
ViTAL : A Verification Tool for EAST-ADL Models using UPPAAL PORT

Eduard Paul Enoiu, Raluca Marinescu, Cristina Seceleanu, and Paul Pettersson
Mälardalen Real-Time Research Centre (MRTC)

Mälardalen University
Västerås, Sweden

Email: {eduard.paul.enoiu, raluca.marinescu, cristina.seceleanu, paul.pettersson}@mdh.se

Abstract—The influence of the systems architecture on the
functions and other properties of embedded systems makes
its high level analysis and verification very desirable. EAST-
ADL is an architecture description language dedicated to
automotive embedded system design with focus on structural
and functional modeling. The behavioral description is not
integrated within the execution semantics, which makes it
harder to transform, analyze, and verify EAST-ADL mod-
els. Model-based techniques help to address this issue by
enabling automated transformation between different design
models, and providing means for simulation and verification.
We present a way of integrating architectural models and
verification techniques, which has been implemented in a tool
called ViTAL. Consequently, ViTAL provides the possibility to
express the functional EAST-ADL behavior as timed automata
models, which have precise semantics and can be formally
verified. The ViTAL tool enables the transformation of EAST-
ADL functional models to the UPPAAL PORT tool for model
checking. This method improves the verification of functional
and timing requirements in EAST-ADL, and makes it possible to
identify dependencies and potential conflicts between different
vehicle functions before the actual AUTOSAR implementation.

Keywords-model-based techniques; verification; analysis;
UPPAAL PORT; EAST-ADL; Model transformation;

I. INTRODUCTION

The current trend is to use Model-driven Development
(MDD) for automotive embedded systems and provide a ba-
sis for a systematic design at multiple abstraction levels [8].
EAST-ADL [9], [13] is an architecture description language
for modeling and development of automotive embedded
systems, covering the specification of requirements, system
environment, vehicle functions, software and hardware re-
sources, behavior, timing constraints, and other related infor-
mation [23]. The EAST-ADL language provides an integrated
modeling framework that uses concepts from MDD and
component-based development [12].

EAST-ADL focuses on functional specifications [10] with
support for structural definition. The behavior is defined only
on the EAST-ADL component abstraction level, in terms of
functional blocks. The functional behavior of a component
is described using external notations such as Simulink or
UML [24], and therefore the possibility to construct, verify,
and transform EAST-ADL models using formal methods is

Figure 1. The workflow of the integrated simulation and verification tool

restricted [11]. Also, many automotive functions are real-
time, so formal verification of both functional and timely
behavior is necessary, to ensure the real-time requirements
at the architectural level. For instance, in automotive control
applications one could verify that input data from sensors,
the actual control computations, and output data to actuators
are behaving accordingly to constraints of the controlled
environment. Therefore, the verification of EAST-ADL mod-
els becomes truly challenging, especially when multiple
software components are involved.

This paper proposes a method for integrating architectural
description languages and verification techniques, tailored
for EAST-ADL models and implemented in the tool ViTAL
1(A Verification Tool for EAST-ADL Models using UP-
PAAL PORT). ViTAL provides model-checking of EAST-ADL
descriptions with respect to timing and functional behavioral
requirements. As depicted in Fig. 1, the system designer
creates the EAST-ADL models and the execution behavior
using timed automata framework [3], and check whether a
given requirement is satisfied. To achieve this, we implement

1ViTAL is available at http://www.idt.mdh.se/personal/eep/vital

2012 IEEE 17th International Conference on Engineering of Complex Computer Systems

978-2-9541-4700-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICECCS.2012.42

328

2012 IEEE 17th International Conference on Engineering of Complex Computer Systems

978-2-9541-8100-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICECCS.2012.42

328

Figure 2. Integrated EAST-ADL platform editor, timed automata editor (upper view) and UPPAAL PORT simulator (lower view)

an automatic model transformation to UPPAAL PORT model-
checker [17], which enables UPPAAL PORT to handle EAST-
ADL models as input, and provides functional and timing
behavior of functional blocks using timed automata seman-
tics [3]. To increase user friendliness and alignment with
the implementation of the EAST-ADL profile, we propose
an integrated environment based on Eclipse plug-ins, as
can be observed in Fig. 2. Our modeling and verification
tool contains the following: an editor for timed automata
visual description of the functional and timing behavior of
EAST-ADL functional blocks, automated transformation of
EAST-ADL models to UPPAAL PORT input model, support
for mapping external timed automata variables to external
ports, a simulator that can be used to validate the behavior
of an EAST-ADL modeled system, and support for verifying
reachability and liveness properties formalized in a subset
of Timed Computation Tree Logic (TCTL).

In our approach, we combine powerful model checking
techniques with the formal semantics of EAST-ADL models
and a user-friendly graphical interface. The main features
provided by ViTAL are:

• Support for formal verification of the execution behav-
ior and timing using EAST-ADL language.

• The hierarchical structure of EAST-ADL (“read-execute-
write” component semantics) is exploited in our ap-
proach by using UPPAAL PORT for efficient model-
checking.

The paper is organized as follows. Section II briefly
overviews EAST-ADL and UPPAAL PORT. Section III in-
troduces the modeling approach for functional specification
in EAST-ADL. Section IV describes our method and tool
environment used for capturing the behavior inside each
functional block and the transformation scheme to UPPAAL
PORT. Next, we apply ViTAL on the Brake-By-Wire case
study in Section V. In Section VI we compare to related
work, before concluding the paper and presenting future
works in Section VII.

II. BACKGROUND

A. EAST-ADL

EAST-ADL is an architecture description language spec-
ified through a meta-model and implemented as a UML2
profile [10]. It is structured into different abstraction layers
representing different stages of an engineering process: ve-
hicle level, analysis level, design level, and implementation

329329

level. These levels are supported by complete traceability
between them, reflecting the amount of details in an elec-
tronic system from a higher to a lower abstraction layer, as
can be observed in Fig. 3.

The vehicle features (e.g. breaks) of an electronic system
are modeled at the vehicle level, the highest level of abstrac-
tion. These features are refined at the analysis and design
level by abstract elements representing software or device
functions such as sensors and actuators. The implementation
level is the lowest level of abstraction and is defined by using
the AUTOSAR standard [22].
Vehicle Level is intended for elaboration of elec-

tronic features. A complete representation of the ab-
stract functional definition of features in system context
is modeled in the Analysis Level. This representation
captures the main interfaces and behavior of the vehi-
cle subsystems and allows validation and verification of
the integrated system or its subsystems on a high level
of abstraction.The Analyisis Level forms a natural
constraint for developers when dealing with refined fea-
tures and requirements, so the application software de-
velopment needs to be iterated and performed together
with the other levels of abstraction. The details for func-
tional definition of software, including elementary de-
composition, are introduced at the Design Level. The
Implementation Level describes reusable code and
AUTOSAR compliant software and system configuration
for hardware deployment [10]. However, traceability is
supported from Implementation Level elements to
Vehicle Level elements [22].

In addition, this structural organization of EAST-ADL
has modeling constructs for behavior, requirements, timing,
variability, and safety aspects. EAST-ADL captures structural
components that refer to external or internal behavior, as
Simulink models.

B. UPPAAL PORT

UPPAAL PORT is an extension of the UPPAAL tool, which
supports simulation and model-checking of component-
based systems, without the usual conversion or flattening
to the model of network of timed automata. This is comple-
mented by the Partial Order Reduction Technique (PORT)
[5], [17] that UPPAAL PORT uses, to improve the efficiency
of the model-checking analysis. This technique has been
suggested [15] to reduce the state-space explosion caused
by interleavings, with the main idea of exploring only a rel-
evant subset of the state-space when model-checking. More
precisely, UPPAAL PORT only explores properties which
preserve a subset of the full model based on independence
of transitions, instead of examining all possible sequences,
which would add to the model-checking complexity, unnec-
essary. Since, the synchronization of global time is restrict-
ing the independence of transitions in the timed automata

Abstractions Levels

Environment

Vehicle Level

Analysis Level

Design Level

Implementation Level

EAST-ADL

AUTOSAR

Methodology

Vehicle

Definition Phase

System

Definition Phase

Implementation

Design Phase

Figure 3. Overview of the EAST-ADL architecture

framework, UPPAAL PORT uses local time semantics to
increase independence, therefore allowing the analysis of
components in isolation followed by synchronization to a
shared state whenever one writes to another.

UPPAAL PORT uses a guided PORT, which is based on
the structure of the component-based system under analy-
sis. This means that the employed component model has
transitions independent of actions in other components. The
performed experiments [17] suggest the use of UPPAAL
PORT when dealing with a “read-execute-write” component
model semantics.

III. MODELING APPROACH AND INTEGRATION BRIDGE

The main purpose of this section is to introduce the ViTAL
modeling approach for EAST-ADL system models.

Nowadays, a vehicle may be composed of more than
2,000 software and hardware based functions. Usually, the
requirements engineer decides which functions are needed
and how they should be structured in terms of interactions.
EAST-ADL describes the whole vehicle system from several
abstraction layers. As this paper only discusses the abstract
functional models of a system, we employ the EAST-ADL
functional abstraction, as the modeling language to specify
the structure of a system. Specifically, on the analysis
level, the system is described by a Functional Analysis
Architecture (FAA). The FAA is composed of a number
of interconnected Function Prototypes (fp), where each
prototype is an instantiation of Function Type (ft) [9].

The challenge of the FAA is to target different functions
for concepts like allocation of requirements, specifying,
analyzing, and verifying functional requirements before im-
plementation. In order to support unambiguous modeling
and analysis, we have used the fact that there are no
dependencies between the FAA and the other EAST-ADL
levels [10]. This means that FAA can be defined separately
from the other levels. For simplicity, we assume that, from
an FAA-level point of view, the description is complete with
respect to the dependencies between different functionalities.

330330

Figure 4. An EAST-ADL diagram modeling the functionality of a simplified
system

A. The EAST-ADL Functional Model

The goal of using EAST-ADL functional model with
respect to behavior is to handle how model components are
related to each other on capturing behavior and algorithms
of the system as well as the environment.

In EAST-ADL functional modeling, systems in FAA are
built from interconnected function blocks with well-defined
interfaces consisting of a set of input- and output function
ports (elements of flow ports to represent data transfer). The
fp can be hierarchical, but the composing sub-functions have
synchronous execution semantics. These functional blocks
are time-triggered, or triggered based on data arrival on
their flow ports. An fp follows the “read-execute-write”
semantics, which ensures that once a function is triggered,
it reads all input flow ports, executes the computation,
and then writes to its output flow ports, all without in-
terruption. For the presented work, the architectural spec-
ifications are used from structure, behavioral, and timing
EAST-ADL packages [10], [11]. This simplifies the definition
of semantics, and makes it easily extensible. As depicted
in Fig. 4, the core intermediate model consists of three
modeling elements: composite Analysis Function
Type, basic Analysis Function Prototype, con-
nectors Function Connector, and behavioral descrip-
tion named Model. The first three elements are translated
from the EAST-ADL structure package. The behavioral de-
scription complemented with timing formalisms is comply-
ing with the component-based approach that enables early
formal analysis of relevant concerns.

B. Timed Behavior

We define the timed behavior of a functional block as a
Timed Automaton (TA), extended with data variables and
a final location. An fp in our setting is defined by its
interface in terms of ports and a specified timed behavior
[17]. The TA model is another abstraction of the fp be-
havior, where the assumed and desired properties of the
system components are captured. To support analysis and
verification of EAST-ADL FAA models in UPPAAL PORT, it

Figure 5. Model Export from EAST-ADL to UPPAAL PORT

is required that each functional block is associated with a
behavioral model consisting of a TA, and a mapping between
ports and automata variables. To provide system developers
with concrete support in modeling the timed behavior of a
functional block, an integration bridge is necessary. Hence,
our next step has been to provide a direct mapping between
flow ports and TA variables as additional model parameters.
Consequently, this model association constitutes the bridge
between EAST-ADL and TA models.

IV. MODEL TRANSFORMATION TO UPPAAL PORT

Before proceeding further, we have to mention a few
assumptions that we have made, for simplicity. For this
work, no ft can have instances of other ft with the exception
of FAA. The FAA ft is available and required for the
transformation. With these assumptions, we have developed
the model transformation shown in Fig. 5. We specify
the input models for UPPAAL PORT as described in the
metamodel that uses a subset of the EAST-ADL language
constructs. In our approach, we focus on a certain subset
of the tool data that we consider relevant in the context
of integration. Irrelevant constructs, such as requirements
models, variability models, are left out because they are
outside the scope of this verification tool towards operational
and timing requirements at EAST-ADL analysis level.

A. ViTAL and Model Integration

We define a minimal structural integration inside ViTAL,
an intermediate model, from which we can derive the con-
structs of EAST-ADL language. This simplifies the definition
of semantics, and makes it easily extensible. The core
intermediate model consists of three modeling elements:
composite ft, basic fp, and connections. Using these, we can

331331

describe all constructs in our assumed EAST-ADL model on
FAA. A simple one-to-one mapping rule between structural
entities is not sufficient though. Several parameters need to
be handled in the integration process.

Each modeling element, except for the FAA ft, has a
set of flow ports, through which it can interact. Each flow
port is represented as an input or an output port that has an
associated type. A flow port is associated with the same type
of data as the associated variable. Similar to the EAST-ADL
language itself, connections define how data can be trans-
ferred between two fps. We assume no knowledge about the
time that it takes for the data to be transmitted over a con-
nection or if data can be lost. This assumption is acceptable
when modeling the abstract functional system in EAST-ADL
at analysis level, and therefore most implementation details
are hidden. Nevertheless, the transmission over a connection,
the execution, and communication resources are modeled
in EAST-ADL at design level. Other structural EAST-ADL
constructs are not represented directly by any modeling
element, hence they are not influencing the transformation.

For the presented integration in ViTAL, the architectural
information related to structure and timing are partially
derived from the EAST-ADL model. Every fp is annotated in
the intermediate model with an event function that submits to
a periodic constraint. An event function is a trigger generator
annotated with a parameter T for period. A new period starts
every T time units, and the event function generates a trigger
after each period elapses.

The EAST-ADL language imposes some restrictions on
the fp behavior that should be addressed in the intermediate
model as well. For example, the run-to-completion semantics
mentions that input flow ports may only be accessed at
the beginning of each triggering, and output flow ports
are only written at the end of the computation. Therefore,
TA(fp) denotes its behavior augmented with an interface.
The interface of an fp consists of flow ports and the
annotated trigger information. An input flow port has an
associated variable holding the current data flow. A basic fp
corresponds to a basic intermediate functional block with an
automaton that can capture the behavior of the associated ft
and maybe some other information like execution time. The
internal computation of an fp starts with reading all input
flow ports. These internal input data is used together with
other functional information during the fp execution, before
writing the variables to the output flow ports.

With the mentioned assumptions, an intermediate meta-
model has been developed, which is described in this
section. The modeling elements of the intermediate model,
used in the integration, are described in Fig. 6 where
the core elements represents structure at analysis level of
abstraction, model behavior, and timing information. The
intermediate model provides function modeling concepts
which are mapped to concepts of component based de-
sign. Element can be mapped with a FunctionType

and EventFunction elements. There are connectors like
FunctionConnection and ports such FlowPort. Ports
are typed so a FlowPort is typed by an Analysis Data
Type. Furthermore an Element can have a behavioral
description as a Model element.

The intermediate model obtained after the transformation
represents the execution behavior, and can include triggering
and timing information, but also some assumed functionality.
Therefore, ViTAL provides means to extend the internal
behavior of fp not only in terms of timing, but also content.

B. Implemented Integration

The EAST-ADL language is implemented in a UML2
profile with the purpose of providing the ability to describe
EAST-ADL-compliant models using this profile. The Papyrus
UML tool implements all the properties and stereotypes
as defined in EAST-ADL specification and may be ap-
plied on any kind of tool-supported UML models. The
model transformation and modeling environment is based
on Eclipse2, which ensures a seamless integration with the
UML Editor in Papyrus, needed for developing EAST-ADL
models. It provides an intuitive and user friendly graphical
environment.

The proposed ViTAL tool is a collection of Eclipse IDE
plug-ins. Eclipse IDE has become a popular development
platform, in particular within the open source community.
Our analysis and verification tool is build upon an MDD
set of Eclipse plug-ins: Eclipse Modeling Framework 3,
Graphical Modeling Framework, Graphical Editing Frame-
work, ATL, and Acceleo. Fig. 7 shows the EAST-ADL model
transformation architecture. The EAST-ADL editor plugin
uses Papyrus UML to create the analysis functions and
interconnections among them. Papyrus saves its models in
two files, one using a “.uml” extension and the other using
a “.di” extension. The former file contains the actual model
information, whereas the latter file contains all the graphical
information.

The Papyrus UML Editor produces compatible EMF
models that serve as a basis for our combined structural
and behavioral mapping to UPPAAL PORT. As shown in
Fig. 5, we introduce an intermediate model that serves as
the interface between the EAST-ADL model and UPPAAL
PORT input model4. The intermediate model conforms to
the EAST-ADL metamodel that is aligned with the EAST-
ADL profile and UML metamodel. The structural mapping
transforms an EAST-ADL model that was created in the

2Eclipse is a multi language software development environment, bene-
fiting from an extensible plug-in system.

3Eclipse Modeling Framework (EMF) is a modeling framework that has
code generation capabilities for enabling viewing and editing of models.

4The input language employed is used to determine the structure of the
modeled system.

332332

Figure 6. Simplified diagram representing the meta-model elements for the intermediate model

Papyrus UML modeling environment, into an intermediate
model. The transformation is called M2M transformation in
Fig. 5. The structure of the intermediate model resembles the
UPPAAL PORT input model 5, so it is close to the structure of
the desired output. This step of the transformation achieves
an integration between the domain of EAST-ADL and that
of UPPAAL PORT. We use the ATL M2M Component to
convert models from one side to the other, due to its
simplicity and integration within the Eclipse platform. We
have implemented the mapping rules presented in Section
IV-A as an ATL description of the transformation logic. For
the transformation, a few modifications of both metamodels
have been made. In principle, these changes are in fact ways
to preserve the semantics of the original model. For instance,
EAST-ADL uses the type - prototype constructions in which
the declaration is in ft, and the actual usage is in fp. In this
case, the structural transformation has a pointer between ft
and the contained TA(fp).

In addition to the mentioned automated structural transfor-
mation, a manual TA integration needs to be carried out. In
order to model the timing and behavior of an fp, we integrate
a TA editor. The behavior can be represented in a graphical
notation by the system designer. These models differ from
UPPAAL TA models as follows: (i) the timed behavior is
extended with a final location out of which no edges are

5We refer the reader to the SaveCCM language reference manual for
more details [2].

leaving, and (ii) synchronization channels are not allowed,
because of the semantics employed by EAST-ADL models.
For more details on the specifics of the TA employed by
UPPAAL PORT, we refer the reader to the work of Håkansson
and Pettersson [17].

With this information at hand, we need to bind TA
variables to the flow ports of the EAST-ADL functions, next.
This is needed in order to use the structural information
contained in the intermediate model. We provide a variable
to the port mapping plug-in. In the current version of ViTAL,
the mapping is using the name of the timed automaton file
to automatically generate the parameters to be used.

Once the previous steps have been completed, the TA and
the intermediate model can be merged into the output of
this process, which is compiled to an XML-format accepted
by UPPAAL PORT tool 6. This transformation is carried
out using the Acceleo code generator for transforming the
intermediate model into code. The ViTAL tool architecture
is shown in Fig 7. The user interface integrates an editor for
EAST-ADL models in the Eclipse framework, as well as a
TA editor to model the timing and behavior of EAST-ADL
functional blocks. UPPAAL PORT introduces support for
simulation and verification, using a client-server architecture
[16]. The UPPAAL PORT model-checker consists of two

6The XML syntax describing the element definitions from the Document
Type Definition is available in the SaveCCM language reference manual
[2].

333333

Eclipse IDE

EAST-ADL editor plugin

(architecture modelling)

Timed Automata editor plug-in

(timing/behaviour modelling)

Mapping Editor plug-in

UPPAAL PORT plug-in
UPPAAL PORT

server

command

response

Figure 7. Overview of the ViTAL tool architecture

modules: the Eclipse plug-in used as the graphical simulator,
and the server executing the verification.

Using the integrated simulator it is possible to validate
the behavior and timing of an EAST-ADL functional model,
prior to design and implementation. The simulator allows
stepping forward and backwards in the state space, while
selecting possible transitions. In a simulation trace, a data
transfer is defined by the exchange of data between EAST-
ADL fps (annotated with the timed automata locations) via
their respective ports. Also, by using the verifier interface,
it is possible to establish, by model checking the described
behavior, whether the system model satisfies the functional
and timing requirements specified in a subset of TCTL.

V. EXAMPLE: A BRAKE-BY-WIRE CONTROL SYSTEM

In order to check the applicability of ViTAL, we have
performed a case study in which a Brake-By-Wire (BBW)
system is modeled in EAST-ADL. The case study is based on
a use case provided by Volvo Technology within the MBAT
project [21]. In Fig. 8 one can see a simplified schematic
illustration of the BBW system with Anti-lock Braking
System (ABS) function, where no mechanical connection
exists between the brake pedal and the brake actuators
applied to the four wheels. The system is composed of five
Electronic Control Units (ECU) connected by a network bus.
The central ECU has three components:

• Brake Pedal Sensor (BPS) - reads the pedals position
percentage.

• Brake Torque Calculator (BTC) - computes the desired
global torque.

• Global Brake Controller (GBC) - calculates the torque
required for each wheel.

The intended functionality of the BBW system is the
following: when the driver brakes, it uses the pedal, and
the brake actuators are applying a force that relates with
the angle of the pressed pedal. The system in composed

of a Brake Pedal Sensor that reads the pedal position
percentage used by the Brake Torque Calculator to
compute the desired Global Torque used by the Global
Brake Controller to calculate the torque required for
each wheel. The Wheel Sensor measures wheel speed
for the Global Brake Controller, the ABS controls
the braking to prevent locking the wheel, based on the slip
rate.

The other four ECUs are connected to the four wheels,
respectively. At each wheel, the Wheel Sensor measures the
wheel speed and sends a signal to the GBC component.
The ABS controls the wheel braking in order to prevent
locking the wheel, based on the slip value. The slip value is
calculated by the equation:

s = (v − w × r)/v,

where v is the vehicle speed, w the wheel speed, and r
the wheel radius. The friction coefficient of the wheel has a
nonlinear relationship with s: when s increases from zero,
the friction coefficient also increases and the value reaches
the peak when s is around 0.2. After that, further increase
in s reduces the friction coefficient. For this reason, if s is
greater than 0.2 the brake actuator is released and no brake
is applied, else the requested brake torque is used.

We have modeled, simulated, and verified the BBW
system in our tool ViTAL. The system has been modeled
in Papyrus UML Editor, where a UML profile is used for
architectural description. As illustrated in Fig 8, we use only
the structural and timing specifications. The architecture of
the system is encapsulated in one FAA ft that contains six
interconnected fps modeled using the TA editor. Each TA(fp)
defines the actual functional and timing behavior of the fp.

The slip rate calculation is controlled by
variable slipRate. For instance, from location
calculateSlipRate, based on the current vehicle
speed vSpeed, the wheel speed wSpeed, and the wheel
radius wRadius, the TorqueCmd controls the wheel
braking in order to prevent locking the wheel. Consequently,
the ABS enters location BrakeTorque, and jumps back to
location Start, provided that slipRate is greater than
20, the brake actuator is released and no brake is applied,
else the requested brake torque is used.

A set of properties concerning the safety and liveness
of the BBW system have been verified. We discuss a few
representative properties. The property of deadlock freedom
is satisfied for all execution paths of the state-space.
As our approach and also the underlying tool supports
simulation and verification of architectural properties
including functional and timing properties, the following
CTL specification is an example of such property, which
ensures the brake reaction delay specified in the BBW
model:

334334

Figure 8. Brake by Wire control system

A[](BBW.reaction imply (BBW.clock < 200))

One of the functional requirements of the system is
related to the slip rate s. With ViTAL, we can verify
the following functionality: in case the slip rate variable
exceeds 0.2, the brake actuator is released and no brake is
applied:

A[](BTC.s > 0.2 imply (ABS.brake = 0))

We note that ViTAL is indirectly using the delay con-
straints information from EAST-ADL models during verifi-
cation. To handle automated integration during verification
of TCTL properties of this type, this delay constraint infor-
mation should be considered as a transformation parameter
and then checked automatically in UPPAAL PORT.

VI. RELATED WORK

A lot of work has been done to allow the formal analy-
sis and verification of Architecture Description Languages
(ADLs) for real-time embedded systems, and specifically on

the Architecture Analysis and Design Language (AADL) in
which an external behavior specification is used [1], [18]; all
this work deals with formal analysis of behavior specified
outside AADL by using communicating timed automata [1]
or C/Ada source code [18]. Others are focusing on AADL
enriched with its behavioral annex [6], [7]. Specifically,
Berthomieu et al. [6] maps AADL and its behavior annex
into the Fiacre language towards behavioral verification
with TINA tool. The main difference between this work
and ours is that we give a graphical behavior specification
with support for model checking, system simulation, timing
analysis, and an integrated tool based on Eclipse.

Several methods have been developed for the formal
analysis and verification of EAST-ADL models. A lot of
effort has been carried out to allow the use of UML Profile
for Modeling and Analysis of Real-Time and Embedded
systems (MARTE) [4] together with EAST-ADL for timing
analysis [20]. Feng et al. use the SPIN model checker for
formal verification of EAST-ADL functional models [14].
The work is based on UML2 activity diagrams, and in
contrast to our work, it does not allow the integration of
timing constraints in the behavioral model. Qureshi et al.
describe an integration effort towards formal verification of

335335

EAST-ADL models based on timing constraints [22]. This
allows a manual transformation from EAST-ADL models to
UPPAAL models in order to achieve verification of con-
straints with respect to triggering and timing. Even though it
offers prototype support for model-checking reachability and
safety properties corresponding to the timing constraints, it
does not support model-checking of functional constraints,
or improves verification of complex system models, with
respect to space and time, via the PORT model-checking
technique, as the ViTAL tool does. For more information on
advantages of using a PORT technique we refer the reader
to the following experimental benchmark of Håkansson and
Pettersson [17]. Kang et al. [19] performed a pre-study
towards verification of EAST-ADL models using UPPAAL
PORT with the aim of identifying integration needs. The
results were considered in support towards our approach.

VII. CONCLUSION

The analysis and verification of EAST-ADL models re-
quires a consistent and integrated environment that brings
together model-driven development and formal analysis. In
our case, the employed formalism is the timed automata
framework that facilities capturing the execution flow inside
each functional block and the complex interactions between
components. In this paper, we have described a method
and transformation environment towards the integration of
EAST-ADL and UPPAAL PORT. The main goal of our inte-
gration work has been twofold: (i) to provide an unambigu-
ous behavioral description of EAST-ADL function blocks,
and (ii) to bring formal verification capabilities to the EAST-
ADL models. Both desiderata have been fulfilled within the
same modeling and verification tool , which we call ViTAL.
ViTAL is enhancing the behavioral definition of the EAST-
ADL language and allows formal modeling, simulation,
and verification of functional and timing requirements. The
prerequisite artifacts for the system’s formal analysis are the
EAST-ADL architectural model, and the TA behavioral model
that the system designer creates. Within ViTAL, we have
integrated such models, in order to be able to simulate and
check whether a given requirement is satisfied, by model-
checking the TA description with UPPAAL PORT. In particu-
lar, the independence introduced by the “run-to-completion”
semantics, employed by the EAST-ADL functional modeling,
is exploited by UPPAAL PORT, in order to reduce time and
space requirements for model checking.

Out of the possible future continuations of this work,
we select the following, as our nearest research targets: (i)
richer transformation constructs in order to automatically
check delay and synchronization constraints, and (ii) the
integration of UML2 activity diagrams in the employed
transformation formalism, to capture the execution flow
inside each functional block directly from EAST-ADL.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the ARTEMIS Joint Undertaking under grant
agreement no 269335 and from VINNOVA, the Swedish
Governmental Agency for Innovation Systems. Henrik Lönn,
Thomas Söderqvist, Daniel Karlsson from Volvo Technol-
ogy, Lei Feng from KTH Royal Institute of Technology, as
well as the paper reviewers, are gratefully acknowledged for
valuable suggestions and insights on the topic of this paper.

REFERENCES

[1] T. Abdoul, J. Champeau, P.T. Dhaussy, P.-Y. Pillain, and J.-C.
Roger. Aadl execution semantics transformation for formal
verification. In Engineering of Complex Computer Systems,
2008. ICECCS 2008. 13th IEEE International Conference on,
pages 263 –268, 31 2008-april 3 2008.

[2] Mikael Åkerholm, Jan Carlson, John Håkansson, Hans Hans-
son, Mikael Nolin, Thomas Nolte, and Paul Pettersson. The
saveccm language reference manual. Technical Report ISSN
1404-3041 ISRN MDH-MRTC-207/2007-1-SE, Målardalen
University, January 2007.

[3] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183 – 235, 1994.

[4] Charles André, Frédéric Mallet, and Robert De Simone.
Modeling of Immediate vs. Delayed Data Communications:
from AADL to UML MARTE. In ECSI Forum on specifica-
tion & Design Languages (FDL), pages 249–254, Barcelona,
Espagne, 2007. ECSI, ECSI.

[5] Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang
Yi. Partial order reductions for timed systems. In Davide
Sangiorgi and Robert de Simone, editors, CONCUR’98 Con-
currency Theory, volume 1466 of Lecture Notes in Computer
Science, pages 485–500. Springer Berlin / Heidelberg, 1998.

[6] Bernard Berthomieu, Jean-Paul Bodeveix, Silvano Dal Zilio,
Pierre Dissaux, Mamoun Filali, Sbastien Heim, Pierre Gau-
fillet, and Franois Vernadat. Formal Verification of AADL
models with Fiacre and Tina. In ERTSS 2010 – 5th Inter-
national Congress and Exhibition on Embedded Real-Time
Software and Systems, May 2010.

[7] Stefan Björnander, Cristina Seceleanu, Kristina Lundqvist,
and Paul Pettersson. Abv a verifier for the architecture anal-
ysis and design language (aadl). In Sixth IEEE International
Workshop UML and AADL at ICECCS 2011, April 2011.

[8] Manfred Broy. Challenges in automotive software engineer-
ing. In Proceedings of the 28th international conference on
Software engineering, pages 33–42, 2006.

[9] MAENAD Consortium. East-adl domain model specification:
http://www.maenad.eu/. http://www.maenad.eu/, 2011.

336336

[10] The ATESST2 Consortium. East-adl profile specification:
www.atesst.org/home/. www.atesst.org, 2010.

[11] The ATESST2 Consortium. Evaluation report east-adl2 be-
havior support: http://www.atesst.org/home/. www.atesst.org,
2010.

[12] P. Cuenot, De Jiu Chen, S. Gerard, H. Lönn, M.-O. Reiser,
D. Servat, C.-J. Sjostedt, R.T. Kolagari, M. Torngren, and
M. Weber. Managing complexity of automotive electron-
ics using the east-adl. In Engineering Complex Computer
Systems, 2007. 12th IEEE International Conference on, july
2007.

[13] Philippe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lönn,
Yiannis Papadopoulos, Mark-Oliver Reiser, Anders Sandberg,
David Servat, Ramin Tavakoli Kolagari, Martin Törngren,
and Matthias Weber. 11 the east-adl architecture description
language for automotive embedded software. In Model-Based
Engineering of Embedded Real-Time Systems, Lecture Notes
in Computer Science, pages 297–307. Springer, 2011.

[14] Lei Feng, DeJiu Chen, H. Lönn, and M. Torngren. Verifying
system behaviors in east-adl2 with the spin model checker.
In Mechatronics and Automation (ICMA), 2010 International
Conference on, pages 144 –149, aug. 2010.

[15] Patrice Godefroid and Pierre Wolper. Using partial orders
for the efficient verification of deadlock freedom and safety
properties. In Kim Larsen and Arne Skou, editors, Computer
Aided Verification, Lecture Notes in Computer Science, pages
332–342. Springer Berlin / Heidelberg, 1992.

[16] John Hakansson, Jan Carlson, Aurelien Monot, and Paul Pet-
tersson. Component-based design and analysis of embedded
systems with uppaal port. In 6th International Symposium on
Automated Technology for Verification and Analysis, pages
252–257. Springer-Verlag, October 2008.

[17] John Hakansson and Paul Pettersson. Partial order reduction
for verification of real-time components. In Proceedings of
the 5th international conference on Formal modeling and
analysis of timed systems, pages 211–226. Springer-Verlag,
2007.

[18] Jerome Hugues, Bechir Zalila, Laurent Pautet, and Fabrice
Kordon. From the prototype to the final embedded system
using the ocarina aadl tool suite. ACM Trans. Embed. Comput.
Syst., 7(4):42:1–42:25, August 2008.

[19] Eun-Young Kang, Pierre Yves Schnobbens, and Paul Petters-
son. Verifying functional behaviors of automotive products
in east-adl2 using uppaal-port. In Proceedings of the 30th
International Conference on Computer Safety, Reliability and
Security (SAFECOMP’11). Springer-Verlag, September 2011.

[20] F. Mallet, M.-A. Peraldi-Frati, and C. Andre. Marte
ccsl to execute east-adl timing requirements. In
Object/Component/Service-Oriented Real-Time Distributed
Computing, 2009. ISORC ’09. IEEE International Symposium
on, pages 249 –253, march 2009.

[21] ARTEMIS MBAT. Consortium website: http://www.mbat-
artemis.eu/, November 2011.

[22] Tahir Naseer Qureshi, DeJiu Chen, Henrik Lönn, and Martin
Törngren. From east-adl to autosar software architecture:
a mapping scheme. In Proceedings of the 5th European
conference on Software architecture, ECSA’11, pages 328–
335, Berlin, Heidelberg, 2011. Springer-Verlag.

[23] Anders Sandberg, DeJiu Chen, Henrik Lönn, Rolf Johans-
son, Lei Feng, Martin Törngren, Sandra Torchiaro, Ramin
Tavakoli-Kolagari, and Andreas Abele. Model-based safety
engineering of interdependent functions in automotive vehi-
cles using east-adl2. In Proceedings of the 29th international
conference on Computer safety, reliability, and security, pages
332–346. Springer-Verlag, 2010.

[24] Carl-Johan Sjöstedt, Jianlin Shi, Martin Törngren, David
Servat, Dejiu Chen, Viktor Ahlsten, and Henrik Lönn. Map-
ping simulink to uml in the design of embedded systems:
Investigating scenarios and transformations. CiteSeerX -
Scientific Literature Digital Library, 2009.

337337

