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Abstract. In this paper, we report on an application of
the validation and verification tool kit UPPAAL in the de-
sign and analysis of a prototype gear controller, carried
out in a joint project between industry and academia.
We give a detailed description of the formal model of the
gear controller and its surrounding environment, and its
correctness formalised according to the informal require-
ments delivered by our industrial partner of the project.
The second contribution of this paper is a solution to the
problem we met in this case study, namely how to use a
tool like UPPAAL, which only provides reachability anal-
ysis to verify bounded response time properties. The ad-
vantage of our solution is that we need no additional im-
plementation work to extend the existing model-checker,
but simple manual syntactical manipulation on the sys-
tem description.

1 Introduction

Over the past few years, a number of modeling and veri-
fication tools for real-time systems [5, 6, 7] have been de-
veloped based on the theory of timed automata [3]. They
have been successfully applied in various case-studies [4,
9, 11]. However, the tools have been mainly used in the
academic community, namely by the tool developers. It
has been a challenge to apply these tools to real-sized
industrial case-studies. In this paper we report on an ap-
plication of the verification tool-kit UPPAAL to a proto-
type gear controller developed in a joint project between
industry and academia. The project has been carried out
in collaboration between Mecel AB and Uppsala Univer-
sity.

The gear controller is a component in the real-time
embedded system that operates in a modern vehicle. The
gear-requests from the driver (or a dedicated component
implementing a gear change algorithm) are delivered over
a communication network to the gear controller. The

controller implements the actual gear change by actuat-
ing the lower level components of the system, such as the
clutch, the engine, and the gear-box. Obviously, the be-
havior of the gear controller is critical to the safety of the
vehicle. Simulation and testing have been the traditional
ways to ensure that the behavior of the controller satis-
fies certain safety requirements. However these methods
are by no means complete in finding errors though they
are useful and practical. As a complement, formal tech-
niques have been a promising approach to ensuring the
correctness of embedded systems. The project is to use
formal modeling techniques in the early design stages
to describe design sketches, and to use symbolic simu-
lators and model checkers as debugging and verification
tools to ensure that the predicted behavior of the de-
signed controller at each design phase, satisfies certain re-
quirements under given assumptions on the environment
where the gear controller is supposed to operate (i.e. the
clutch, the engine, the gearbox, etc.). The requirements
on the controller and assumptions on the environment
have been described by Mecel AB in an informal doc-
ument, and then formalised in the UPPAAL model and
a simple linear-time logic based on the UPPAAL logic to
deduce the design of the gear controller.

We shall give a detailed description of the formal
model of the gear controller and its surrounding envi-
ronment, and its correctness according to the informal
requirements delivered by Mecel AB. Another contribu-
tion of this paper is a lesson we learnt in this case study,
namely how to use a tool like UPPAAL, which only pro-
vides reachability analysis to verify bounded response
time properties e.g. if f; (a request) becomes true at
a certain time point, f, (a response) must be guaran-
teed to be true within a time bound. We present a logic
and a method to characterise and model-check response
time properties. The advantage of this approach is that
we need no additional implementation work to extend
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the existing model-checker, but simple manual syntacti-
cal manipulation on the system description.

UpPAAL! is a tool suite for validation and symbolic
model-checking of real-time systems. It consists of a num-
ber of tools including a graphical editor for system de-
scriptions, a graphical simulator, and a symbolic model-
checker. In the design phase the symbolic simulator of
UPPAAL is applied intensively to validate the dynamic
behavior of each design sketch, in particular for fault
detection, derivation of time constraints (e.g. the time
bounds for which a gear change is guaranteed) and later
also for debugging using diagnostic traces (i.e. counter
examples) generated by the model-checker. The correct-
ness of the gear controller design has been established by
automatic proofs of 47 logical formulas derived from the
informal requirements specified by Mecel AB. The ver-
ification was performed in a few seconds on a Pentium
PC 2 running UPPAAL.

Related to the approach of checking bounded response
time properties presented in this paper is the work on
reachability testing due to Aceto et.al. [9, 1, 2]. In their
approach, a logical formula of a safety and bounded-
liveness logic is transformed into a testing automaton
which is composed in parallel with the system descrip-
tion to check the validity of the formula by reachability
analysis®. This may seems more attractive as no syntac-
tical manipulations of the system description seem to be
required. However, in practice it is often the case that
the system description indeed must be manipulated to
make all the system actions appearing in the logical for-
mulae visible to the testing automaton. The reachability
testing approach also requires some actions of the system
description to be urgent (i.e. to be taken as early as possi-
ble) [1, 2]. This is not the case with our technique. In fact,
in the presented case study we verify several bounded
response time properties of the gear controller involving
non-urgent behaviors.

The paper is organised as follows: In the next sec-
tion we present a simple logic to characterise safety and
response time properties and a method to model-check
such properties. In section 5 and 6 the gear controller
system and its requirements are informally and formally
described. In section 7 the formal description of the sys-
tem and its requirements are transformed using the tech-
nique developed in section 3 for verification by reacha-
bility analysis. Section 8 concludes the paper. Finally, as
appendices, we enclose the list of requirements in the g-
format and the formal descriptions for the whole system
in the atg-format of UPPAAL.

I Further information on installation and documentation for
UPPAAL is available at http://www.uppaal.com/.

2 2.99 seconds on a Pentium 75MHz equipped with 24 MB of
primary memory.

3 The technique of reachability testing is related to the use of
“never claims” in the verification tool Spin [8].

2 Preliminaries

In this section, we briefly introduce all the necessary def-
initions for the basis of the UrPPAAL modelling language.
For details, we refer to [12, 10].

2.1 Timed Transition Systems and Timed Traces

A timed transition system is a labeled transition system
with two types of labels: atomic actions and delay actions
(i.e. positive reals), representing discrete and continuous
changes of real-time systems.

Let A be a finite set of actions and P be a set of
atomic propositions. We use R, to stand for the set of
non-negative real numbers, A for the set of delay actions
{e(d)|d € R}, and X for the union A U A ranged over
by a, a1, as etc.

Definition 1. A timed transition system over A and P
is a tuple S = (S, s9, —, V), where S is a set of states,
So is the initial state, —C S x ¥ x S is a transition
relation, and V : S — 27 is a proposition assignment
function. O

A trace o of a timed transition system is an infinite
sequence of transitions in the form:

[o 7] [e5) g Qn
O=8) —*»8 —» 82— ...8; —> Sp41---

where q; € X.

A position 7 of ¢ is a natural number. We use o[n]
to stand for the wth state of o, and o(w) for the wth
transition of o, i.e. o[r] = s and o(7) = s -2 syr41.

We use §(s — s') to denote the duration of the tran-
sition, defined by d(s —— s') = 0if a € Aor dif a =
e(d). Given positions 4,k with i < k, we use A(o,1,k)
to stand for the accumulated delay of o between the po-
sitions i, k, defined by A(o,i,k) = 32, 6(0(j)). We
shall only consider non—zeno traces.

Definition 2. A trace o is non—zeno if for any natural
number T there exists a position k such that A(c,0,k) >
T. For a timed transition system S, we denote by Tr(S)
all non—zeno traces of S starting from the initial state sg
of §. O

2.2 Timed Automata with Data Variables

We study the class of timed transition systems that can
be syntactically described by timed automata extended
with data variables ranging over finite data domains.
Assume a finite set of clock variables C ranged over
by z etc. and a finite set of data variables D ranged
over by i etc. We use V to denote the union of C and
D, ranged over by v. We use G(V) to stand for the set
of formulas ranged over by g, generated by the following
syntax: g ::= c¢ | gAg where c is a constraint of the form:
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x~nori~mnforzelC,ieD, ~{<,=2>,>}
and n being a natural number. We shall call elements of
G(V) guards. Similarily, we use I(C) to stand for the set
of conjunctivie guards of the form: z < n or z < n, and
call the elements of I(C) invariant conditions.

To manipulate clock and data variables, we use reset—
operations of the form: v := e where v is a clock or data
variable and e is an expression. A reset-operation on a
clock variable should be in the form z := 0; a reset-
operation on an integer variable is similar to an assign-
ment statement in a high-level programming language in
the form: i := e where e is an arithmethic expression®.
We call a set of such reset—operations a reset-set. A reset—
set is proper when the variables are assinged a value at
most once. We use R to denote the set of all proper
reset-sets, ranged over by 7,7’ etc.

Definition 3. A timed automaton A over actions A,
atomic propositions P, and V, is a tuple (N, lo, —, I, V),
where N is a finite set of nodes (or locations), ly is the
initial node, and —C N xG(V)x AXRx N corresponds
to the set of edges. In the case, {l, g,a,r,1'y €— we shall
write, | 225 I'. I : N — I(C) is a function which for each
node assigns an invariant condition, and V : N — 2% is
a proposition assignment function which for each node
gives a subset of atomic propositions true in the node.
We shall use P(A) to stand for the union of the subsets
of propositions true in all the nodes N of A, i.e. P(A) =

UenV(@). O

Informally, a process modelled by an automaton starts
at its initial location ly with all its variables initialized to
0. The values of the clocks increase synchronously with
time at location I. At any time, the process can change
location by following an edge I %5 I’ provided the cur-
rent values of the variables satisfy the enabling condition
g. With this transition, the variables are updated by r.

A variable assignment is a mapping which maps clock
variables C to the non-negative reals and data variables
D to integers. For a variable assignment w and a de-
lay d, véd denotes the variable assignment such that
(v@d)(z) = v(x) + d for any clock variable z and (v
d)(i)=v(i) for any integer variable . This definition of
@ reflects that all clocks operate with the same speed
and that data variables are time-insensitive. For a reset-
operation r (a set of assignment-operations) we use 7(u)
to denote the variable assignment v’ with u'(v) = V (e, u)
whenever v := e € r and u'(v') = u(v') otherwise,
where V' (e, u) denotes the value of e in u. Given a guard
g € G(V) and a variable assignment u, g(u) is a boolean
value describing whether g is satisfied by u or not.

4 For BNF definition of arithmethic expressions, we refer to the
UppPAALhome page.

2.3 Networks of Automata

To model concurrency and synchronization, we introduce
a CCS-like parallel composition operator for automata.
Assume automata A;...A,,. We use A to denote their par-
allel composition A;||...||A,. The intuitive meaning of
A is similar to the CCS parallel composition of A4;...4,
with all actions being restricted, that is, (A1||...||An)\A.
Thus only internal synchronization between the compo-
nents A; is possible. We shall call A a network of au-
tomata ®. We simply view A as a vector and use A4; to
denote its ith component.

A control vector I of a network A is a vector of loca-
tions where [; is a location of A;. We shall write [l}/l;] to
denote the vector where the ith element I; of [ is replaced
by 1.

A state of a network A is a configuration (I, u) where
1 is a control vector of A and u is a variable assignment.
The initial state of A is (ly,ug) where Iy is the initial
control vector whose elements are the initial locations of
A;’s and wyg is the initial variable assignment that maps
all variables to 0.

The semantics of a network of automata, A is defined
in terms of a timed transition system S = (S, sg, —, V)
with the set S of states being the set of configurations, sg
being the initial state i.e. (lg, ug), the proposition assign-
ment function V' is defined by V({I,u)) = U, Vi(ls),
and the transition relation defined as follows:

— (I, u)—>{{[l!/1;],ri(u)) if there exist I; € I, g;,r; such

that 1; 7225 1! and g;(u)

- <Z, u)—)(i[l;/l,, l;/lj], (T,’UT]')(’LL)) if there exist /;, l]‘ €

l; 9i,95,0,T; and Tj

. . a?.r;
such that i # j,1; %2247 g1 1, 9250 15, 9i(u), g;(u),
and ;Ur; €R

— 0w B, ued) if (1) (u + d) for all I; € 1.

Note that the timed transition system defined above
can also be represented finitely as a timed automaton. In
fact, one may effectively construct the product automa-
ton of A; ... A, such that its timed transition system is
bisimilar to S. The nodes of the product automaton is
simply the product of A;’s nodes, the invariant condi-
tions on the product nodes are the conjunctions of the
conditions on all A;’s nodes, the set of clocks is the (dis-
joint) union of A4;’s clocks, and the edges are based on
synchronizable A;’s edges with enabling conditions con-
juncted and reset-sets unioned.

Thus theoretically, there is no difference between the
notions of a timed automaton and a network of such.
However, for efficient verification, it is often not neces-
sary to construct the product automaton. We shall dis-
tinguish them only in discussing verification methods,
not when semantics aspects are concerned.

5 We shall require that P(A;) N P(A;) = 0 for all ¢ # j, that
is, no atomic proposition can be true in more than one component
automaton.
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(,vw) Egiffg(u)
Lu) Ep iff e V()
(lvu) |= _'f Zﬁ (lvu)

o E INV(f) iff Vi : O'[i]‘
i

¥~ f
Luw) E fi A fy iff (Lu) | f and (I, u) F £,

|:
ol fi~o<r fo iff Vii (ol | fi = 3k >4 (o[k] = f, and A(o,4, k) <T))

Table 1. Definition of Satisfiability.

Finally, we denote by 7r(A) all non-zeno traces of
the timed transition system S i.e. Tr(A) = Tr(S).

3 A Logic for Safety and Bounded Response
Time Properties

At the start of the project, we found that it was not so ob-
vious how to formalize (in the UPPAAL logic) the pages
of informal requirements delivered by the design engi-
neers. One of the reasons was that our logic is too simple,
which can express essentially only invariant properties.
It later became obvious that these requirements could be
described in a simple logic, which can be model-checked
by reachability analysis in combination with a certain
syntactical manipulation on the model of the system to
be verified. We also noticed that though the logic is so
simple, it characterizes the class of logical properties ver-
ified in all previous case studies where UPPAAL is applied
(see e.g. [4,9)).

3.1 Syntar and Semantics

The logic may be seen as a timed variant of a fragment
of the linear temporal logic LTL, which does not allow
nested applications of modal operators. It is designed to
express invariant and bounded response time properties.

Definition 4 (State-Formulas). Assume that C is a
set of clocks and P is a finite set of propositions. Let
Fs denote the set of state-formulas over C and P ranged
over by f, f1, f, etc. defined as follows:

Fa=glpl|flfin]fs

where p € P is an atomic proposition and g is an atomic
clock constraint in the form z ~ n or x —y ~ n for
z,y € C, ~ € {<,<,=,>,>} and n being a natural
number. 0O

As usual, we use f, V f, to stand for =(=f; A= f,), and
t and ff for =f V f and —f A f respectively. Further, we
use f; = f5 to denote =f; V f,.

Definition 5 (Trace-Formulas). The set F; ranged
over by ¢, of trace-formulas over F; is defined as fol-
lows:

@ == INV(f) | fr~<r fo

where T is a natural number. If f; and f, are boolean
combinations of atomic propositions, we call f; ~<7 f,
a bounded response time formula. O

INV(f) states that f is an invariant property. A system
satisfies INV(f) if all its reachable states satisfy f. It is
useful to express safety properties, that is, bad things
(e.g. deadlocks) should never happen, in other words,
the system should always behave safely. f, ~<1 f, is
similar to the strong Until-operator in LTL, but with
an explicit time bound. In addition to the time bound,
it is also an invariant formula. It means that as soon
as f; is true of a state, f, must be true within 7" time
units. However it is not necessary that f; must be true
continuously before f, becomes true as required by the
traditional Until-operator.

We shall call a formula of the form f;, ~<7 f, a
bounded response time formula. Intuitively, f,; may be
considered as a request and f, as a response; thus f; ~<7r
f4 specifies the bound for the response time to be 7.

We interpret F; and F; in terms of states and (infi-
nite and non-zeno) traces of timed automata. We write
(l,u) = f to denote that the state (I,u) satisfies the
state-formula f and ¢ |= ¢ to denote that the trace o
satisfies the trace-formula ¢. The interpretation is de-
fined on the structure of f and ¢, given in Table 1. Nat-
urally, if all the traces of a timed automaton satisfy a
trace-formula, we say that the automaton satisfies the
formula.

Definition 6. Assume a network of automata A and
a trace-formula . We write A = ¢ iff 0 |= ¢ for all

oceTr(A). O

4 Verifying Bounded Response Time Properties
by Reachability Analysis

The current version of UPPAAL can only model-check in-
variant properties by reachability analysis. The question
is how to use a tool like UPPAAL to check for bounded
response time properties i.e. how to transform the model-
checking problem A = f; ~<r fy to a reachability
problem. A standard solution is to translate the formula
to a testing automaton t (see e.g. [9]) and then check
whether the parallel system A||t can reach a designated
state of ¢.
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Fig. 1. Illustration of a timed automaton A.

l g A v a r

()

gNAN—v  a
rU{c:=0,v :=tt}

Fig. 2. Illustration of a modified timed automaton M(A) of A.

We take a different approach. We modify (or rather

decorate) the automaton A according to the state-formulas

f1 and f,, and the time bound 7" and then construct a
state-formula f such that

M(A) EINV(f) iff AE fi~<rfo

where M(A) is the modified version of A.

We study an example. As usual, assume that each
node of an automaton is assigned implicitly a proposi-
tion at(l) meaning that the current control node is I.
Consider an automaton A illustrated in Figure 1 and a
formula at(l1) ~<3 at(l2) (i.e. it should always reach I,
from l; within 3 time units). To check whether A satis-
fies the formula, we introduce an extra clock ¢ € C and a
boolean variable® v; into the automaton A, that should
be initiated with ff. Assume that the node !; has no lo-
cal loops, i.e. containing no edges leaving and entering
1. We modify the automaton A as follows:

1. Duplicate all edges entering node ;.

2. Add —w; as a guard to the original edges entering .

3. Add v; := tt and ¢ := 0 as reset-operations to the
original edges entering /;.

4. Add v; as a guard to the auxiliary copies of the edges
entering ;.

5. Add v, := ff as a reset-operation to all the edges
entering la.

6 Note that a boolean variable may be represented by an integer
variable in UPPAAL.

The modified (decorated) automaton M (A) is illustrated
in Figure 2. Now, we claim that

M(A) |= |NV(’I)1 =c< 3) iff A '= at(ll) <3 at(lz)

The invariant property v; = ¢ < 3 states that either
—wy or if v; then ¢ < 3. There is only one situation that
violates the invariant: v; and ¢ > 3. Due to the progress
property of time (or non-zenoness), the value of ¢ should
always increase. It will sooner or later pass 3. But if I5 is
reached before ¢ reaches 3, v; will become ff. Therefore,
the only way to keep the invariant property true is that
l5 is reached within 3 time units whenever [; is reached.

The above method may be generalized to efficiently
model-check response time formulas for networks of au-
tomata. Let P(f) denote the set of atomic propositions
occurring in a state-formula f. Assume a network A and
a response time formula f; ~»<r f,. For simplicity, we
consider the case when only atomic propositions occur in
f1 and f,. Note that this is not a restriction, the result
can be easily extended to the general case which also al-
lows clock constraints in f; and f,. We introduce to A
the following auxiliary variables:

1. an auxiliary clock ¢ € C and an boolean variable vy
(to denote the truth value of f,), and
2. an auxiliary boolean variable v, for all p € P(f;) U

P(f2)-

Assume that all the booleans of P(f,), P(f,) and v; are
initiated to ff.
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gA—AE(f)[tt/vplp eV ()]

a

l ﬂ{c = 0,0 =t} U {v,:=ttlpeV (I

g\ a T

gA—01 AE(f1)[t/vplp eV (L)] d

rU{v,:=tlpeV ()}

r'U{v, :=fflpe V(l)}

Fig. 3. Ilustration of the decorated version M(A;) of A;.

Let £(f) denote the boolean expression by replac-
ing all p € P(f) with their corresponding boolean vari-
able v,. As usual, £(f)[tt/vp] denotes a substitution that
replaces v, with # in £(f). This can be extended in
the usual way to set of substitutions. For instance, the
truth value of f at a given state s may be calculated by
E(P)[t/vplp € V(&) uplp € V (5)]-

Now we are ready to construct a decorated version
M(A) for the network A. We modify all the components
A; of A as follows:

1. For all edges of A;, entering a node Il; such that
V() NP(f1) # 0
(a) Make two copies of each such edge.

(b) To the original edge, add v; as a guard.

(c) To the first copy, add —v1 AE(f1)[tt/vp|p € V(I1)]

as a guard and ¢ := 0,v; := t and v, := tt for all
p € V(l1) as reset-operations.

(d) To the second copy, add —wy A =E(f)[tt/vp|p €
V(11)] as a guard and v, :=tt for all p € V(1) as
reset-operations.

2. For all edges of A; leaving a node [; such that V (I1)N
P(f1) # 0: add v, := ff for all p € V(l;) as reset-
operations.

3. For all edges of A; entering a node 5 such that V' (I2)N
P(fs) # 0: add —&(f3) AE(f,)[tt/vglg € V(I2)] as a
guard and vy := ff as a reset-operation.

4. Finally, remove v, := tt and v, := ff whenever they
occur at the same edge’.

Thus, we have a decorated version M (A4;) for each A; of

A. Assume that a component automaton A; is as illus-

trated in Figure 1;its decorated version M(4;) is shown

in Figure 3. We take M(A4;) ||...||M(A4,) to be the dec-

orated version of 4, i.e. M(A) = M(Ay) ||...|| M(4,).

For a bounded response time formula f, ~<1 f,, we

now have the following fact:

Note that we could have constructed the product au-
tomaton of A first. Then the construction of M(A) from

7 This means that a proposition p is assigned to both the source
and the target nodes of the edge; v, must have been assigned t on
all the edges entering the source node.

gl a”
a' '

g A—E(f)A
E(f)[t/vlq € V(L)

the product automaton would be much simpler. But the
size of M(A) will be much larger; it will be exponential
in the size of the component automata. Our construction
here is purely syntactical based on the syntactical struc-
ture of each component automaton. The size of M(A) is
in fact linear in the size of the component automata. It
is particularly appropriate for a tool like UPPAAL, that
is based on on-the-fly generation of the state-space of
a network. For each component automaton A, the size
of M(A) can be calculated precisely as follows: In addi-
tion to one auxiliary clock ¢ and [P(f;)UP(f,)| boolean
variables in M(A), the number of edges of M(A) is
3 x| —4 | where | — 4 | is the number of edges of
A (note that no extra nodes are introduced in M(A)).
Note also that in the above construction, we have the
restriction that f; and f, contain no constraints, but
only atomic propositions. The construction can be eas-
ily generalized to allow constraints by considering each
constraint as a proposition and decorating each location
(that is, the incoming edges) where the constraint could
become true when the location is reached. In fact, this

is what we did above on the boolean expressions (con-
straints) £(f;) and £(f,).

5 The Gear Controller

In this section we informally describe the functionality
and the requirements of the gear controller proposed by
Mecel AB, as well as the abstract behavior of the envi-
ronment where the controller is supposed to operate.

5.1 Functionality

The gear controller changes gears by requesting services

provided by the components in its environment. The in-

teraction with these components is over the vehicles com-

munication network. A description of the gear controller

and its interface is as follows.

Interface: The interface receives service requests and keeps
information about the current status of the gear con-
troller, which is either changing gear or idling. The
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user of this service is either the driver using the gear
stick or a dedicated component implementing a gear
change algorithm. The interface is assumed to re-
spond when the service is completed.

Gear Controller: The only user of the gear controller is

its interface. The controller performs a gear change
in five steps beginning when a gear change request is
received from the interface. The first step is to accom-
plish a zero torque transmission, making it possible
to release the currently set gear. Secondly the gear
is released. The controller then achieves synchronous
speed over the transmission and sets the new gear.
Once the gear is set the engine torque is increased so
that the same wheel torque level as before the gear
change is achieved.
Under difficult driving conditions the engine may not
be able to accomplish zero torque or synchronous
speed over the transmission. It is then possible to
change gear using the clutch. By opening the clutch
(i.e. disengaging the clutch), and consequently the
transmission, the connection between the engine and
the wheels is broken. The gearbox is at this state able
to release and set the new gear, as zero torque and
synchronous speed is no longer required. When the
clutch closes (i.e. engages) it safely bridges the speed
and torque differences between the engine and the
wheels. We refer to these exceptional cases as recov-
erable errors.

The environment of the gear controller consists of the
following three components:

Gearbox: It is an electrically controlled gearbox with
control electronics. It provides services to set a gear
in 100 to 300 ms and to release a gear in 100 to 200
ms. If a setting or releasing-operation of a gear takes
more than 300 ms or 200 ms respectively, the gearbox
will indicate this and stop in a specific error state.

Clutch: It is an electrically controlled clutch that has the
same sort of basic services as the gearbox. The clutch
can open or close within 100 to 150 ms. If a opening
or closing is not accomplish within the time bounds,
the clutch will indicate this and reach a specific error
state.

Engine: The engine offers three modes of operation: nor-
mal torque, zero torque, and synchronous speed. The
normal mode is normal torque where the engine gives
the requested engine torque. In zero torque mode the
engine will try to find a zero torque difference over the
transmission. Similarly, in synchronous speed mode
the engine searches zero speed difference between the
engine and the wheels®. The maximum time bound
searching for zero torque is limited to 400 ms within
which a safe state is entered. Furthermore, the max-
imum time bound for synchronous speed control is

8 Synchronous speed mode is used only when the clutch is open
or no gear is set.

limited to 500 ms. If 500 ms elapse the engine enters
an error state.

We will refer to the error states in the environment as
unrecoverable errors since it is impossible for the gear
controller alone to recover from these errors.

5.2 Requirements

In this section we list the informal requirements and de-
sired functionality on the gear controller, provided by
Mecel AB. The requirements are to ensure the correct-
ness of the gear controller. A few operations, such as gear
changes and error detections, are crucial to the correct-
ness and must be guaranteed within certain time bounds.
In addition, there are also requirements on the controller
to ensure desired qualities of the vehicle, such as: good
comfort, low fuel consumption, and low emission.

1. Performance. These requirements limit the maxi-
mum time to perform a gear change when no unre-
coverable errors occur.

(a) A gear change should be completed within 1.5 sec-
onds unless an unrecoverable error occurs.

(b) A gear change, under normal operation conditions,
should be performed within 1 second.

2. Predictability. The predictability requirements are
to ensure strict synchronization and control between
components.

(a) There should be no deadlocks in the system.

(b) When the engine is regulating torque, the clutch
should be closed.

(c) When a gear is set, the engine should be regulat-
ing torque.

3. Functionality. The following requirements are to en-
sure the desired functionality of the gear controller.
(a) It is able to use all gears.

(b) It uses the engine to enhance zero torque and syn-
chronous speed over the transmission.

(c¢) It uses the gearbox to set and release gears.

(d) Tt is allowed to use the clutch in difficult condi-
tions.

(e) It does not request zero torque when changing
from neutral gear.

(f) The gear controller does not request synchronous
speed when changing to neutral gear.

4. Error Detection. The gear controller detects and
indicates error only when:

(a) the clutch is not opened in time,
(b) the clutch is not closed in time,
(c) the gearbox is not able to set a gear in time,
(d) the gearbox is not able to release a gear in time.

6 Formal Description of the System

To design and analyze the gear controller we model the
controller and its environment in the UPPAAL model [10].
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Interface
ReqNewGear
(FromGear) NewGear
(ToGear)
GearControl
GCTimer
\ J (ToGear)
RegSet GearSet OpenClutch ClutchIsOpen RegSpeed TorqueZero
RegNeu Gearneu CloseClutch ClutchIsClosed ReqTorque SpeedSet
ReqZeroTorque
GearBox Clutch Engine
GBTimer CTimer ETimer
(ErrStat) (ErrStat) (UseCase)

Fig. 4. A Flow-Graph of the Gearbox Model.

The modeling phase has been separated in two steps.
First a model of the environment is created, as its be-
havior is specified in advance as assumptions (see Sec-
tion 5.1). Secondly, the controller itself and its interface
are designed to be functionally correct in the given en-
vironment. Figure 4 shows a flow-graph of the result-
ing model where nodes represent automata and edges
represent synchronization channels or shared variables
(enclosed within parenthesis). The gear controller and
its interface are modeled by the automata GearControl
(GC) and Interface (I). The environment is modeled by
the three automata: Clutch (C), Engine (E), and GearBox
(GB).

The system uses eight variables. Four are timers that
measure 1/1000 of seconds (ms): GCTimer, GBTimer, CTi-
mer and ETimer. The two data variables, named From-
Gear and ToGear, are used as gear change requests® and
the variables UseCase and ErrStat are assigned when er-
rors occur in the system (see Section 7). In the following
we describe the five automata of the system.

The three automata of the environment model the
basic functionality and time behavior of the components
in the environment. The components have two channels
associated with each service: one for requests and one to
respond when service has been performed.

Gearbox: In automaton GearBox, shown in Figure B3,
inputs on channel ReqSet request a gear set and the
corresponding response on GearSet is output if the
gear is successfully set. Similarly, the channel ReqNeu
requests the neutral gear and the response GearNeu
signals if the gear is successfully released. If the gear-
box fails to set or release a gear the locations named
ErrorSet and ErrorNeu are entered respectively.

Clutch: The automaton Clutch is shown in Figure B1.
Inputs on channels OpenClutch and CloseClutch in-

9 The domains of FromGear and ToGear are bounded to {0, ...,6},

where 1 to 5 represent gear 1 to gear 5, 0 represents gear N, and 6
is the reverse gear.

struct the clutch to open and close respectively. The
corresponding response channels are ClutchIsOpen
and ClutchIsClosed. If the clutch fails to open or
close it enters the location ErrorOpen and ErrorClose
respectively.

Engine: The automaton Engine, shown in Figure B4, ac-
cepts incoming requests for synchronous speed, a spec-
ified torque level or zero torque on the channels Req-
Speed, ReqTorque and ReqZeroTorque respectively.
The actual torque level or requested speed is not
modeled since it does not affect the design of the
gear controller'®?. The engine responds on the chan-
nels TorqueZero and SpeedSet when the services
have been completed. Requests for specific torque
levels (i.e. signal ReqTorque) are not answered, in-
stead torque is assumed to increase immediately af-
ter the request. If the engine fails to deliver zero
torque or synchronous speed in time, it enters lo-
cation CluthOpen without responding to the request.
Similarly, the location ErrorSpeed is entered if the en-
gine regulates on synchronous speed in too long time.

Given the formal model of the environment, the gear con-
troller has been designed to satisfy both the functionality
requirements given in Section 5.1, and the correctness re-
quirements in Section 5.2

Gear Controller: The GearControl automaton is shown
in Figure B5. Each main loop implements a gear
change by interacting with the components of the
environment. The designed controller measures re-
sponse times from the components to detect errors
(as failures are not signaled). The reaction of the con-
troller depends on how serious the occurred error is.
It either recovers the system from the error, or ter-
minates in a pre-specified location that points out
the (unrecoverable) error: COpenError, CCloseError,

10 Hence, the time bound for finding zero torque (i.e. 400 ms)
should hold when decreasing from an arbitrary torque level.
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GNeuError or GSetError. Recoverable errors are de-
tected in the locations CheckTorque and CheckSync-
Speed.

Interface: The automaton Interface shown in Figure B2,
requests gears R, N, 1, ..., 5 from the gear controller.
Requests and responses are sent through channel Req—
NewGear and channel NewGear respectively. When a
request is sent, the shared variables FromGear and
ToGear are assigned values corresponding to the cur-
rent and the requested new gear respectively.

7 Formal Validation and Verification

In this section we formalise the informal requirements
given in Section 5.2 and prove their correctness using
the symbolic model-checker of UPPAAL.

To enable formalisation (and verification) of require-
ments, we decorate the system description with two inte-
ger variables, ErrStat and UseCase. The variable ErrStat
is assigned values at unrecoverable errors: 1 if Clutch fails
to close, 2 if Clutch fails to open, 3 if GearBox fails to set a
gear, and 4 if GearBox fails to release a gear. The variable
UseCase is assigned values whenever a recoverable error
occurs in Engine: 1 if it fail to deliver zero torque, and 2
if it is not able to find synchronous speed. The system
model is also decorated to enable verification of bounded
response time properties, as described in Section 4.

Before formalising the requirement specification of
the gear controller we define negation and conjunction
for the bounded response time operator and the invari-
ant operator defined in Section 4,

AE ¢, Ay, ifand only if A | ¢, and A | @,
A= —p if and only if A £ ¢

We also extend the (implicit) proposition at(l) to at(A4,1),
meaning that the control location of automaton A is cur-

rently /. Finally, we introduce Poss(f) to denote —=INV(=f),

f1 %<1 f to denote —(f, ~><7 f,), and A.l to denote
at(A4,1). We are now ready to formalise the requirements.

7.1 Requirement Specification

The first performance requirement 1la, i.e. that a gear
change must be completed within 1.5 seconds given that
no unrecoverable errors occur, is specified in property 1
(see Table 2). It requires the location GearChanged in
automaton GearControl to be reached within 1.5 seconds
after location Initiate has been entered. Only scenarios
without unrecoverable errors are considered as the value
of the variable ErrStat is specified to be zero'!. To con-
sider scenarios with normal operation we restrict also
the value of variable UseCase to zero (i.e. no recoverable

11 Recall that the variable ErrStat is assigned a positive value
(i.e. greater than zero) whenever an unrecoverable error occurs.

errors occurs). Property 2 requires gear changes to be
completed within one second given that the system is
operating normally.

The properties 3 to 6 require the system to terminate
in known error-locations that point out the specific error
when errors occur in the clutch or the gear (requirements
4a to 4d). Up to 350 ms is allowed to elapse between the
occurrence of an error and that the error is indicated
in the gear controller. The properties 7 to 10 restrict
the controller design to indicate an error only when the
corresponding error has arised in the components. Ob-
serve that no specific location in the gear controller is
dedicated to indicate the unrecoverable error that may
occur when the engines speed-regulation is interrupted
(i-e. when location Engine.ErrorSpeed is reached). Prop-
erty 11 ensures that no such location is needed since this
error is always a consequence of a preceding unrecover-
able error in the clutch or in the gear.

Property 12 holds if the system is able to use all gears
(requirement 3a). Furthermore, for full functionality and
predictability, the system is required to be deadlock-free
(requirement 2a). This has been checked with an internal
version of the UPPAAL tool 2.

The properties 13 and 14 specify the informal pre-
dictability requirements 2b and 2c.

A number of functionality requirements specify how
the gear controller should interact with the environment
(e.g. 3a to 3f). These requirements have been used to de-
sign the gear controller. They have later been validated
using the simulator in UPPAAL and have not been for-
mally specified and verified.

Time Bound Derivation

Property 1 requires that a gear change should be per-
formed within one second. Even though this is an inter-
esting property in itself one may ask for the lowest time
bound for which a gear change is guaranteed. We show
that the time bound is 900 ms for error-free scenarios by
proving that the change is guaranteed at 900 ms (prop-
erty 15), and that the change is possibly not completed
at 899 ms (property 16). Similarly, for scenarios when the
engine fails to deliver zero torque we derive the bound
1055 ms, and if synchronous speed is not delivered in the
engine the time bound is 1205 ms.

We have shown the shortest time for which a gear
change is possible in the three scenarios to be: 150 ms,
550 ms, and 450 ms. However, gear changes involving
neutral gear may be faster as the gear does not have
to be released (when changing from gear neutral) or set
(when changing to gear neutral). Finally, we consider the
same three scenarios but without involving neutral gear
by constraining the values of the variables FromGear and

12 The deadlock checker will be distributed with the next release
of the UPPAAL tool, which will have version number 3.2.
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GearControl.Initiate ~»<1500 (( ErrStat =0 ) = GearControl.GearChanged) (1)
GearControl.Initiate ~><1000  (( ErrStat = 0 A UseCase = 0 ) = GearControl.GearChanged) (2)
Clutch.ErrorClose ~»<290 GearControl.CCloseError 3)
Clutch.ErrorOpen ~»<200 GearControl.COpenError (4)
GearBox.Errorldle ~»<350 GearControl.GSetError (5)
GearBox.ErrorNeu ~»<300 GearControl.GNeuError (6)
INV ( GearControl.CCloseError = Clutch.ErrorClose ) (7)
INV ( GearControl.COpenError = Clutch.ErrorOpen ) (8)
INV ( GearControl.GSetError = GearBox.Errorldle ) 9)
INV ( GearControl.GNeuError = GearBox.ErrorNeu ) (10)
INV ( Engine.ErrorSpeed = ErrStat # 0 ) (11)
/\ Poss ( Gear.Gear;) (12)
i€{R,N,1,...,5}
INV ( Engine.Torque = Clutch.Closed ) (13)
/\ INV(( GearControl.Gear A Gear.Gear;) = Engine.Torque) (14)
i€{R,1,...,5}
Table 2. Requirement Specification
GearControl.Initiate ~<g00  (( ErrStat = 0 A UseCase = 0 ) = GearControl.GearChanged) (15)
GearControl.Initiate 7»<gg9  (( ErrStat = 0 A UseCase = 0 ) = GearControl.GearChanged) (16)

Table 3. Time Bounds

ToGear. The derived time bounds are: 400 ms, 700 ms
and 750.

Verification Results

We have verified totally 47 logical formulas (listed in Ap-
pendix A) of the system using UPPAAL installed on a 75
MHz Pentium PC equipped with 24 MB of primary mem-
ory. The verification of all the formulas consumed 2.99
second.

8 Conclusion

In this paper, we have reported an industrial case study
in applying formal techniques for the design and analysis
of control systems for vehicles. The main output of the
case-study is a formally described gear controller and a
set of formal requirements. The designed controller has
been validated and verified using the tool UPPAAL to
satisfy the safety and functionality requirements on the
controller, provided by Mecel AB. It may be considered
as one piece of evidence that the validation and verifica-
tion tools of today are mature enough to be applied in
industrial projects.

We have given a detailed description of the formal
model of the gear controller and its surrounding environ-
ment, and its correctness formalised in 47 logical formu-
las according to the informal requirements delivered by
industry. The verification was performed in a few seconds

on a Pentium PC running UpPAAL. Another contribution
of this paper is a solution to a problem we got in this
case study, namely how to use a tool like UPPAAL, which
only provides reachability analysis to verify bounded re-
sponse time properties. We have presented a logic and
a method to characterise and model—-check such proper-
ties by reachability analysis in combination with simple
syntactical manipulation on the system description.

This work concerns only one component, namely gear
controller of a control system for vehicles. Future work,
naturally includes modelling and verification of the whole
control system. The project is still in progress. We hope
to report more in the near future on the project.
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Johan Bengtsson who developed a preliminary version of
the UPPAAL model for the gear box system, and Hans
Hansson and Mikael Stromberg for many fruitful discus-
sions.

References

1. Luca Aceto, Augusto Bergueno, and Kim G. Larsen.
Model Checking via Reachability Testing for Timed Au-
tomata. In Bernard Steffen, editor, Proc. of the 4th Con-
ference on Tools and Algorithms for the Construction and
Analysis of Systems, number 1384 in Lecture Notes in
Computer Science, pages 263—280. Springer—Verlag, 1998.



10.

11.

12.

Magnus Lindahl et al.: Formal Design and Analysis of a Gear Controller 11

Luca Aceto, Patricia Bouyer, Augusto Burgueo, and
Kim G. Larsen. The Power of Reachability Testing for
Timed Automata. In Arvind and Ramanujam, editors,
Proc. of the 18th Conference on Foundations of Software
Technology and Theoretical Computer Science, number
1530 in Lecture Notes in Computer Science, pages 245—
256. Springer—Verlag, 1998.

R. Alur and D. Dill. Automata for Modelling Real-Time
Systems. Theoretical Computer Science, 126(2):183-236,
April 1994.

Johan Bengtsson, W.0. David Griffioen, Kare J. Kristof-
fersen, Kim G. Larsen, Fredrik Larsson, Paul Pettersson,
and Wang Yi. Verification of an Audio Protocol with Bus
Collision Using UPPAAL. In Rajeev Alur and Thomas A.
Henzinger, editors, Proc. of the 8th Int. Conf. on Com-
puter Aided Verification, number 1102 in Lecture Notes in
Computer Science, pages 244-256. Springer—Verlag, July
1996.

Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul
Pettersson, and Wang Yi. UpPPAAL in 1995. In Proc. of the
2nd Workshop on Tools and Algorithms for the Construc-
tion and Analysis of Systems, number 1055 in Lecture
Notes in Computer Science, pages 431-434. Springer—
Verlag, March 1996.

C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The
tool KRONOS. In Rajeev Alur, Thomas A. Henzinger,
and Eduardo D. Sontag, editors, Proc. of Workshop on
Verification and Control of Hybrid Systems III, number
1066 in Lecture Notes in Computer Science, pages 208—
219. Springer—Verlag, October 1995.

Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-
Toi. HYTECH: The Next Generation. In Proc. of the
16th IEEE Real-Time Systems Symposium, pages 56—65.
IEEE Computer Society Press, December 1995.

Gerard Holzmann. The Design and Validation of Com-
puter Protocols. Prentice Hall, 1991.

Henrik E. Jensen, Kim G. Larsen, and Arne Skou. Mod-
elling and Analysis of a Collision Avoidance Protocol Us-
ing SPIN and UPPAAL. In Proc. of 2nd Int. Workshop on
the SPIN Verification System, pages 1-20, August 1996.
Kim G. Larsen, Paul Pettersson, and Wang Yi. UpPPAAL
in a Nutshell. Int. Journal on Software Tools for Tech-
nology Transfer, 1(1-2):134-152, October 1997.

Thomas Stauner, Olaf Miiller, and Max Fuchs. Using
HyTech to Verify an Automotive Control System. In
Proc. of the 1st Int. Workshop on Hybrid and Real-Time
Systems. Technische Universitdt Miinchen, Lecture Notes
in Computer Science, Springer, 1997.

Wang Yi, Paul Pettersson, and Mats Daniels. Automatic
Verification of Real-Time Communicating Systems By
Constraint-Solving. In Dieter Hogrefe and Stefan Leue,
editors, Proc. of the 7th Int. Conf. on Formal Description
Techniques, pages 223-238. North—Holland, 1994.

Appendix A: The Requirement Specification

II11177777177710777777777777777771777777777177777177777717771177717
// 1996-11-20, 1997-02-20--27, and 1997-07-31 @ Uppsala University
// Paul Pettersson and Wang Yi, DoCS and Magnus Lindahl, Mecel AB.
II11I0ITTTT7 00007077 777077777770777771777177777177777717771177717
//

// OVERVIEW

//

//

This document is the specification file (engine.q) in UPPAALs
q-format. It is the actual input file used to check properties
of the gearbox controller. The system is modelled in the file
engine.atg. To generate the ta-format of the system, run:
’atg2ta engine.atg engine.ta’ and to verify the system, run:
’verifyta -sT engine.ta engine.q’.

El to E11 are requirements on the environment of the gearbox
controller, that should be respected by the formal model of
the environment. R1 to R9 are requirements on the gearbox
controller design given by Mecel AB in natural language. P1 to
P17 formalize R1 to R9, that should be satisfied by the formal
model of the gearbox controller.

INFORMAL REQUIREMENTS ON THE ENVIRONMENT OF GEARBOX CONTROLLER

El to El11 are requirements that the environment of the gearbox
controller design should satisfy to guarantee the behavior of
the whole system works properly. That is, if any of the
requirements E1 to E1l are not satisfied by the environment
then P1 to P17 are *not* guaranteed to hold:

E1l. Initially the clutch is closed.

E2. To open the clutch, it takes at least 100 ms and at most
150 ms.

E3. To close the clutch, it takes at least 100 ms and at most
150 ms.

E4. Initially the gearbox is neutral.

E5. To release the gear, it takes at least 100 ms and at most
200 ms.

E6. To set a gear, it takes at least 100 ms and at most 300 ms.

E7. The engine is always in a predefined state called "Initial"
when no gear is set.

E8. To find zero torque in the engine, it takes at least 150 ms
and at most 400 ms. But at 400 ms, the engine may enter
an error state or find zero torque.

E9. To find synchronous speed, it takes at least 50 ms and at
most 200 ms. But at 200 ms the engine may enter an error
state or find synchronous speed.

E10. The engine may regulate on synchronous speed in at most

500 ms.

E1l. When in an error state, the engine will regulate on

synchronous speed in at least 50 ms and at most 500 ms.

INFORMAL REQUIREMENTS ON THE GEARBOX CONTROLLER DESIGN
The Gearbox controller should satisfy the following informal
requirements. The properties given in parentheses are the

formal description of the listed requirement.

R1. A gear change should be performed within 1 second (P6 - P8,
P3).

R2. When an error arises, the system will reach a predefined
error state marking the error (P9 - P11).

R3. The system should be able to use all gears (P2 - P3).
R4. There will be no deadlocked state in the system (P17).

R5. When the system indicates gear neutral, the engine should
be in initial state (P12).

R6. When the system indicates a gear, the engine should be in
a state performing torque regulation (P13).

R7. The gearbox controller will never indicate open or closed
clutch when the clutch is closed or open respectively
(P14) .

R8. The gearbox controller will never indicate gear set or
gear neutral when the gear is not set or not idle,
respectively (P15).
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// R9. When the engine is regulating on torque, the clutch is
// closed (P16).

// FORMALIZING THE REQUIREMENTS

// The requirements above have been formalised using variables

// and locations of automata. The system variables listed below

// are variables used by the components of the system; the

// auxiliary variables are decorations to the system used to

// formalize the requirements only. In the system description, the
// auxiliary variables appear only in assignments (not in guards).
// This ensures that the system behavior is not changed when the
// auxiliary variables are introduced (or removed).

// The variables ErrStat and UseCase are used to trace errors.
// ErrStat is set when unrecoverable errors occur; UseCase is
// set when recoverable errors occur, that will be recovered by
// the gearbox controller.

// The systems component locations that appear in the formulae
// below can be found in the system description file

// engine.{atglta}.

//

// System Variables:

//

// o GCTimer - gearbox controller timer,

// o ETimer - engine timer,

// o GBTimer - gearbox timer,

// o CTimer - clutch timer,

// o FromGear - selected gear before gear change (0=N, 1=1, ...,
// 6=R),

// o ToGear - selected gear after gear change (0=N, 1=1, ...,
// 6=R) .

//

// Auxiliary Variables:

//

// o SysTimer - system timer, reset at each request for new gear
// (in the gearbox controller),

// o ErrStat - 0 = no errors,

// 1 = close clutch error,

// 2 = open clutch error,

// 3 = set gear failure,

// 4 = error releasing gear.

// o UseCase - 0 = ideal scenario, no problems occurred,

// 1 = engine was not able to deliver zero torque,
// 2 = engine was not able to find synchronous speed.

LIITTLLTT0007 1007700770007 70717107171777170771717177771717171111117
//

//
// P1. It is possible to change gear.
//
E<> GearControl.GearChanged

//
// P2. It is possible to switch to gear nr 5 and to reverse gear

// (i.e. R).

//

// a)

E<> Interface.Gearb

// )

E<> Interface.GearR

//

// P3. It is possible to switch gear in 1000 ms (not very interest
// ing).

//

E<> ( GearControl.GearChanged and ( SysTimer<=1000 ) )

//

// P4. When the gearbox is in position N, the gear is not in
// position 1-5 or R.

//

A[] not ( GearBox.Neutral and \
( Interface.Gearl or Interface.Gear2 or \
Interface.Gear3 or Interface.Gear4 or \
Interface.Gear5 or Interface.GearR ) )

//
// P5. The gear is never N, when the gearbox is idle (expected to
// be neutral).

//
// a)

A[] not ( GearBox.Idle and Interface.GearN )

// ®)

A[l ( Interface.GearN imply GearBox.Neutral )

//

// P6. In the case of no errors (in gear and clutch) and ideal

// (engine) scenario,

// a) a gear switch is guaranteed in 900 ms (including 900 ms),
// a’) a gear switch is not guaranteed in strictly less than 900
// ms,

// b) it is impossible to switch gear in less than 150 ms,

// b?) it is possible to switch gear at 150 ms,

// ¢) it is impossible to switch gear in less than 400 ms if the
/7 switch is not from/to gear N.

// c’) it is possible to switch gear at 400 ms if the switch is
/7 not from/to gear N.

//

// a)

A[l ( ( ErrStat==0 and UseCase==0 and SysTimer>=900 ) imply \
( GearControl.GearChanged or GearControl.Gear ) )
// a’)
E<> ( ErrStat==0 and UseCase==0 and \
SysTimer>899 and SysTimer<900 and \
not ( GearControl.GearChanged or GearControl.Gear ) )
// v)
A[l ( ( ErrStat==0 and UseCase==0 and ( SysTimer<150 ) ) imply \
not ( GearControl.GearChanged ) )
// (In (b) GearControl.Gear is not implied since the property is
// then satisfied by the systems initial state.)

// b?)

E<> ( ErrStat==0 and UseCase==0 and GearControl.GearChanged and \
( SysTimer==150 ) )

// <)

A[] ( ( ErrStat==0 and UseCase==0 and FromGear>0 and \

ToGear>0 and ( SysTimer<400 ) ) imply \

not ( GearControl.GearChanged ) )

// ¢?)

E<> ( ErrStat==0 and UseCase==0 and FromGear>0 and ToGear>0 and \
GearControl.GearChanged and ( SysTimer==400 ) )

//
// PT7. When no errors (in gear and clutch) occur, but engine fails
// to deliver zero torque:

// a) a gear switch is guaranteed after 1055 ms (not including

// 1055),

// a’) it is impossible to switch gear in 1055 ms,

// b) it is impossible to switch gear in less than 550 ms,

// b’) it is possible to switch gear at 550 ms,

// c) it is impossible to switch gear in less than 700 ms if the
/7 switch is not from/to gear N.

// c’) it is possible to switch gear at 700 ms if the switch is
/7 not from/to gear N.

//

// a)

A[l ( ( ErrStat==0 and UseCase==1 and SysTimer>1055 ) imply \
( GearControl.GearChanged or GearControl.Gear ) )
// a’)
E<> ( ErrStat==0 and UseCase==1 and SysTimer==1055 and \
not ( GearControl.GearChanged or GearControl.Gear ) )
// ®)
A[l ( ( ErrStat==0 and UseCase==1 and SysTimer<550 ) imply \
not ( GearControl.GearChanged or GearControl.Gear ) )
// ")
E<> ( ErrStat==0 and UseCase==1 and GearControl.GearChanged and \
( SysTimer==550 ) )
// <)
A[l ( ( ErrStat==0 and UseCase==1 and FromGear>0 and \
ToGear>0 and SysTimer<700 ) imply \
not ( GearControl.GearChanged and GearControl.Gear ) )
// c?)
E<> ( ErrStat==0 and UseCase==1 and FromGear>0Q and ToGear>0 and \
GearControl.GearChanged and \
( SysTimer==700 ) )

// P8. When no errors occur, but engine fails to find synchronous
// speed:

a gear switch is guaranteed in 1205 ms (including 1205),
// a’) a gear switch is not guaranteed at less than 1205 ms,

it is impossible to switch gear in less than 450 ms,

// b’) it is possible to switch gear at 450 ms,

it is impossible to switch gear in less than 750 ms if the
// switch is not from/to gear N.

// c’) it is possible to switch gear at 750 ms if the switch is
// not from/to gear N.
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//
// a)
A[] ( ( ErrStat==0 and UseCase==2 and SysTimer>=1205 ) imply \
( GearControl.GearChanged or GearControl.Gear ) )
// a’)
E<> ( ErrStat==0 and UseCase==2 and SysTimer>1204 and \
SysTimer<1205 and \
not ( GearControl.GearChanged or GearControl.Gear ) )
// b)
A[] ( ( UseCase==2 and ( SysTimer<450 ) ) imply \
not ( GearControl.GearChanged or GearControl.Gear ) )
// b’)
E<> ( UseCase==2 and GearControl.GearChanged and \
( SysTimer==450 ) )
// ¢
A[] ( ( ErrStat==0 and UseCase==2 and FromGear>0 and \
ToGear>0 and SysTimer<750 ) imply \
not ( GearControl.GearChanged and GearControl.Gear ) )
// ¢?)
E<> ( ErrStat==0 and UseCase==2 and FromGear>0) and ToGear>0 and \
GearControl.GearChanged and \
( SysTimer==750 ) )

//

// P9. Clutch Errors.

// a) If the clutch is not closed properly (i.e. a timeout

// occurs) the gearbox controller will enter the location
// CCloseError within 200 ms.

// b) When the gearbox controller enters location CCloseError,
// there is always a problem in the clutch with closing the
// clutch.

A[] ( ( Clutch.ErrorClose and ( GCTimer>200 ) ) imply \
GearControl.CCloseError )

A[] ( GearControl.CCloseError imply Clutch.ErrorClose )

// P9. Clutch Errors (cont.)

// c) If the clutch is not opened properly (i.e. a timeout occurs)
// the gearbox controller will enter the location COpenError
// within 200 ms.

// d) When the gearbox controller enters location COpenError,

// there is always a problem in the clutch with opening the

// clutch.

A[] ( ( Clutch.ErrorOpen and ( GCTimer>200 ) ) imply \
GearControl.COpenError )

ALl ( ( GearControl.COpenError ) imply Clutch.ErrorOpen )

//

// P10. Gearbox Errors.

// a) If the gearbox can not set a requested gear (i.e a timeout
// occurs) the gearbox controller will enter the location

// GSetError within 350 ms.

// b) When the gearbox controller enters location GSetError, there
// is always a problem in the gearbox with setting the gear.

A[] ( ( GearBox.ErrorIdle and ( GCTimer>350 ) ) imply \
GearControl.GSetError )

ALl ( ( GearControl.GSetError ) imply GearBox.ErrorIdle )

//

// P10. Gearbox Errors (cont).

// c) If the gearbox can not switch to neutral gear (i.e. a

// timeout occurs) the gearbox controller will enter the

// location GNeuError within 300 ms.

// d) When the gearbox controller enters location GNeuError there

// is always a problem in the gearbox with switching to neutral
// gear.

//

// )

A[l ( ( GearBox.ErrorNeu and ( GCTimer>300 ) ) imply \
GearControl.GNeuError )

// Q)

ALl ( ( GearControl.GNeuError ) imply GearBox.ErrorNeu )

//

// P11. If no errors occur in the engine, it is guaranteed to find
// synchronous speed.

//

A[] not ( ErrStat==0 and Engine.ErrorSpeed )

//

// P12. When the gear is N, the engine is in initial or on its way
// to initial (i.e. ToGear==0 and engine in zero).

//

A[] ( Interface.GearN imply \
( ( ToGear==0 and Engine.Zero ) or Engine.Initial ) )

//

// P13. When the gear controller has a gear set, torque regulation
/7 is always indicated in the engine.

//

// a)

ALl ( ( GearControl.Gear and Interface.GearR ) imply \
Engine.Torque )

// ®)

A[l ( ( GearControl.Gear and Interface.Gearl ) imply \
Engine.Torque )

// <)

A[l ( ( GearControl.Gear and Interface.Gear2 ) imply \
Engine.Torque )

// d)

A[l ( ( GearControl.Gear and Interface.Gear3 ) imply \
Engine.Torque )

// e)

A[l ( ( GearControl.Gear and Interface.Gear4 ) imply \
Engine.Torque )

// £)

ATl ( ( GearControl.Gear and Interface.Gear5 ) imply \
Engine.Torque )

//

// P14. a) If clutch is open, the gearbox controller is in one of
/7 the predefined locationms.

// b) If clutch is closed, the gearbox controller is in one
// of the predefined locatioms.

//

// a)

ALl ( Clutch.Open imply \
( GearControl.ClutchOpen or GearControl.ClutchOpen2 or \

GearControl.CheckGearSet2 or GearControl.ReqSetGear2 or \
GearControl.GNeuError or \
GearControl.ClutchClose or \
GearControl.CheckClutchClosed or \
GearControl.CheckClutchClosed2 or \
GearControl.CCloseError or \
GearControl.GSetError or GearControl.CheckGearNeu2 )

~

// b)
A[] ( Clutch.Closed imply \

( GearControl.ReqTorqueC or GearControl.GearChanged or \
GearControl.Gear or GearControl.Initiate or \
GearControl.CheckTorque or GearControl.ReqNeuGear or \
GearControl.CheckGearNeu or GearControl.GNeuError or \
GearControl.ReqSyncSpeed or \

GearControl.CheckSyncSpeed or GearControl.ReqSetGear or \
GearControl.CheckGearSetl or GearControl.GSetError ) )

//

// P15. a) If gear is set, the gearbox controller is in

// one of the predefined locatioms.

// b) If gear is neutral, the gearbox controller is in
/7 one of the predefined locations.

//

// a)

A[l ( GearBox.Idle imply \

( GearControl.ClutchClose or \
GearControl.CheckClutchClosed or \
GearControl.CCloseError or \

GearControl.ReqTorqueC or GearControl.GearChanged or \
GearControl.Gear or GearControl.Initiate or \
GearControl.CheckTorque or GearControl.RegNeuGear or \
GearControl.CheckClutch2 or GearControl.COpenError or \
GearControl.ClutchOpen2 ) )

// b)

A[]l ( GearBox.Neutral imply \

( GearControl.ReqSetGear or \
GearControl.CheckClutchClosed2 or \
GearControl.CCloseError or GearControl.ReqTorqueC or \
GearControl.GearChanged or GearControl.Gear or \
GearControl.Initiate or GearControl.ReqSyncSpeed or \
GearControl.CheckSyncSpeed or GearControl.ReqSetGear or \
GearControl.CheckClutch or GearControl.COpenError or \
GearControl.ClutchOpen or GearControl.ReqSetGear2 ) )
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//

// P16. If engine regulates on torque, then the clutch is closed.
//

A[] ( Engine.Torque imply Clutch.Closed )

//

// P17. As all states will satisfy "1 > 0", model-checking this
// formula will generate the whole state-space of the system,
// and the answer will be that the property is satisfied.

// UPPAAL is designed to report all the deadlocked states
// during state-space exploration. So if no deadlock is

// reported before the final answer is given, the system is
// deadlock-free.

//

A[1 (1>0)

[11717111717771177117777777 - end = [////1117111771171717171717177



Fig. B1. The Clutch Automaton.
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Fig. B2. The Interface Automaton.



16

Magnus Lindahl et al.: Formal Design and Analysis of a Gear Controller

GearBox ‘ ) Onening
Neutra %glr %L?_loo (GBTimer<=200)
Errorldle EBTrer =200
RegSet ? BrrStat:=4 ReaNeu?
GBTi ner: =0
GBTi mer ==300 ErrorNeu
ErrStat: =3
N Idle
Closing GBTi mer >=100 g
(GBTimer<=300) Gear Set !
Fig. B3. The Gear-Box Automaton.
Engine
Reazer oTgr que? PecToraue
Torque UseCase: =0 (ETimer<=400)
\KD
ETi mer >=50
ETi mer ==400
UseCase: =1
ToGear >0
TS0 N rocear=mo L3 ePZE1S)
== i mer >=
ReqTor quie? Clutch€lose .
ETiimer 4500 ( ETimer<=900 )c:Clutch y
Initial
ETi mer ==200
) UseCase: =2
ETi mer =900 ToGear ==
ReQSpeed?
ETiqrrgr 1 =0
Sneed UseCase: =0
(ETimer<=500) ETi mer >=50 Y
E_rl)__eedSetE3
—ETi-ner-=
4 " Eoegar >37 Zero
ETi mer ==500 FindSpeed eqopeed ¢
( ETiSrrqer<=200) ETimer: =0
ErrorSpeed

Fig. B4. The Engine Automaton.
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Fig. B5. The Gear Box Controller Automaton.
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