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Abstract: This paper proposes a component model suitable for use in the development of 
embedded real-time systems where resources, such as memory and CPUs, usually are 
very limited. A precise sematics for this model is defined. A precise semantics is 
necessary to enable architectural analysis of systems specified with such a model. A 
typical example of such analyses is scheduling where the temporal correctness is verified. 
The model is constructed with software product-lines in mind. Thus an essential part is 
how to specify and verify flexibility in the components. The model proposed in this paper 
is also independent from its infrastructure, i.e. operating system. This since the model 
makes no assumptions about its environment with regards to task models and component 
infrastructures such as name servers or object request brokers. Copyright© 2001 IFAC 
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1. INTRODUCTION 

Product line architectures are an important research 
area in software engineering since time to market is 
becoming more and more essential to make the 
business successful. For example, delaying an 
introduction of a new mobile phone on the market 
may cause huge income losses and loss of market 
shares. The basic idea behind product line 
architectures is to create a generic architecture that 
can be tailored for different members of a product 
family (Dikel, et al., 1996; Bosch, 2000). The 
tailoring can be achieved by parameterization of 
generic components or by provide specific 
implementation for non-generic parts. Components 
that must be specifically implemented for a product 
will be referred to as abstract components. To use 
this concept for non real-time systems is a 
challenge, and an even bigger challenge is to 
employ this concept for embedded real-time 
systems that most often are implemented on 
hardware that is very limiting in terms of memory- 
and computational resources. Thus, the component 
infrastructure provided by industrial state-of-the-art, 

e.g. CORBA, Jini, DCOM, cannot be used. Only the 
component-based software engineering philosophies 
can be adopted in the small- embedded real-time 
systems community. 

To be able to adopt the product-line architecture 
approach in real-time systems it requires that the 
component model support the specification of real-
time attributes. Furthermore, the component model 
must also support specification of timing attributes 
both on concrete and abstract components. The 
reason for requiring support for specification of 
timing constraints on abstract components is to 
facilitate early analysis of the temporal behavior. 
Detecting design flaws early in the development and 
especially timing errors is important to avoid costly 
re-design in late phases of the project. A component 
model with a precise syntax and semantic does not 
only support analysis at different stages, it also 
enables the development of tools that can generate 
code automatically.  

The first objective in this paper is to present 
semantics for a component model that facilitates a 



component based development of embedded real-
time systems, based on the product line architecture 
concept. Such a component model constitutes the 
core entity in the architectural description language 
that facilitates the management and generation of 
component based real-time system. However, no 
syntax is presented. A possible syntactical 
implementation is the widely spread, and well-
known UML language. The graphical syntax used 
in this paper is for the clarification of concepts only. 
The second objective in this paper is a comparison 
of the expressiveness of our semantics and the 
semantics of existing components models such as 
port-based objects and IEC-1131.  

Before describing the specific contribution of this 
paper, two existing component models for 
embedded systems will be briefly described, port-
base objects (Stewart, et al., 1997), and IEC 1131 
(IEC, 1995). Neither port-based objects nor IEC 
1131 do have explicit support for early timing 
analysis. Further, none of the models are developed 
with the objective to support the product line 
architecture approach. However, both models 
provide good support for structural reuse without 
considering the real-time behavior.  

The Port-based object approach (PBO) was 
developed at the Advanced Manipulators 
Laboratory at Carnegie Mellon University. The 
model is based upon the development of domain-
specific components that maximizes usability, 
flexibility and predictable temporal behavior. 
Independent tasks are the bases for the PBO model. 
Independent tasks are not allowed to communicate 
with other components, and thus components are 
loosely coupled and are consequently, at least in 
theory, easy to reuse. Although a system consisting 
of only independent components does not exist, 
minimization of synchronization and 
communication among components is a desired 
design goal. The data flow is specified through in- 
and out-ports. Whenever a PBO needs data for its 
computation, it reads the most recent information 
from its in-ports without knowing about the 
producer of that data. When a PBO component 
wants to make information available for other 
components in a system, its data is stored on the  
out-ports. In order to make PBO components more 
flexible and reusable a parameterization interface is 
provided. Through a parameterization interface 
several different application specific behaviors can 
be implemented by one single component. Besides 
the data interface and the parameterization interface 
discussed above, each PBO has an I/O interface. In 
figure 1, a PBO is depicted. 

IEC 1131 is standard for programmable control 
systems and a set of associated tools e.g., 
debuggers, test tools, programming languages. The 
part of IEC 1131 related to our work is concerned 
with the programming language and is referred to as 

IEC 1131-3. IEC 1131-3 structures an application 
hierarchical and provides mechanisms for executing 
an application and for communication. The model is 
shown in figure 2. 
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Fig. 1 Port-based objects 

A configuration in IEC 1131 encapsulates all 
software for an application. In a distributed system 
several configurations allocated on different nodes 
may communicate with each other. A configuration 
consists of one or several resources that provide the 
computational mechanisms. A program is written in 
any of the languages proposed in the standard, i.e. 
Instruction Lists, assembly languages, structured text 
that is a high level language similar to Pascal, ladder 
diagrams, or function block diagrams (FBD). Ladder 
diagrams and FBD are graphical programming 
languages and where FBD is the most relevant for 
component-based development of embedded 
systems. Like in PBO, data-flow is specified in IEC 
1131 function blocks by connecting in-ports and out-
ports. Out-ports contains the result from a 
computation based on inputs and the current state of 
the function block. Furthermore, real-time tasks can 
be associated with a function block. Tasks can either 
be periodic or event-driven. Communication between 
function blocks within in the same program is 
straightforward whereas communication between 
function blocks in different programs is supported by 
special mechanisms.  
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Fig. 2 IEC 1131-3 function blocks 

 

Both PBO and FBD can be considered as special 
cases of the component model presented in this 
paper. By parameterization and task assignment our 
component model can express the very same 



properties. Thus, it is more general and expressive. 
We also introduce the concept of abstract 
components as a way to specify variability. 
Furthermore, more complex temporal requirements 
can be specified in our model. 

A component is considered as a description of an 
encapsulation of services, defined in terms of its 
interfaces and its services. Encapsulated services 
can be implemented in any ordinary programming 
language, whereas the component is implemented in 
a specific component description language. 
Components can be hierarchically composed. 
Consequently, a component may encapsulate other 
components, sub-components. We will refer to such 
a construction as an aggregation, which is the very 
same terminology used in DCOM. The 
encapsulation of an aggregated component is 
somewhat broken as its interfaces may become 
visible in the component’s interface.  

A component in our framework can resides in one 
out of three different states, abstract component, 
concrete component and component instance. The 
different states are depicted in figure 3. Concrete 
components and abstract components are both 
descriptions of encapsulations. However, an 
abstract component has an interface but no 
implementation of the behavior. The reason for 
having abstract components is to enable 
specification of components whose behavior must 
be tailored when reused across different 
applications. However, their interfaces are fixed.  

A system is then generated according to the 
component and their interconnections. When 
generating a component instance, the component is 
dissolved into ordinary tasks and entry functions 
that can execute in any real-time operating system 
that supports the task model of the component. 
Thus, no special component infrastructure is needed 
in contrast to, e.g. CORBA. Tasks are defined in the 
control interface, whereas the entry functions 
correspond to the services.  

A task is the architectural construction that defines 
the temporal constraints under which components 
executes. Concrete components together with tasks 
and parameterization defines the behavior, both 
functionalwise and temporalwise, for a concrete 
component. 

The remainder of this paper is outlined as follows. In 
Section 2, the formal semantics of our component 
model is described. Section 3 discusses how systems 
are built based on instances of our components. An 
example of how this is done is also provided. Finally 
conclusions and future work is discussed in Section 
5. 
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Fig. 3 Component states 

 

2. THE COMPONENT MODEL 

In this section we will describe our component model 
suitable for embedded real-time systems. The 
component model is based on the port-based object 
concept. Ports constitute the data interface for 
components as they define what data the component 
expects and the data it produces. However, port-
based objects exhibit an overwrite semantics while 
our ports also can have buffered semantics. Besides 
having data interfaces, components in our framework 
have two additional interfaces, control interface, and 
parameterization interface. The execution of, and 
synchronization among services in a component is 
controlled through its control interface. The 
parameterization interface defines the points of 
variation of a component’s behavior. 

Moreover, components can be hierarchically 
composed, thus a component may encapsulate one or 
several other components. Furthermore, components 
can be either concrete or abstract. A concrete 
component, in its smallest constituent, encapsulates a 
service or other concrete components. An abstract 
component on the other hand, exists as a design 
entity only. The abstract component indicates that 
when the component is reused, the service it 
encapsulates must be rewritten, i.e. tailored for its 
new environment. 

Definition 1. A component Χ is a tuple    
<ID(Χ),IC(Χ),IP(Χ),F(Χ),C(X), sΧ.>, where ID(Χ) is 
the data interface, IC(Χ) is the control interface, IP(Χ) 
is the a parameterization interface, F(Χ) = {f1,…,,nf}is 
the set of services encapsulated by component Χ, 
C(X)={c1,…,cm} is the set of aggregated component 
encapsulated by component Χ, and sΧ is the state.                       
          � 
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Fig. 4 The component's structure 

A component’s state can be internal variables 
whose values are kept intact between subsequent 
executions. The state may change value due to 
being manipulated by the services encapsulated by 
the component. Moreover, a components state is a 
composition of its own state, i.e. internal variables, 
and all states of the components it encapsulates, i.e. 
aggregated components. 

Definition 2. A state is a persistent property that 
only can be changed by the services in a 
component. The state Sx of component Χ, is the 
recursive composition of all aggregated components 
states. Sx = sx × S(C(X), where Sx is the composed 
state of component X,  sx is the state contribution 
from X and  S(C(X) is the set containing the states 
for all aggregated components. 

      � 

The main difference between services and 
components is that components have a state.  

2.1 Data interface  
The data interface defines the input to, and the 
output from a component. We refer to input and 
output as ports and one data interface can consist of 
several such ports. Ports can exhibit two different 
semantics, overwriting semantic and buffering 
semantics. When overwriting semantics is specified, 
data consumers with a frequency lower than the 
producers might miss some data provided by the 
producer. On the contrary, if buffered semantics is 
specified data can be consumed in the pace of the 
consumer as long as the buffer is sufficiently large. 
Syntactically, the data interface specifies all ports 
in, and out from a component, each ports semantics, 
and the mapping from each port to the services in 
the component, or aggregated component, which 
require them. 

Definition 3. A data interface for component Χ, is 
a set of in ports IID(Χ) and a set of out ports, 
IOD(Χ). Each f∈F(Χ) ∪ F(C(Χ)) is a function 
inn×…×inm×sΧ→outi×…× outj×sΧ’, where 
inn,…,inm∈ IID(Χ),outi,…,out∈ IOD(Χ), sΧ is the 
state and sΧ’ is the updated state.                        

                                             � 
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Fig. 5 A components data interface 

Out ports may be associated with several services or 
aggregated components encapsulated by the 
component. However, only one encapsulated service 
or component can act as a data producer to an out 
port in the component instance. Thus, the set of 
services and components connected to an out-port are 
mutually excluding each other. Component instances 
is further elaborated on in Section 3.  

2.2 Control interface 
A components control interface specifies the 
restrictions under which its computational units, i.e. 
aggregated components and services, execute. The 
control interface defines the execution of 
computational units in terms of their temporal 
behavior and in term of relations to other 
computational units.  

In order to control the execution of components, 
services and aggregated components must be 
assigned to a task. Tasks define the temporal 
attributes that control the execution of components. 
Depending on the scheduling strategy, the actual 
attributes may vary. For instance, if the task is event-
driven, no period time is specified. As components 
are “independent” from tasks, any scheduling 
strategy can be applied on a component. Thus, tasks 
that control the execution of components can be of 
any type, i.e. periodic, sporadic or aperiodic. A task 
can be associated with one or several aggregated 
components and services. Each service or aggregated 
component executes under restrictions imposed by its 
task. If no task is assigned to the individual service or 
aggregated component, they execute according to the 
task associated with the component instance defined 
on system level (See Section 3). If the execution of 
several elements in a component is controlled by one 
single task, the execution order among them submits 
to the specified precedence relations. Else if no 
executional relations are specified among the 
elements in a component, their execution order is 
non-deterministic.  

Definition 4. Task(Χ) is a set of pairs �τ, x� where τ 
is a task  and x∈F(Χ)∪F(C(X)). 

   � 



However, executing constituents of a component in 
random order might not be sufficient. In order to 
specify the exact execution order, precedence 
relations and mutex relations among services and 
aggregated components is used. A precedence 
relation is a transitive, binary relation among 
services or aggregated components. If element A 
precedes element B, then B may start its execution 
earliest at the end of A’s execution. 

Definition 5. Precedence(X) is a set, possibly 
empty, of pairs �xi, xj� where xi precedes xj and xi,  
xj ∈F(Χ)∪F(C(X)) 

   
� 

Mutex is a binary, symmetric relation among 
component constituents such that if x1 mutex x2, 
then neither x1 nor x2 is permitted to execute while 
the corresponding party, or a transitively related 
party is executing. 

Definition 6. Mutual(X) is a set, possibly empty, of 
pairs �xi, xj� where xi mutually exclude xj and xi, xj 
∈F(Χ)∪F(C(X)) 

     � 

Now all parts of a components control interface is 
defined. Consequently, the control interface itself 
can be defined in Definition 7 as a tuple consisting 
of task assignments, precedence relations and mutex 
relations. 

Definition 7. A control interface for component Χ, 
is a tuple IC(Χ), where IC(Χ)=�Task(Χ), 
Precedence(X), Mutual(X) �. 

         � 
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Fig. 6 The control interface 

As definition 5 and definition 6 suggest, 
synchronization among execution entities is 
specified within the scope of components, i.e. 
among services and aggregated objects. Section 3 
discusses component instances and systems that are 
composed of components. On the system level it is 
possible to specify synchronization among 
components. Consequently, synchronization may 
not take place between a component and an 
aggregated component or encapsulated service.  

So far, specification of the temporal behavior of 
components with tasks has been discussed. However, 
tasks do not specify the execution time of 
components. The execution time for a component is 
dependent on the services it encapsulates. Thus the 
execution time is specified per service. As services 
not always are completely implemented, e.g. abstract 
components or components at design-time, the 
execution time usually specifies the budget that must 
be adhered to by the service. 

Definition 8. F(Χ) is a set of services encapsulated 
by component Χ . Each element in F(Χ) is a pair  
�fi, ti� where fi is a service and ti is the service’s 
execution time or its time budget.  

   � 

2.3 Parameterization interface 
The parameterization interface defines the points 
where the behavior of an implemented component 
can be varied between uses. Such a point is referred 
to as a variation point. In Section 2.2 was the control 
interface that provides variability through the task 
independence discussed, i.e. the constraints under 
which a component executes can be varied. However, 
through a components parameterization interface, 
behavior and structure of a component can be varied. 
The constituents in a component instance, i.e. 
services and aggregated components that are present 
in the actual component instance, define a 
component’s structure. The behavior of a component 
is defined by the parameterization of each aggregated 
component and service that is part of the components 
structure. As in-ports, discussed in Section 2.1, 
determines the dynamic behavior of a service in 
terms of the calculated result, the behavioral 
parameterization statically specifies the behavior.  

As an example, consider a navigation component for 
an autonomous vehicle. Depending on the type of 
sensor, e.g. infrared sensor, bump sensor, radio, the 
algorithm for calculating and presenting sensor 
values to the rest of the system will vary quit 
radically.  

Definition 9. A parameterization interface for 
component Χ , Ip(Χ) is a set of tuples �ci,Pi�, where ci 
is a service or aggregated component defining the 
component structure and Pi is the set of parameters 
specifying its behavior.  

    � 

 

3. SYSTEMS AND COMPONENT INSTANCES 

As discussed in Section 1, components are 
distinguished from instances of components. An 
instance of a component is a function of a concrete 
component and its parameters. Consequently, 
component instances consist of fully implemented 
entities. Moreover, more than one service or 



aggregated component can produce data on the 
same out-port in a component. In component 
instances such conflicts are resolved through the 
structural parameterization. Basically, every 
producer of data to the same out-port mutually 
excludes each other.  

Definition 10. An instance of component Χ, 
Instance(Χ), is a concrete component with 
structural and behavioral parameterization and task 
assignments   

 � 
A system consists of a set of component instances 
and their interconnections. A system describes the 
software architecture that implements functional- 
and quality requirements of an application. 
Component interconnections define control-flow 
and data-flow through an application. Data-flow is 
specified by connecting in-ports and out-ports in a 
consistent manner. By consistent is meant that all 
present in-ports are provided a data producer, i.e. an 
out-port. The control-flow is considered consistent 
if all computational entities, i.e. services and 
aggregated components, in a component are 
assigned a task. Moreover, if components in a 
system require synchronization among each other, 
i.e. precedence and mutually exclusion, this also is 
specified at system level. As a consequence, all 
elements of a component will obey the restrictions 
imposed by the specified synchronization. 
However, as discussed in Section 2.2, 
synchronization may also be specified among 
computational elements within a component. The 
component level synchronization will by obeyed by 
computational elements within a component when 
the component is allowed to execute according to 
the system level synchronization. Hence, 
synchronization is hierarchically specified. 

 

4. A COMPARISON OF THE MODELS 

In this section is the expressiveness of the proposed 
component model compared to port-based objects 
and IEC1131 in order to show that it is capable of 
specifying the same properties and in some cases, 
show that the semantics is more expressive. The 
comparison is made based on the constructions for 
which a semantic was specified in this paper, i.e. 
hierarchical composition, flexibility, temporal 
constraints, synchronization. It will be shown that 
the proposed model can express the same properties 
as both IEC 1131 and the port-based object model. 
However, our model is more expressive when it 
comes to specification of temporal attributes and 
synchronization. The notion of abstract components 
is also unique. When it comes to communication, 
both IEC 1131 and port-based objects have some 
explicit constructions specified. In our model 
communication among components can be 
implicitly specified through, for instance, shared 

memory protected by a semaphore, i.e. mutual 
exclusion.  

4.1 Hierarchical composition 
Hierarchical composition of component is essential 
for building reusable components of convenient size. 
A hierarchical approach, i.e. the possibility to specify 
aggregated component, support this by combining 
several smaller components with a unified and single 
interface to the rest of the system. As described in 
Section 2, our model comprises the concept of 
aggregated components. In the IEC 1131 standard, a 
function block can be composed by several other 
function blocks. Thus, IEC 1131 also can express 
hierarchical composition. Port-based objects on the 
other hand, have no such concept. Typically such 
components get to small to be practically useful in an 
industrial software reuse oriented organization.  

4.2 Specification of variation points 
Beside the possibility of having components of 
suitable size, requirements on their behavior and 
characteristics may vary between uses in different 
products in a product-line. This variation is 
accomplished through the parameterization interface 
and the concept of abstract components in our model. 
Through the parameterization interface, the behavior 
can be varied without violating the encapsulating of 
the component, whereas abstract components specify 
the need for a possible specialized implementations 
in a reuse situation. The port-based object model also 
has a parameterization interface. But there is no 
equivalent to our abstract components. Thus, in cases 
where only a common interface can be specified in 
the product-line architecture, port-based objects will 
fail to do so. In IEC 1131, there is no means for 
specifying flexibility explicitly, although one may 
solve this by using ordinary input-data to a function 
block as a constant that specify some variable 
property.  

4.3 Specification of temporal constraints 
The temporal constrains on a real-time system is of 
vital importance since correctness of such systems is 
defined to be both functional- and temporal 
correctness. Furthermore, as many parameters as 
possible is desirable when tuning the temporal 
behavior since this will minimize the semantic gap 
between the high-level temporal requirements and 
the task model provided by a real-time operating 
system, i.e. the infrastructure. As the infrastructure 
may vary between subsequent reuses, and thus the 
task model, components are required to be fairly 
independent from the actual temporal attributes, e.g. 
period time, deadline, offset. In our model, 
components are completely independent from the 
task models; there is only a relation between tasks 
and component or services in order to specify the 



temporal constraints under which it must execute. 
IEC 1131 have a similar approach. However, the 
temporal attributes are restricted to a very small 
number and they are quite simple. Typically they 
specify a period time and priorities. The port-based 
object model is equally weak on the ability to 
express temporal constraints. But here are the 
temporal attributes, i.e. the period time in case of 
periodic execution, specified in the actual 
components. Thus, it is hard to use this model in an 
infrastructure that differs from the one intended for 
the component. 

Generally, both IEC 1131 and port-based objects 
have quit tight coupling to a specific infrastructure, 
whereas our proposed model makes very few 
assumptions about the environment in which it will 
execute. 

4.4 Specification of synchronization 
Synchronization is an essential part of 
implementing the temporal requirements of a real-
time system. In our model mutual exclusion 
between components and services can be specified. 
Moreover, precedence relations specify and control 
the order in which components are executed. In IEC 
1131, there is a semaphore concept that can 
implement a mutual exclusion relation, but there is 
no equivalence to the precedence concept. In the 
port-based object model, the concept of 
synchronization among components is not defined. 
This is a major shortcoming of the models when 
they are used in large and complex systems. 

 

5. CONCLUSIONS 

In this paper is a component model suitable for use 
in the development of embedded real-time systems 
proposed. The model is particular suitable for 
systems where resources such as computational 
power and memory are very limited. A precise 
sematics for this model is defined. A precise 
semantics is necessary to enable architectural 
analysis of systems specified with such a model. A 
typical example of such analyses is scheduling 
where the temporal correctness is verified. The 
model is constructed with software product-lines in 
mind. Thus an essential part is how to specify 
flexibility in the components. The proposed model 
has been compared with two existing models, IEC 
1131 and the port-based object model. The 
comparison shows that our model is as expressive 
as both of them are, but it extends the possibilities 
of specifying temporal properties as well as 
specifying synchronization. Furthermore, the model 
proposed in this is also independent from its 
infrastructure, i.e. operating system. This since the 
model makes no assumptions about its environment 
with regards to task models and component 

infrastructures such as name servers or object request 
brokers. 

As future work we will implement our model and 
integrate it into a framework for designing software 
product-line architectures. The actual syntax has not 
yet been decided. However, we will investigate the 
possibility to use the industrial de facto standard 
UML (Stevens and Pooley, 1999). Being a language 
for specification of embedded real-time systems, we 
must look into the problem of specifying temporal- 
and resource constraints, e.g. memory consumption, 
CPU consumption. Preferably, we would like to 
assign budgets to components that all parts of a 
component that is part of its execution in a particular 
product instance must adhere to.  
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