
Liability for Software in Safety-Critical Mechatronic Systems:

An Industrial Questionnaire

Holger M. Kienle, Daniel Sundmark, Kristina Lundqvist, and Andreas Johnsen
Mälardalen University, Västerås, Sweden

http://www.mrtc.mdh.se/

Abstract—There is very little research on how industry is

dealing with the risk of legal liability when constructing safety-

critical mechatronic systems that are also software intensive. In

this paper we propose a case study approach with the goal to

understand how liability concerns in this setting impact software

development in industry. The approach takes into account that

software development is embedded into a complex socio-technical

context involving stakeholders from technical, managerial and

legal backgrounds. We present first results of our case study from

a questionnaire involving six companies that develop software-

intensive, safety-critical systems in the vehicular and avionics

domains. The results of the questionnaire shed light on current

industrial practices and concerns. The results indicate that

liability seems indeed a concern and that a more in-depth analysis

of this topic would be desirable to better understand the strategies

that are used by industry to address liability risks.

I. INTRODUCTION

There is a rather limited amount of research in software
engineering that addresses legal considerations, but they are a
reality that industry has to deal with. There are many potential
legal issues that may need to be considered, depending on the
nature of the software and the environment in which it oper-
ates. Examples of legal issues are data protection, licensing,
intellectual property, contracts, and consumer protection.

IEEE standard 1420.1b (withdrawn) broadly defines liability
as “the state of being responsible or answerable under a
legal obligation” [1]. Product liability can be defined as “the
legal liability of manufacturers and sellers to compensate
buyers, users, and even bystanders for damages or injuries
suffered because of defects in goods purchased” [2]. There
can be intentional liability (requiring an intentional act that
is reasonably foreseeable to cause harm) and strict liability
(requiring no intent and no negligent act). The latter typically
applies to manufacturers of dangerous goods that can cause
physical harm. Generally, the standard of care when determin-
ing negligence is that of a ficticious person—the “reasonable
man of ordinary prudence” [3].

For a software system (product) liability can mean that the
producer of “defective” software could be held responsible
under certain circumstances for (physical) harm cause by the
“malfunctioning” of the software. According to Dowlatshahi
“courts have shown little mercy for manufacturers who neglect
safety and who produce products that later prove to be unsafe”
[4] and Hoffmann reports that “in May [2011], the European
Commission introduced a proposal to hold companies liable
for for damages caused by faulty software” [5]. We restrict our
research to legal concerns surrounding defective software; we

do not address other legal issues that may be also relevant in
this domain such as contracting for externally developed code
and limiting exposure to intellectual property infringements.

There is anecdotal evidence that litigation involving liability
is a concern for industry, but authors rarely elaborate on this
issue. For example, Ackermann et al. say that for automotive
companies and their suppliers such as Bosch “safety, warranty,
recall and liability concerns . . . require that software be of
high quality and dependability” [6]. We believe that a more
thorough analysis of the current situation in industry is of
interest; if liability is indeed a concern for a company, then
this concern should be explicitly reflected in some form in the
company’s software engineering processes and practices.

In this paper we focus on liability risks of mechatronic
systems such as they can be found in the automotive and
avionics domains. In these domains liability needs to be part
of risk analysis because they are safety-critical and accidents
may lead to loss of life and liability claims. Liability for these
mechatronic systems is closely related to (safety) standards
and standards certification. Åkerhom et al. say that “legislative
and standardization authorities around the world currently
increase the pressure on vehicle manufacturers to comply with
safety standards for their electronic systems” [7]. Nowadays,
mechatronic system are often also software-intensive systems
and as a consequence concerns for liability need to address
software as well. Generally, if software development ignores
or violates standards then the risk of liability increases.

Liability for software has been mostly addressed from
a strictly legal perspective, discussing/arguing how courts
may/should apply liability to defective software and to soft-
ware practitioners (e.g., [8] [9] [10]). To our knowledge there
is very little work in the software engineering community
on liability. Specifically, we are not aware of any empirical
research that has studied the impact of liability on industry
with the help of established research methodologies such as
case study, survey, or action research. Our research strives
towards closing this gap.

Given that there is little investigation on how liability
impacts software development for mechatronic systems, we
propose to better understand this relationship with the help
of an industrial case study. Case study research is well suited
because it is “aimed at investigating contemporary phenomena
in their context” [11]. In our study, the phenomena are liability
and software development in the context of mechatronic sys-
tems manufactured by an industrial organization. This leads to
our main research question:

How are concerns for liability reflected in compa-
nies’ software development and their organizational
structure and practices?

We are tackling this question by breaking it down into more
detailed ones as discussed in Section II. Our case study is
exploratory in the sense that it strives to establish whether
liability is indeed a concern and whether it is an issue that
deserves further research. It is descriptive in the sense that it
investigates the current situation in industry by studying real
companies.

II. CASE STUDY APPROACH

In this section we describe our approach and the key
elements of the case study.

For conducting the case study we decided to pursue it in
two stages. The first stage consists of a questionnaire, which
was sent to suitable people within the targeted companies.
One purpose of the questionnaire is to establish whether
liability is indeed a promising research topic. This is not clear
from the outset because of missing prior research results. A
questionnaire seems ideal in this case because it requires little
time and effort for both sides. The second stage consists of a
more involved data gathering approach in the form of semi-
structured interviews. In this paper we report on the results of
the first stage only (i.e., questionnaire).

When conducting a case study, it is important to identify
the study’s context (cf. Section II-A). Since liability cross-cuts
legal, technical and social issues within and beyond an organi-
zation we decided to approach the context from the perspective
of socio-technical theory. We have also conducted a literature
search to identify the key concerns that practitioners (both in
the legal and information technology domains) have voiced
with respect to liability risks and strategies that companies
can use to mitigate these risks (cf. Section II-B).

Socio−technical theory

Literature search on liability risks and mitgation strategies

Context:

Case:

Safety−critical mechatronic systems

Unit of Analysis:

Company A

Unit of Analysis:

Company B ...

Fig. 1. Structure of the embedded case study

Based on the context and the literature search, we identify
relevant aspects (cf. Section II-C) that the case study needs to
address in order to provide a holistic picture. Based on these
aspects the instruments for data collection—questionnaire and
interview—are designed. Our target for data collection are
companies that produce safety-critical mechatronic systems.
We are aiming to independently study a number of such
companies. Thus, we are conducting an embedded case study
[11] as depicted in Figure 1.

A. Socio-Technical Context

Fig. 2. Regulatory structure (case study’s context)

Leveson presents a model of socio-technical control that
exposes the interactions within an organization and external
governmental stakeholders [12]. Figure 2 is based on this
model with an emphasis on the legal and liability aspects.
The legislature enacts laws (e.g., because they are concerned
about the safety of a domain). These laws may be further
refined by (regulatory) agencies that provide more concrete
guidelines. Law is also shaped by case law (i.e., relevant
court decisions that interpret the laws). Individual companies
(or industry associations) react to the legal and regulatory
environment by defining (company-wide) safety policies and
internal guidelines or standards. For individual projects these
policies, guidelines, and standards are further refined with
concrete practices, including software development practices.

Importantly, there is also feedback in the other direction.
Experiences from individual projects may cause changes to
company-wide policies, and incidents and accidents involving
products in the domain may cause regulatory changes. Socio-
technical control is present not only at systems development,
but also at systems operation/maintenance.

B. Literature Search on Liability Risks
We have conducted a literature search to identify papers

that address liability for software. Specifically, our goal was
to identify papers that go beyond a mere description of the
legal side by providing (actionable) guidance for software
practitioners. Table I summarizes the strategies for reducing
liability risk as reported in the literature.

TABLE I
ISSUES TO ADDRESS FOR LIABILITY REPORTED IN THE LITERATURE

Issue Literature

Having a well-defined, complete development process [13] [14]
Knowing and following relevant guidelines [3] [14] [15]
Documenting process/guidelines and adherence to it [3] [16] [17] [15]
Establishing safety/reliability procedures [3] [14] [18]
Establishing a measurement program [16]
Doing (requirements) traceability [17] [19]
Doing testing and bug-tracking [14] [20] [21]
Limiting exposure to liability with contracts [3] [22]

A key concern in the literature is a discussion of the poten-
tial risks involved in legal disputes and how to mitigate these
risks. In case of a legal dispute, courts will typically try to

determine a baseline by looking at the state-of-the-practice and
standard/duty of care [15] [23] [16]. Jones describes the typical
course of action as follows: “software expert witnesses are
hired to prepare reports and testify about industry norms for
topics such as quality control, schedules costs, and the like. . . .
The expert reports produced for lawsuits attempt to compare
the specifics of the case against industry background data
for topics such as defect removal efficiency levels, schedules,
productivity, costs, and the like” [19].

Consequently, Cusumano says that “companies delivering
software that exceeds the bounds of common industry practice
are vulnerable to penalties” [23]. In this case, it is important
that the company can show that it follows general guidelines
(e.g., professional codes of conduct/ethics/practice) as well as
applicable (safety) standards. Aiken et al. report the following
experiences: “Evidence is mounting that public [codes of
conduct] serve as standards for evaluating the performance and
determining the responsibilities not only of IEEE members, but
IT professionals in general. . . . Following a [codes of conduct]
is one way to . . . insulate contracting parties from potential
legal liability” [15].

Generally, legal risk is already reduced if the development
process for a system encompasses “all reasonable steps” and if
“good engineering” principles are followed [13]. The system
developer also has to document the employed process and
principles so that it is possible to prove that all activities
in the process have been followed and the corresponding
work products have been produced; obviously, “liability will
not be avoided by instituting procedures which are ignored”
[3]. Importantly, design alternatives and tradeoffs need to be
documented as well [17]. Generally, “documentary evidence
is persistent and not easily dismissed” whereas “total reliance
on human testimony . . . is a very risky strategy” [17].

Jones emphasizes “requirements traceability” (i.e., back-
tracking of requirements from code and other deliverables) in
the domains of defense applications and embedded software
because such systems “often have serious legal and liability
issues associated with them” [19, p. 462]. DeMarco and
Lister state that “organizations that cannot or do not measure
themselves in a fairly systematic way are always at a huge
disadvantage in litigation. . . . Metrics is one of the . . . major
subjects on which virtually all litigations turn” [16].

The development process should incorporate state-of-the-
practice techniques such as they can be found in the rele-
vant guidelines. For instance, Aiken et al. say that “courts,
juries, and arbitration panels are finding that failure to follow
generally accepted public standards for design and testing
of software are grounds for seeking damages” [15]. Palermo
recommends to build such techniques into the process as
discrete milestones [3]. Turner and Khosmood suggest that
for each step in the process there should be negligence
analysis/research as well as dedicated evidence generation,
archiving, and traceability [17]. They also propose to address
and integrate liability issues into the process via “the creation
of a database where important legal constraints are linked to
specific development aspects that address them” [17].

C. Liability Aspects

To get a holistic picture, we look at both (1) aspects outside
of the software development process that have an impact on
it, and (2) aspects within the development process itself.

We consider the following aspects. For each of the aspects
we provide sample questions that are derived from our main
research question.

Organizational structure: Are concerns for liability re-
flected by dedicated roles and positions within the company’s
organization? For example, is there a legal expert within the
company and/or has the company identified and established
ties with external sources for legal council if the need arises?1

Business process: Are there established business processes
that explicitly address liability concerns? For example, is there
an opportunity for legal experts to provide input and influence
decisions? Does the company conduct liability-related risk
analysis/assessment? Is there an established workflow for the
reporting and analysis of incidence reports? Does the business
process address how to “interface” software development with
other interdependent artifacts such as hardware and documen-
tation?2

Use of external guidelines and codes: Is there awareness
and use of guidelines, codes or standards that are potentially
related to liability? Examples of generally applicable docu-
ments are the ACM Code of Ethics and Professional Conduct
and the IEEE Code of Ethics. Examples of more specific
documents are various (safety) standards [7].

Use of internal guidelines and codes: Has the company
developed internal guidelines, codes or standards that address
liability? Such internal documents could be based on external
documents and internal expertise and are tailored to the needs
of the company.

Development process: How are liability concerns con-
sidered or addressed during software/system development?
Specifically, what are the activities, roles, and workproducts
of the software development process that address or impact
liability? For example, is there (dedicated) documentation
that identifies liability concerns?3 Are liability issue traceable
across workproducts?

Tool/method support: Is software development supported
by tools or methods that address or impact liability? Examples
of methods that could be applied are: formal verification [3];
bug tracking (of safety/liability-critical defects) [14]; fault
injection [10]; safety analyses such as hazard analysis, fault
tree analysis, and failure modes and effects analysis [18] [25];
and code/test coverage analysis tools (coverage monitor) [20].

1Jones identifies more than one-hundred different kinds of specialists in
large software organizations, among them “litigation support specialist” [19].
He also points out that external consultants are most useful where in-house
skills are not readily available and gives as example preparing for or defending
against litigation.

2Documentation that is not in sync with the software’s capabilites may be
a liability risk [24].

3Butt et al. recommend a separate specification for safety requirements,
also since such a specification should address in particular what the system
should not do [25, p. 285].

III. QUESTIONNAIRE: DESIGN AND RESULTS

The fundamental goal of the questionnaire was to establish
whether the issue of liability is indeed a concern for companies
in the domain of safety-critical mechatronic systems. Further-
more, the questionnaire gave feedback about the individual
person’s awareness and involvement regarding liability. The
questionnaire is available as PDF at http://bit.ly/liab-q.

The first part of the questionnaire asks about a few selected
characteristics of the company and the person in question.
The second part asks about aspects of liability as identified
in Section II-C.

The questionnaire contains 17 items, which are all multiple
choice answers and closed questions (i.e., answerable with a
short phrase). We chose this approach because it minimizes
the effort of the responding person (and also simplifies sub-
sequent analysis). For design, piloting and execution of the
questionnaire we consulted relevant literature (e.g., [26] [27]).
We first performed pilots of the questionnaire among ourselves
and, once we felt we had a mature version, we did two
additional pilots with people from industry. We aimed for at
most 20 minutes for filling out the questionnaire and the pilots
confirmed that it takes around 15 minutes.

One important consideration when administering the ques-
tionnaire is whether to have an interview or making it
self-administered. In the former approach, the interviewer
would be one of the authors, going through the questions
with the respondent. The interaction could be face-to-face
or via voice/video chat. Benefits of this approach are that
the interviewer can clarify questions and can make sure that
no questions are skipped. A potential drawback is that the
interviewer can introduce bias because respondents “tend to
be reluctant to tell something to an interviewer that runs
counter to the beliefs or attitudes they believe the interviewer
holds” [27]. We think that this is indeed a concern for our
study because our respondents might be more reluctant to
admit lacking concerns—of their own or their company—
in the areas of safety and liability if their interviewer is
a researcher who has expertise in this area. Consequently,
potential respondents were invited via email and filled out the
questionnaire themselves.

A. Characteristics of Respondents and Companies

Answers to our questionnaire cover 9 respondents from 6
different companies. To protect confidentiality, we do not give
details about the companies, but all of them are of significant
size (both personnel and budget), operate and sell their prod-
ucts internationally, and develop safety-critical software for
mechatronic systems. Respondents described the products that
they are concerned with in their work as follows: earth moving
vehicles; embedded systems for automotive; vehicular; train,
locomotive or metro; safety critical flight controls; and control
equipment for aircraft. According to respondents the products
of all but one company require certification, where certification
is performed in 3 cases by units external to the product
development (e.g., FAA/EASA, TÜV, or another independent

TABLE II
STANDARDS CITED BY QUESTIONNAIRE’S RESPONDENTS

Domain Standards

vehicles IEC 61508, 61511, 62061; IS0 5010, 13849, 15998, 26262;
EN 474, 954; ATEX, EMC, Low Voltage, Machinery direc-
tives;

aviation FAR Title 14; EASA CS-25, Part-21; SAE ARP4754,
ARP4761; RTCA DO-178B, DO-254; applicable FAA CAST
position papers; applicable EASA Certification Review Items

train EN 50126, 50127, 50128

part of the same company) and in 2 cases internally via self-
certification.

We also asked (Q13) What safety-related regulations and
standards affect software development in your company? Only
one respondent said that there are no relevant standards.
Table II summarizes the respondents’ answers by domains.
The responses reveal that there are domain-specific standards
such as EN 50128 for railway applications and ISO 15998 for
earth-moving machinery. Respondents in the vehicular domain
(4 people from 3 different companies) cited IEC 61508, which
is a general safety-related standard; specific interpretations
of this standard are EN 50128 (railway) and ISO 26262
(automotive). Even though these standards focus on safety
concerns, they are potentially applied in liability litigation for
determining the expected state-of-the-practice in industry.

Originally, our intent was for each company to question
persons that cover all of the the following roles: legal council,
business manager, safety expert, project leader for software
development, and software developer. These roles are covering
the relevant stakeholders of the case study’s context (cf.
Section II-A). However, it turned out that employees are very
cautious and thus obtaining information was more difficult
and work-intensive than envisioned. Indeed, an established
relationship of trust was essential for getting answers. In the
end, we were able to cover the following roles (self-assessment
of respondents, multiple roles permitted): safety expert (6),
business manager (1), technical manager (3), and developer
(2). All respondents of the survey function at least in a role
that is interfacing between software development (technical)
and other non-technical areas (managerial/legal). Thus, we
are confident that the socio-technical environment in which
companies operate is sufficiently reflected by the responses.
A potential bias is introduced by the fact that all respondents
are located in Sweden.

We asked respondents about the number of years they have
been working in their current role in industry. Responses
ranged from 1 to 19 years with an average of 8.7 years.
We also asked the following question: (Q14) How would you
rate your overall knowledge of software liability? On a five-
point scale the respondents selected: expert knowledge (none),
advanced knowledge (2 people, 22%), some knowledge (6
people, 66%), very little knowledge (1 person, 11%), no
knowledge (none). Thus, all respondents are aware of the
concept of liability and the average rating is slightly better
than some knowledge. Since none of the respondents is in
the legal profession, it is not surprising that nobody claimed

expert knowledge.

B. Responses Concerning Liability
We asked a number of questions to assess how companies

address liability risks. All questions in this section have a
Don’t know option. The reported percentages disregard Don’t
knows and blank/unchecked entries.

One approach for companies is “offloading” of legal risks
via an insurance that covers the cost incurred by legal fees
and penalties. However, from personal communication with
a software expert at a large German subcontractor to the
automotive industry we learned that insurance is often not
practical; this is in line with Heckman’s observation that “lia-
bility insurers are reluctant to write policies [for software], and
the few available contain extensive limitations and come with
prohibitively high premiums” [9]. When asking (Q6) Does
your company have insurance that covers liability claims?
only 1 respondent (33%) answered with yes, 2 (66%) with
no, and the other 6 did not know. It is interesting that several
people with a non-developer role and with many years of
experience did not know whether their company actually has
insurance.

A basic approach to risk mitigation is to learn from pre-
vious incidents. When asking (Q12) Are incidents where the
company’s products have caused injury, or potentially could
have caused injury, reported and analyzed? 6 respondents
(100%) affirmed and the other 3 did not know. One respondent
substantiated that “our customer[s] have procedures to record
and analyze every incident [and] we have an agreement that
they involve us whenever needed.”

Legal risk is reduced if a company can demonstrate that
it follows certain guidelines—internal and/or external ones.
When asking (Q11) Are there company-internal codes of
conduct/practice that relate to liability? 5 respondents (71%)
answered with yes, 2 (29%) with no, and the other 2 did
not know. One “no” respondent pointed out that the company
has internal codes, but they do not explicitly address liability.
When asking (Q10) Does the company request of you to follow
external codes of conduct/practice that relate to liability?
2 respondents (33%) answered with yes, 4 (67%) with no,
and the other 3 did not know. Thus, it seems companies are
more relying on internal guidelines rather than external ones.
Interestingly, no respondent did refer to ethical guidelines even
though these are arguably relevant in liability cases.4

Another strategy to minimize risk is to seek guidance from
legal experts for software development practices that minimize
legal exposure. When asking (Q7) Does the company obtain
legal advice that impacts or provides input to the way software
is developed? 3 respondents (37%) said that in-house legal
services are involved while 4 (50%) said that there is no legal
input. Only 1 respondent (13%) reported that both in-house
and external legal advice is sought. Given that appropriate
technical documentation is crucial as legal defense (cf. Section

4We explicitly did not rule them out in the questionnaire, clarifying
that the codes in question are typically produced by professional organiza-
tions/societies.

X-Axis scale: -2 = strongly disagree; -1 = disagree; 0 = neutral; 1 = agree;
2 = strongly agree

Fig. 3. Averages of responses for Q15 (a)–(g)

II-B) we were surprised that for at least half of the companies
there is no input from the legal into the technical area.

Besides the technical area, we did ask whether the business
area addresses liability risks. When asking (Q8) Are there
elements in the company’s business processes that explicitly
address liability concerns? 6 respondents (86%) said yes, 1
said no (14%), and the other 2 did not know. When asking
(Q9) Are legal experts involved in the decision-making in the
company’s business processes? 7 respondents (100%) said yes,
and the other 2 did not know. These responses clearly indicate
that legal concerns are reflected in the way businesses are
operating.

To better understand how respondents assess their com-
pany’s performance with respect to liability, we did ask them
(Q15) How strongly do you disagree/agree with the following
statements?:

(a) My company has a safety culture.
(b) My company learns from previous liability lawsuits.
(c) Liability issues related to software are an important

concern within my company.
(d) In my company software is developed according to the

applicable safety-related rules and regulations.
(e) In my company software is developed following (inter-

nal) rules that minimize liability risks.
(f) In my company I receive training/education that ad-

dresses safety issues.
(g) In my company I receive training/education that ad-

dresses liability issues.
Results are summarized in Figure 3. For statements (a)–

(f) the respondents clearly tend towards agreement, indicating
that liability and safety concerns are indeed recognized by
companies. However, agreement is rather weak, indicating that
companies could increase effort in addressing these concerns.
Statement (g) shows that there are deficiencies in educating
personnel about liability issues (compared to safety issues).
Further research could explore what level of legal expertise
(for each role) is desirable from a company’s perspective.

Next we asked for the “things” given in Table III: (Q16) In
your opinion, how important is each of the following things in
your company’s ability to deal with liability concerns? In the
table, the averaged responses are represented with black bars to
give a visual impression of the variations among the “things”
that we asked for. Also in the table, depending on the average
ratings we subjectively identified three groups of “things” with

TABLE III
GROUPING OF AVERAGES OF RESPONSES FOR Q16:

In your opinion, how important is each of the following things in your company’s ability to deal with liability concerns?

Importance “Thing” Averaged Responses (scale: 1–5) †
highest (b) Safety culture 4.67

(e) Risk analysis/assessment with respect to liability 4.29
(d) Internal guidelines, codes, standards and other documents 4.11

middle (c) External guidelines, codes, and standards 4.00
(f) Elements in the software development process that address liability concerns 4.00

least (a) Legal council 3.56
(h) Tool support for software development that assist liability-related tasks 3.17
(g) IT support for managerial tasks that relate to liability 2.40

† Average based on 5-point Liker scale: 1 = not important at all; 2 = slightly important; 3 = moderately important; 4 = important; 5 = very important

TABLE IV
GROUPING OF AVERAGES OF RESPONSES FOR Q17:

In your opinion, how important or unimportant are the following techniques in software development to mitigate liability issues?

Used?
Importance Software developing technique Averaged Responses (scale: 1–5) †

yes no

highest (f) Safety analyses (e.g., hazard, fault tree, and effect analysis) 4.88 100% 0%
(b) Bug tracking (of safety/liability-critical defects) 4.63 100% 0%
(a) Formal verification 4.50 43% 57%
(g) Software testing independent from software development 4.50 100% 0%

middle (i) Traceability of liability-related requirements 4.40 80% 20%
(c) Architectural/design reviews 4.25 100% 0%
(d) Code reviews 4.25 100% 0%

least (e) Fault injection (software testing) 4.00 100% 0%
(h) Code/test coverage analysis 3.88 100% 0%

† Average based on 5-point Liker scale: 1 = not important at all; 2 = slightly important; 3 = moderately important; 4 = important; 5 = very important

highest, middle and least importance. Of highest importance
is safety culture (b), a concept which is already recognized
by Leveson’s model (cf. Section II-A). Internal guidelines (d)
are seen as more important than external ones (c). Somewhat
surprisingly, legal council (a) ranks rather low; same for IT
support (g) and tool support (h), which is in contrast to German
et al.’s “believe that there is a strong need for techniques and
tools that support developers in coping with legal issues from
a technical point of view” [28].

Software engineering offers a range of techniques for which
there is evidence that they have a positive impact on the
software’s quality. For safety-critical systems it is expected
that such techniques are used. To get an assessment of how
practitioners judge the effectiveness of certain techniques we
asked (Q17) In your opinion, how important or unimportant
are the following techniques in software development to mit-
igate liability issues?5 Table IV shows the techniques under
question—which have been identified based on the relevant
literature and the authors’ domain knowledge—along with the
respondents’ average ratings. Analogous to Q16, we subjec-
tively group the responses into three categories depending on
their relative importance.

All techniques are rated quite high: all but one (h) are
rated at least as being “important.” Thus, all techniques are
potential candidates that should be considered. In contrast to
the other three techniques with highest importance (f/a/g),
bug tracking (b) is rarely mentioned in the literature in the
context of safety or liability. Interestingly testing techniques

5Note, that we did ask for the impact that the techniques have on liability,
not safety.

(e/h) rank lowest, and formal verification (a) ranks high, but
is not seen as a panacea. We also did ask whether a technique
is applied by the respondents’ companies (Table IV, column
“Used?”). Besides traceability (i) and formal verification (a) all
techniques are used within all companies. Formal verification
sticks out as the least used with 43%, indicating that there
are still significant adoption hurdles for this technique even in
safety-critical domains.

C. Limitations and Future Work

Our results have the typical threats to validity that are often
associated with questionnaires, in particular, potential selection
bias, and questions that are vague, ambiguous or suggestive in
wording. Due to the limited sample size there may be low (sta-
tistical) significance. As discussed before, the questionnaire
was self-administered and thus avoids interviewer bias.

Since we decided to have a questionnaire with closed
questions, responses may lack desirable details. For instance,
we can report that the majority of companies has internal
guidelines that address liability (Q11), but we are lacking
details of the guideline’s structure and content and how
they are leveraged in the business and software development
processes. In such cases, the questionnaire is a useful tool to
confirm that further probing is indeed worthwhile.

It is a concern that the number of questionnaire respondents
is rather low, but it is still sufficient to obtain first results and
valuable feedback for future research. Rather than increasing
the sample size of the questionnaire, in future work we want
to conduct semi-structured interviews to obtain further details.
The questionnaire results will be useful for selecting interview

candidates. For example, one respondent has a high number
of Don’t know answers even though he is a mature safety
export with 8 years of experience due to the fact that he only
recently started working for his current company. Interviews
also provide the opportunity for clarifications of (seemingly)
incongruous responses. For example, one respondent said that
internal legal advice is used (Q7), while another respondent
for the same company answered this is not the case. For these
respondents there is also disagreement about the presence
of internal documents (Q11). Lastly, interviews provide an
opportunity to explore questionnaire results in more depth. For
instance, it would be interesting to know why some companies
employ formal verification while others do not.

Future work should deepen the understanding of the rela-
tionship between liability and other quality attributes. While li-
ability should be part of a portfolio of risk-mitigation strategies
to ensure the long-term survival of a company that operates
in the safety-critical domain, it should not be (ab)used as a
strategy to neglect quality attributes. One respondent sees a
“rigorous safety culture” as the foundation for his organi-
zation: “We really don’t worry about liability after contract
signature. We worry about safety, reliability and availability, in
that order. Focusing on liability . . . [is] an insufficient mission
to make an organization work.”

IV. CONCLUDING OBSERVATIONS

In this paper we have explored the issues surrounding lia-
bility for software in the domain of safety-critical mechatronic
systems with the help of a questionnaire involving 9 respon-
dents from 6 companies. The questionnaire’s primary goal was
to establish whether liability concerns do merit further study.
This is affirmed by the following evidence: responses indicate
that liability is a known concept that influences both software
and business processes. Especially, companies tend to observe
external guidelines and augment them with internal guidelines
to minimize liability risks.

Thus, for researchers that are often primarily concerned with
the technical and engineering side it is important to understand
that legal issues such as liability have an impact on them in the
sense that legal issues impose constraints and requirements on
the software process and the software itself. In other words,
technical advances cannot be implemented in a legal vacuum.
We believe it would be highly desirable to conduct more
research on how (software development) processes, techniques
and tools can be augmented to address liability risks in a more
systematic manner.

REFERENCES

[1] IEEE Trial-Use Supplement to IEEE Standard for Information
Technology—Software Reuse—Data Model for Reuse Library Interop-
erability: Intellectual Property Rights Framework. IEEE Computer
Society, Jun. 1999, withdrawn.

[2] K. Mykytyn, P. P. Mykytyn, and C. W. Slinkman, “Expert systems: A
question of liability?” MIS Quarterly, vol. 14, no. 1, pp. 27–42, Mar.
1990.

[3] C. J. Palermo, “Software engineering malpractice and its avoidance,” 3rd
IEEE International Symposium on Software Reliability Engineering, pp.
41–50, Oct. 1992.

[4] S. Dowlatshahi, “The role of product safety and liability in concurrent
engineering,” Computers & Industrial Engineering, vol. 41, no. 2, pp.
187–209, 2001.

[5] L. Hoffmann, “Risky business,” Communications of the ACM, vol. 54,
no. 11, pp. 20–22, Nov. 2011.

[6] C. Ackermann, R. Cleaveland, S. Huang, A. Ray, C. Shelton, and
E. Latronico, 1st International Conference on Runtime Verification (RV
2010), ser. Lecture Notes in Computer Science. Springer-Verlag, 2010,
vol. 6418, ch. Automatic Requirements Extraction from Test Cases, pp.
1–15.

[7] M. Åkerholm, R. Land, and C. Strzyz, “Can you afford not to cer-
tify your control system?” iVTinternational, Nov. 2009, http://www.
ivtinternational.com/legislative focus nov.php.

[8] F. E. Zollers, A. McMullin, S. N. Hurd, and P. Shears, “No more soft
landings for software: Liability for defects in and industry that has come
of age,” Santa Clara Computer & High Technology Law Journal, vol. 21,
no. 4, pp. 745–782, 2005, http://www.chtlj.org/sites/default/files/media/
articles/v021/v021.i4.Zollers.pdf.

[9] C. Heckman, “Two views on security software liability: Using the right
legal tools,” IEEE Security & Privacy, vol. 1, no. 1, pp. 73–75, Jan./Feb.
2003.

[10] J. Voas, G. McGraw, L. Kassab, and L. Voas, “A ’crystal ball’ for
software liability,” IEEE Computer, vol. 30, no. 6, pp. 29–36, Jun. 1997.

[11] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Journal on Empirical Software
Engineering, vol. 14, no. 2, pp. 131–164, Apr. 2009.

[12] N. G. Leveson, Engineering a Safer World, Jul. 2009, http://sunnyday.
mit.edu/book2.pdf.

[13] J. Cosgrove, “Software engineering and the law,” IEEE Software, vol. 18,
no. 3, pp. 14–16, May/Jun. 2001.

[14] C. Kaner, “Software liability,” 1997, http://www.kaner.com/pdfs/
theories.pdf.

[15] P. Aiken, R. M. Stanley, J. Billings, and L. Anderson, “Using codes of
conduct to resolve legal disputes,” IEEE Computer, vol. 43, no. 4, pp.
29–34, Apr. 2010.

[16] T. DeMarco and T. Lister, “Both sides always lose: Litigation of
software-intensive contracts,” CrossTalk, vol. 13, no. 2, pp. 4–6, Feb.
2000, http://www.stsc.hill.af.mil/crosstalk/2000/02/demarco.html.

[17] C. S. Tuner and F. Khosmood, “Rethinking software process: the key to
negligence liability,” 5th IASTED International Conference on Software
Engineering and Applications, Aug. 2001, http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.22.4208.

[18] M. Hecht, “The role of safety analyses in reducing products liability ex-
posure in ”smart” consumer products containing software and firmware,”
IEEE Reliability and Maintainability Symposium (RAMS 2003), pp. 153–
158, Jan. 2003.

[19] C. Jones, Software Engineering Best Practices. McGraw-Hill, Oct.
2009.

[20] C. Kaner, “Software negligence and testing coverage,” 1996, http://www.
badsoftware.com/coverage.htm.

[21] C. S. Tuner, D. J. Richardson, and J. L. King, “Legal sufficiency
of testing processes,” SAFECOMP’96, 1996, http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.35.1464.

[22] J. Armour and W. S. Humphrey, “Software product liability,”
Software Engineering Institute, Carnegie Mellon University, Tech.
Rep. CMU/SEI-93-TR-13, Aug. 1993, http://www.sei.cmu.edu/reports/
93tr013.pdf.

[23] M. A. Cusumano, “Who is liable for bugs and security flaws in
software?” Communications of the ACM, vol. 47, no. 3, pp. 25–27, Mar.
2004.

[24] C. Kaner, “Liability for defective content,” 22nd ACM International
Conference on Design of Communication (SIGDOC ’04), pp. 145–151,
Oct. 2004.

[25] F. Bott, A. Coleman, J. Eaton, and D. Rowland, Professional Issues in
Software Engineering, 3rd ed. Taylor & Francis, Aug. 2000.

[26] I. Brace, Questionnaire Design. Kogan Page, Aug. 2008.
[27] D. A. Dillman, Mail and Internet Surveys: The Tailored Design Method,

2nd ed. Wiley, 2000.
[28] D. M. German, J. H. Weber, and M. D. Penta, “Lawful software engi-

neering,” ACM Workshop on Future of Software Engineering Research
(FoSER 2010), pp. 129–132, Oct. 2010.

A longer version of this paper in the form of a technical
report (CC-BY license) is available at arXiv.

