
Abstract

Decomposition into communicating asyn-
chronous entities is often chosen as solution for
both telecommunications systems and for real
time AI systems [Dodhaiwala et al. 89]. This in
contrast to the trend to increase the abstraction
level of real time programming by introducing
features and paradigms from main stream time
sharing systems with an operating system
managing garbage collection, process
scheduling, etc. For large complex concurrent
real time systems which are signal centered, a
main stream specification and implementation
approach makes it difficult to meet re-
quirements (response time, reliability, etc.). It
is also difficult to analyze the overall behavior
of the system.
A real time language (called PLEX) combined
with a real time operating system and
processor, all based on an asynchronous
signaling paradigm, has proven to be efficient
[Hemdal 1998] for asynchronously
communicating real time applications (large
telecommunications systems with millions of
lines of PLEX code are in operation). PLEX
and Petri Nets show similarities and by
specifying behavioral parts with Petri Nets
[Jensen 1997] powerful analysis tools
(liveness, deadlock, etc.) are available. In this
paper we analyze the benefits emerging from
combining PLEX with Petri Nets, enabling
both an efficient implementation and analysis
of behavior.

1 Introduction
Communication systems are in essence different to
traditional computer systems. In a traditional computer
system there are only a few tasks ongoing at the same time.
The operating systems with advanced paging and
timesharing handle execution and distributes limited
resources such as processor time to different processes.

Starting and stopping new processes is costly in terms of
processor time and overhead for dividing resources amongst
processes increases with the number of processes (overhead
increases noticeable in most common operating systems
which often halt if to many jobs are started). This is
acceptable for most applications since the number of
tasks/programs/processes are limited. In communication
systems where the main task is to start and stop small tasks
and who are dimensioned after maximum load, the worse
case is thousands of ongoing tasks. If these tasks would be
handled as individual processes as in main stream operating
systems the increase in overhead makes it difficult to meet
requirements on response time. Response time requirements
for telecommunication systems are given in milliseconds.

2 Matching Paradigms and
Architecture

It is not unusual to tailor processors for their languages and
operating systems. Processors for PCs are tailored for
traditional imperative programming languages requiring
interrupt handling and quick swapping between a limited
number of ongoing processes. Sun is developing a processor
optimized for direct Java byte code execution. A prototype
processor specialized for soft real-time requirements and
functional languages [Tjärnström 1998] has been developed
for the programming language Erlang [Armstrong, Virding,
Wikström, Williams 1996]. Ericsson’s APZ processors used
in telephone exchanges and the PLEX language belongs to
this category where the application, programming language
and processor is closely matched and optimized. This gives
advantages in terms of capacity and provides a programming
paradigm that directly reflects the application domain and
architecture. Both PLEX and APZ are based on a signal and
component based paradigm, a paradigm that was originally
created 20 years ago.
Sometimes concurrent real time programming languages on
the market are created by adding real time features to
traditional sequential languages. Mixing different paradigms
in the same language may be confusing and may reduce
quality and increase maintenance costs for systems and are
claimed to have caused failure of systems [Hemdal 98]. The
price to pay for such often ad hook tailoring and adaptation

Asynchronous Signal Paradigm for Soft Real Time Systems

Peter Funk1, Janet Wennersten2

1 peter.funk@mdh.se Mälardalen University, Department of Computer Engineering,
S-721 23 Västerås, Sweden

2janet.wennersten@uab.ericsson.se, Ericsson UAB AB, 721 67 Älvsjö

is that it may be very difficult to achieve acceptable or good
efficiency in terms of execution time when languages,
operating systems and processors are mixed from different
paradigms and system architectures. For example running a
concurrent asynchronous real time system on a processor
optimized for sequential languages and a task oriented
operating systems may be unacceptable slow compared with
execution on an signal optimized processor (the opposite
may also be unacceptable).

3 Efficient Implementation of
Asynchronous Systems

Asynchronous hard real time systems is in essence very
different from traditional batch oriented sequential systems
hence main stream software development tools, methods and
main stream programming languages may not always be a
suitable choice. Such a choice may for some applications
have a to high price in lost efficiency, increased instability
and also cause unnecessary confusion by mixing different
paradigms (mixing different paradigms is claimed to be one
of the main reason for failure in developing some large real
time systems [Hemdal 1998]). If signaling is the central
concept in an application domain, then translating and
implementing a system for this application in an
object/process oriented paradigm where signaling is hidden
inside object, or restricted to method calls, may not be an
obvious choice and may deter the focus of what is important
in the functionality, increasing the risk in producing errors
(not proven in this research). Figure 1 shows two ways of
implementing a concurrent real time system. The first (a)
exemplifies a conservative approach where traditional
design and coding is used and the result executed on a main
stream processor. For some applications with high demands
on response time this approach may be to inefficient as
discussed in section 2. If the application has higher demands
on response time and reliability the second approach is
proposed (b). Petri Nets are shortly described in section 5
and the real time programming language PLEX together
with the signaling paradigm is described in section 6.

Signal centered asynchronous
real time requirements

Executed on main stream
processor

Signal centered
asynchronousreal time requirements

Traditional design and coding
Signal centered asynchronous

modeling, analysis and
programming (Petri Nets &

PLEX)

Executed on processor
optimized for concurrent
communicating systems

a b

Figure 1: Design, implementation and execution of

concurrent real time systems.

4 Exact Notations of Behavior

There are two main types of symbolic representations which
both use symbolic expressions: sentential representation
(natural language descriptions) and diagrammatic/graphical
representations. The latter can explicitly capture topological
and geometrical relationships which can only be captured
indirectly in a textual representation [Larkin and Simon,
1987]. If a language is carefully designed it contains both a
textual formalism and graphical formalism that are
equivalent (users may choose symbolic or sentential notation
and display/manipulate the behavior in either way). For the
creative and exploratory phases of forming new knowledge,
visualization is often important and the use of diagrams also
aids knowledge elicitation and co-operation between those
involved [Addis et al., 1993]. Earlier approaches using
conventional state machines or state-diagrams encountered
difficulties when applied to system design, due to the
exponential explosion in the number of states [Harel 87],
and were claimed to be hard to read, modify and refine and
not suitable for complex specifications [Martin, McClure,
85]. Different approaches to overcome these problems have
been explored and graphical languages (often combined with
a textual language) are common in system development
today; for example:

?? SDL (Specification and Description Language,
standardized by the International Telecommunications
Union, [ITU-Z100]). The SDL language contains both a
graphical and textual part. The graphical part is similar
to flow charts. The graphical parts together with the

textual part of the language enable the user to describe
the functionality in such great detail that executable
code can be generated directly. Some formalization
efforts have been undertaken, see for example [Leue
1995]. With minor alterations in the semantics, a subset
of SDL can be translated to Petri Nets which has been
used for protocol verification at Siemens
Telecommunication, Germany [Regensburger, Barnard
1998].

?? Statecharts [Harel et. al. 1990]. A graphical notation
designed to make it easier to design and implement real
time systems. Similar to SDL, it has a graphical part and
a textual part and detailed descriptions can be created
and used to generate executable code.

?? Process Transition Networks (PTNs) [Malec 1992],
[Sandewall 1990]. PTNs can be translated to temporal
logic and to a subset of Petri Nets. The notation aids
conceptualization and knowledge acquisition and its
simplicity makes it easy to use for domains in which the
expressiveness is sufficient.

?? Use-Cases [Jacobson et al, 1993]. Not a notation in
itself, but which allows different notations or even text
documents describing specific examples of how the
system to be designed will behave. Formalization and
graphical syntax is under development [Regnell et al.,
1995].

?? MSC (Message Sequence Charts describing signaling
between objects in a distributed system) [ITU-Z120]. A
widely used graphical trace language for
communicating entities. MSCs may also be used for
requirements specifications with a set of suitable tools
[Ben-Abdallah and Leue 1996].

?? Petri Net notations [Jensen 1992] are a graphical
notation enabling behavioral analysis and model
checking. The notations are often used to translate a
language tailored for a specific domain or application
to/from Petri Nets, thereby giving access to analysis
tools available for Petri Nets. For example some parts
of SDL (with slightly altered semantics) can be
translated to Petri Nets in order to enable model
checking [Grahlmann 1998]. Petri Nets are emerging as
a common formal notation for representing
asynchronous real time tasks.

All of these notations introduce restrictions on what can be
expressed in Petri nets.

5 Petri Nets
Petri Nets are used as a powerful formal notation for
communicating automata and are expressive enough to
capture systems where concurrency is necessary. Petri Nets
developed by C. A. Petri in the sixties were the first general
theory for discrete parallel systems. Petri Nets have proven

to be well suited to describe both synchronous and a
synchronous communication. A wide variety of Petri Net
notations exist which either extend the expressiveness to
new classes of problems or make them easier to use.
Examples of extensions are high-level Petri Nets, timed Petri
Nets, stochastic Petri Nets and Colored Petri (CPN) nets
[Jensen 1997]. Petri Nets have always had a precise formal
definition which enables the use of powerful analysis tools
(e.g. SPIN [Holzmann, Peled 1994]) that can be used to
prove different properties of Petri Nets. Also, there is on-
going effort to standardize Petri Nets.

Petri Nets enable a wide variety of verification techniques
such as model checking, verification and application of
reduction algorithms [Grahlmann 1998]. Both SDL and
MSCs have been translated into a subset of Petri Nets in
order to use verification tools developed for Petri Nets.

Petri Nets are built with places, input transitions, output
transitions, input arcs, output arcs and tokens [Jensen 1992].
Places can hold one or more tokens (in the example, there
are two telephone tokens), arcs have the capacity to hold 1
or more tokens (the default being one), transitions have no
capacity (cannot hold a token). A transition is enabled if the
places with arcs leading to the transition have a number of
tokens greater than or equal to the capacity of the arc
(default capacity being one). During execution of a Petri net,
the tokens will move around in the net and the number of
tokens may vary. When using a Petri net, terms such as
synchronization, concurrency and merging are difficult to
avoid. The Petri net example in Figure 2 contains the
primitive constructions: synchronization (e.g. the processes
“ring tone a” and “ring signal b” are synchronized by
starting the transition “dialing idle b”), concurrency (e.g.
“ring tone a” and “ring signal b” are two concurrent
processes started by the transition “dialing idle b”). In high
level Petri Nets, a token can contain data (the local state of
the token). Kurt Jensen states: “Making a CPN model is very
similar to the construction of a program” [Jensen 1992].
This may be very useful when specifying and designing
complex concurrent real time systems and the similarity with
PLEX is summarized in section 7.

hook off a

dial tone

dialling

ring tone a

hook off b

a in speech with b

hook on a

hook on a

idle subscriber

ring signal b

silent b

hook on b

Figure 2: High level Petri net example

We explain below some advantages and drawbacks of Petri
Nets compared with traditional state based process oriented
approaches.

1. Petri Nets main benefit are their ability to express

concurrency and Petri Nets are the first general formal
notation for describing discrete parallel systems.

2. In research projects where Petri Nets have been used it
is common to simplify or adapt them according to the
task and the users' needs. A notation is either defined in
terms of Petri Nets or internally translated to Petri Nets.
These notations often contain restrictions and
simplifications reducing the expressiveness and
complexity of the notation compared with a direct use
of Petri Nets. Examples where such notations have been
used and defined in terms of Petri Nets or internally
translated to Petri Nets are PTNs [Malec 1992], SDL
and MSC [Grahlman 1998] and structured analysis and
design diagrams (SADT diagrams) [Jensen 1997].

3. In Colored Petri Nets each token has a color, where the
color may represent a specific individual together with
some additional data (a local or global state). A
transition can only occur if the tokens with the correct
colors are available.

6 PLEX and the Signaling Paradigm
PLEX is a programming language designed for very
demanding asynchronous real time applications such as
telecommunication systems. Millions of lines of PLEX code

implement the functionality of telephone services, features,
maintenance, security and billing functionality, proving the
languages efficiency both from the point of programming
and maintenance (for telecommunication system
maintenance is dominating). These systems are allowed to
have an average down time on a few minutes a year putting
high demands on the code. PLEX is also from the beginning
designed to enable functionality change during execution
and code may be replaced and upgraded without disturbance
in availability. The signaling paradigm on which the
language is based puts signals in the center. In contrast to
traditional process centered languages PLEX is purely
reactive and the only means for starting execution of PLEX
code is an external or internal signal (the first signal would
be an initialization signal mainly to execute some code
initializing data). Every execution is restricted to about 500
lines of code which are executed as an atomic entity1,
eliminating the need for time sharing between programs and
reducing demands on the operating system (these code
snippets triggered by signals carrying data bear similarities
to Petri Nets which will be explored in Section 7). It is
believed that the limit on code snippets contribute to the
maintainability since functionality of the system needs to be
broken down to small, in it self easy to understand
asynchronous communicating pieces. The basic task of the
operating system is to buffer signals and once a signal is in
front of the queue, the corresponding code snippet (we avoid
the word job since this may give the wrong associations) is
executed. This characteristic is one of the reasons that makes
systems implemented in PLEX behaving linearly in time
under load [Johansson et al. 95], a feature important for
security sensitive systems. Parallel execution is performed in
central and regional processors (no shared data allowed).
The APZ processor family is specially designed and
optimized for systems based on the signaling architecture
and enable a very fast execution compared with traditional
processors. A block structure is used to organize code
snippets in packages that perform related tasks and share
data (and hardware). Figure 3 shows an example of a system
in PLEX. There are three code snippets, c1, c2, c3, data
carried by or indexed by arguments to the signals, d1, d2,
d3, two external signals, hook off, dial tone and five internal
signals, signal i2, signal i4, signal i5, signal i6 and finally
the data after the code has been executed symbolized by d1',
d2' (d3 has no prim sign which shows that data has not been
altered in this code snippet). The cross at the end of a code

1 Nothing is allowed to interrupt the execution until the code
snippet is completed. There is no need for operating systems
with interrupts, process handling mechanisms, garbage
collection, etc. These mechanisms are costly in terms of time
and number of processor instructions. For Petri Nets and
PLEX the lack of necessity of these is one of their strengths
when used in real time applications.

snippet line symbolizes the end of execution of this code
snippet.

hook off a

dial tone

signal i2

signal i5

signal i6

signal i4

c1[d1]

c2[d2]

c3[d3]

 [d1']

 [d2']
 [d3]

Figure 3: System example in PLEX with both internal and
external signal.

It is important to note that the execution in the signal
paradigm is purely reactive and in essence different from
execution in a process oriented programming paradigm,
where processes are spawned, forked, stopped, interrupted
and resumed by some operating system. Execution of every
code snippet is atomic and code snippets may be executed in
parallel if no data is shared (the common way to implement
it in the final system is that code divided into different
blocks are executed on different processors).

7 Comparison of PLEX and Petri Nets
If all the features of PLEX and Petri Nets could be
combined this would result in a very powerful combination.
It would enable advanced analysis of systems produced,
proving liveness, absent of deadlock, behavior under load,
etc. PLEX enables system implementation meeting hard real
time requirements, change of functionality without a full
stop in service availability. These are all requirements
important in global telecommunication systems and are
rarely achieved in currently available systems. Also a
suitable abstraction level can be provided for the PLEX
language within the signal paradigm.

Our initial comparison shows that signals and data in
PLEX have a close similarity with signals and tokens in
Petri Nets. Signals in Petri Nets trigger a transition if the
required tokens (data) are available. In PLEX a signal
triggers a code snippet that can be seen as a Petri Net
transition (Petri Net transitions may be expanded if a higher
level of details is required for more fine grained analysis).
Also a layered approach is considered where a code snippet
may be represented by a Petri net, and a Petri net may be an
abstraction of many code snippets. Since code snippets in
PLEX are seen as atomic (within the same level, 4 levels
exist) in the sense that nothing can interrupt their execution,

there is no need for abstraction on this level and a direct
mapping is possible. If time delay is a factor to be included
in the analysis, timed Petri Nets may be considered, but this
is beyond the scope of this paper. Tokens in Colored Petri
Nets contain data describing a current local state.

8 Conclusions and Further Work
The comparison of Petri Nets and PLEX show promising
similarities enabling a combination. Petri Nets gain from the
fact that PLEX enables very efficient implementation of
functionality expressed in Petri Nets. PLEX benefits from
the availability of analysis tools developed for Petri Nets.
The signaling paradigm and tokens in Petri Nets have the
same meaning (a deeper semantic analysis is ongoing). This
allows advanced analysis of the structure of systems written
in PLEX, analysis which would be very difficult performed
directly on code level. The next step in this research will be
to define the signaling paradigm and PLEX in Petri Nets (a
bi-directional function). This enables us to analyze different
aspects and prove properties for code written in PLEX.
Furthermore giving parts of PLEX a clear semantic in Petri
Nets provides a foundation for automated translation
between other notations such as MSCs and parts of SDL (or
exactly where the expressiveness of the target formalism is
less) which already have been defined in terms of Petri Nets.
Also an Case-Based Reasoning approach to reuse as
explored in [Funk and Robertson 1995] may be used to
identify similarly behaving PLEX code.

References

[Addis, Gooding, Townsend, 1993] Addis T.R.,
Gooding D.C., Townsend J.J. (1993). Knowledge
Acquisition with Visual Functional Programming.
Knowledge Acquisition for Knowledge Based
Systems, 7th European Workshop, EKAW ‘93,
Lecture Notes in AI 723, Springer Verlag, pp 379-
406.

[Allen 83] Allen J.F. 1983. Maintaining Knowledge
about Temporal Intervals. Communication of the
ACM, November, vol 26, Nr 11, pp 832-843.

[Armstrong, Virding, Wikström, Williams 1996] J.
Armstrong, R. Virding, C. Wikström, M. Williams.
Concurrent Programming in ERLANG, Prentice
Hall, 1996.

[Ben-Abdallah and Leue 1996] Ben-Abdallah H.,
Leue S. (1996). Architecture of a Requirements and
Design Tool Based on Message Sequence Charts.
Technical Report 96-13, University of Waterloo, pp
1-19.

[Funk and Robertson, 1995]. Funk, P.J. and
Robertson D. Case-Based Selection of Requirements

Specifications for Telecommunications Systems.
Second European Workshop on Case-Based
Reasoning, Proceedings, Keane M., Haton J. P.,
Manago, M. (eds.), Chantilly, France, pp 293-301.

[Grahlman 1998] Grahlmann B. (1991). Combining
Finite Automata, Parallel Programs and SDL using
Petri Nets. TACAS’98, pp 1-16.

[Harel, 1987] Harel D. Statecharts: A Visual
Formalism For Complex Systems, Science of
Computer Programming 8, pp 231-274, Elsevier
Science Publishers.

[Hemdal, 1998] G. Hemdal. The Software Crisis,
Symptoms, Causes and Effects. RJO Advanced
System Architecture Inc, Maryland, USA, pp1-22.

[Hirakawa, Monden, Yoshimoto, Tanaka, Ichikawa,
86]

[Holzmann, Peled 1994] Holzmann G.J., Peled D.
(1994). An Improvement in Formal Verification.
FORTE 1994 Conference, Switzerland. pp 1-12.

[ITU Z.100, 1994] ITU Z.100 Recommendation
CCITT Z.100. CCITT Specification and Design
Language (SDL). International Telecommunications
Union, Geneva, Switzerland.

[ITU Z.120, 1994] ITU Z.120 Recommendation
CCITT Z.120. CCITT Message Sequence Charts
(MSC). International Telecommunications Union,
Geneva, Switzerland.

[Jacobson, Christerson, Jonsson, Övergaard, 1993]

[Jensen 1992] K. Jensen, Coloured Petri Nets, vol 1,
Springer -Verlag 1992.

[Jensen 1997] K. Jensen, Coloured Petri Nets, vol 3,
Springer -Verlag 1997.

[Johansson et al. 95] Lars-Åke Johansson et al.
Systems Characteristics, ERICSSON Report, UAB,
pp 145-164.

[Kowalski, Sergot, 86] Kowalski R., Sergot M.
(1986). A Logic-based Calculus of Events. New
Generation Computing 4, Springer-Verla, pp 67-95.

[Malec 1992] Malec J. (1992).Process Transition
Networks: The Final Report. Technical Report
LiTH-IDA-R-92-07, Linköping University, pp 1-31.

[Mataga and Zave, 1993] P. Mataga and P. Zave.
Formal Specifications of Telephone Features, pp 20-
49.

[Regensburger, Barnard 1998] Regensburger F.,
Barnard A. (1998). Formal verification of SDL

systems at the Siemens mobile phone department.
TACAS’98, pp 439-455.

[Regnell, Kimbler, Wesslén, 1995]

[Robertson 1996] Robertson D. (1996). Distributed
Specifications. ECAI 96, 12th European Conference
on Artificial Intelligence, Budapest, Hungary, John
Wiley & Sons Ltd, pp 390-394.

[Robertson and Agusti 1999] Robertson D., Agusti J.
(1999). Automated Reasoning in Conceptual
Modelling, draft book, available from the authors at
DAI Edinburgh.

[Sandewall 1990] Sandewall E. (1990). Proposal for
a ProArt specification platform. Technical Report
LAIC-IDA-90-TR18, Linköping University.

[Tjärnström, 1998] R. Tjärnström. An Erlang
Machine, IFIP WG2.8 Workshop, Portland, Oregon.

[Wieringa, 1996] R.J. Wieringa. Requirements
engineering: Framework for understanding, John
Wiley & Sons Ltd, Chichester.

[Zave and Jackson, 1996] P. Zave and M. Jackson.
Four Dark Corners of Requirements Engineering.
ACM pp 1-34.

