
Abstract 

Decomposition into communicating asyn-
chronous entities is often chosen as solution for 
both telecommunications systems and for real 
time AI systems [Dodhaiwala et al. 89]. This in 
contrast to the trend to increase the abstraction 
level of real time programming by introducing 
features and paradigms from main stream time 
sharing systems with an operating system 
managing garbage collection, process 
scheduling, etc. For large complex concurrent 
real time systems which are signal centered, a 
main stream specification and implementation 
approach makes it difficult to meet re-
quirements (response time, reliability, etc.). It 
is also difficult to analyze the overall  behavior 
of the system.  
A real time language (called PLEX) combined 
with a real time operating system and 
processor, all based on an asynchronous 
signaling paradigm, has proven to be efficient 
[Hemdal 1998] for asynchronously 
communicating real time applications (large 
telecommunications systems with millions of 
lines of PLEX code are in operation). PLEX 
and Petri Nets show similarities and by 
specifying behavioral parts with Petri Nets 
[Jensen 1997] powerful analysis tools 
(liveness, deadlock, etc.) are available. In this 
paper we analyze the benefits emerging from 
combining PLEX with Petri Nets, enabling 
both an efficient implementation and analysis 
of behavior. 

1 Introduction 
Communication systems are in essence different to 
traditional computer systems. In a traditional computer 
system there are only a few tasks ongoing at the same time. 
The operating systems with advanced paging and 
timesharing handle execution and distributes limited 
resources such as processor time to different processes. 

Starting and stopping new processes is costly in terms of 
processor time and overhead for dividing resources amongst 
processes increases with the number of processes (overhead 
increases noticeable in most common operating systems 
which often halt if to many jobs are started). This is 
acceptable for most applications since the number of 
tasks/programs/processes are limited. In communication 
systems where the main task is to start and stop small tasks 
and who are dimensioned after maximum load, the worse 
case is thousands of ongoing tasks. If these tasks would be 
handled as individual processes as in main stream operating 
systems the increase in overhead makes it difficult to meet 
requirements on response time. Response time requirements 
for telecommunication systems are given in milliseconds. 

2 Matching Paradigms and 
Architecture 

It is not unusual to tailor processors for their languages and 
operating systems. Processors for PCs are tailored for 
traditional imperative programming languages requiring 
interrupt handling and quick swapping between a limited 
number of ongoing processes. Sun is developing a processor 
optimized for direct Java byte code execution. A prototype 
processor specialized for soft real-time requirements and 
functional languages [Tjärnström 1998] has been developed 
for the programming language Erlang [Armstrong, Virding, 
Wikström, Williams 1996]. Ericsson’s APZ processors used 
in telephone exchanges and the PLEX language belongs to 
this category where the application, programming language 
and processor is closely matched and optimized. This gives 
advantages in terms of capacity and provides a programming 
paradigm that directly reflects the application domain and 
architecture. Both PLEX and APZ  are based on a signal and 
component based paradigm, a paradigm that was originally 
created 20 years ago. 
Sometimes concurrent real time programming languages on 
the market are created by adding real time features to 
traditional sequential languages. Mixing different paradigms 
in the same language may be confusing and may reduce 
quality and increase maintenance costs for systems and are 
claimed to have caused failure of systems [Hemdal 98]. The 
price to pay for such often ad hook tailoring and adaptation 
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is that it may be very difficult to achieve acceptable or good 
efficiency in terms of execution time when languages, 
operating systems and processors are mixed from different 
paradigms and system architectures. For example running a 
concurrent asynchronous real time system on a processor 
optimized for sequential languages and a task oriented 
operating systems may be unacceptable slow compared with 
execution on an signal optimized processor (the opposite 
may also be unacceptable).  

3 Efficient Implementation of 
Asynchronous Systems 

Asynchronous hard real time systems is in essence very 
different from traditional batch oriented sequential systems 
hence main stream software development tools, methods and 
main stream programming languages may not always be a 
suitable choice. Such a choice may for some applications 
have a to high price in lost efficiency, increased instability 
and also cause unnecessary confusion by mixing different 
paradigms (mixing different paradigms is claimed to be one 
of the main reason for failure in developing some large real 
time systems [Hemdal 1998]). If signaling is the central 
concept in an application domain, then translating and 
implementing a system for this application in an 
object/process oriented paradigm where signaling is hidden 
inside object, or restricted to method calls, may not be an 
obvious choice and may deter the focus of what is important 
in the functionality, increasing the risk in producing errors 
(not proven in this research). Figure 1 shows two ways of 
implementing a concurrent real time system. The first (a) 
exemplifies a conservative approach where traditional 
design and coding is used and the result executed on a main 
stream processor. For some applications with high demands 
on response time this approach may be to inefficient as 
discussed in section 2. If the application has higher demands 
on response time and reliability the second approach is 
proposed (b). Petri Nets are shortly described in section 5 
and the real time programming language PLEX together 
with the signaling paradigm is described in section 6.  

Signal centered asynchronous
real time requirements

Executed on main stream
processor

Signal centered
asynchronousreal time requirements

Traditional design and coding
Signal centered asynchronous

modeling, analysis and
programming (Petri Nets &

PLEX)

Executed on processor
optimized for concurrent
communicating systems

a b

 
Figure 1: Design, implementation and execution of 

concurrent real time systems. 

4 Exact Notations of Behavior  

There are two main types of symbolic representations which 
both use symbolic expressions: sentential representation 
(natural language descriptions) and diagrammatic/graphical 
representations. The latter can explicitly capture topological 
and geometrical relationships which can only be captured 
indirectly in a textual representation [Larkin and Simon, 
1987]. If a language is carefully designed it contains both a 
textual formalism and graphical formalism that are 
equivalent (users may choose symbolic or sentential notation 
and display/manipulate the behavior in either way). For the 
creative and exploratory phases of forming new knowledge, 
visualization is often important and the use of diagrams also 
aids knowledge elicitation and co-operation between those 
involved [Addis et al., 1993]. Earlier approaches using 
conventional state machines or state-diagrams encountered 
difficulties when applied to system design, due to the 
exponential explosion in the number of states [Harel 87], 
and were claimed to be hard to read, modify and refine and 
not suitable for complex specifications [Martin, McClure, 
85]. Different approaches to overcome these problems have 
been explored and graphical languages (often combined with 
a textual language) are common in system development 
today; for example: 

?? SDL (Specification and Description Language, 
standardized by the International Telecommunications 
Union, [ITU-Z100]). The SDL language contains both a 
graphical and textual part. The graphical part is similar 
to flow charts. The graphical parts together with the 



textual part of the language enable the user to describe 
the functionality in such great detail that executable 
code can be generated directly. Some formalization 
efforts have been undertaken, see for example [Leue 
1995]. With minor alterations in the semantics, a subset 
of SDL can be translated to Petri Nets which has been 
used for protocol verification at Siemens 
Telecommunication, Germany [Regensburger, Barnard 
1998]. 

?? Statecharts [Harel et. al. 1990]. A graphical notation 
designed to make it easier to design and implement real 
time systems. Similar to SDL, it has a graphical part and 
a textual part and detailed descriptions can be created 
and used to generate executable code. 

?? Process Transition Networks (PTNs) [Malec 1992], 
[Sandewall 1990]. PTNs can be translated to temporal 
logic and to a subset of Petri Nets. The notation aids 
conceptualization and knowledge acquisition and its 
simplicity makes it easy to use for domains in which the 
expressiveness is sufficient. 

?? Use-Cases [Jacobson et al, 1993]. Not a notation in 
itself, but which allows different notations or even text 
documents describing specific examples of how the 
system to be designed will behave. Formalization and 
graphical syntax is under development [Regnell et al., 
1995]. 

?? MSC (Message Sequence Charts describing signaling 
between objects in a distributed system) [ITU-Z120]. A 
widely used graphical trace language for 
communicating entities. MSCs may also be used for 
requirements specifications with a set of suitable tools 
[Ben-Abdallah and Leue 1996]. 

?? Petri Net notations [Jensen 1992] are a graphical 
notation enabling behavioral analysis and model 
checking. The notations are often used to translate a 
language tailored for a specific domain or application 
to/from Petri Nets, thereby giving access to analysis 
tools available for Petri Nets. For example some parts 
of SDL (with slightly altered semantics) can be 
translated to Petri Nets in order to enable model 
checking [Grahlmann 1998]. Petri Nets are emerging as 
a common formal notation for representing 
asynchronous real time tasks. 

All of these notations introduce restrictions on what can be 
expressed in Petri nets. 

5 Petri Nets 
Petri Nets are used as a powerful formal notation for 
communicating automata and are expressive enough to 
capture systems where concurrency is necessary. Petri Nets 
developed by C. A. Petri in the sixties were the first general 
theory for discrete parallel systems. Petri Nets have proven 

to be well suited to describe both synchronous and a 
synchronous communication. A wide variety of Petri Net 
notations exist which either extend the expressiveness to 
new classes of problems or make them easier to use. 
Examples of extensions are high-level Petri Nets, timed Petri 
Nets, stochastic Petri Nets and Colored Petri (CPN) nets 
[Jensen 1997]. Petri Nets have always had a precise formal 
definition which enables the use of powerful analysis tools 
(e.g. SPIN [Holzmann, Peled 1994]) that can be used to 
prove different properties of Petri Nets. Also, there is on-
going effort to standardize Petri Nets. 

Petri Nets enable a wide variety of verification techniques 
such as model checking, verification and application of 
reduction algorithms [Grahlmann 1998]. Both SDL and 
MSCs have been translated into a subset of Petri Nets in 
order to use verification tools developed for Petri Nets. 

Petri Nets are built with places, input transitions, output 
transitions, input arcs, output arcs and tokens [Jensen 1992]. 
Places can hold one or more tokens (in the example, there 
are two telephone tokens), arcs have the capacity to hold 1 
or more tokens (the default being one), transitions have no 
capacity (cannot hold a token). A transition is enabled if the 
places with arcs leading to the transition have a number of 
tokens greater than or equal to the capacity of the arc 
(default capacity being one). During execution of a Petri net, 
the tokens will move around in the net and the number of 
tokens may vary. When using a Petri net, terms such as 
synchronization, concurrency and merging are difficult to 
avoid. The Petri net example in Figure 2 contains the 
primitive constructions: synchronization (e.g. the processes 
“ring tone a” and “ring signal b” are synchronized by 
starting the transition “dialing idle b”), concurrency (e.g. 
“ring tone a” and “ring signal b” are two concurrent 
processes started by the transition “dialing idle b”). In high 
level Petri Nets, a token can contain data (the local state of 
the token). Kurt Jensen states: “Making a CPN model is very 
similar to the construction of a program” [Jensen 1992]. 
This may be very useful when specifying and designing 
complex concurrent real time systems and the similarity with 
PLEX is summarized in section 7. 
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Figure 2: High level Petri net example 

We explain below some advantages and drawbacks of Petri 
Nets compared with traditional state based process oriented 
approaches.   
 
1. Petri Nets main benefit are their ability to express 

concurrency and Petri Nets are the first general formal 
notation for describing discrete parallel systems.  

2. In research projects where Petri Nets have been used it 
is common to simplify or adapt them according to the 
task and the users' needs. A notation is either defined in 
terms of Petri Nets or internally translated to Petri Nets. 
These notations often contain restrictions and 
simplifications reducing the expressiveness and 
complexity of the notation compared with a direct use 
of Petri Nets. Examples where such notations have been 
used and defined in terms of Petri Nets or internally 
translated to Petri Nets are PTNs [Malec 1992], SDL 
and MSC [Grahlman 1998] and structured analysis and 
design diagrams (SADT diagrams) [Jensen 1997]. 

3. In Colored Petri Nets each token has a color, where the 
color  may represent a specific individual together with 
some additional data (a local or global state). A 
transition can only occur if the tokens with the correct 
colors are available.  

6 PLEX and the Signaling Paradigm 
PLEX is a programming language designed for very 
demanding asynchronous real time applications such as 
telecommunication systems. Millions of lines of PLEX code 

implement the functionality of telephone services, features, 
maintenance, security and billing functionality, proving the 
languages efficiency both from the point of programming 
and maintenance (for telecommunication system 
maintenance is dominating). These systems are allowed to 
have an average down time on a few minutes a year putting 
high demands on the code. PLEX is also from the beginning 
designed to enable functionality change during execution 
and code may be replaced and upgraded without disturbance 
in availability. The signaling paradigm on which the 
language is based puts signals in the center. In contrast to 
traditional process centered languages PLEX  is purely 
reactive and the only means for starting execution of PLEX 
code is an external or internal signal (the first signal would 
be an initialization signal mainly to execute some code 
initializing data). Every execution is restricted to about 500 
lines of code which are executed as an atomic entity1, 
eliminating the need for time sharing between programs and 
reducing demands on the operating system (these code 
snippets triggered by signals carrying data bear similarities 
to Petri Nets which will be explored in Section 7). It is 
believed that the limit on code snippets contribute to the 
maintainability since functionality of the system needs to be 
broken down to small, in it self easy to understand 
asynchronous communicating pieces. The basic task of the 
operating system is to buffer signals and once a signal is in 
front of the queue, the corresponding code snippet (we avoid 
the word job since this may give the wrong associations) is 
executed. This characteristic is one of the reasons that makes 
systems implemented in PLEX behaving linearly in time 
under load [Johansson et al. 95], a feature important for 
security sensitive systems. Parallel execution is performed in 
central and regional processors (no shared data allowed). 
The APZ processor family is specially designed and 
optimized for systems based on the signaling architecture 
and enable a very fast execution compared with traditional 
processors. A block structure is used to organize code 
snippets in packages that perform related tasks and share 
data (and hardware). Figure 3 shows an example of a system 
in PLEX. There are three code snippets, c1, c2, c3, data 
carried by or indexed by arguments to the signals, d1, d2, 
d3, two external signals, hook off, dial tone and five internal 
signals, signal i2, signal i4, signal i5, signal i6 and finally 
the data after the code has been executed symbolized by d1', 
d2' (d3 has no prim sign which shows that data has not been 
altered in this code snippet). The cross at the end of a code 
                                                           

1 Nothing is allowed to interrupt the execution until the code 
snippet is completed. There is no need for operating systems 
with interrupts, process handling mechanisms, garbage 
collection, etc. These mechanisms are costly in terms of time 
and number of processor instructions. For Petri Nets and 
PLEX the lack of necessity of these is one of their strengths 
when used in real time applications. 



snippet line symbolizes the end of execution of this code 
snippet. 
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Figure 3: System example in PLEX with both internal and 
external signal. 

It is important to note that the execution in the signal 
paradigm is purely reactive and in essence different from 
execution in a process oriented programming paradigm, 
where processes are spawned, forked, stopped, interrupted 
and resumed by some operating system. Execution of every 
code snippet is atomic and code snippets may be executed in 
parallel if no data is shared (the common way to implement 
it in the final system is that code divided into different 
blocks are executed on different processors).  

7 Comparison of PLEX and Petri Nets 
If all the features of PLEX and Petri Nets could be 
combined this would result in a very powerful combination. 
It would enable advanced analysis of systems produced, 
proving liveness, absent of deadlock, behavior under load, 
etc. PLEX enables system implementation meeting hard real 
time requirements, change of functionality without a full 
stop in service availability. These are all requirements 
important in global telecommunication systems and are 
rarely achieved in currently available systems. Also a 
suitable abstraction level can be provided for the PLEX 
language within the signal  paradigm.  

Our initial comparison shows that signals and data in 
PLEX have a close similarity with signals and tokens in 
Petri Nets. Signals in Petri Nets trigger a transition if the 
required tokens (data) are available. In PLEX a signal 
triggers a code snippet that can be seen as a Petri Net 
transition (Petri Net transitions may be expanded if a higher 
level of details is required for more fine grained analysis). 
Also a layered approach is considered where a code snippet 
may be represented by a Petri net, and a Petri net may be an 
abstraction of many code snippets. Since code snippets in 
PLEX are seen as atomic (within the same level, 4 levels 
exist) in the sense that nothing can interrupt their execution, 

there is no need for abstraction on this level and a direct 
mapping is possible. If time delay is a factor to be included 
in the analysis, timed Petri Nets may be considered, but this 
is beyond the scope of this paper. Tokens in Colored Petri 
Nets contain data describing a current local state.  

8 Conclusions and Further Work 
The comparison of Petri Nets and PLEX show promising 
similarities enabling a combination. Petri Nets gain from the 
fact that PLEX enables very efficient implementation of 
functionality expressed in Petri Nets. PLEX benefits from 
the availability of analysis tools developed for Petri Nets. 
The signaling paradigm and tokens in Petri Nets have the 
same meaning (a deeper semantic analysis is ongoing). This 
allows advanced analysis of the structure of systems written 
in PLEX, analysis which would be very difficult performed 
directly on code level. The next step in this research will be 
to define the signaling paradigm and PLEX in Petri Nets (a 
bi-directional function). This enables us to analyze different 
aspects and prove properties for code written in PLEX. 
Furthermore giving parts of PLEX a clear semantic in Petri 
Nets provides a foundation for automated translation 
between other notations such as MSCs and parts of SDL (or 
exactly where the expressiveness of the target formalism is 
less) which already have been defined in terms of Petri Nets. 
Also an Case-Based Reasoning approach to reuse as 
explored in [Funk and Robertson 1995] may be used to 
identify similarly behaving PLEX code.  
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