
A COMPONENT MODEL FOR EMBEDDED REAL-TIME SOFTWARE
PRODUCT-LINES

Anders Wall and Christer Norström

Mälardalen Real-Time Research Centre, Department of Computer Engineering

Mälardalen University, Västerås, Sweden
{anders.wall, christer.norstrom}@mdh.se

Abstract: This paper proposes a component model suitable for use in the development of
embedded real-time systems where resources, such as memory and CPUs, usually are
very limited. A precise sematics for this model is defined. A precise semantics is
necessary to enable architectural analysis of systems specified with such a model. A
typical example of such analyses is scheduling where the temporal correctness is verified.
The model is constructed with software product-lines in mind. Thus an essential part is
how to specify and verify flexibility in the components. The model proposed in this paper
is also independent from its infrastructure, i.e. operating system. This since the model
makes no assumptions about its environment with regards to task models and component
infrastructures such as name servers or object request brokers. Copyright© 2001 IFAC

Keywords: architectures, components, embedded systems, systems design, real-time

1. INTRODUCTION

Product line architectures are an important research
area in software engineering since time to market is
becoming more and more essential to make the
business successful. For example, delaying an
introduction of a new mobile phone on the market
may cause huge income losses and loss of market
shares. The basic idea behind product line
architectures is to create a generic architecture that
can be tailored for different members of a product
family (Dikel, et al., 1996; Bosch, 2000). The
tailoring can be achieved by parameterization of
generic components or by provide specific
implementation for non-generic parts. Components
that must be specifically implemented for a product
will be referred to as abstract components. To use
this concept for non real-time systems is a
challenge, and an even bigger challenge is to
employ this concept for embedded real-time
systems that most often are implemented on
hardware that is very limiting in terms of memory-
and computational resources. Thus, the component
infrastructure provided by industrial state-of-the-art,

e.g. CORBA, Jini, DCOM, cannot be used. Only the
component-based software engineering philosophies
can be adopted in the small- embedded real-time
systems community.

To be able to adopt the product-line architecture
approach in real-time systems it requires that the
component model support the specification of real-
time attributes. Furthermore, the component model
must also support specification of timing attributes
both on concrete and abstract components. The
reason for requiring support for specification of
timing constraints on abstract components is to
facilitate early analysis of the temporal behavior.
Detecting design flaws early in the development and
especially timing errors is important to avoid costly
re-design in late phases of the project. A component
model with a precise syntax and semantic does not
only support analysis at different stages, it also
enables the development of tools that can generate
code automatically.

The first objective in this paper is to present
semantics for a component model that facilitates a

component based development of embedded real-
time systems, based on the product line architecture
concept. Such a component model constitutes the
core entity in the architectural description language
that facilitates the management and generation of
component based real-time system. However, no
syntax is presented. A possible syntactical
implementation is the widely spread, and well-
known UML language. The graphical syntax used
in this paper is for the clarification of concepts only.
The second objective in this paper is a comparison
of the expressiveness of our semantics and the
semantics of existing components models such as
port-based objects and IEC-1131.

Before describing the specific contribution of this
paper, two existing component models for
embedded systems will be briefly described, port-
base objects (Stewart, et al., 1997), and IEC 1131
(IEC, 1995). Neither port-based objects nor IEC
1131 do have explicit support for early timing
analysis. Further, none of the models are developed
with the objective to support the product line
architecture approach. However, both models
provide good support for structural reuse without
considering the real-time behavior.

The Port-based object approach (PBO) was
developed at the Advanced Manipulators
Laboratory at Carnegie Mellon University. The
model is based upon the development of domain-
specific components that maximizes usability,
flexibility and predictable temporal behavior.
Independent tasks are the bases for the PBO model.
Independent tasks are not allowed to communicate
with other components, and thus components are
loosely coupled and are consequently, at least in
theory, easy to reuse. Although a system consisting
of only independent components does not exist,
minimization of synchronization and
communication among components is a desired
design goal. The data flow is specified through in-
and out-ports. Whenever a PBO needs data for its
computation, it reads the most recent information
from its in-ports without knowing about the
producer of that data. When a PBO component
wants to make information available for other
components in a system, its data is stored on the
out-ports. In order to make PBO components more
flexible and reusable a parameterization interface is
provided. Through a parameterization interface
several different application specific behaviors can
be implemented by one single component. Besides
the data interface and the parameterization interface
discussed above, each PBO has an I/O interface. In
figure 1, a PBO is depicted.

IEC 1131 is standard for programmable control
systems and a set of associated tools e.g.,
debuggers, test tools, programming languages. The
part of IEC 1131 related to our work is concerned
with the programming language and is referred to as

IEC 1131-3. IEC 1131-3 structures an application
hierarchical and provides mechanisms for executing
an application and for communication. The model is
shown in figure 2.

Port-based object

Variable
input
ports

Variable
ouput
ports

Resource ports for
communicat ion with sensors and
actuators

Configurat ion parameters

Fig. 1 Port-based objects

A configuration in IEC 1131 encapsulates all
software for an application. In a distributed system
several configurations allocated on different nodes
may communicate with each other. A configuration
consists of one or several resources that provide the
computational mechanisms. A program is written in
any of the languages proposed in the standard, i.e.
Instruction Lists, assembly languages, structured text
that is a high level language similar to Pascal, ladder
diagrams, or function block diagrams (FBD). Ladder
diagrams and FBD are graphical programming
languages and where FBD is the most relevant for
component-based development of embedded
systems. Like in PBO, data-flow is specified in IEC
1131 function blocks by connecting in-ports and out-
ports. Out-ports contains the result from a
computation based on inputs and the current state of
the function block. Furthermore, real-time tasks can
be associated with a function block. Tasks can either
be periodic or event-driven. Communication between
function blocks within in the same program is
straightforward whereas communication between
function blocks in different programs is supported by
special mechanisms.

Global and direct variables

Access path

Execution
control path

Variable
access path

FB
Task

Program Program

FB FB

Task

Program

Task

Program

FB FB

Task

Resource Resource

Configuration

Communication Function

Function
Block

Variable

Fig. 2 IEC 1131-3 function blocks

Both PBO and FBD can be considered as special
cases of the component model presented in this
paper. By parameterization and task assignment our
component model can express the very same

properties. Thus, it is more general and expressive.
We also introduce the concept of abstract
components as a way to specify variability.
Furthermore, more complex temporal requirements
can be specified in our model.

A component is considered as a description of an
encapsulation of services, defined in terms of its
interfaces and its services. Encapsulated services
can be implemented in any ordinary programming
language, whereas the component is implemented in
a specific component description language.
Components can be hierarchically composed.
Consequently, a component may encapsulate other
components, sub-components. We will refer to such
a construction as an aggregation, which is the very
same terminology used in DCOM. The
encapsulation of an aggregated component is
somewhat broken as its interfaces may become
visible in the component’s interface.

A component in our framework can resides in one
out of three different states, abstract component,
concrete component and component instance. The
different states are depicted in figure 3. Concrete
components and abstract components are both
descriptions of encapsulations. However, an
abstract component has an interface but no
implementation of the behavior. The reason for
having abstract components is to enable
specification of components whose behavior must
be tailored when reused across different
applications. However, their interfaces are fixed.

A system is then generated according to the
component and their interconnections. When
generating a component instance, the component is
dissolved into ordinary tasks and entry functions
that can execute in any real-time operating system
that supports the task model of the component.
Thus, no special component infrastructure is needed
in contrast to, e.g. CORBA. Tasks are defined in the
control interface, whereas the entry functions
correspond to the services.

A task is the architectural construction that defines
the temporal constraints under which components
executes. Concrete components together with tasks
and parameterization defines the behavior, both
functionalwise and temporalwise, for a concrete
component.

The remainder of this paper is outlined as follows. In
Section 2, the formal semantics of our component
model is described. Section 3 discusses how systems
are built based on instances of our components. An
example of how this is done is also provided. Finally
conclusions and future work is discussed in Section
5.

Abstract
component

Concrete
component

Component
instance

Implementation of
interfaces

Parameterization and
code generation from
component and task
description

Component description
language, services and
tasks

Tasks and entry
functions

Fig. 3 Component states

2. THE COMPONENT MODEL

In this section we will describe our component model
suitable for embedded real-time systems. The
component model is based on the port-based object
concept. Ports constitute the data interface for
components as they define what data the component
expects and the data it produces. However, port-
based objects exhibit an overwrite semantics while
our ports also can have buffered semantics. Besides
having data interfaces, components in our framework
have two additional interfaces, control interface, and
parameterization interface. The execution of, and
synchronization among services in a component is
controlled through its control interface. The
parameterization interface defines the points of
variation of a component’s behavior.

Moreover, components can be hierarchically
composed, thus a component may encapsulate one or
several other components. Furthermore, components
can be either concrete or abstract. A concrete
component, in its smallest constituent, encapsulates a
service or other concrete components. An abstract
component on the other hand, exists as a design
entity only. The abstract component indicates that
when the component is reused, the service it
encapsulates must be rewritten, i.e. tailored for its
new environment.

Definition 1. A component Χ is a tuple
<ID(Χ),IC(Χ),IP(Χ),F(Χ),C(X), sΧ.>, where ID(Χ) is
the data interface, IC(Χ) is the control interface, IP(Χ)
is the a parameterization interface, F(Χ) = {f1,…,,nf}is
the set of services encapsulated by component Χ,
C(X)={c1,…,cm} is the set of aggregated component
encapsulated by component Χ, and sΧ is the state.
 �

 F(C(X))

F(X)

service
aggregated
component

component

inport outport

sx
state

Fig. 4 The component's structure

A component’s state can be internal variables
whose values are kept intact between subsequent
executions. The state may change value due to
being manipulated by the services encapsulated by
the component. Moreover, a components state is a
composition of its own state, i.e. internal variables,
and all states of the components it encapsulates, i.e.
aggregated components.

Definition 2. A state is a persistent property that
only can be changed by the services in a
component. The state Sx of component Χ, is the
recursive composition of all aggregated components
states. Sx = sx × S(C(X), where Sx is the composed
state of component X, sx is the state contribution
from X and S(C(X) is the set containing the states
for all aggregated components.

 �

The main difference between services and
components is that components have a state.

2.1 Data interface
The data interface defines the input to, and the
output from a component. We refer to input and
output as ports and one data interface can consist of
several such ports. Ports can exhibit two different
semantics, overwriting semantic and buffering
semantics. When overwriting semantics is specified,
data consumers with a frequency lower than the
producers might miss some data provided by the
producer. On the contrary, if buffered semantics is
specified data can be consumed in the pace of the
consumer as long as the buffer is sufficiently large.
Syntactically, the data interface specifies all ports
in, and out from a component, each ports semantics,
and the mapping from each port to the services in
the component, or aggregated component, which
require them.

Definition 3. A data interface for component Χ, is
a set of in ports IID(Χ) and a set of out ports,
IOD(Χ). Each f∈F(Χ) ∪ F(C(Χ)) is a function
inn×…×inm×sΧ→outi×…× outj×sΧ’, where
inn,…,inm∈ IID(Χ),outi,…,out∈ IOD(Χ), sΧ is the
state and sΧ’ is the updated state.

 �

out1

in1

in2

inn

inm

outj F(C(X))

F(X)

inport outport

Fig. 5 A components data interface

Out ports may be associated with several services or
aggregated components encapsulated by the
component. However, only one encapsulated service
or component can act as a data producer to an out
port in the component instance. Thus, the set of
services and components connected to an out-port are
mutually excluding each other. Component instances
is further elaborated on in Section 3.

2.2 Control interface
A components control interface specifies the
restrictions under which its computational units, i.e.
aggregated components and services, execute. The
control interface defines the execution of
computational units in terms of their temporal
behavior and in term of relations to other
computational units.

In order to control the execution of components,
services and aggregated components must be
assigned to a task. Tasks define the temporal
attributes that control the execution of components.
Depending on the scheduling strategy, the actual
attributes may vary. For instance, if the task is event-
driven, no period time is specified. As components
are “independent” from tasks, any scheduling
strategy can be applied on a component. Thus, tasks
that control the execution of components can be of
any type, i.e. periodic, sporadic or aperiodic. A task
can be associated with one or several aggregated
components and services. Each service or aggregated
component executes under restrictions imposed by its
task. If no task is assigned to the individual service or
aggregated component, they execute according to the
task associated with the component instance defined
on system level (See Section 3). If the execution of
several elements in a component is controlled by one
single task, the execution order among them submits
to the specified precedence relations. Else if no
executional relations are specified among the
elements in a component, their execution order is
non-deterministic.

Definition 4. Task(Χ) is a set of pairs �τ, x� where τ
is a task and x∈F(Χ)∪F(C(X)).

 �

However, executing constituents of a component in
random order might not be sufficient. In order to
specify the exact execution order, precedence
relations and mutex relations among services and
aggregated components is used. A precedence
relation is a transitive, binary relation among
services or aggregated components. If element A
precedes element B, then B may start its execution
earliest at the end of A’s execution.

Definition 5. Precedence(X) is a set, possibly
empty, of pairs �xi, xj� where xi precedes xj and xi,
xj ∈F(Χ)∪F(C(X))

�

Mutex is a binary, symmetric relation among
component constituents such that if x1 mutex x2,
then neither x1 nor x2 is permitted to execute while
the corresponding party, or a transitively related
party is executing.

Definition 6. Mutual(X) is a set, possibly empty, of
pairs �xi, xj� where xi mutually exclude xj and xi, xj
∈F(Χ)∪F(C(X))

 �

Now all parts of a components control interface is
defined. Consequently, the control interface itself
can be defined in Definition 7 as a tuple consisting
of task assignments, precedence relations and mutex
relations.

Definition 7. A control interface for component Χ,
is a tuple IC(Χ), where IC(Χ)=�Task(Χ),
Precedence(X), Mutual(X) �.

 �

out1

in1

in2

inn

inm

outj C

f

τ1 τ2

g

f precede C
f mutex g

Fig. 6 The control interface

As definition 5 and definition 6 suggest,
synchronization among execution entities is
specified within the scope of components, i.e.
among services and aggregated objects. Section 3
discusses component instances and systems that are
composed of components. On the system level it is
possible to specify synchronization among
components. Consequently, synchronization may
not take place between a component and an
aggregated component or encapsulated service.

So far, specification of the temporal behavior of
components with tasks has been discussed. However,
tasks do not specify the execution time of
components. The execution time for a component is
dependent on the services it encapsulates. Thus the
execution time is specified per service. As services
not always are completely implemented, e.g. abstract
components or components at design-time, the
execution time usually specifies the budget that must
be adhered to by the service.

Definition 8. F(Χ) is a set of services encapsulated
by component Χ . Each element in F(Χ) is a pair
�fi, ti� where fi is a service and ti is the service’s
execution time or its time budget.

 �

2.3 Parameterization interface
The parameterization interface defines the points
where the behavior of an implemented component
can be varied between uses. Such a point is referred
to as a variation point. In Section 2.2 was the control
interface that provides variability through the task
independence discussed, i.e. the constraints under
which a component executes can be varied. However,
through a components parameterization interface,
behavior and structure of a component can be varied.
The constituents in a component instance, i.e.
services and aggregated components that are present
in the actual component instance, define a
component’s structure. The behavior of a component
is defined by the parameterization of each aggregated
component and service that is part of the components
structure. As in-ports, discussed in Section 2.1,
determines the dynamic behavior of a service in
terms of the calculated result, the behavioral
parameterization statically specifies the behavior.

As an example, consider a navigation component for
an autonomous vehicle. Depending on the type of
sensor, e.g. infrared sensor, bump sensor, radio, the
algorithm for calculating and presenting sensor
values to the rest of the system will vary quit
radically.

Definition 9. A parameterization interface for
component Χ , Ip(Χ) is a set of tuples �ci,Pi�, where ci
is a service or aggregated component defining the
component structure and Pi is the set of parameters
specifying its behavior.

 �

3. SYSTEMS AND COMPONENT INSTANCES

As discussed in Section 1, components are
distinguished from instances of components. An
instance of a component is a function of a concrete
component and its parameters. Consequently,
component instances consist of fully implemented
entities. Moreover, more than one service or

aggregated component can produce data on the
same out-port in a component. In component
instances such conflicts are resolved through the
structural parameterization. Basically, every
producer of data to the same out-port mutually
excludes each other.

Definition 10. An instance of component Χ,
Instance(Χ), is a concrete component with
structural and behavioral parameterization and task
assignments

 �
A system consists of a set of component instances
and their interconnections. A system describes the
software architecture that implements functional-
and quality requirements of an application.
Component interconnections define control-flow
and data-flow through an application. Data-flow is
specified by connecting in-ports and out-ports in a
consistent manner. By consistent is meant that all
present in-ports are provided a data producer, i.e. an
out-port. The control-flow is considered consistent
if all computational entities, i.e. services and
aggregated components, in a component are
assigned a task. Moreover, if components in a
system require synchronization among each other,
i.e. precedence and mutually exclusion, this also is
specified at system level. As a consequence, all
elements of a component will obey the restrictions
imposed by the specified synchronization.
However, as discussed in Section 2.2,
synchronization may also be specified among
computational elements within a component. The
component level synchronization will by obeyed by
computational elements within a component when
the component is allowed to execute according to
the system level synchronization. Hence,
synchronization is hierarchically specified.

4. A COMPARISON OF THE MODELS

In this section is the expressiveness of the proposed
component model compared to port-based objects
and IEC1131 in order to show that it is capable of
specifying the same properties and in some cases,
show that the semantics is more expressive. The
comparison is made based on the constructions for
which a semantic was specified in this paper, i.e.
hierarchical composition, flexibility, temporal
constraints, synchronization. It will be shown that
the proposed model can express the same properties
as both IEC 1131 and the port-based object model.
However, our model is more expressive when it
comes to specification of temporal attributes and
synchronization. The notion of abstract components
is also unique. When it comes to communication,
both IEC 1131 and port-based objects have some
explicit constructions specified. In our model
communication among components can be
implicitly specified through, for instance, shared

memory protected by a semaphore, i.e. mutual
exclusion.

4.1 Hierarchical composition
Hierarchical composition of component is essential
for building reusable components of convenient size.
A hierarchical approach, i.e. the possibility to specify
aggregated component, support this by combining
several smaller components with a unified and single
interface to the rest of the system. As described in
Section 2, our model comprises the concept of
aggregated components. In the IEC 1131 standard, a
function block can be composed by several other
function blocks. Thus, IEC 1131 also can express
hierarchical composition. Port-based objects on the
other hand, have no such concept. Typically such
components get to small to be practically useful in an
industrial software reuse oriented organization.

4.2 Specification of variation points
Beside the possibility of having components of
suitable size, requirements on their behavior and
characteristics may vary between uses in different
products in a product-line. This variation is
accomplished through the parameterization interface
and the concept of abstract components in our model.
Through the parameterization interface, the behavior
can be varied without violating the encapsulating of
the component, whereas abstract components specify
the need for a possible specialized implementations
in a reuse situation. The port-based object model also
has a parameterization interface. But there is no
equivalent to our abstract components. Thus, in cases
where only a common interface can be specified in
the product-line architecture, port-based objects will
fail to do so. In IEC 1131, there is no means for
specifying flexibility explicitly, although one may
solve this by using ordinary input-data to a function
block as a constant that specify some variable
property.

4.3 Specification of temporal constraints
The temporal constrains on a real-time system is of
vital importance since correctness of such systems is
defined to be both functional- and temporal
correctness. Furthermore, as many parameters as
possible is desirable when tuning the temporal
behavior since this will minimize the semantic gap
between the high-level temporal requirements and
the task model provided by a real-time operating
system, i.e. the infrastructure. As the infrastructure
may vary between subsequent reuses, and thus the
task model, components are required to be fairly
independent from the actual temporal attributes, e.g.
period time, deadline, offset. In our model,
components are completely independent from the
task models; there is only a relation between tasks
and component or services in order to specify the

temporal constraints under which it must execute.
IEC 1131 have a similar approach. However, the
temporal attributes are restricted to a very small
number and they are quite simple. Typically they
specify a period time and priorities. The port-based
object model is equally weak on the ability to
express temporal constraints. But here are the
temporal attributes, i.e. the period time in case of
periodic execution, specified in the actual
components. Thus, it is hard to use this model in an
infrastructure that differs from the one intended for
the component.

Generally, both IEC 1131 and port-based objects
have quit tight coupling to a specific infrastructure,
whereas our proposed model makes very few
assumptions about the environment in which it will
execute.

4.4 Specification of synchronization
Synchronization is an essential part of
implementing the temporal requirements of a real-
time system. In our model mutual exclusion
between components and services can be specified.
Moreover, precedence relations specify and control
the order in which components are executed. In IEC
1131, there is a semaphore concept that can
implement a mutual exclusion relation, but there is
no equivalence to the precedence concept. In the
port-based object model, the concept of
synchronization among components is not defined.
This is a major shortcoming of the models when
they are used in large and complex systems.

5. CONCLUSIONS

In this paper is a component model suitable for use
in the development of embedded real-time systems
proposed. The model is particular suitable for
systems where resources such as computational
power and memory are very limited. A precise
sematics for this model is defined. A precise
semantics is necessary to enable architectural
analysis of systems specified with such a model. A
typical example of such analyses is scheduling
where the temporal correctness is verified. The
model is constructed with software product-lines in
mind. Thus an essential part is how to specify
flexibility in the components. The proposed model
has been compared with two existing models, IEC
1131 and the port-based object model. The
comparison shows that our model is as expressive
as both of them are, but it extends the possibilities
of specifying temporal properties as well as
specifying synchronization. Furthermore, the model
proposed in this is also independent from its
infrastructure, i.e. operating system. This since the
model makes no assumptions about its environment
with regards to task models and component

infrastructures such as name servers or object request
brokers.

As future work we will implement our model and
integrate it into a framework for designing software
product-line architectures. The actual syntax has not
yet been decided. However, we will investigate the
possibility to use the industrial de facto standard
UML (Stevens and Pooley, 1999). Being a language
for specification of embedded real-time systems, we
must look into the problem of specifying temporal-
and resource constraints, e.g. memory consumption,
CPU consumption. Preferably, we would like to
assign budgets to components that all parts of a
component that is part of its execution in a particular
product instance must adhere to.

6. REFERENCES

Bosch J. (1999). Product-Line Architectures in
Industry: A Case Study, In: Proceedings of the
international conference on Software engineering,
pp. 544 – 554,

Dikel, D., Kane D., Ornburn S., Loftus W., and
Wilson J. (1996). Applying Software Product-
Line Architecture. IEEE Computer, 30, Nr 8. pp
49-55,

International Electrotechnical Commision,
(1995). Application and Implementation of IEC
1131-3

Stevens P., and Pooley R., (1999). Using UML –
Software Engineering with Objects and
Components, Addison-Wesley

Stewart D. B., Volpe R. A., Khosla P. K., (1997).
Design of Dynamically Reconfigurable Real-
Time Software Using Port-Based Objects, IEEE
Transactions on Software Engineering, 23, Nr. 12

