProcess-- > 0)
14 {
15 execute(tcb, cIOEvent);
16 nofEvents--;
17 status = sendMessage(tcb, IOQ, 1, 0);
18 }
19 }

Figure 5. The RTSSim code of the IO task in MV 1− ∗.

[4] Y. Lu, J. Kraft, T. Nolte, and I. Bate, “A statistical approach
to simulation model validation in response-time analysis of
complex real-time embedded systems,” in The 26th ACM
Symposium on Applied Computing (SAC’11). ACM, Mar.
2011.

1 void CTRL_TASK(TCB* tcb)
2 {
3 int msg = -1;
4 int ioevent;
5 int i;
6 int nofIOEvents = 0;
7
8 msg = recvMessage(tcb, CCQ, 0);
9 execute(tcb, cCTRLdecode);

10
11 if (msg > -1)
12 {
13 switch (msg)
14 {
15 case MSG_GETSTS:
16 sendMessage(tcb, DCQ, MSG_GETSTS, FOREVER);
17 execute(tcb, cCTRLgetsts);
18 sendMessage(tcb, GSQ, MSG_STS_CTRL, FOREVER);
19 break;
20 default:
21 break;
22 }
23 }
24
25 nofIOEvents = IOQ->current_size;
26
27 for (i=0; i < nofIOEvents; i++)
28 {
29 ioevent = recvMessage(tcb, IOQ, 0);
30
31 if (ioevent > -1)
32 {
33 execute(tcb, cCTRLioevent);
34 }
35 }
36
37 nSLC = 5;
38 tcb->period = 10000;
39
40 msg = recvMessage(tcb, CDQ, 0);
41 if (msg > -1)
42 {
43 switch(msg)
44 {
45 case MSG_FLC:
46 if (idle == 1)
47 {
48 idle = 0;
49 }
50 while (nSLC-- > 0)
51 {
52 execute(tcb,cCTRLslc);
53 sendMessage(tcb, DDQ, MSG_SLC, FOREVER);
54 }
55 break;
56 case MSG_LAST:
57 idle = 1;
58 execute(tcb,cCTRLlast);
59 break;
60 default:
61 break;
62 }
63 }
64
65 if (idle == 1)
66 {
67 while (nSLC-- > 0)
68 {
69 execute(tcb, cCTRLslcd);
70 sendMessage(tcb, DDQ, MSG_SLCD, FOREVER);
71 }
72 }
73 }

Figure 6. The RTSSim code of the CTRL task in MV 1− ∗.



1 void PLAN_TASK(TCB* tcb){
2 int nFLCs;
3 int cmd;
4 do
5 {
6 cmd = recvMessage(tcb, PCQ, 0);
7 execute(tcb, cPLANdecode);
8
9 if (cmd != -1)

10 {
11 switch(cmd)
12 {
13 case MSG_START:
14 remainingFLC = 50;
15 planstate = PLANSTATE_BEGIN;
16 execute(tcb, cPLANstart);
17 break;
18 case MSG_STOP:
19 planstate = PLANSTATE_IDLE;
20 execute(tcb, cPLANstop);
21 break;
22 case MSG_GETSTS:
23 execute(tcb, cPLANgetsts);
24 sendMessage(tcb, GSQ, MSG_STS_PLAN, FOREVER);
25 sendMessage(tcb, CCQ, MSG_GETSTS, FOREVER);
26 break;
27 default:
28 break;
29 }
30 }
31 }while (cmd != -1);
32
33 switch (planstate)
34 {
35 case PLANSTATE_BEGIN:
36 planstate = PLANSTATE_WORKING;
37 if (remainingFLC < CDQSIZE)
38 {
39 nFLCs = remainingFLC;
40 }else{
41 nFLCs = CDQSIZE;
42 }
43 while (nFLCs > 0)
44 {
45 execute(tcb, cPLANflc);
46 sendMessage(tcb,CDQ, MSG_FLC, FOREVER);
47 nFLCs--;
48 remainingFLC--;
49 }
50 break;
51 case PLANSTATE_WORKING:
52 if (remainingFLC < 4)
53 {
54 nFLCs = remainingFLC;
55 }else{
56 nFLCs = 4;
57 }
58 while (nFLCs > 0)
59 {
60 execute(tcb, cPLANflc);
61 sendMessage(tcb, CDQ, MSG_FLC, FOREVER);
62 nFLCs--;
63 remainingFLC--;
64 }
65 break;
66 case PLANSTATE_IDLE:
67 break;
68 }
69
70 if (
71 (remainingFLC <= 0 && planstate != PLANSTATE_IDLE)
72 ||
73 (remainingFLC > 0 && planstate == PLANSTATE_IDLE)
74 )
75 {
76 execute(tcb, cPlanLast);
77 planstate = PLANSTATE_IDLE;
78 remainingFLC = 0;
79 sendMessage(tcb, CDQ, MSG_LAST, FOREVER);
80 }
81 }

Figure 7. The RTSSim code of the PLAN task in MV 1− ∗.

1 void DRIVE_TASK(TCB* tcb)
2 {
3 int msg;
4 msg = recvMessage(tcb, DDQ, 0);
5 execute(tcb, cDRIVEdecode);
6
7 if (DDQ->current_size < MINDDQSIZE)
8 {
9 TCB* ctrl_task = findTCBbyName("CTRL_TASK");

10 ctrl_task->prio = 2;
11 execute(tcb, cDRIVEet200);
12 }else{
13 TCB* ctrl_task = findTCBbyName("CTRL_TASK");
14 ctrl_task->prio = 4;
15 execute(tcb, cDRIVEet100);
16 }
17
18 switch(msg)
19 {
20 case MSG_SLC:
21 execute(tcb, cDRIVEslc);
22 if (ismoving == 0)
23 {
24 ismoving = 1;
25 }
26 break;
27 case MSG_SLCD:
28 execute(tcb, cDRIVEslcd);
29 if (ismoving == 1)
30 {
31 ismoving = 0;
32 }
33 break;
34 default:
35 break;
36 }
37
38 msg = recvMessage(tcb,DCQ,0);
39 if (msg > -1)
40 {
41 switch(msg)
42 {
43 case MSG_GETSTS:
44 execute(tcb, cDRIVEgetsts);
45 sendMessage(tcb,GSQ,MSG_STS_DRIVE,FOREVER);
46 break;
47 default:
48 break;
49 }
50 }
51 }

Figure 8. The RTSSim code of the DRIVE task in MV 2− ∗.

1 void IO_TASK(TCB* tcb)
2 {
3 int status;
4 int eventsToProcess = 0;
5
6 if (nofEvents > 12)
7 {
8 eventsToProcess = 12;
9 }else{

10 eventsToProcess = nofEvents;
11 }
12
13 while(eventsToProcess-- > 0)
14 {
15 execute(tcb, cIOEvent);
16 nofEvents--;
17 status = sendMessage(tcb, IOQ, 1, 0);
18 }
19 }

Figure 9. The RTSSim code of the IO task in MV 2− ∗.



1 void CTRL_TASK(TCB* tcb)
2 {
3 int msg = -1;
4 int ioevent;
5 int i;
6 int nofIOEvents = 0;
7
8 msg = recvMessage(tcb, CCQ, 0);
9 execute(tcb, cCTRLdecode};

10
11 if (msg > -1)
12 {
13 switch (msg)
14 {
15 case MSG_GETSTS:
16 sendMessage(tcb, DCQ, MSG_GETSTS, FOREVER);
17 execute(tcb, cCTRLgetsts);
18 sendMessage(tcb, GSQ, MSG_STS_CTRL, FOREVER);
19 break;
20 default:
21 break;
22 }
23 }
24
25 nofIOEvents = IOQ->current_size;
26 for (i = 0; i < nofIOEvents; i++)
27 {
28 ioevent = recvMessage(tcb, IOQ, 0);
29
30 if (ioevent > -1)
31 {
32 execute(tcb, cCTRLioevent);
33 }
34 }
35
36 nSLC = 5;
37 tcb->period = 10000;
38 msg = recvMessage(tcb, CDQ, 0);
39 if (msg > -1)
40 {
41 switch(msg)
42 {
43 case MSG_FLC:
44 if (idle == 1)
45 {
46 idle = 0;
47 }
48 while (nSLC-- > 0)
49 {
50 execute(tcb,cCTRLslc);
51 sendMessage(tcb, DDQ, MSG_SLC, FOREVER);
52 }
53 break;
54 case MSG_LAST:
55 idle = 1;
56 execute(tcb, cCTRLlast);
57 break;
58 default:
59 break;
60 }
61 }
62
63 if (idle == 1)
64 {
65 while (nSLC-- > 0)
66 {
67 execute(tcb, cCTRLslcd);
68 sendMessage(tcb, DDQ, MSG_SLCD, FOREVER);
69 }
70 }
71 }

Figure 10. The RTSSim code of the CTRL task in MV 2− ∗.

1 void PLAN_TASK(TCB* tcb){
2 int nFLCs;
3 int cmd;
4 do
5 {
6 cmd = recvMessage(tcb, PCQ, 0);
7 execute(tcb, cPLANdecode);
8
9 if (cmd != -1)

10 {
11 switch(cmd)
12 {
13 case MSG_START:
14 remainingFLC = 50;
15 planstate = PLANSTATE_BEGIN;
16 execute(tcb, cPLANstart);
17 break;
18 case MSG_STOP:
19 planstate = PLANSTATE_IDLE;
20 execute(tcb, cPLANstop);
21 break;
22 case MSG_GETSTS:
23 execute(tcb, cPLANgetsts);
24 sendMessage(tcb, GSQ, MSG_STS_PLAN, FOREVER);
25 sendMessage(tcb, CCQ, MSG_GETSTS, FOREVER);
26 break;
27 default:
28 break;
29 }
30 }
31 }while (cmd != -1);
32
33 switch (planstate)
34 {
35 case PLANSTATE_BEGIN:
36 planstate = PLANSTATE_WORKING;
37 if (remainingFLC < CDQSIZE)
38 {
39 nFLCs = remainingFLC;
40 }else{
41 nFLCs = CDQSIZE;
42 }
43 while (nFLCs > 0)
44 {
45 execute(tcb, cPLANflc);
46 sendMessage(tcb, CDQ, MSG_FLC, FOREVER);
47 nFLCs--;
48 remainingFLC--;
49 }
50 break;
51 case PLANSTATE_WORKING:
52 if (remainingFLC < 4)
53 {
54 nFLCs = remainingFLC;
55 }else{
56 nFLCs = 4;
57 }
58 while (nFLCs > 0)
59 {
60 execute(tcb, cPLANflc);
61 sendMessage(tcb, CDQ, MSG_FLC, FOREVER);
62 nFLCs--;
63 remainingFLC--;
64 }
65 break;
66 case PLANSTATE_IDLE:
67 break;
68 }
69
70 if (
71 (remainingFLC <= 0 && planstate != PLANSTATE_IDLE)
72 ||
73 (remainingFLC > 0 && planstate == PLANSTATE_IDLE)
74 )
75 {
76 execute(tcb, cPlanLast);
77 planstate = PLANSTATE_IDLE;
78 remainingFLC = 0;
79 sendMessage(tcb, CDQ, MSG_LAST, FOREVER);
80 }
81 }

Figure 11. The RTSSim code of the PLAN task in MV 2− ∗.



1 void DRIVE_TASK(TCB* tcb)
2 {
3 int msg;
4 msg = recvMessage(tcb, DDQ, 0);
5 execute(tcb, cDRIVEdecode);
6
7 if (DDQ->current_size < MINDDQSIZE)
8 {
9 TCB* ctrl_task = findTCBbyName("CTRL_TASK");

10 ctrl_task->prio = 2;
11 ctrl_task->period = 20000;
12 }else{
13 TCB* ctrl_task = findTCBbyName("CTRL_TASK");
14 ctrl_task->prio = 4;
15 ctrl_task->period = 10000;
16 }
17
18 switch(msg)
19 {
20 case MSG_SLC:
21 execute(tcb, cDRIVEslc);
22 if (ismoving == 0)
23 {
24 ismoving = 1;
25 }
26 break;
27
28 case MSG_SLCD:
29 execute(tcb, cDRIVEslcd);
30 if (ismoving == 1)
31 {
32 ismoving = 0;
33 }
34 break;
35 default:
36 break;
37 }
38
39 msg = recvMessage(tcb,DCQ,0);
40 if (msg > -1)
41 {
42 switch(msg)
43 {
44 case MSG_GETSTS:
45 execute(tcb, cDRIVEgetsts);
46 sendMessage(tcb,GSQ,MSG_STS_DRIVE,FOREVER);
47 break;
48 default:
49 break;
50 }
51 }
52 }

Figure 12. The RTSSim code of the DRIVE task in MV 3− ∗.

1 void IO_TASK(TCB* tcb)
2 {
3 int status;
4 int eventsToProcess = 0;
5
6 if (nofEvents > 12)
7 {
8 eventsToProcess = 12;
9 }else{

10 eventsToProcess = nofEvents;
11 }
12
13 while(eventsToProcess-- > 0)
14 {
15 execute(tcb, cIOEvent);
16 nofEvents--;
17 status = sendMessage(tcb, IOQ, 1, 0);
18 }
19 }

Figure 13. The RTSSim code of the IO task in MV 3− ∗.

1 void CTRL_TASK(TCB* tcb)
2 {
3 int msg = -1;
4 int ioevent;
5 int i;
6 int nofIOEvents = 0;
7
8 msg = recvMessage(tcb, CCQ, 0);
9

10 execute(tcb, cCTRLdecode );
11
12 if (msg > -1)
13 {
14 switch (msg)
15 {
16 case MSG_GETSTS:
17 sendMessage(tcb, DCQ, MSG_GETSTS, FOREVER);
18 execute(tcb,cCTRLgetsts);
19 sendMessage(tcb, GSQ, MSG_STS_CTRL, FOREVER);
20 break;
21 default:
22 break;
23 }
24 }
25
26 nofIOEvents = IOQ->current_size;
27
28 for (i=0; i < nofIOEvents; i++)
29 {
30 ioevent = recvMessage(tcb, IOQ, 0);
31
32 if (ioevent > -1)
33 {
34 execute(tcb, cCTRLioevent);
35 }
36 }
37
38 nSLC = 5;
39 tcb->period = 10000;
40
41 msg = recvMessage(tcb, CDQ, 0);
42 if (msg > -1)
43 {
44 switch(msg)
45 {
46 case MSG_FLC:
47 if (idle == 1)
48 {
49 idle = 0;
50 }
51 while (nSLC-- > 0)
52 {
53 execute(tcb,cCTRLslc);
54 sendMessage(tcb, DDQ, MSG_SLC, FOREVER);
55 }
56 break;
57 case MSG_LAST:
58 idle = 1;
59 execute(tcb,cCTRLlast);
60 break;
61 default:
62 break;
63 }
64 }
65
66 if (idle == 1)
67 {
68 while (nSLC-- > 0)
69 {
70 execute(tcb,cCTRLslcd);
71 sendMessage(tcb, DDQ, MSG_SLCD, FOREVER);
72 }
73 }
74 }

Figure 14. The RTSSim code of the CTRL task in MV 3− ∗.



1 void PLAN_TASK(TCB* tcb)
2 {
3 int nFLCs;
4 int cmd;
5 do
6 {
7 cmd = recvMessage(tcb, PCQ, 0);
8 execute(tcb, cPLANdecode);
9

10 if (cmd != -1)
11 {
12 switch(cmd)
13 {
14 case MSG_START:
15 remainingFLC = 50;
16 planstate = PLANSTATE_BEGIN;
17 execute(tcb, cPLANstart);
18 break;
19 case MSG_STOP:
20 planstate = PLANSTATE_IDLE;
21 execute(tcb, cPLANstop);
22 break;
23 case MSG_GETSTS:
24 execute(tcb, cPLANgetsts);
25 sendMessage(tcb, GSQ, MSG_STS_PLAN, FOREVER);
26 sendMessage(tcb, CCQ, MSG_GETSTS, FOREVER);
27 break;
28 default:
29 break;
30 }
31 }
32 }while (cmd != -1);
33
34 switch (planstate)
35 {
36 case PLANSTATE_BEGIN:
37 planstate = PLANSTATE_WORKING;
38 if (remainingFLC < CDQSIZE)
39 {
40 nFLCs = remainingFLC;
41 }else{
42 nFLCs = CDQSIZE;
43 }
44 while (nFLCs > 0)
45 {
46 execute(tcb, cPLANflc);
47 sendMessage(tcb,CDQ, MSG_FLC, FOREVER);
48 nFLCs--;
49 remainingFLC--;
50 }
51 break;
52 case PLANSTATE_WORKING:
53 if (remainingFLC < 4)
54 {
55 nFLCs = remainingFLC;
56 }else{
57 nFLCs = 4;
58 }
59 while (nFLCs > 0)
60 {
61 execute(tcb, cPLANflc);
62 sendMessage(tcb,CDQ, MSG_FLC, FOREVER);
63 nFLCs--;
64 remainingFLC--;
65 }
66 break;
67 case PLANSTATE_IDLE:
68 break;
69 }
70
71 if (
72 (remainingFLC <= 0 && planstate != PLANSTATE_IDLE)
73 ||
74 (remainingFLC > 0 && planstate == PLANSTATE_IDLE)
75 )
76 {
77 execute(tcb, cPlanLast);
78 planstate = PLANSTATE_IDLE;
79 remainingFLC = 0;
80 sendMessage(tcb, CDQ, MSG_LAST, FOREVER);
81 }
82 }

Figure 15. The RTSSim code of the PLAN task in MV 3− ∗.

1 void DRIVE_TASK(TCB* tcb)
2 {
3 int msg;
4 msg = recvMessage(tcb, DDQ, 0);
5 execute(tcb, cDRIVEdecode);
6
7 if (DDQ->current_size < MINDDQSIZE)
8 {
9 TCB* ctrl_task = findTCBbyName("CTRL_TASK");

10 ctrl_task->prio = 2;
11 }else{
12 TCB* ctrl_task = findTCBbyName("CTRL_TASK");
13 ctrl_task->prio = 4;
14 }
15
16 switch(msg)
17 {
18 case MSG_SLC:
19 execute(tcb, cDRIVEslc);
20 if (ismoving == 0)
21 {
22 ismoving = 1;
23 sendMessage(tcb, SSQ, MSG_MOVING, FOREVER);
24 }
25 break;
26 case MSG_SLCD:
27 execute(tcb, cDRIVEslcd);
28 if (ismoving == 1)
29 {
30 ismoving = 0;
31 sendMessage(tcb, SSQ, MSG_NOTMOVING, FOREVER);
32 }
33 break;
34 default:
35 break;
36 }
37
38 msg = recvMessage(tcb,DCQ,0);
39 if (msg > -1)
40 {
41 switch(msg)
42 {
43 case MSG_GETSTS:
44 execute(tcb, cDRIVEgetsts);
45 sendMessage(tcb, GSQ, MSG_STS_DRIVE, FOREVER);
46 break;
47 default:
48 break;
49 }
50 }
51 }

Figure 16. The RTSSim code of the DRIVE task in MV 4− ∗.

1 void IO_TASK(TCB* tcb)
2 {
3 int status;
4 int eventsToProcess = 0;
5
6 if (nofEvents > 12)
7 {
8 eventsToProcess = 12;
9 }else{

10 eventsToProcess = nofEvents;
11 }
12
13 while(eventsToProcess-- > 0)
14 {
15 execute(tcb, cIOEvent);
16 nofEvents--;
17 status = sendMessage(tcb, IOQ, 1, 0);
18 }
19 }

Figure 17. The RTSSim code of the IO task in MV 4− ∗.



1 void CTRL_TASK(TCB* tcb)
2 {
3 int msg;
4 int ioevent;
5 int i;
6 msg = recvMessage(tcb, CCQ, 0);
7 execute(tcb, cCTRLdecode);
8
9 if (msg > -1)

10 {
11 switch (msg)
12 {
13 case MSG_GETSTS:
14 sendMessage(tcb, DCQ, MSG_GETSTS, FOREVER);
15 execute(tcb, cCTRLgetsts);
16 sendMessage(tcb, GSQ, MSG_STS_CTRL, FOREVER);
17 break;
18 default:
19 break;
20 }
21 }
22 i = 0;
23 do{
24 ioevent = recvMessage(tcb, IOQ, 0);
25 if (ioevent > -1)
26 { i++;
27 execute(tcb, cCTRLioevent);}
28 }while (ioevent > -1);
29
30 if (closeToTarget == 1){
31 nSLC = 10;
32 tcb->period = 20000;
33 } else {
34 nSLC = 5;
35 tcb->period = 10000;
36 }
37
38 msg = recvMessage(tcb, CDQ, 0);
39 if (msg > -1)
40 {
41 switch(msg)
42 {
43 case MSG_FLC:
44 if (idle == 1)
45 {
46 idle = 0;
47 }
48 while (nSLC-- > 0)
49 {
50 execute(tcb,cCTRLslc);
51 sendMessage(tcb, DDQ, MSG_SLC, FOREVER);
52 }
53 break;
54 case MSG_LAST:
55 idle = 1;
56 closeToTarget = 0;
57 execute(tcb, cCTRLlast);
58 break;
59 default:
60 break;
61 }
62 }
63
64 if (idle == 1)
65 {
66 while (nSLC-- > 0)
67 {
68 execute(tcb,cCTRLslcd);
69 sendMessage(tcb, DDQ, MSG_SLCD, FOREVER);
70 }
71 }
72 }

Figure 18. The RTSSim code of the CTRL task in MV 4− ∗.


