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Abstract—A system’s architecture influence on the functions
and other properties of embedded systems makes its high-
level analysis and verification very desirable. EAST-ADL is an
architecture description language dedicated to automotive em-
bedded system design with focus on structural and functional
modeling. The behavioral description is not integrated within
the execution semantics, which makes it harder to transform,
analyze, and verify EAST-ADL models. Model-based techniques
help address this issue by enabling automated transformation
between different design models, and providing means for
simulation and verification. We present a verification tool,
called ViTAL, which provides the possibility to express the
functional EAST-ADL behavior as timed automata models,
which have precise semantics and can be formally verified. The
ViTAL tool enables the transformation of EAST-ADL functional
models to the UPPAAL PORT tool for model checking. This
method improves the verification of functional and timing
requirements in EAST-ADL, and makes it possible to identify
dependencies and potential conflicts between different vehicle
functions before the actual AUTOSAR implementation.
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I. INTRODUCTION

The current trend is to use Model-driven Development
(MDD) for automotive embedded systems and provide a
basis for a systematic design at multiple abstraction levels.
EAST-ADL [3], [7] is an architecture description language
for modeling and development of automotive embedded
systems, covering the specification of requirements, system
environment, vehicle functions, software and hardware re-
sources, behavior, timing constraints, and other related infor-
mation [14]. The EAST-ADL language provides an integrated
modeling framework that uses concepts from MDD and
component-based development [6].

EAST-ADL focuses on functional specifications [4] with
support for structural definition. The behavior is defined only
on the EAST-ADL component abstraction level, in terms of
functional blocks. The functional behavior of a component
is described using external notations such as Simulink or
UML [15], and therefore the possibility to construct, verify,
and transform EAST-ADL models using formal methods is
restricted [5].

This paper proposes an analysis and verification environ-
ment, called ViTAL (A Verification Tool for EAST-ADL

Models using UPPAAL PORT)1, which provides model-
checking of EAST-ADL descriptions with respect to timing
and functional behavioral requirements. To achieve this, we
implement an automatic model transformation to UPPAAL
PORT model-checker [10], which enables UPPAAL PORT
to handle EAST-ADL models as input, and provide func-
tional and timing behavior of functional blocks using timed
automata semantics [2]. To increase user friendliness and
alignment with the implementation of the EAST-ADL profile,
we propose an integrated environment based on Eclipse
plug-ins, as can be observed in Fig. 1. Our modeling and
verification environment contains the following: an editor
for timed automata visual description of the functional and
timing behavior of EAST-ADL functional blocks, automated
transformation of EAST-ADL models to UPPAAL PORT in-
put model, support for mapping external timed automata
variables to external ports, a simulator that can be used
to validate the behavior of an EAST-ADL modeled system,
and support for verifying reachability and liveness properties
formalized in a subset of Timed Computation Tree Logic
(TCTL).

In our approach, we combine powerful model checking
techniques with the formal semantics of EAST-ADL models
and a user-friendly graphical interface. The main features
provided by ViTAL are:

• Support for formal verification of the execution behav-
ior and timing using EAST-ADL language.

• The hierarchical structure of EAST-ADL (“read-write-
execute” component semantics) is exploited in our
approach by using UPPAAL PORT for efficient model-
checking.

The paper is organized as follows. Section II briefly
overviews EAST-ADL and UPPAAL PORT. Section III in-
troduces the modeling approach for functional specification
in EAST-ADL. Section IV describes our method and tool
environment used for capturing the behavior inside each
functional block and the transformation scheme to UPPAAL
PORT. Next, we apply ViTAL on the Brake-By-Wire case
study in Section V. In Section VI we compare to related
work, before concluding the paper and presenting future
works in Section VII.

1ViTAL is available at http://www.idt.mdh.se/personal/eep/vital



Figure 1. Papyrus EAST-ADL2 platform editor, timed automata editor (upper view) and UPPAAL PORT simulator (lower view)

II. BACKGROUND

A. EAST-ADL

EAST-ADL is an architecture description language spec-
ified through a meta-model and implemented as a UML2
profile [4]. EAST-ADL is structured into different abstrac-
tion layers representing different stages of an engineering
process: vehicle level, analysis level, design level, and im-
plementation level. These levels are supported by complete
traceability between them, reflecting the amount of details
in an electronic system from a higher to a lower abstraction
layer.

The vehicle features (e.g. breaks) of an electronic system
are modeled at the vehicle level, the highest level of abstrac-
tion. These features are refined at the analysis and design
level by abstract elements representing software or device
functions such as sensors and actuators. The implementation
level is the lowest level of abstraction and is defined by using
the AUTOSAR standard [13].

This structural organization of EAST-ADL has in addi-
tion modeling constructs for behavior, requirements, timing,
variability, and safety aspects. EAST-ADL captures structural
components that refer to external or internal behavior, as
Simulink models.

B. UPPAAL PORT

UPPAAL PORT is an extension of the UPPAAL tool, which
supports simulation and model-checking of component-
based systems, without the usual conversion or flattening
to the model of network of timed automata. This is comple-
mented by the Partial Order Reduction Technique (PORT)
[10] that UPPAAL PORT uses, to improve the efficiency
of the model-checking analysis. This technique is used
provided that the input model relies on the “read-write-
execute” semantics. Due to the implemented algorithm,
PORT explores only a subset of the state space when model-
checking.

III. MODELING APPROACH AND INTEGRATION BRIDGE

The main purpose of this section is to introduce the ViTAL
modeling approach for EAST-ADL system models.

Nowadays, a vehicle may be composed of more than
2,000 software and hardware based functions. Usually, the
requirements engineer decides which functions are needed
and how they should be structured in terms of interactions.
EAST-ADL describes the whole vehicle system from several
abstraction layers. As this paper only discusses the abstract
functional models of a system, we employ the EAST-ADL
functional abstraction, as the modeling language to specify
the structure of a system. Specifically, on the analysis



level, the system is described by a Functional Analysis
Architecture (FAA). The FAA is composed of a number
of interconnected Function Prototypes (fp), where each
prototype is an instantiation of Function Type (ft) [3].

The challenge of the FAA is to target different functions
for concepts like allocation of requirements, specifying,
analyzing, and verifying functional requirements before im-
plementation. In order to support unambiguous modeling
and analysis, we have used the fact that there are no
dependencies between the FAA and the other EAST-ADL
levels [4]. This means that FAA can be defined separately
from the other levels. For simplicity, we assume that, from
a FAA-level point of view, the description is complete with
respect to the dependencies between different functionalities.

A. The EAST-ADL Functional Model

In EAST-ADL functional modeling, systems in FAA are
built from interconnected function blocks with well-defined
interfaces consisting of a set of input- and output function
ports (elements of flow ports to represent data transfer
or client-server ports for client-server interaction). The fp
can be hierarchical, but the composing sub-functions have
synchronous execution semantics. These functional blocks
are time-triggered, or triggered based on data arrival on
their flow ports. An fp follows the “read-execute-write”
semantics, which ensures that once a function is triggered, it
reads all input flow ports, executes the computation, and then
writes to its output flow ports, all without interruption. For
the presented work, the architectural specifications are used
from structural, behavioral, and timing EAST-ADL packages
[4], [5].

B. Timed Behavior

We define the timed behavior of a functional block as a
Timed Automaton (TA), extended with data variables and
a final location. An fp in our setting is defined by its
interface in terms of ports and a specified timed behavior
[10]. The TA model is another abstraction of the fp be-
havior, where the assumed and desired properties of the
system components are captured. To support analysis and
verification of EAST-ADL FAA models in UPPAAL PORT, it
is required that each functional block is associated with a
behavioral model consisting of a TA, and a mapping between
ports and automata variables. To provide system developers
with concrete support in modeling the timed behavior of a
functional block, an integration bridge is necessary. Hence,
our next step has been to provide a direct mapping between
flow ports and TA variables as additional model parameters.
Consequently, this model association constitutes the bridge
between EAST-ADL and TA models.

IV. MODEL TRANSFORMATION TO UPPAAL PORT

Before proceeding further, we have to mention a few
assumptions that we have made, for simplicity. For this
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Figure 2. Model Export from EAST-ADL to Uppaal Port

work, no ft can have instances of other ft with the exception
of FAA. The FAA ft is available and required for the
transformation. With these assumptions, we have developed
the model transformation shown in Fig. 2. We specify
the input models for UPPAAL PORT as described in the
metamodel that uses a subset of the EAST-ADL language
constructs. In our approach, we focus on a certain subset
of the tool data that we consider relevant in the context of
integration. Irrelevant constructs, such as certain parameters,
are left out.

A. ViTAL and Model Integration

We define a minimal structural integration inside ViTAL,
an intermediate model, from which we can derive the con-
structs of EAST-ADL language. This simplifies the definition
of semantics, and makes it easily extensible. The core
intermediate model consists of three modeling elements:
composite ft, basic fp, and connections. Using these, we can
describe all constructs in our assumed EAST-ADL model on
FAA. A simple one-to-one mapping rule between structural
entities is not sufficient though. Several parameters need to
be handled in the integration process.

Each modeling element, except for the FAA ft, has a
set of flow ports, through which it can interact. Each flow
port is represented as an input or an output port that has
an associated type. A flow port is associated with the same
type of data as the associated variable. Similar to the EAST-
ADL language itself, connections define how data can be
transferred between two fps. We assume no knowledge
about the time that it takes for the data to be transmitted over
a connection or if data can be lost. Other structural EAST-
ADL constructs are not represented directly by any modeling
element, hence they are not influencing the transformation.

For the presented integration in ViTAL, the architectural
information related to structure and timing are partially
derived from the EAST-ADL model. Every fp is annotated in



the intermediate model with an event function that submits to
a periodic constraint. An event function is a trigger generator
annotated with a parameter T for period. A new period starts
every T time units, and the event function generates a trigger
after each period elapses.

The EAST-ADL language imposes some restrictions on
the fp behavior that should be addressed in the intermediate
model as well. For example, the run-to-completion semantics
mentions that input flow ports may only be accessed at
the beginning of each triggering, and output flow ports
are only written at the end of the computation. Therefore,
TA(fp) denotes its behavior augmented with an interface.
The interface of an fp consists of flow ports and the
annotated trigger information. An input flow port has an
associated variable holding the current data flow. A basic
fp corresponds to a basic intermediate functional block
with a behavior automaton that can capture the behavior
of the associated ft and maybe some other information like
execution time. The internal computation of an fp starts with
reading all input flow ports. These internal input data is
used together with other functional information during the
fp execution, before writing the variables to the output flow
ports.

The intermediate model obtained after the transformation
represents the execution behavior, and can include triggering
and timing information, but also some assumed functionality.
Therefore, ViTAL provides means to extend the internal
behavior of fp not only in terms of timing, but also content.

B. Implemented Integration

The EAST-ADL language is implemented in a UML2
profile with the purpose of providing the ability to describe
EAST-ADL-compliant models using this profile. The Papyrus
UML tool implements all the properties and stereotypes
as defined in EAST-ADL specification and may be ap-
plied on any kind of tool-supported UML models. The
model transformation and modeling environment is based
on Eclipse2, which ensures a seamless integration with the
UML Editor in Papyrus, needed for developing EAST-ADL
models. It provides an intuitive and user friendly graphical
environment.

The proposed ViTAL tool is a collection of Eclipse IDE
plug-ins. Eclipse IDE has become a popular development
platform, in particular within the open source community.
Our analysis and verification environment is build upon
an MDD set of Eclipse plug-ins: Eclipse Modeling Frame-
work 3, Graphical Modeling Framework, Graphical Editing
Framework, ATL, and Acceleo. Fig. 2 shows the EAST-ADL
model transformation architecture. The EAST-ADL editor
plugin uses Papyrus UML to create the analysis functions

2Eclipse is a multi language software development environment, bene-
fiting from an extensible plug-in system.

3Eclipse Modeling Framework (EMF) is a modeling framework that has
code generation capabilities for enabling viewing and editing of models.
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Figure 3. Overview of the ViTAL tool architecture

and interconnections among them. Papyrus saves its models
in two files, one using a “.uml” extension and the other using
a “.di” extension. The former file contains the actual model
information, whereas the latter file contains all the graphical
information.

The Papyrus UML Editor produces compatible EMF
models that serve as a basis for our combined structural
and behavioral mapping to UPPAAL PORT. As shown in
Fig. 2, we introduce an intermediate model that serves as
the interface between the EAST-ADL model and UPPAAL
PORT input model4. The intermediate model conforms to
the EAST-ADL metamodel that is aligned with the EAST-
ADL profile and UML metamodel. The structural mapping
transforms an EAST-ADL model that was created in the
Papyrus UML modeling environment, into an intermediate
model. The transformation is called M2M transformation in
Fig. 2. The structure of the intermediate model resembles the
UPPAAL PORT input model 5, so it is close to the structure of
the desired output. This step of the transformation achieves
an integration between the domain of EAST-ADL and that
of UPPAAL PORT. We use the ATL M2M Component to
convert models from one side to the other, due to its
simplicity and integration within the Eclipse platform. We
have implemented the mapping rules presented in Section
IV-A as an ATL description of the transformation logic. For
the transformation, a few modifications of both metamodels
have been made. In principle, these changes are in fact ways
to preserve the semantics of the original model. For instance,
EAST-ADL uses the type - prototype constructions in which
the declaration is in ft, and the actual usage is in fp. In this
case, the structural transformation has a pointer between ft
and the contained TA(fp).

In addition to the mentioned automated structural transfor-
mation, a manual TA integration needs to be carried out. In
order to model the timing and behavior of an fp, we integrate

4The input language employed is used to determine the structure of the
modeled system.

5We refer the reader to the SaveCCM language reference manual for
more details [1].



a TA editor. The behavior can be represented in a graphical
notation by the system designer. These models differ from
UPPAAL TA models as follows: (i) the timed behavior is
extended with a final location out of which no edges are
leaving, and (ii) synchronization channels are not allowed,
because of the semantics employed by EAST-ADL models.
For more details on the specifics of the TA employed by
UPPAAL PORT, we refer the reader to the work of Håkansson
and Pettersson [10].

With this information at hand, we need to bind TA
variables to the flow ports of the EAST-ADL functions, next.
This is needed in order to use the structural information
contained in the intermediate model. We provide a variable
to the port mapping plug-in. In the current version of ViTAL,
the mapping is using the name of the timed automaton file
to automatically generate the parameters to be used.

Once the previous steps have been completed, the TA and
the intermediate model can be merged into the output of
this process, which is compiled to an XML-format accepted
by UPPAAL PORT tool 6. This transformation is carried
out using the Acceleo code generator for transforming the
intermediate model into code.

The ViTAL tool architecture is shown in Fig 3. The
user interface integrates an editor for EAST-ADL models
in the Eclipse framework, as well as a TA editor to model
the timing and behavior of EAST-ADL functional blocks.
UPPAAL PORT introduces support for simulation and veri-
fication, using a client-server architecture [9]. The UPPAAL
PORT model-checker consists of two modules: the Eclipse
plug-in used as the graphical simulator, and the server
executing the verification. Using the integrated simulator it
is possible to validate the behavior and timing of an EAST-
ADL functional model, prior to design and implementation.
The simulator allows stepping forward and backwards in
the state space, while selecting possible transitions. In a
simulation trace, a data transfer is defined by the exchange
of data between EAST-ADL fps (annotated with the timed
automata locations) via their respective ports. Also, by using
the verifier interface, it is possible to establish, by model
checking the described behavior, whether the system model
satisfies the functional and timing requirements specified in
a subset of TCTL.

V. EXAMPLE: A BRAKE-BY-WIRE CONTROL SYSTEM

In order to check the applicability of ViTAL, we have
performed a case study in which a Brake-By-Wire (BBW)
system is modeled in EAST-ADL. The case study is based on
a use case provided by Volvo Technology within the MBAT
project [12]. In Fig. 4 one can see a simplified schematic
illustration of the BBW system with Anti-lock Braking
System (ABS) function, where no mechanical connection

6The XML syntax describing the element definitions from the Document
Type Definition is available in the SaveCCM language reference manual
[1].
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Figure 4. Brake by Wire control system

exists between the brake pedal and the brake actuators
applied to the four wheels. The system is composed of five
Electronic Control Units (ECU) connected by a network bus.
The central ECU has three components:

• Brake Pedal Sensor (BPS) - reads the pedals position
percentage.

• Brake Torque Calculator (BTC) - computes the desired
global torque.

• Global Brake Controller (GBC) - calculates the torque
required for each wheel.

The other four ECUs are connected to the four wheels,
respectively. At each wheel, the Wheel Sensor measures the
wheel speed and sends a signal to the GBC component.
The ABS controls the wheel braking in order to prevent
locking the wheel, based on the slip value. The slip value is
calculated by the equation:

s = (v − w × r)/v,

where v is the vehicle speed, w the wheel speed, and r
the wheel radius. The friction coefficient of the wheel has a
nonlinear relationship with s: when s increases from zero,
the friction coefficient also increases and the value reaches
the peak when s is around 0.2. After that, further increase
in s reduces the friction coefficient. For this reason, if s is
greater than 0.2 the brake actuator is released and no brake
is applied, else the requested brake torque is used.

We have modeled, simulated, and verified the BBW
system in our tool ViTAL. The system has been modeled
in Papyrus UML Editor, where a UML profile is used for
architectural description. As illustrated in Fig 4, we use only
the structural and timing specifications. The architecture of
the system is encapsulated in one FAA ft that contains six
interconnected fp modeled using the TA editor. Each TA(fp)
defines the actual functional and timing behavior of the fp.
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A set of properties concerning the safety and liveness
of the BBW system have been verified. We discuss a few
representative properties. The property of deadlock freedom
is satisfied for all execution paths of the state-space.
As our approach and also the underlying tool supports
simulation and verification of architectural properties
including functional and timing properties, the following
CTL specification is an example of such property, which
ensures the brake reaction delay specified in the BBW
model:

A[ ](BBW.reaction imply (BBW.clock < 200))

One of the functional requirements of the system is
related to the slip rate s. With ViTAL, we can verify
the following functionality: in case the slip rate variable
exceeds 0.2, the brake actuator is released and no brake is
applied:

A[ ](BTC.s > 0.2 imply (ABS.brake = 0))

We note that ViTAL is indirectly using the delay con-
straints information from EAST-ADL models during verifi-
cation. To handle automated integration during verification
of TCTL properties of this type, this delay constraint infor-
mation should be considered as a transformation parameter
and then checked automatically in UPPAAL PORT.

VI. RELATED WORK

Several methods have been developed for the formal
analysis and verification of EAST-ADL models. Feng et al.
use the SPIN model checker for formal verification of EAST-
ADL functional models [8]. The work is based on UML2
activity diagrams, and in contrast to our work, it does not
allow the integration of timing constraints in the behavioral
model.

Qureshi et al. describe an integration effort towards
formal verification of EAST-ADL models based on timing
constraints [13]. This allows a manual transformation from
EAST-ADL models to UPPAAL models in order to achieve
verification of constraints with respect to triggering and
timing. Even though it offers prototype support for model-
checking reachability and safety properties corresponding to
the timing constraints, it does not support model-checking of
functional constraints, or improves verification of complex
system models, wrt to space and time, via the PORT model-
checking technique, as the ViTAL tool does. For more
information on advantages of using a PORT technique we
refer the reader to the following experimental benchmark of
Håkansson and Pettersson [10].

Kang et al. [11] performed a pre-study towards verifica-
tion of EAST-ADL models using UPPAAL PORT with the aim
of identifying integration needs. The results were considered
in support towards our approach.

VII. CONCLUSION

The analysis and verification of EAST-ADL models re-
quires a consistent and integrated environment that brings
together model-driven development and formal analysis. In
our case, the employed formalism is the timed automata
framework that facilities capturing the execution flow inside
each functional block and the complex interactions between
components. In this paper, we have described a method
and transformation environment towards the integration of
EAST-ADL and UPPAAL PORT. The main goal of our inte-
gration work has been twofold: (i) to provide an unambigu-
ous behavioral description of EAST-ADL function blocks,
and (ii) to bring formal verification capabilities to the EAST-
ADL models. Both desiderata have been fulfilled within the
same modeling and verification environment , which we
call ViTAL. As shown in Fig. 5, ViTAL is enhancing the
behavioral definition of the EAST-ADL language and allows
formal modeling, simulation, and verification of functional
and timing requirements. The prerequisite artifacts for the
system’s formal analysis are the EAST-ADL architectural
model, and the TA behavioral model that the system designer
creates. Within ViTAL, we have integrated such models, in
order to be able to simulate and check whether a given re-
quirement is satisfied, by model-checking the TA description
with UPPAAL PORT. In particular, the independence intro-
duced by the “run-to-completion” semantics, employed by
the EAST-ADL functional modeling, is exploited by UPPAAL



PORT, in order to reduce time and space requirements for
model checking.

Out of the possible future continuations of this work,
we select the following, as our nearest research targets: (i)
richer transformation constructs in order to automatically
check delay and synchronization constraints, and (ii) the
integration of UML2 activity diagrams in the employed
transformation formalism, to capture the execution flow
inside each functional block directly from EAST-ADL.
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