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Abstract. We present a framework for the development of real-time embedded
systems based on timed automata extended with a notion of real-time tasks. It has
been shown previously that reachability and schedulability for such automata can
be checked effectively using model checking techniques. In this paper, we propose
to use the extended automata as design models. We describe how to compile
design models to executable programs with predictable behaviours. The compiling
procedure ensures that the execution of the generated code satisfies mixed timing,
resource and logical constraints imposed on the design model. To demonstrate the
applicability of the framework, a prototype C-code generator based on the legOS
operating system has been implemented in the Times tool and applied to develop
the control software for a production cell. The production cell has been built in
LEGO equipped with a Hitachi H8 based LEGO Mindstorms control brick.
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1. Introduction

A key facility of many commercial tools for development of embedded software
is to automatically synthesise executable code (i.e. code generation) from design
models. However, few of the existing tools are capable of producing software with
predictable timing behaviours, i.e. code which is known a priori to satisfy given tim-
ing constraints. In fact, most of the commercial tools trust the software developers
to resolve the timing issues e.g. whether all tasks will meet their deadlines, when
the generated code is supposed to run on a specific target platform. In contrast,
research tools such as Uppaal [Larsen et al. 1997] and Kronos [Bozga et al. 1998]
are often dedicated to analysis and abstraction on high-level design descriptions.
This has proven useful for finding errors and checking correctness properties in
many case studies, e.g. [Bengtsson et al. 1996], [Lindahl et al. 1998], [Stauner et
al. 1997] and [D’Argenio et al. 1997]. However, it provides little or no support for
producing the actual program code to be executed in the final implementation.

In this work, we aim at synthesis of executable code with predictable behaviours,
from high level design specifications. We combine results and ideas from model-
checking, scheduling, and synchronous programming to develop a framework which
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supports, on one hand, formal specification, validation, analysis of design, and on
the other hand, code generation which ensures that timing constraints are met
when the generated code is executed on the target system. As a design language,
we use timed automata extended with real-time tasks [Fersman et al. 2002]. In such
extended automata, a transition is associated with a task (or several tasks) that is an
executable program with given parameters, such as execution time, deadline, fixed
priority etc. Intuitively, whenever an automaton takes a transition, its associated
task is released for execution. Thus a discrete transition denotes an event releasing a
task and the clock constraints on the transition (i.e. the guards) specify the possible
arrival times of the associated task. When a task is released, it is inserted into the
ready queue of the operating system and executed according to its scheduling policy.

It has been shown that the schedulability checking problem for the model of ex-
tended automata is decidable for both non-preemptive [Ericsson et al. 1999] and
preemptive [Fersman et al. 2002] scheduling policies. An automaton is schedulable
with a given scheduling policy if, for all possible sequences of events accepted by
the automaton the released tasks can be computed within their deadlines. The
check is performed by transforming the original scheduling problem to a reacha-
bility problem of timed automata extended with subtraction operations on clocks.
This means that, given a design model of a timed system, described as a set of
automata running in parallel, it can be checked whether it is schedulable prior to
its implementation provided that the computing times on the target hardware for
the associated tasks are known.

In this paper, we show how to compile a (verified) design model to an executable
program preserving the mixed timing and logical constraints imposed on the model.
Inspired by the design philosophy of synchronous languages e.g. Esterel [Berry and
Gonthier 1992], we assume that the target real-time operating system and hard-
ware ensure the synchrony hypothesis, i.e. the run-time of certain system functions
is neglectable compared with the execution times and deadlines of the application
tasks. Based on this assumption, we transform the control structure of an automa-
ton to operating system functions and the associated tasks to light-weight threads.
The compiling procedure should be applicable to a variety of target platforms that
guarantee the assumption.

To demonstrate the applicability, we have developed a prototype C-code generator
on the legOS operating system for the LEGO Mindstorms control brick, equipped
with an 8-bit Hitachi micro-processor. The code generator has been integrated in
the Times tool [Amnell et al. 2002] and applied to develop the control software for
a production cell built in LEGO and controlled by LEGO Mindstorms control
bricks. The control program for the most central component, the two-armed robot,
is designed, analysed and generated using the Times tool. The generated code has
been compiled, downloaded, and executed on LEGO Mindstorms bricks.

The rest of this article is organised as follows: Section 2 describes the syntax and se-
mantics of design models that are timed automata extended with tasks. To extract
executable behaviours from design models, we present a deterministic semantics
for the extended automata. Section 3 shows how to implement the deterministic
semantics on a small generic embedded operating system. Section 4 describes the
modelling and design of a production cell using the extended automata. Section 5
is devoted to the analysis and synthesis of the control software for the production
cell. Section 6 concludes the paper.
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2. The Design Language

In [Ericsson et al. 1999] and [Fersman et al. 2002], an extended version of timed
automata with real time tasks is presented. The idea is to annotate each transition
of an automaton with a task (an executable program with computing time and
deadline), that will be triggered when the transition is taken. The triggered tasks
will be scheduled to run according to a given scheduling policy. This provides a
general task model for real time systems, which can be used to solve scheduling
problems.

In this paper, we adopt a more expressive version of timed automata with tasks.
We allow that an automaton and the annotated tasks may have shared variables.
The shared variables may be updated by the execution of a task (or the automaton)
and their values may effect the behaviour of the automaton.

2.1 Syntax

Assume a set of variables D ranged by u, v. We assume that the variables take
values from finite data domains. The variables may be updated by assignments in
the form: u := E where E is a mathematical expression. We use R to denote the
set of assignments (e.g. u := u + 1).

Real Time Tasks. Let P ranged over by P,Q, R, denote a finite set of task types
(executable programs written in a programming language). A task type may have
different instances that are copies of the same program with different inputs. We
assume that the execution times and hard deadlines of tasks in P are known1.

Further assume that a task may update the data variables by the end of its compu-
tation using assignments in the form u := E (computed by the task and the value
of E is returned when the task is finished). Thus, each task P is characterised as
a triple denoted (C,D, A) with C ≤ D, where C is the execution time of P , D is
the relative deadline for P and A is the set of assignments updating data variables.
The deadline D is a relative deadline meaning that when task P is released, it
should finish within D time units. We shall use C(P ), D(P ) and A(P ) to denote
the execution time, relative deadline and set of assignments of P respectively.

Timed Automata. Assume a finite set of actions Act and a finite set of real-
valued variables C for clocks. We use a, b, τ etc to range over Act, where τ denotes
a distinct internal action, and x1, x2 etc to range over C. We use B(C) to denote the
set of conjunctive formulas of atomic constraints in the form: xi∼C or xi − xj∼D
where xi, xj ∈ C are clocks, ∼ ∈ {≤, <,=,≥, >}, and C, D are natural numbers.
We use BI(C) for the subset of B(C) where all atomic constraints are of the form
x ≺ C and ≺ ∈ {<,≤}. The elements of B(C) are called clock constraints. These
are the basic syntactical objects needed to define timed automata i.e. finite state
automata extended with clocks.

We shall allow automata to test (or read) and update data variables. To read
and test the values of data variables, we assume a set of predicates B(D) (e.g.
u ≤ 10). Let B = B(D) ∪ B(C) be ranged over by g called guards. Further let
A = R∪ {x := 0|x ∈ C} be called resets. We use r to stand for a subset of A.
1 Note that tasks may have other parameters such as fixed priority for scheduling and
other resource requirements e.g. on memory consumption. For simplicity, in this paper,
we only consider computing time and deadline.
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Definition 1. A timed automaton extended with tasks, over actions Act, clocks
C, data variables D and tasks P is a tuple 〈N, l0, E, I, M〉 where

◦ 〈N, l0, E, I〉 is a timed automaton where

– N is a finite set of locations ranged over by l, m, n,
– l0 ∈ N is the initial location,
– E ⊆ N × B ×Act× 2A ×N is the set of edges, and
– I : N 7→ BI(C) is a function assigning each location with a clock con-

straint (a location invariant).

◦ M : Act ↪→ P is a partial function assigning actions with tasks 2.

Intuitively, a discrete transition in an automaton denotes an event triggering a task
and the guard (clock constraints) on the transition specifies all the possible arrival
times of the event (or the associated task). Whenever a task P is triggered, it will
be put in the scheduling (or task) queue for execution (corresponding to the ready
queue in operating systems). When the task is finished, the data variables will be
updated by the assignments A(P ).

Note that a boolean can be used to denote the completion of a task. The arrivals of
events may be guarded by the boolean, which implies that any task to be triggered
by the events can not be started before the completion of this task. Thus, we can
describe precedence constraints over tasks.

To handle concurrency and synchronisation, parallel composition of extended timed
automata may be introduced in the same way as for ordinary timed automata (e.g.
see [Larsen et al. 1995]) using the notion of synchronisation function [Hüttel and
Larsen 1989]. For example, consider the parallel composition A||B of A and B over
the same set of actions Act. The set of nodes of A||B is simply the product of
A’s and B’s nodes, the set of clocks is the (disjoint) union of A’s and B’s clocks,
the edges are based on synchronisable A’s and B’s edges with enabling conditions
conjuncted and reset-sets unioned. Note that due to the notion of synchronisation
function [Hüttel and Larsen 1989] , the action set of the parallel composition will
be Act and thus the task assignment function for A||B is the same as for A and B.

2.2 Operational Semantics

Semantically, an extended timed automaton may perform two types of transitions
just as standard timed automata. But the difference is that delay transitions cor-
respond to the execution of running tasks with the highest priority (or earliest
deadline) and idling for the other tasks waiting to run. Discrete transitions corre-
sponds to the arrival of new task instances.

We use valuation to denote the values of variables. Formally a valuation is a func-
tion mapping clock variables to the non–negative reals and data variables to the
data domain. We denote by V the set of valuations ranged over by σ. Naturally,
a semantic state of an automaton is a triple (l, σ, q) where l is the current control
location, σ denotes the current values of variables, and q is the current task queue.
We assume that the task queue takes the form: [P1(c1, d1), P2(c2, d2)...Pn(cn, dn)]
2 Note that M is a partial function meaning that some of the actions may have no task.
Note also that we may also associate an action with a set of tasks instead of a single one.
It will not introduce technical difficulties.
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where Pi(ci, di) denotes a released instance of task type Pi with remaining comput-
ing time ci and relative deadline di.

Assume that there is a processor running the released task instances according to a
certain scheduling strategy Sch e.g. FPS (fixed priority scheduling) or EDF (earliest
deadline first) which sorts the task queue whenever a new task arrives according to
task parameters e.g. deadlines. In general, we assume that a scheduling strategy is
a sorting function which may change the ordering of the queue elements only. Thus
an action transition will result in a sorted queue including the newly released tasks
by the transition. A delay transition with t time units is to execute the task in the
first position of the queue for t time units. Thus the delay transition will decrease
the computing time of the first task with t. If its computation time becomes 0, the
task should be removed from the queue (shrinking).

◦ Sch is a sorting function for task queues (or lists), that may change the order-
ing of the queue elements only. For example, EDF([P (3.1, 10), Q(4, 5.3)]) =
[Q(4, 5.3), P (3.1, 10)]. We call such sorting functions scheduling strategies
that may be preemptive or non-preemptive.

◦ Run is a function which given a real number t and a task queue q returns
the resulted task queue after t time units of execution according to avail-
able computing resources. For simplicity, we assume that only one proces-
sor is available. Then the meaning of Run(q, t) should be obvious and it
can be defined inductively. For example, let q = [Q(4, 5), P (3, 10)]. Then
Run(q, 6) = [P (1, 4)] in which the first task is finished and the second has
been executed for 2 time units.

Further, for a real number t ∈ R≥0, we use σ + t to denote the valuation which
updates each clock x with σ(x) + t, σ |= g to denote that the valuation σ satisfies
the guard g and σ[r] to denote the valuation which maps each variable α to the
value of E evaluated in σ if α := E ∈ r (note that E is zero if α is a clock) and
agrees with σ for the other variables. Now we are ready to present the operational
semantics for extended timed automata by transition rules:

Definition 2. (Operational semantics) Given a scheduling strategy Sch 3, the
semantics of an extended timed automaton 〈N, l0, E, I,M〉 with initial state (l0, σ0, q0)
is a transition system defined by the following rules:

◦ (l, σ, q) a−→Sch(m, σ[r],Sch(M(a) :: q)) if l
g,a,r−→ m and σ |= g

◦ (l, σ, q) t−→Sch(l, σ + t,Run(q, t)) if (σ + t) |= I(l) and C(Hd(q)) > t

◦ (l, σ, q) t−→Sch(l, (σ[A(Hd(q))])+t,Run(q, t)) if (σ+t) |= I(l) and C(Hd(q)) = t

where M(m) :: q denotes the queue with M(m) inserted in q and Hd(q) denotes the
first element of q.4

The first rule defines that a discrete transition can be taken if there exists an
enabled edge, i.e. the guard of the edge is satisfied. When the transition is taken,
3 Note that we fixed Run to be the function that represents a one-processor system.
4 In case the task queue is empty we interpret the conditions C(Hd(q)) > t and C(Hd(q)) =
t as true. Hence the two last transition rules becomes equal and corresponds to a delay
transition in ordinary timed automata.
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the variables are updated according to the resets of the edge, and the tasks of the
action (if any) are inserted into the queue.

There are two kinds of delay transitions as defined in the second and the third
rules. In the second rule, the transition corresponds to that the first task in the
queue is executed. The transition is enabled when the invariants are satisfied and
the task has not completed the execution during the delay. The transition results
in updates of the clock variables and a decrease of the remaining execution time
and deadline time of the task at the head of the queue.

In the third rule, the transition corresponds to completing the execution of the task
at the head of the queue. The delay is the same as the remaining execution time.
When the transition is taken the variables are updated according to the assignment
of the task. Note that we assume a fixed execution time C(P ) for a task. It is
possible to extend the model and the analysis so that the execution times vary in
an interval between best and worst case execution time.

We shall omit Sch from the transition relation whenever it is understood from the
context.

2.3 Analysis of Design Model

It has been shown that reachability and schedulability are decidable problems for
the class of timed automata extended with tasks both for non-preemptive [Ericsson
et al. 1999] and preemptive scheduling policies [Fersman et al. 2002]. In this section
we give the definitions of these and define the boundedness problem, which should
also be checked prior to code-synthesis. For a more detailed description on how
to check schedulability of task extended timed automata we refer the reader to
[Fersman et al. 2002] and [Fersman et al. 2003].

We use the same notion of reachability as for ordinary timed automata:

Definition 3. (Reachability) We shall write (l, σ, q)−→(l′, σ′, q′) if (l, σ, q) a−→
(l′, σ′, q′) for an action a or (l, σ, q) t−→(l′, σ′, q′) for a delay t. For an automaton
with initial state (l0, σ0, q0), (l, σ, q) is reachable iff (l0, σ0, q0)−→∗(l, σ, q).

Thus a state (l, σ, q) is reachable if there is a sequence of transitions starting in
the initial state (l0, σ0, q0) and ending in (l, σ, q). We shall use reachability analysis
to check safety properties of design models to conclude that undesired situations
(states) are not reachable. For example, we may check that the size of the task
queue for all reachable states is bounded. Note that the boundedness is a useful
property, which may be used for estimation of memory consumption. Further, we
may use reachability analysis to check the schedulability of a design model prior to
the final implementation.

Definition 4. (Schedulability) A state (l, σ, q) where q = [P1(c1, d1), . . ., Pn

(cn, dn)] is a failure denoted (l, σ, Error) if there exists i (i ∈ [1..n]) such that ci ≥
0 and di < 0, that is, a task failed in meeting its deadline. An automaton A
with initial state (l0, σ0, q0) is non-schedulable with scheduling policy Sch if and
only if (l0, σ0, q0)−→∗

Sch(l, σ,Error) for some l and σ. Otherwise, we say that A is
schedulable with Sch.
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Intuitively, a system is schedulable if for all reachable states, all tasks are guar-
anteed to meet their deadlines. It should be noticed that schedulability implies
boundedness but not the other way around, as clearly many bounded ready queues
are not schedulable.

In order to check the above properties of a system design, given as an extended
timed automaton C (possibly a parallel composition C1 ‖ . . . ‖ Cn), we will need
to take the behaviour of its environment into consideration. Recall that in the
extended model of timed automata adopted in this paper, new task instances are
released at the action transitions, corresponding to input signals received from
the environment of the controller C. To model the environment, we compose in
parallel with C timed automata models E1 ‖ . . . ‖ Em of its environment, and
analyse properties of the complete system design SDesign = C ‖ E1 ‖ . . . ‖ Em.

We shall see in the next section that the code-synthesis is guaranteed to preserve
safety, schedulability and boundedness properties. This means that these properties
of a system design can be checked prior to its implementation.

2.4 Deterministic and Executable Semantics

We shall consider SDesign as a design model. Code synthesis is to generate exe-
cutable code from the design model that implements the controller. In general the
behaviour of the design model according to the operational semantics (cf. Defini-
tion 2) is non-deterministic. Our goal is to extract deterministic behaviour for the
controller, preserving safety properties satisfied by the design model. Thus, our
problem is essentially to resolve non-determinism.

The sources of non-determinism in the operational semantics are time-delays and
external actions. We use time non-determinism to mean that an enabled transition
can be taken at any time-point within the time zone, while we use external non-
determinism to mean that several actions may be simultaneously present from the
environment which results in several enabled transitions. We say that a transition
e = l

g,a,r−→ m is enabled in state s = (l, σ, q), denoted Enabled(e, s), when its guard
is true i.e. σ |= g and the environment is ready to synchronise on the action a.

We shall refine the design model for the controller as follows:

◦ External non-determinism is resolved by assigning priorities to transitions in
the controller. Let Pr : E 7→ Z be a function assigning a unique priority to
each edge, which defines an order that the guards of edges are evaluated in.
If several transitions are enabled in a state, they should be taken in priority
order.

◦ Time non-determinism is resolved by implementing the so-called maximal-
progress assumption [Yi 1991]. Maximal-progress means that the controller
should take all enabled action transitions until the system stabilises, i.e. no
more action transitions are enabled. Similar ideas have been adopted in the
asynchronous time model in the Statemate semantics of Statecharts [Harel
and Naamad 1996] and the run-to-completion step of UML statecharts [Lilius
and Paltor 1999].

We can now give a refined (deterministic) version of the operational semantics for
extended timed automata:
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Definition 5. (Deterministic semantics) Let A = 〈N, l0, E, I,M〉 be an ex-
tended timed automaton. Given a scheduling strategy Sch and a function Pr that
assign priorities to edges the deterministic semantics is a labelled transition system
defined by the rules:

(1) (l, σ, q) a−→(m,σ[r], Sch(M(a) :: q)) if Enabled(l
g,a,r−→ m, (l, σ, q)) and there is

no e ∈ E such that Pr(e) > Pr(l
g,a,r−→ m) and Enabled(e, (l, σ, q))

(2) (l, σ, q) t−→(l, σ + t,Run(q, t)) if (σ + t) |= I(l) and C(Hd(q)) > t and for all
e ∈ E and d < t such that ¬Enabled(e, (l, σ + d, q))

(3) (l, σ, q) t−→(l, (σ[A(Hd(q))]) + t,Run(q, t)) if (σ + t) |= I(l) and C(Hd(q)) = t
and for all e ∈ E and d < t such that ¬Enabled(e, (l, σ + d, q))

Clearly the behaviour of the controller according to the refined semantics is deter-
ministic. Safety properties in the design model are preserved since the behaviour
defined by deterministic semantics is included in the behaviour defined by the oper-
ational semantics. That is, all sequences of transitions (i.e. executions) of a design
model for a controller according to the deterministic semantics can also be taken
according to the operational semantics.

Note that according to the semantics, we may have automata that exhibit zeno-
behaviours, that is, infinite sequences of action transitions within a finite time delay.
Such automata correspond to non implementable design models, and they should be
discovered by schedulability analysis as non schedulable. To simplify the analysis,
we adopt the following syntactical restriction. We shall consider only automata in
which each cycle contains at least one edge associated with a task.

3. Code Synthesis

Now we show how to transform a design model to an executable program according
to its deterministic semantics. We assume a generic target platform which guar-
antees the synchronous hypothesis and on which the associated tasks will consume
their given computing times to execute. As our transformation preserves the de-
terministic semantics, the schedulability of a design model will be preserved by the
generated code when it is executed on the target platform.

We assume that the target OS provides the following generic features:

◦ threads with unique priority levels,

◦ a scheduler based on fixed priority assignment,

◦ interrupt handling routines.

The first two requirements are needed to map the notion of tasks from the design
model to the generated code. Tasks have unique priorities in the model. Thus
when they are mapped to threads in the implementation the threads must also
have unique priorities. The last requirement is needed to encode control automata,
which is done by interrupts using interrupt handing routines.

The intended target platform for the generated code is a single embedded proces-
sor, but the organisation of the code is more easily illustrated by assuming two
processors as shown in Fig. 1. The code of the controller and the tasks execute
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ExecutionController

P−finished?
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Control processor Task processor
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Fig. 1: The logical view of the executing system, with a control processor handling events
from the environment and a task processor executing task code. Communication between
the processors is limited to the task queue and shared variables.

on two separate logical processors, a control processor and a task processor. The
interaction between the two is limited to the scheduling queue and shared variables.
The control processor receives events from the environment and inserts tasks into
the scheduling queue. The task processor executes the task at the head of the
scheduling queue and updates the shared variables when a task is done.

To realise the execution model on a single processor, we execute the code of the
controller automata as a separate thread with a priority higher than all the other
threads.

3.1 Handling Tasks and Variables

Tasks are executed in threads, one thread for each task type, with priorities lower
than the controller thread. Scheduling of task threads and management of the
ready queue are handled by the target operating system. We assume boundedness
of the queue length, meaning that the memory allocated for the task queue can be
fixed at compile-time and no exception handling for queue overflow is needed at
run time.

Data variables in the design model are mapped to global integer variables in the
generated code. To encode clocks, let sc be a global system clock. For each clock
x in the timed automata, let xreset be an integer variable holding the system time
of the last clock reset. The value of the clock is then (sc− xreset), and a reset can
be performed as xreset := sc.

3.2 Encoding and Executing the Controller Automata

In the generated program, the controller automata are encoded as four look-up
tables and two functions, as shown in Fig. 2. Three of the look-up tables are static
and used to encode the edges, the locations, and the synchronisations respectively.
The fourth table is dynamic and used to hold the set of currently active edges, i.e.
edges leaving the current control location (or locations, if the controller consists of
parallel automata). We use ACTIVE to denote the list of active edges.
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guard from

... ... ... ...

guard−function

in priority order

assign
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list of edges
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...

sync1!: e3, e5, task3

sync1?: e4, e7, task3

loc1: e1, e2, e5

loc2: e6, e2

Fig. 2: Encoding of controller automaton in look-up tables.

The table containing all edges is sorted in priority order. For each edge there
are five fields: guard, assign, from, to and sync. The guard and assign fields
are references to code that when invoked will evaluate the guard and perform the
assignments of the edge. The fields from and to are references into the table of
locations. The field sync is either empty if the edge has no synchronisation label,
or a reference to a list of edges having the complementary synchronisation label.

In the table containing all locations, we store for each location a list of all edges
leaving the location. In the table containing synchronisation labels, we store ref-
erences to all edges at which the label occurs, and also the set of tasks associated
with the label. Note that some of the information stored in the tables (such as the
synchronisation label of an edge) is intensionally duplicated to improve efficiency.

The list of active edges, ACTIVE, is managed by the procedure shown in Table I
where we use a to denote the complementary synchronisation label of a, e.g. sync!
for sync?. We use aut to denote a function that takes a location as parameter and
returns an unique identifier for the automaton that the location belongs to. We
use sort to denote a sorting function that takes as input two parameters: a list of
edges, and a function assigning unique priorities to edges, and returns as output a
list of edges sorted according to the assigned priorities.

The procedure in Table I is executed by the controller thread whenever an event
(such as timeout or arrival of an external event) has occurred. When executing, no
new events are processed and the timers are not updated, i.e. the whole procedure
is executed in a critical region. Note that this means that the tasks will not be able
to update shared variables while the procedure is executing.

Initially the list of active edges consists of all edges leaving the initial locations. The
procedure scans ACTIVE in priority order and evaluates the corresponding guards.
If a guard is found to be satisfied, there are two cases:

◦ no synchronisation - the assignment is performed and the information in the
table of locations is used to update the list of active edges and to release any
tasks associated with the edge.

◦ synchronisation - (i.e. the edge is labelled with an action label) the informa-
tion in the table of synchronisations is used to find an active edge belonging
to another control automata with complementary action label and satisfied
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Table I: Procedure, in pseudo-code, that executes the encoded controller.

Initially:
ACTIVE := {l g,a,r−→ l′|l = l0}
ACTIVE := sort(ACTIVE,Pr)

Algorithm:
START:

for each l
g,a,r−→ l′ in ACTIVE do

if σ satisfies g then
if a = τ then

σ := σ[r]
remove {n −→ n′|n = l} from ACTIVE
add {n −→ n′|n = l′} to ACTIVE
ACTIVE := sort(ACTIVE, Pr)
q := Sch(M(a) :: q)
goto START

else

if exists m
g′,a,r′−→ m′ in ACTIVE s.t. σ satisfies g′ and

aut(m) 6= aut(l) then
if a is sending then

σ := σ[r]; σ := σ[r′]
else

σ := σ[r′]; σ := σ[r]
remove {n −→ n′|n = l ∨ n = m} from ACTIVE
add {n −→ n′|n = l′ ∨ n = m′} to ACTIVE
ACTIVE := sort(ACTIVE, Pr)
q := Sch(M(a) :: M(a) :: q)
goto START

fi
fi

fi
od

guard. If such an edge is found, the compound transition is performed i.e.
the assignments of the two edges are performed, ACTIVE is updated and the
tasks associated with action label are released.

When a transition has been executed the procedure returns to START and re-
examines the (updated) list of active edges to check for another transition to be
taken. The procedure will continue to do so as long as enabled edges exist in AC-
TIVE. When there are no more enabled edges, the procedure will terminate and let
the OS execute task threads. As an effect, the procedure implements a so-called
run-to-completion step ensuring that the generated code has the maximal-progress
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behaviour assumed by the deterministic semantics (see Section 2.4). Note that since
ACTIVE is always kept sorted and the procedure always scans from the head of the
list, the implementation is also deterministic with respect to external actions.

3.3 Correctness

In this section we argue for the correctness of the code synthesis by emphasising
how the deterministic semantics (c.f. Definition 5) of timed automata with tasks is
realised in the generated code. The three components of a semantic state (l, σ, q)
are mapped to the following parts of the synthesised code:

l: the source locations of the edges in ACTIVE (the list of active edges),
σ: integer variables for the data variables in σ, and the difference between reset-

time and system time for the clocks in σ,
q: the scheduling queue of the operating system.

Note that there is no explicit representation of control location l in the synthesised
code, instead the current control location is implicitly represented by the edges in
ACTIVE.

Initially, when the synthesised code starts to execute, the semantic state (l0, σ0, q0)
is represented in the code as:

l0: ACTIVE is initialised with the edges leading out from the initial locations,
σ0: data variables are initialised to their initial values and the reset-time of clocks

are initialised to the system time at startup,
q0: the scheduling queue is empty.

The transition rules defined in the deterministic semantics (Definition 5) are mapped
in the following way:

(1) Discrete transition - (l, σ, q) a−→ (l′, σ′, q′) is handled by the procedure in
Table I. All edges that lead out from the source location are removed from
ACTIVE and all edges that lead out from the target location are added to
ACTIVE. Data variables are updated according to the assignments. Clocks
are reset by assigning their reset-time to the current value of the system
clock.

(2) Delay transition without task termination - (l, σ, q) t−→ (l, σ′, q′) corresponds
to the execution of a task. The location component of the state does not
change during task execution. Data variables are not updated. Clocks are
updated by the delay t during task execution since the difference between
the last reset-time and the system clock will increase. In the queue q, the
remaining execution time of the task at the head of the task queue, as well
as the deadline of all tasks, will be t time units shorter.

(3) Delay transition with task termination - (l, σ, q) t−→ (l, σ′, q′) corresponds to
execution of a task. The location component of the state does not change
during task execution. Data variables are updated by the assignment of the
task. Clocks are updated by the delay t during task execution since the
difference between the last reset-time and the system clock will increase.
The queue is reduced by removing the task at the head of the queue, and the
relative deadline of the other tasks will be t time units shorter.
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The refinements introduced to resolve non-determinism are implemented as follows:

Priority - Recall that all edges are assigned unique priorities. The controller thread
evaluates the guards of the active edges in priority order from high to low. The
first transition whose guard is satisfied is taken. In the case of synchronisation the
complementary transition with the highest priority whose guard is satisfied is taken.
The order of the active edges is maintained when replacing outgoing edges of the
source location with those of the target location by resorting before proceeding.

Maximal Progress - The code has maximal-progress behaviour since, when a discrete
transition has been taken the list of active edges is checked again from the beginning.
Only when no edge has a satisfied guard the controller will suspend and let other
threads with lower priority (i.e. tasks) execute.

3.4 Prototype for legOS

The code synthesis described above has been implemented in a version of the Times
tool [Amnell et al. 2002] to generate code for the legOS [LegOS-team 2002] operating
system — a small open source operating system for the Hitachi H8 processor —
embedded into the LEGO Mindstorms RCX control brick. The OS is implemented
in C and for simplicity we use C as implementation language for the tasks as well.

The Hitachi H8 processor in the RCX unit is equipped with 32 kB of RAM, a typical
setup for the type of embedded systems that our code generation is intended for.
The I/O interface consists of three sensor inputs and three actuator outputs.

In legOS threads are separate control flows that are scheduled on the CPU by the
operating system. The scheduler implements preemptive fixed priority scheduling
and handles up to 20 priority levels. Threads with equal priorities are executed in a
round robin fashion. This limits the number of task types in the design to at most
19, since each task type needs a unique priority level and the highest priority level
is reserved for the controller thread.

Another limitation in the current version of legOS is in the interrupt handling. The
OS provides so-called wake-up functions to program event handling. A wake-up
function is a general mechanism provided by legOS that lets a thread wait for some
condition (such as the release of a semaphore, a timeout, a key press etc.). A
thread registers a boolean function that the scheduler will execute when it looks
for the next thread to run, which it will do when the current thread is suspended
or periodically every 20 ms 5.

To make sure that the control procedure of Table I is executed at every event
handling, we encode the entire control procedure as a wake-up function that always
returns false, and is associated to a task at highest priority level. In this way, the
control procedure is ensured to be executed by the operating system (atomically and
at OS priority level) just after every event handling, and just before the operating
system determines the next task thread to be executed.

For each task type a corresponding thread is created at boot time. The task threads
contains a loop repeating a suspend call, and the task body to be executed. The
suspend call registers a wake-up function that checks for a non-zero value of an ele-
ment in the integer array release list. This array contains one element for each task
type. When the controller releases a task the corresponding element is incremented,
5 The period of the scheduler (the time-slice) can be modified by recompiling the OS.
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Fig. 3: The LEGO Production Cell.

so that the wake-up function of the task thread will return and resume the task
thread. When the task body has executed the corresponding element in the release
list is decremented, and the thread is suspended again at the start of the loop. Note
that since priorities are fixed, the release list can be used as a representation of the
current state of the ready queue.

Sensor readings in legOS are available to the generated program as variables which
are updated independently by the hardware. Sensor variables are either read by
the task code, or used directly in guards of the control automata. This means
that checking if a transition is enabled becomes a condition only involving variables
(external and other), i.e. essentially the same as a guard.

In the current prototype we associate tasks with locations instead of edges. The
tasks are released when the location is entered. Such design models can easily be
transformed into models with tasks on edges by associating the task of a location
with all edges leading to the location. Furthermore we impose the syntactic restric-
tion that a control automaton may not use both a sending and a receiving action
label with the same name (e.g. not both sync! and sync? in the same automaton).

4. Modelling and Design of a Production Cell

In this section, we show how to use our design language to model and design the
control software for an industrial robot. The production cell is a unit in a metal
plate processing plant in Karlsruhe. The model has been developed by FZI in Karl-
sruhe [Lewerentz and Lindner 1995] as a benchmark example of concurrent and
safety-critical system software development. In this paper, we use a LEGO model
of the production cell based on the model developed by FZI but with some simplifi-
cations. The LEGO production cell system contains four subsystems, the feed belt,
the robot, the press and the deposit belt, corresponding to the physical components
as shown in Fig. 3. Each of the subsystems performs a specific operation during
the plate processing:
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Fig. 4: The overall control structure.

The feed belt transfers a plate from the entry position to the end position where the
robot arm named arm A can pick up the plate. The press forges the plate delivered
by arm A of the robot, and the forged plate is unloaded from the press by arm B
of the robot. The robot moves to the position where arm A points to the feed belt
and picks up a plate. It then rotates until arm A points to the press where arm A
delivers a plate. When a plate has been forged in the press, it moves to the position
where arm B points to the press and picks up the forged plate. Afterwards, the
robot rotates until arm B points to the deposit belt where it delivers the plate. The
deposit belt receives a forged plate from arm B of the robot.

4.1 Overall Control Structure

Each subsystem of the feed belt and the robot comprises sensors and actuators for
the physical component in the subsystem plus a controller (i.e. a control program)
for controlling the sensors and actuators. In our version of the production cell, both
the press and the deposit belt contain only the physical components (without any
sensor and actuator attached) as media for the robot to convey a plate. The status
of a plate in both components are modelled in the robot controller by means of
internal variables. The overall control structure of the production cell is sketched
as in Fig. 4.

Robot Controller. The robot controller is composed of two processes (or sub-
controllers), RobotControl and MoveTo as shown in Fig. 4. The RobotControl process
controls the overall motions of the robot, and communicates with both the feed belt
controller and the local process MoveTo. The MoveTo process controls the robot
movements according to the rotation sensor (i.e. sensor 3 in Fig. 3) information and
the requests from RobotControl.

The RobotControl process communicates with the feed belt controller by means
of the shared variable platePos which indicates whether there is a plate on the
feed belt. It communicates with MoveTo by means of communication channels i.e.
startM to start the robot movement and stopM to stop the robot movement.
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Fig. 5: The automaton RobotControl. Labels in bold font indicate associated tasks.

Feed Belt Controller. The feed belt controller is composed of the BeltPosition
process and the Alarm process. The BeltPosition process updates the positions of the
plates on the feed belt periodically after they are detected by the light sensor. The
Alarm process handles the light sensor (i.e. sensor 1 in Fig. 3) at the entry position
of the feed belt. The light sensor senses the arrival of a plate on the feed belt.
The communication between BeltPosition and Alarm is through the shared variable
platePos which indicates the position of a plate on the belt. Note that the feed
belt controller cannot stop the belt. The bricks will be picked up “on-the-fly” by
the magnet on arm A.

4.2 Robot Controller Model

The robot controller is modelled as two extended timed automata, named Robot-
Control and MoveTo. The shared variable platePos is modelled by an integer array
Pos, and the communication channels startM and stopM are respectively mod-
elled by synchronisation channels start and stop, together with a shared integer
variable Goal that sets the goal position that the robot should reach.

Automaton RobotControl. Fig. 5 shows the concrete model of the automaton
RobotControl. Recall that in our prototype implementation tasks are associated
with locations. In the automata shown in this section and in Appendix A, tasks
are indicated as labels with bold font in the locations.

In Fig. 5, Pos[0] is the first element in array Pos. Pos[0]>-1 indicates that there
is a plate on the feed belt, Pos[0]==-1 indicates that there is no plate on the feed
belt, and Pos[0]==0 indicates that the plate is at the position where arm A of the
robot can pick it up.

The boolean variable PlateInPress is used to model the status of the press (TT
means that there is a plate on the press and FF means no plate on the press).
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The constant PRESS T is used to model the time needed for the press to forge a
plate, and the constant PREPARE T is used to model the time needed for the press
to be ready to process a new plate. The clocks PressTime and PrepareTime are
respectively used to measure whether PRESS T and PREPARE T are reached.

The boolean variables PlateOnA and PlateOnB are used respectively to indicate the
status of arm A and arm B. PlateOnA==TT denotes that arm A of the robot holds
a plate, and PlateOnA==FF denotes that arm A is empty. PlateOnB==TT denotes
that arm B of the robot holds a plate, and PlateOnB==FF denotes that arm B is
empty. The boolean variable TaskDone is shared with the tasks released by the
process. TaskDone==TT denotes that the current task e.g. the pickup task of arm
A is finished, and TaskDone=FF denotes that the current task has not finished yet.

The constants WAIT POS, FB POS, PRESS A POS, PRESS B POS and DB POS are five
goal positions for the robot to reach in the robot working space.

The automaton is initially at location AtW8, corresponding to that the robot is
waiting for the control commands (or control events). The rest of the locations can
be classified into three groups corresponding to the robot actions:

◦ The robot is moving from one position to the other, e.g. the locations Mov-
ing2FB and Moving2PrB. At the former location the robot is rotating so that
arm A points to the feed belt, and at the latter the robot is rotating so that
arm B points to the press. While waiting in these locations MoveTo control
the movement of the robot.

◦ The robot is waiting for an event, e.g. the locations W8AtFB and AtPressB.
The former represents that the robot stops at the position where arm A
points to the feed belt and waits for the event Pos[0]==0, and the latter
that the robot stops at the position where arm B points to the press and
waits for the event PlateInPress==TT.

◦ The robot is carrying out the pickup or drop tasks, e.g. the locations PickUpA
and DropA. At the former location arm A is picking up a plate from the feed
belt, and the latter arm A is dropping the plate onto the press.

On each of the edges to PickUpA, PickUpB, DropA and DropB, there is a executable
task associated. For example, on the edge to PickUpA the task PickUpA is released
for arm A to pick up a plate from the feed belt, while the edge to DropA is associated
with the task DropA by which arm A drops a plate onto the press.

Automaton MoveTo. The automaton MoveTo is shown in Fig. 6. The variable
RobotAngle stores the sensor information about the current robot position. The
value in ROTATION 1 stores the updated robot position while the robot is moving.
Clock x is used to guarantee that RobotAngle is updated before it is used.

The automaton is initially in location Entry corresponding to that the robot stops
and waits for the signal from RobotControl over channel start. Having received the
signal the task RdAngSen is released that reads the sensor information about the
current robot position into the variable RobotAngle and the automaton moves to
location Read. The task RdAngSen has deadline 16, see Appendix A, so the invariant
x ≤ 30 together with the guards x = 30 on the outgoing edges will guarantee that
RobotAngle is updated before the location is left.

Based on the value in RobotAngle, the automaton moves either to location MR if
RobotAngle ≤ Goal or to location ML if RobotAngle ≥ Goal, or to location Entry
if RobotAngle = Goal.
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Fig. 6: The automaton MoveTo.

On the edge to location MR, the associated task MvRight commands the motor to ro-
tate clockwise the robot. When the robot is in the desired position, i.e. ROTATION 1
= Goal, the automaton takes a transition to location SR.

Similar to MR, on the edge to ML, the associated task MvLeft commands the motor
to rotate anti-clockwise the robot. When the robot is in the desired position, i.e.
ROTATION 1 = Goal, the automaton takes a transition to location SR.

On both edges to SR, an associated task StopRobot is released to stop the motion
of the robot. The automaton takes an urgent transition to location Entry when the
robot is stopped, at the same time it informs RobotControl over channel stop.

4.3 Feed Belt Controller Model

Similar to the robot controller, we use two timed automata extended with real-time
tasks to model the two processes of the feed belt controller. The two automata
BeltPosition and Alarm are given in Appendix A.

Automaton Alarm. The automation Alarm is shown in Fig. 8 in Appendix A.
Before it enters the initial location Calib the task Calib is released that performs
calibration of the background light by measuring the mean light value, and saves
it in the shared variable normalLight. Finally the task sets the boolean variable
AlarmTaskDone to TT. When the sensor is calibrated, i.e., AlarmTaskDone==TT, the
automaton takes a transition to location WaitFrontEdge.

In location WaitFrontEdge, the automaton waits until the light value measured by
sensor 1 (cf. Fig. 3) falls below 80% of the normal light. This indicates that the
front end of a plate has passed through. The automaton then moves to location
WaitBackEdge, where it waits for the whole plate to pass through the sensor, i.e.
the measured light value rises to above 90% of the normal light. Once the whole
plate has passed through the sensor, the automaton takes a transition to location
AtStart and releases the AtStart which inserts a value into the array Pos .

In location AtStart, the clock ArrivalTime is used to measure the time elapsed
since the plate was detected. When it reaches to the value equal to SAFE CALIB, it
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is safe to accept a new plate and return to Calib. The time constant SAFE CALIB is
obtained by experiments.

Automaton BeltPosition. The automaton BeltPosition is shown in Fig. 9 in
Appendix A. It is initially in location Idle. When there is a plate on the belt,
indicated by Pos[0]>-1, the automaton moves to location Active and releases task
UpdatePos.

In location Active, the task UpdatePos is released periodically to update the posi-
tions of the plates in array Pos. The period is represented by an invariant x <=
UpdateTime, where x is again a clock. As soon as there is no plate on the belt,
which is indicated by Pos[0]==-1, the automaton returns to the initial location
Idle.

We could also have a process to handle the light sensor (i.e. sensor 2 in Fig. 3)
at the end position of the feed belt to sense the arrival of a plate. In the current
implementation we ignore this sensor and use Pos[0] to indicate whether a plate
has reached the end position or not.

5. Analysis and Code Synthesis for the Production Cell

The analysis and code synthesis presented in Section 3 have been implemented in
the Times6 tool [Amnell et al. 2002]. The tool, shown in Fig. 7 performs analysis
of a system model by transformation from the model of timed automata with tasks
to the model of timed automata extended with subtraction operations in the clock
assignments. During the transformation, a scheduler automaton is created and
composed in parallel with the other automata. Its purpose is to ensure that the
released tasks are scheduled according to the chosen policy, and to indicate if a
task fail to meet its deadline. For a detailed description about the encoding see
[Fersman et al. 2002].

The parameters and tasks used in the analysis of the production cell model are
shown in Table II of Appendix A. Note that in the production cell model, tasks
execute according to the fixed priorities listed in column P of Table II. The code
performed by the tasks is given in column Description and Interface and is performed
by the scheduler automaton at the time-point when a task finishes its execution.

Environment Model: In order to analyse the behaviour of the production cell
model, the abstract behaviour of its environment is modelled with the two timed
automata Brick and Robot shown in Fig. 10 and Fig. 11 of Appendix A. The
automaton Brick models bricks arriving on the feed belt, and Robot models the
position of the robot, and how it behaves when the robot rotates. The interaction
between the environment and the control program is modelled using three shared
variables: DIR used to control the rotation of the robot, POS used to model the
robot position, and LIGHT 2 used to sense the value of the light sensor at the start
of the feed belt.

Analysis: The two most important properties w.r.t. code-synthesis are schedula-
bility and boundedness, described in section 2.3. We have used Times to check that
the production cell model is schedulable with fixed priority scheduling in the sense
that all released tasks are guaranteed to meet their deadlines in all possible runs
6 More information about the Times tool can be found at the web site www.timestool-
.com.
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Fig. 7: A screen shot of the Times tool.

of the system. In addition, we have checked that the ready queue of the system
is guaranteed to be bounded to three, meaning that the number of simultaneously
released tasks will never be more than three. We have also checked that for each
task type, the bound is one, i.e. there is never more than one task instance of each
type released simultaneously. A number of other correctness properties of the pro-
duction cell behaviour have also been checked, e.g. that the robot will always be
ready to pick up a brick before the brick reaches the end of the feed belt, and that
whenever the robot tries to pick up a brick from the belt, there is a brick available.
By reachability analysis, we found that the nodes W8P1 and W8P2 of automaton
RobotControl are unreachable. This information has been used in the code synthe-
sis to produce smaller code. In Appendix A.1 we list the verified properties in the
input format currently accepted by the Times tool.

Analysis Results: The system has been verified on a machine equipped with two
1.8 GHz AMD processors and 2 GB of main memory, running Mandrake Linux.
Times consumes 207 MB of memory and 11 minutes to perform exact analysis of
the most time and space consuming property above (i.e. any property that gener-
ates the full state space, e.g. the schedulability analysis). If the same property is
checked using the over approximation option of Times (based on the convex-hull
approximation described in [Daws and Tripakis 1998]), the analysis requires 13 MB
and 9 seconds on the same machine.

During the analysis we found and corrected several problems in the model, e.g.
the deadlines of tasks DropB, DropA, PickUpB, UpdatePos, and RdAngSen were
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adjusted7; the priorities of the tasks released by automaton MoveTo were adjusted
to preserve the intended execution order8; the constant PREPARE T were found to
be too short; the behaviour of automaton MoveTo was modified as the boundedness
analysis showed that two instances of task ReadAngleSen could erroneously be ready
for execution simultaneously.

During the debugging, we often found the simulator of Times very useful. In
particular the Gantt chart view, shown in the lower right part of the screen shot in
Fig. 7 proved useful for tracing the executions of the tasks. In the Gantt chart view
it is illustrated how tasks are executed according to the chosen scheduling policy
[Amnell et al. 2002].

5.1 Generated legOS-code

We have used Times to automatically generate C-code that has been compiled and
executed on a LEGO RCX-brick running the legOS operating system. The code
generated from the analysed model of the production cell is listed in Appendix B.
The source code consists of 550 lines of C-code which results in an executable file
of 4892 bytes.

The code consists of two parts: one generic run-time system (listed in Appendix
B.2) that is part of any generated code for the legOS target, and one design specific
part (listed in Appendix B.1). The design specific code for the production cell
model is essentially an encoding of the control automata in five look-up tables,
as described in Section 3. The edge table has four fields: active, from, to, and
sync where the boolean value active indicates if the edge is currently in the list
ACTIVE. The other fields are indexes into the location and synchronisation tables.
The design specific part of the code also include the task bodies as part of the
program text.

The information in the look-up tables is used by the run-time kernel, which basically
is an implementation of the event handling procedure shown in Table I. The main
function is check trans() that loops through the edge table and evaluates the
guards of the edges marked as active. When a guard is found to be satisfied, and
the edge does not have a synchronisation channel, the transition is taken, meaning
that the assignments are performed (by a call to the function assign() with the
edge identifier as parameter), the field active in the edge table is cleared for all
edges leaving the source location and set for all edges leaving the target location.
Finally, the task of the target location (if any) is released. When a transition has
been taken the loop starts over, check trans() will only return when no more
transitions can be taken.

If the edge is labelled with a synchronisation channel, i.e. the sync field in the
edge table contains a non-negative synchronisation identifier, a separate function
check sync() is called. This function determines, by using the table chanusage
which stores back references from channel names to edges, if there is an enabled
edge to synchronise with. If a synchronisation is possible the assignments of both
edges are performed.

The code also includes macro and type definitions as shown in Appendix B.3.
7 Initially, all deadlines were set to 10ms. The deadlines of the tasks were changed to
13ms, 16ms, 17ms, 17ms, and 16ms respectively.
8 The task in MoveTo should execute so that task RdAngSen precedes task MvRight or
MvLeft.
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6. Conclusions

In this article, we have shown how to synthesise executable code with predictable
behaviour from high level design descriptions of embedded real-time systems. As
design language, we proposed to use the model of timed automata extended with
real-time tasks. For this model, it has been shown previously that design problems
such as schedulability and reachability checking are decidable and can be efficiently
checked using model-checking techniques.

The technique for code-synthesis developed in this paper is based on a deterministic
subset of the operational semantics of extended timed automata, which is guaran-
teed to preserve timing, resource, and logical constraints imposed on the model.
Based on the presented deterministic semantics, we have shown that executable
code can be generated for a generic target platform assuming that it guarantees
the synchronous hypothesis and that the associated tasks consume their given com-
puting times. As prerequisite for code generation, we require that the model has
been analysed to be schedulable (i.e. all tasks must be guaranteed to meet their
deadlines). Other analysis results can be used to further optimise the generated
code by e.g. limiting the amount of allocated memory, or to exclude code segments
which are guaranteed to be unreachable (i.e. dead code).

A prototype C-code generator for the legOS operating system has been implemented
in the Times tool, and applied in a case study in which the control software of a
production cell is designed. The production cell is built in LEGO and controlled
by a Hitachi H8 based LEGO Mindstorms control brick. The design, analysis, and
code generation was successfully completed in the Times tool, and the generated
C-code was compiled and downloaded to the control brick, and executed to control
the production cell.

As future work we plan to adjust the code generation to target other operating
systems than legOS, such as RT-Linux. Furthermore, we consider to extend the
code synthesis to also generate code for the scheduling kernel and the necessary run-
time system functions. This would make it possible to generate a tailored made
run-time system optimised to support only functions being used in the designed
system, and further optimised based on results from analysing the design model.
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Appendix A. The Analysis Model

Fig. 8: The automaton Alarm.

Fig. 9: The automaton BeltPosition.
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Fig. 10: The automaton Brick.

Fig. 11: The automaton Robot.
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Table II: Task parameters used for analysis and synthesis.

Name C D P Description and Interface
Alarm

AtStart 4 10 12 Append value to Pos.
Pos[numBricks]:=BELT_LENGTH,
numBricks:=numBricks+1

Calib 4 10 11 Read a calibrated value for background light.
AlarmTaskDone:=TT
normalLight:=100

BeltPositions
UpdatePos 5 17 5 Update values in Pos.

∀i Pos[i]:=(Pos[i]>=0?Pos[i]-1:-1)

RobotControl
DropA 4 16 2 De-activate magnet on arm A.

TaskDone:=TT
DropB 4 13 1 De-activate magnet on arm B.

TaskDone:=TT
PickUpA 4 10 4 Activate magnet A. Remove value from Pos.

∀i Pos[i]:=Pos[i+1],
Pos[BRICKS-1]:=-1,
numBricks:=numBricks-1,
TaskDone:=TT,

PickUpB 4 17 3 Activate magnet on arm B.
TaskDone:=TT

MoveTo
MvRight 4 10 8 Start motor to rotate robot rightwards.

RobotAngle:=ROTATION_1
MvLeft 4 10 7 Start motor to rotate robot leftwards.

ROB_DIR:=CW
RdAngSen 4 16 9 Read rotation sensor and convert to degrees.

RobotAngle:=ROTATION_1
StopRobot 4 10 10 Stop rotation motor.

ROB_DIR:=STOP
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Appendix A.1 Query File

/∗
Robot can become ready to pick up a brick from the feedbelt.
∗/
E<>( RobotControl.W8AtFB and Pos[0]==0)

/∗
Scheduler can execute task to pick up a brick from the feed belt.
∗/
E<>( SCHEDULER.RUN PickUpA )

/∗
Robot arm B can reach the position of the press.
∗/
E<>( RobotControl.AtPressB )

/∗
Robot arm A can reach the position of the press.
∗/
E<>( RobotControl.AtPressA )

/∗
Scheduler can execute task (released by robot controller) to drop brick
from arm A to the press.
∗/
E<>( SCHEDULER.RUN DropA )

/∗
Robot can never reach a state where it is waiting for press to complete,
with arm B at the position of the press. Thus, location W8P1 is dead-code
in the robot controller model.
∗/
A[ ]not( RobotControl.W8P1 )

/∗
Robot can never reach a state where it is waiting for press to become
ready (with arm A at the position of the press). Thus, location W8P2 is
dead-code in the robot controller model.
∗/
A[ ]not( RobotControl.W8P2 )

/∗
Scheduler can execute task (released by robot controller) to picked up
brick from press with arm B.
∗/
E<>( SCHEDULER.RUN PickUpB )

/∗
Scheduler can execute task (released by robot controller) which drop brick
from arm B on the deposit belt.
∗/
E<>( SCHEDULER.RUN DropB )

/∗
The robot controller is never waiting unnecessarily at the pick-up
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position of the feed belt. If it is there, it is because a brick has
been detected on the feed belt (but perhaps not yet arrived to the
pick-up position).
∗/
A[ ]( RobotControl.W8AtFB imply Pos[0]>=0 )

/∗
When the controller is waiting for a plate there should be no plate
on arm A.
∗/
A[ ] not( RobotControl.AtW8 and RobotControl.PlateOnA==TT)

/∗
Whenever task PickUpA is executing, a brick is at the pick-up position
of the belt.
∗/
A[ ]( SCHEDULER.RUN PickUpA imply Brick.AtPickUp )

/∗
The pos of robot is always in the interval [FB POS,DB POS].
∗/
A[ ]( ROTATION 1>=FB POS and ROTATION 1<=DB POS )

/∗
The variables sharedPos[0] and numBricks are correctly updated.
∗/
A[ ] not( Pos[0]==-1 and numBricks>=1 )

/∗
Boundedness Analysis: The nr of simultaneously released task is bounded
to 3.
∗/
A[ ]( (SCHEDULER.n0 + SCHEDULER.n1 + SCHEDULER.n2 +

SCHEDULER.n3 + SCHEDULER.n4 + SCHEDULER.n5 +
SCHEDULER.n6 + SCHEDULER.n7 + SCHEDULER.n8 +
SCHEDULER.n9 + SCHEDULER.n10 ) <= 3 )

/∗
Schedulability Analysis: all tasks are always guaranteed to meet their
deadlines.
∗/
A[ ]not( SCHEDULER.error )
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Appendix B. Generated Code

Appendix B.1 Production Cell Code
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ This code was AUTOMATICALLY generated by:
∗ TimesTool, Version 0.99, May 2002
∗ for: tobiasa
∗ on: Fri May 17 17:31:26 CEST 2002
∗ with Target: LegOS
∗ with Synchronisation: Synchronous
∗
∗ –> EDIT WITH CARE! <–
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <unistd.h>
#include <dsensor.h>
#include <dmotor.h>
#include <sys/tm.h>
#include <conio.h>
#include <dsound.h>

#include ”legos definitions.h”

// Defines & declarations for tasks:
#define BRICKS 8
#define BELT LENGTH 8 //measured in time

int normalLight;
int numBricks = 0;

// Task identifiers (tid)
#define tid offset 200
#define tid AtStart tid offset+0
#define tid Calib tid offset+1
#define tid DropA tid offset+2
#define tid DropB tid offset+3
#define tid MvLeft tid offset+4
#define tid MvRight tid offset+5
#define tid PickUpA tid offset+6
#define tid PickUpB tid offset+7
#define tid RdAngSen tid offset+8
#define tid StopRobot tid offset+9
#define tid UpdPos tid offset+10
#define tid NOP tid offset+11
#define NB TASK 11

// Transition ids
#define T1 0
#define T2 1
#define T3 2
#define T4 3
#define T5 4
#define T6 5
#define T7 6
#define T8 7
#define T9 8
#define T10 9
#define T11 10
#define T12 11
#define T13 12
#define T14 13
#define T15 14
#define T16 15
#define T17 16
#define T18 17
#define T19 18
#define T20 19
#define T21 20
#define T22 21
#define T23 22
#define T24 23
#define T25 24
#define T26 25
#define T27 26
#define T28 27
#define T29 28
#define T30 29
#define T31 30
#define T32 31
#define T33 32
#define T34 33
#define T35 34
#define T36 35
#define T37 36
#define NB TRANS 37

// Define location offsets
#define RobCtrl AtW8 0
#define RobCtrl AtPressB 3
#define RobCtrl Mv2PrB 7
#define RobCtrl S0 9
#define RobCtrl W8AtFB 11
#define RobCtrl Mv2FB 13
#define RobCtrl S1 15
#define RobCtrl MvToPrA 17
#define RobCtrl AtPressA 19
#define RobCtrl S2 22
#define RobCtrl AtPress 24
#define RobCtrl Mv2DB 27
#define RobCtrl Mv2W8 29
#define RobCtrl S3 31
#define RobCtrl AtDB 33
#define RobCtrl MvTwPr 35
#define RobCtrl Branch 37
#define MoveTo MR 40
#define MoveTo Read 42
#define MoveTo Entry 46
#define MoveTo SR 48
#define MoveTo ML 50
#define Enter S0 52
#define Enter W8FrontEdge 54
#define Enter S1 56
#define Enter W8BackEdge 58
#define UpdPos Idle 60
#define UpdPos Active 62

#define NB LOC 28

char release list[NB TASK]=
{0,1,0,0,0,0,0,0,0,0,0};

// Constant values
#define FB POS 0
#define WAIT POS 45
#define PRESS B POS 0
#define PRESS A POS 90
#define DB POS 90
#define PREP T 200
#define PRESS T 250
#define TT 1
#define FF 0
#define RobCtrl TM2PRESS 1000
#define RobCtrl GOPRESS T -750
#define Enter SAFE TIME 4000
#define Enter DL CALIB 0
#define Enter SAFE CALIB 4000
#define UpdPos UpdTime 333

// Clock variables
time t clock RobCtrl PressTime;
time t clock RobCtrl PrepTime;
time t clock MoveTo x;
time t clock Enter ArrivalTime;
time t clock UpdPos x;

// Integer variables
int RobotAngle=45;
int Pos[5]={-1,-1,-1,-1,-1};
int AlarmTaskDone=0;
int TaskDone=1;
int Goal=0;
int RobCtrl PlateInPress=0;
int RobCtrl PlateOnA=0;
int RobCtrl PlateOnB=0;

void Prodcell init() {

// Deactivate rotation sensor
ds passive(&SENSOR 1);

// Sleep, needed to get correct rotation
// sensor readings
msleep(100);

// Activate rotation sensor
ds active(&SENSOR 1);
ds rotation off(&SENSOR 1);
ds rotation set(&SENSOR 1,0);
ds rotation on(&SENSOR 1);

}

// Define channel names
#define startS 0
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#define stopS 11
#define startR 14
#define stopR 16
#define recv channels startR

// Is a channel id a sending channel?
#define IS SEND( c ) (c < recv channels )

// Channel usage
unsigned char chanusage[23] = {

T2,T5,T6,T8,T12,T13,T17,T18,T22,T23,NB TRANS
,T27,T30,NB TRANS
,T24,NB TRANS
,T1,T4,T9,T14,T15,T21,NB TRANS

};

// Evaluate guard on transition g
int eval guard(char g) {

switch(g) {
case T2: return (TaskDone==TT);
case T3: return (Pos[0]==0);
case T5: return (Pos[0]>-1);
case T6: return (RobCtrl PlateInPress==TT

&& Pos[0]==-1);
case T7: return (TaskDone==TT);
case T8: return (RobCtrl PlateInPress==FF

&& Pos[0]==-1);
case T10: return (TaskDone==TT);
case T11: return (RobCtrl PlateOnA==FF);
case T12: return (RobCtrl PlateOnB==TT);
case T13: return (RobCtrl PlateOnB==FF);
case T14: return (RobCtrl PlateOnB==FF);
case T16: return (TaskDone==TT);
case T18: return (Pos[0]>-1 &&

RobCtrl PlateOnA==FF);
case T19: return (Pos[0]==-1 &&

clock(RobCtrl PressTime)
> PRESS T &&
RobCtrl PlateInPress==TT);

case T20: return (clock(RobCtrl PrepTime)>
PREP T &&
RobCtrl PlateOnA==TT);

case T22: return (Pos[0]==-1);
case T23: return (Pos[0]>-1 &&

RobCtrl PlateOnA==FF);
case T25: return (clock(MoveTo x)==30 &&

RobotAngle<Goal);
case T26: return (clock(MoveTo x)==30 &&

RobotAngle>Goal);
case T28: return (ROTATION 1==Goal);
case T29: return (ROTATION 1==Goal);
case T30: return (clock(MoveTo x)==30 &&

RobotAngle==Goal);
case T31: return (AlarmTaskDone==TT);
case T32: return (clock(Enter ArrivalTime)>=

Enter SAFE CALIB);
case T33: return

(LIGHT 2<80∗normalLight/100);
case T34: return

(LIGHT 2>90∗normalLight/100);
case T35: return (Pos[0]>-1);
case T36:

return (clock(UpdPos x)==UpdPos UpdTime
&& Pos[0]>-1);

case T37:
return (clock(UpdPos x)==UpdPos UpdTime

&& Pos[0]==-1);
case T1:
case T4:
case T9:
case T15:
case T17:
case T21:
case T24:
case T27:

return true;
} /∗ case ∗/
return false;

}

// Perform assignments on transition a
void assign(char a) {

switch(a) {
case T2:

RobCtrl PlateOnA=TT;
Goal=PRESS B POS; break;

case T3:
TaskDone=FF; break;

case T5:
Goal=FB POS; break;

case T6:
Goal=PRESS B POS; break;

case T7:
RobCtrl PlateInPress=FF;
RobCtrl PlateOnB=TT;
reset(RobCtrl PrepTime); break;

case T8:
Goal=PRESS A POS-45; break;

case T10:
RobCtrl PlateInPress=TT;
RobCtrl PlateOnA=FF;
reset(RobCtrl PressTime); break;

case T12:
Goal=DB POS; break;

case T13:
Goal=WAIT POS; break;

case T14:
Goal=WAIT POS; break;

case T15:
TaskDone=FF; break;

case T16:
RobCtrl PlateOnB=FF; break;

case T17:
Goal=WAIT POS; break;

case T18:
Goal=FB POS; break;

case T19:
TaskDone=FF; break;

case T20:
TaskDone=FF; break;

case T22:
Goal=PRESS A POS; break;

case T23:
Goal=FB POS; break;

case T24:
reset(MoveTo x); break;

case T32:
AlarmTaskDone=FF; break;

case T34:
reset(Enter ArrivalTime); break;

case T35:
reset(UpdPos x); break;

case T36:
reset(UpdPos x); break;

}
}

trans t trans[NB TRANS] = {
{0,RobCtrl Mv2PrB,RobCtrl AtPressB,stopS},
{0,RobCtrl S0,RobCtrl Mv2PrB,startR},
{0,RobCtrl W8AtFB,RobCtrl S0,-1},
{0,RobCtrl Mv2FB,RobCtrl W8AtFB,stopS},
{1,RobCtrl AtW8,RobCtrl Mv2FB,startR},
{1,RobCtrl AtW8,RobCtrl Mv2PrB,startR},
{0,RobCtrl S1,RobCtrl AtPressB,-1},
{0,RobCtrl AtPressB,RobCtrl MvTwPr,startR},
{0,RobCtrl MvToPrA,RobCtrl AtPressA,stopS},
{0,RobCtrl S2,RobCtrl AtPressA,-1},
{0,RobCtrl AtPressA,RobCtrl AtPress,-1},
{0,RobCtrl AtPress,RobCtrl Mv2DB,startR},
{0,RobCtrl AtPress,RobCtrl Mv2W8,startR},
{0,RobCtrl Mv2W8,RobCtrl AtW8,stopS},
{0,RobCtrl Mv2DB,RobCtrl S3,stopS},
{0,RobCtrl S3,RobCtrl AtDB,-1},
{0,RobCtrl AtDB,RobCtrl Mv2W8,startR},
{0,RobCtrl AtPressB,RobCtrl Mv2FB,startR},
{0,RobCtrl AtPressB,RobCtrl S1,-1},
{0,RobCtrl AtPressA,RobCtrl S2,-1},
{0,RobCtrl MvTwPr,RobCtrl Branch,stopS},
{0,RobCtrl Branch,RobCtrl MvToPrA,startR},
{0,RobCtrl Branch,RobCtrl Mv2FB,startR},
{1,MoveTo Entry,MoveTo Read,startS},
{0,MoveTo Read,MoveTo MR,-1},
{0,MoveTo Read,MoveTo ML,-1},
{0,MoveTo SR,MoveTo Entry,stopR},
{0,MoveTo MR,MoveTo SR,-1},
{0,MoveTo ML,MoveTo SR,-1},
{0,MoveTo Read,MoveTo Entry,stopR},
{1,Enter S0,Enter W8FrontEdge,-1},
{0,Enter S1,Enter S0,-1},
{0,Enter W8FrontEdge,Enter W8BackEdge,-1},
{0,Enter W8BackEdge,Enter S1,-1},
{1,UpdPos Idle,UpdPos Active,-1},
{0,UpdPos Active,UpdPos Active,-1},
{0,UpdPos Active,UpdPos Idle,-1}

};
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unsigned char loc[NB TRANS+NB LOC] = {
T5,T6,tid NOP/∗AtW8∗/,
T8,T18,T19,tid NOP/∗AtPressB∗/,
T1,tid NOP/∗Mv2PrB∗/,
T2,tid PickUpA/∗S0∗/,
T3,tid NOP/∗W8AtFB∗/,
T4,tid NOP/∗Mv2FB∗/,
T7,tid PickUpB/∗S1∗/,
T9,tid NOP/∗MvToPrA∗/,
T11,T20,tid NOP/∗AtPressA∗/,
T10,tid DropA/∗S2∗/,
T12,T13,tid NOP/∗AtPress∗/,
T15,tid NOP/∗Mv2DB∗/,
T14,tid NOP/∗Mv2W8∗/,
T16,tid DropB/∗S3∗/,
T17,tid NOP/∗AtDB∗/,
T21,tid NOP/∗MvTwPr∗/,
T22,T23,tid NOP/∗Branch∗/,
T28,tid MvRight/∗MR∗/,
T25,T26,T30,tid RdAngSen/∗Read∗/,
T24,tid NOP/∗Entry∗/,
T27,tid StopRobot/∗SR∗/,
T29,tid MvLeft/∗ML∗/,
T31,tid Calib/∗S0∗/,
T33,tid NOP/∗W8FrontEdge∗/,
T32,tid AtStart/∗S1∗/,
T34,tid NOP/∗W8BackEdge∗/,
T35,tid NOP/∗Idle∗/,
T36,T37,tid UpdPos/∗Active∗/

};

#include ”legos kernel.h”

int AtStart() {
TASK BEGIN(AtStart)

// Plate at the start
// Insert ”brick” at first non used position
Pos[numBricks]=BELT LENGTH;
numBricks++;

TASK END
}

int Calib() {
TASK BEGIN(Calib)

// Take the average light value over 500 ms
#define SAMPLES 10

int i;
int readsum = 0;
extern int normalLight;
for( i=0; i < SAMPLES; i++) {

readsum += LIGHT 2;
msleep(50);

}

// Update shared variables
normalLight=readsum/SAMPLES;
AlarmTaskDone=TT;

TASK END
}

int DropA() {
TASK BEGIN(DropA)

// Deactivate the magnet on arm A
motor a speed(off);

// Update shared variables
TaskDone=TT;

TASK END
}

int DropB() {
TASK BEGIN(DropB)

// Deactivate the magnet on arm B
motor b speed(off);

// Update shared variables
TaskDone=TT;

TASK END
}

int MvLeft() {
TASK BEGIN(MvLeft)

// Start robot motor moving left
motor c dir(fwd);
motor c speed(100);

TASK END
}

int MvRight() {
TASK BEGIN(MvRight)

// Start robot motor moving right
motor c dir(rev);
motor c speed(100);

TASK END
}

int PickUpA() {
TASK BEGIN(PickUpA)

int i, temp;

// Activate the magnet on arm A
motor a speed(MAX SPEED);

// Shift the values in the pos array.
// Update the first (shared) element last.
temp = Pos[1];

for( i=1; i<numBricks; i++) {
Pos[i] = Pos[i+1];

}
numBricks– –;

Pos[BRICKS-1] = -1;

// Update shared variables
Pos[0]=temp;
TaskDone=true;

TASK END
}

int PickUpB() {
TASK BEGIN(PickUpB)

// Activate the magnet on arm B
motor b speed(MAX SPEED);

// Update shared variables
TaskDone=true;

TASK END
}

int RdAngSen() {
TASK BEGIN(RdAngSen)

// The rotation sensor is update every
// 1/16 th of a turn. Cog-wheel mounted
// between the rotation axis and the sensor
// give a precision of 360 degees.

// Update shared variables
RobotAngle = -ROTATION 1;

TASK END
}

int StopRobot() {
TASK BEGIN(StopRobot)

// Stop motor moving robot.
motor c dir(brake);

TASK END
}

int UpdPos() {
TASK BEGIN(UpdPos)

// Update the brick positions in the position array.
int i;
for (i=1; i<BRICKS; i++) {
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Pos[i] = ((Pos[i] >= 0) ? (Pos[i]-1) : -1) ;
}

// Update shared variables
Pos[0] = ((Pos[0] >= 0) ? (Pos[0]-1) : -1) ;

TASK END
}

int main(int argc, char ∗∗argv) {

Prodcell init();

execi( &AtStart, 0, NULL, 12, SMALL STACK);
execi( &Calib, 0, NULL, 11, SMALL STACK);
execi( &DropA, 0, NULL, 2, SMALL STACK);
execi( &DropB, 0, NULL, 1, SMALL STACK);
execi( &MvLeft, 0, NULL, 7, SMALL STACK);
execi( &MvRight, 0, NULL, 8, SMALL STACK);
execi( &PickUpA, 0, NULL, 4, SMALL STACK);
execi( &PickUpB, 0, NULL, 3, SMALL STACK);
execi( &RdAngSen, 0, NULL, 9, SMALL STACK);
execi( &StopRobot, 0, NULL, 10, SMALL STACK);
execi( &UpdPos, 0, NULL, 5, SMALL STACK);

// Reset clocks
reset(RobCtrl PressTime);
reset(RobCtrl PrepTime);
reset(MoveTo x);
reset(Enter ArrivalTime);
reset(UpdPos x);

execi( &controller, 0, NULL,
PRIO HIGHEST, SMALL STACK);

return 0;
}

Appendix B.2 Run-time system

// legos kernel.h: The kernel functions that
// executes the controller.

// Deterimines if it is possible to
// synchronise on a channel.
//
// parameter: sync, channel id, i.e. index
// into the chanusage array.
//
// return: 0, if synchronisation is not
// possible, transition id of the
// complementary transition if it is.
int check synch(unsigned char sync) {

while( chanusage[sync] < NB TRANS ) {
if( trans[chanusage[sync]].active &&

eval guard( chanusage[sync] ) )
return chanusage[sync];

sync++;
}
return false;

}

// Update the list of active transitions,
// and release task of target location.
//
// parameter: trn, the transition taken.
void clear and set (unsigned char trn) {

int jj;
// Clear outgoing transition from source
jj=trans[trn].from;
do {

trans[loc[jj]].active=0;
} while(loc[++jj]<tid offset);
// Set outgoing transition from target
jj=trans[trn].to;
do {

trans[loc[jj]].active=1;
} while(loc[++jj]<tid offset);
// Release task of target location
release list[loc[jj]-tid offset]++;

}

// Check if an active transition is enabled,
// and if so take it. Will continue until a
// stable state (no more enabled

// transitions) is reached.
//
// parameter: data, unused (should be null).
// return: false, when in stable state
wakeup t check trans( wakeup t data ) {

int trn, compl trans;
for(trn=0; trn<NB TRANS; trn++) {

if( trans[trn].active ) {
if( eval guard(trn) ) {

if( trans[trn].sync > -1 ) {
if( (compl trans =

check synch( trans[trn].
sync ))){

if( IS SEND(trans[trn].sync) ) {
assign( trn );
assign( compl trans );

} else {
assign( compl trans );
assign( trn );

}
clear and set( trn );
clear and set( compl trans );
trn=-1;

}
} else {

assign( trn );
clear and set( trn );
trn=-1;

} } } }
return false;

}

// Wake-up function for threads (tasks).
// parameter: data, unused (should be null)
wakeup t task release(wakeup t data) {

return release list[data];
}

// Thread body for automata controller
// return: 0 (allways)
int controller() {

wait event( &check trans, 0);
return 0;

}

Appendix B.3 Header file
// legos definitions.h: Define types and
// macros used by generated code and kernel.

typedef struct trans s{
char active;
char from;
char to;
signed char sync;

} trans t;

#ifndef true
#define true (1==1)
#endif

#ifndef false
#define false (0==1)
#endif

#define SMALL STACK 128

// Macros thar read and reset clocks.
#define clock(c) (sys time - clock ##c)
#define reset(c) clock ##c = sys time

#define TASK BEGIN( taskname ) while( true ) {\
wait event( &task release, tid ##taskname -

tid offset );\
release list[ tid ##taskname - tid offset]– –; {

#define TASK END }}\
return 0;\

#define CONTROLLER( AUT ) int
AUT## controller() {\

while( true ) { \
wait event(& AUT## events, 0);\

}\
}


