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Abstract 
Cyclic debugging is one of the most important and 

most commonly used activities in program development. 
During cyclic debugging, the program is repeatedly re-
executed to track down errors when a failure has been 
observed. This process necessitates reproducible program 
executions. Applying classical debugging techniques such 
using breakpoints or single stepping in real-time systems 
change the temporal behavior and make reproduction of 
the observed failure during debugging less likely, if not 
impossible. Consequently, these techniques are not 
directly applicable for cyclic debugging of real-time 
systems.  

In this paper we present how do you turn standard CPU 
instruction level simulator debuggers, JTAG/BDM 
debuggers or in circuit emulator debuggers into veritable 
time machines so you can debug your embedded 
application both forwards and backwards in time – 
repeatedly. By on-line recording significant system events, 
and off-line deterministically replaying them, we can 
inspect the real-time system in great detail while still 
preserving its real-time behavior.  

Keywords: Determinism, debugging, monitoring, 
probe-effect, testing, distributed real-time systems, replay, 
black-box, instruction simulators. 

1 Introduction 
Testing is the process of revealing failures by exploring 

the runtime behavior of the system for violations of the 
specifications. Debugging on the other hand is concerned 
with revealing the errors that cause the failures. The 
execution of an error infects the state of the system, e.g., 

by infecting variables, memory, etc, and finally the 
infected state propagates to outputs. The process of 
debugging is thus to follow the trace of the failure back to 
the error. In order to reveal the error it is imperative that 
we can reproduce the failure repeatedly. This requires 
knowledge of the start conditions and a deterministic 
execution. For sequential software with no real-time 
requirements it is sufficient to apply the same input and 
the same internal state in order to reproduce a failure. For 
real-time software the situation gets more complicated due 
to timing and ordering issues. 

There are several problems to be solved in moving 
from debugging of sequential programs (as handled by 
standard commercial debuggers) to debugging of 
distributed real-time programs. We will briefly discuss the 
main issues by making the transition in three steps: 

Debugging sequential real-time programs 

Moving from single-tasking non-real-time programs to 
single-tasking real-time programs adds the concept of 
interaction with, and dependency of, an external context. 
The system can be equipped with sensors, sampling the 
external context and actuators, interacting with the 
context. In addition, the system is equipped with a real-
time clock, giving the external and the internal  process a 
shared time base. If we try to debug such a program, we 
will encounter two major problems: First, how do we 
reproduce the readings of sensors done in the first run? 
These readings need to be reproduced in order not to 
violate the requirement of having exactly the same inputs 
to the system. Second, how do we keep the shared time 
base intact? During the debug phase, the developer needs 
to be able to set breakpoints and single-step through the 
execution. However, breaking the execution will only 
break the progress of the internal execution while the 



 

external process will continue. Consider, for instance, an 
ABS-breaking system in a car. During the testing phase, a 
failure is discovered and the system is run in a debugger. 
While the system is run in the debugger, the testing crew 
tries to reproduce the erroneous state by maneuvering the 
vehicle in the same way as in the first run. However, 
breaking the execution of the system by setting a 
breakpoint somewhere in the code will only cause the 
program to halt. The vehicle, naturally, will not freeze in 
the middle of the maneuver and the shared time base of 
the internal and external system is lost. This makes it 
impossible to reproduce the failure deterministically and 
simultaneously thoroughly examining the state of the 
system at different times in the execution. 

 A mechanism, which during debugging faithfully and 
deterministically reproduces these interactions, is required. 

Debugging multi-tasking real-time programs 

In moving from debugging sequential real-time 
programs to debugging multitasking real-time programs 
executing on a single processor the problem of 
concurrency surfaces. When the system consists of a set of 
tasks instead of one, the tasks will interact with each other 
both in a temporal and a functional manner. Kernel 
invocations and hardware interrupts will change the flow 
of control in the system. In addition, tasks sharing 
resources leads to the problems with critical regions and 
race conditions. Consider a system with two tasks, A and 
B, both sharing the resource X. In a test run shown in 
Figure 1, A beats B in a race situation for X and this leads 
to a failure. 

The developer tries to investigate what led to the 
failure and inserts some kind of software probe in the 
system in order to monitor what happened. When this 
probe executes, it extends the execution-time such that B 
beats A in the same race that A won in the first execution. 
This scenario is illustrated in Figure 2.  

This time, the execution does not encounter any failure 
and the cause of the first failure is still unknown. This type 
of behavior, when the insertion and removal of probes 
affect the execution of the system, is called the probe 
effect [3]. 

In moving from debugging sequential real-time programs 
to debugging multitasking real-time programs executing 
on a single processor we must consequently have 
mechanisms for reproducing task interleavings, and races 
between the executing tasks.  

Debugging of distributed real-time systems 

The transition from debugging single node real-time 
systems to debugging distributed real-time programs 
introduces the additional problems of correlating 
observations on different nodes and break-pointing tasks 
on different nodes at exactly the same time.  

To implement distributed breakpointing we either need to 
send stop or continue messages from one node to a set of 
other nodes with the problem of nonzero communication 
latencies, or we need á priori agreed upon times when the 
executions should be halted or resumed. The latter is 
complicated by the lack of perfectly synchronized clocks, 
meaning that we cannot ensure that tasks halt or resume 
their execution at exactly the same time. Consequently, a 
different approach is needed.  

Debugging by the use of Time Machines 

We will in this paper present a debugging technique 
based on deterministic replay [17][1][8][14][17], which 
we call the TimeMACHINE. During runtime, information 
is recorded with respect to interrupts, task-switches, 
timing, and data. The system behavior can then be 
deterministically reproduced off-line using the recorded 
history, and inspected to a level of detail, which until now 
has been unprecedented. The TimeMACHINE uses 
standard debuggers and CPU instruction level simulators 
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Figure 1. Task A takes resource X before being 
preempted by B. 
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Figure 2. Task B preempts A before A takes 
resource X. 

Figure 3  Classic break-pointing and single-stepping 
techniques violates the timing behavior of the inputs, 
outputs and the executing tasks in a real-time system. 



 

or JTAG or BDM debuggers as well as In Circuit 
Emulators (ICE) without the risk of introducing temporal 
side effects. Interrupts, task-switches and data can be 
reproduced and the system debugged both forward and 
backwards in time, with a timing precision corresponding 
to the exact machine code instructions at which the events 
occurred.  

Deterministic replay is useful for tracking down errors 
that have caused a detected failure, but is not appropriate 
for speculative explorations of program behaviors, since 
only recorded executions can be replayed.  

We have adopted deterministic replay to single tasking, 
multi-tasking, and distributed real-time systems. By 
recording all synchronization, scheduling and 
communication events, including interactions with the 
external process, we can off-line examine the actual real-
time behavior without having to run the system in real-
time, and without using intrusive observations, potentially 
leading to probe-effects [3]. We can thus deterministically 
replay the task executions, the task switches, interrupt 
interference and the system behavior repeatedly. This also 
scales to distributed real-time systems with globally 
synchronized time bases, or to systems with deterministic 
broadcast buses like e.g. CAN [2]. If we record all 
interactions between the nodes we can locally on each 
node deterministically reproduce them using JTAG or 
BDM debuggers, ICE debuggers or instruction level 
simulator debuggers and then globally correlate them with 
corresponding events recorded on other nodes.  

Contribution 

The contribution of this paper is a method for debugging 
real-time systems, which to our knowledge is  

• The first method for deterministic debugging of single 
tasking and multi-tasking real-time systems using 
standard debuggers. 

• A refinement to the first method for deterministic 
debugging of distributed real-time systems by Thane 
and Hansson[17].  

Paper outline: Section 2 presents our system model and 
Section 3 our method for real-time systems debugging. 
Section 4 provides a small example to illustrate the 
method. Section 5 discusses some general issues related to 
deterministic replay. Section 6 discuss different 
approaches to monitoring and recording of information 
from the target system. Section 7 gives an overview of 
related work. Finally, in Section 8, we conclude and give 
some hints on future work. 

 

 

2 The System Model 
We assume a distributed system consisting of a set of 

nodes. Each node is a self sufficient computing element 
with CPU, memory, network access, a local clock and I/O 
units for sampling and actuation of an external process. 
We further assume the existence of a global synchronized 
time base [2][4] with a known precision δ, meaning that 
no two nodes in the system have local clocks differing by 
more than δ.  

The software that runs on the distributed system 
consists of a set of concurrent tasks and interrupt routines, 
communicating by message passing or via shared memory. 
Tasks and interrupts may have functional and temporal 
side effects due to preemption, message passing and 
shared memory.  

We assume for each node an execution strategy ranging 
from an interrupt driven single program system to a run-
time system with real-time kernels that supports 
preemptive scheduling.   

We further assume that we have either instruction level 
simulator debuggers, JTAG/BDM debuggers or ICE 
debuggers available We assume that the debuggers have 
scripting languages or equivalent interfaces such that 
macros or programs can be invoked conditionally at 
specified breakpoints.  

3 The Time Traveling process 
There are three basic elements to this revolutionary 

debugging technology 

1. The Recorder, is a mechanism that collects all the 
necessary information regarding task-switches, 
interrupts, and data. 

2. The Historian, is the system that that 
automatically analyzes, and correlates events and 
data in the recording, and compose these into a 
chronological timeline of breakpoints and 
predicates.  

3. The Actor, deterministically replays the history in 
the debugger by generating interrupts, task-
switches and restoring data as defined by the 
timeline.  

This process is performed without ever changing the 
target executable code. The same code (including real-
time operating system) that is run in the target, during 
runtime, is run during replay in the instruction level 
simulator. 

We will now in further detail discuss and describe our 
method for achieving time travel and deterministic replay. 



 

We follow the structure in the introduction and start by 
giving our solution to handling sequential software with 
real-time constraints, and then continue with multitasking 
real-time systems, and distributed multitasking real-time 
systems. We will then continue with a discussion on 
different approaches to recording and how you extract 
information from your embedded system. 

3.1 Debugging single task real-time systems 
Debugging of sequential software with real-time 

constraints requires that the debugging is performed such 
that the temporal requirements imposed by the 
environment are still fulfilled. This means, as pointed out 
in the introduction, that classical debugging with 
breakpoints and single-stepping cannot be directly 
applied, since it would invalidate timely reproduction of 
inputs and outputs – You cannot breakpoint the world. 

However, if we identify significant variables, like state 
variables, and peripheral inputs like readings of A/D 
converters or events like accesses to the local clock, and 
record them we can off-line replay them. We only need to 
run a historian off-line that constructs a timeline of the 
recorded data and events. Using ordinary debuggers we, 
off-line automatically, “short-circuit” all identified 
variables, inputs or events according to the recorded 
timeline, i.e., we substitute readings of actual values with 
the recorded values.  

This enables us to eliminate the time dependency of the 
system and replay the systems history over and over. We 
can even jump forth and back in time using the debugger 
(thus the name the TimeMACHINE), while still allowing 
the insertion of an arbitrary number of breakpoints and 
watches without introducing the probe-effect.  

3.2 Debugging multitasking real-time systems 
To replay and debug multitasking real-time systems we 

need, in addition to the data flow that is recorded for 
single task real-time systems, to record the system control 
flow. Essentially this corresponds to the task switches and 
the interrupt interference, i.e., the transfers of control from 
one task to another task, or from one task to an interrupt 
service routine and back. To identify these events we 
record where and when they occurred using timestamps 
and the program counter (PC). However, since PC values 
can be revisited in loops (Figure 4), and subroutine as well 
as recursive calls, and due to the coarse and unpredictable 
granularity of regular timers in CPUs it is necessary to 
define a more unique marker.  

If the target processor supports instruction counters 
(IC) the unique marker can be defined by the tupel <t, PC, 
IC>. However, since instruction counters are not very 
common in commercial embedded micro-controllers, we 

need another approach. An alternative approach is to make 
use of software instruction counters (SIC) [10] that count 
backward branches and subroutine calls in the assembly 
code. However, these counters requires the compiler 
manufacturer to provide this feature (which they do not) or 
special target specific tools that scan through the assembly 
code and instrument all backward branches and subroutine 
calls. The approach also affects the performance, since it 
usually dedicates one or more CPU registers to the 
instruction counter, and therefore reduces the possibility 
of compiler optimizations. 

In our approach we make use of a much simpler and 
much more efficient software based method that can be 
applied to any processor and operating system without the 
need for special processor features, special compilers or 
tools. However due to patenting issues we cannot disclose 
how… 

The off-line historian does in addition to what it does 
for the data flow in single tasking real-time systems create 
a timeline of all task-switches and interrupt hits. This 
timeline is an ordered list of breakpoints for each recorded 
event. The historian also generates a program for each 
breakpoint which resets the system to the state it had 
during runtime. For example, one such breakpoint 
program resets the real-time kernel scheduler such that 
upon a simulated/generated timer interrupt the scheduler 
starts the recorded task, or it generates an interrupt as 
recorded. 

3.3 Debugging distributed real-time systems 
To deal with distributed systems or multiprocessor 
systems we simply put separate recorders on each node. 
For each local recording we run a historian that derives a 
timeline for each node.  

As we by design can record significant events like I/O 
sampling and inter-process communication, we can on 
each node record the contents and arrival time of messages 
from other nodes. The recording of the messages therefore 
makes it possible to locally replay, one node at a time, the 
exchange with other nodes in the system without having to 
replay the entire system concurrently. Globally 
synchronized time stamps of all events make it possible to 

For (i=0; i<10;i++)

{

a = a + i;

------------------- PC= 0x2340

b = q*2 + i;

}

Figure 4. The PC is not sufficient as a unique marker. 



 

debug the entire distributed real-time system, and enables 
visualizations of all recorded and re-executed events in the 
system.  

Alternatively, to reduce the amount of information 
recorded we can off-line re-execute the communication 
between the nodes. However, this requires that we order-
wise synchronize all communication between the nodes, 
meaning that a fast node waits up until the slow node(s) 
catch up. This can be done truly concurrently using several 
nodes using JTAG/BMD or ICE debuggers, or simulated 
on a single host computer using an instruction level 
simulator for each node. 

Global states 

In order to correlate observations in the system we need 
to know their orderings, i.e., determine which observations 
are concurrent, and which precede and succeed a 
particular event. In single node systems or tightly coupled 
multiprocessor systems with a common clock this is not a 
problem, but for distributed systems where there is no 
common clock this is a significant problem. An ordering 
on each node can be established using the local clocks, but 
how can observations between nodes be correlated? 

One approach is to establish a causal ordering between 
observed events, using for example logical clocks [7] 
derived from the messages passed between the nodes. 
However, this is not a viable solution if tasks on different 
nodes work on a common external process, without 
exchanging messages, or when the duration between 
observed events is of significance. In such cases we need 
to establish a total ordering of the observed events in the 
system. This can be achieved by forming a synchronized 
global time base [2][4]. That is, we keep all local clocks 
synchronized to a specified precision δ, meaning that no 
two nodes in the system have local clocks differing by 
more than δ.  

 Figure 5 illustrates the local ticks in a distributed 
system with three nodes, all with tick rate ∏, and 

synchronized to the precision δ. There is no point in 
having ∏ ≤ δ, because the precision δ dictates the margin 
of error of clock readings, and thus a ∏ ≤ δ would result 
in overlaps of the δ intervals during which the 
synchronized local ticks may occur [6].   

Consider Figure 6, illustrating two external events that 
all three nodes can observe, and which they all timestamp. 
Due to the sparse time base [5] and the precision δ, we 
end up with timestamps of the same event that differ by 1 
time unit (i.e., ∏) while still complying with the precision 
of the global time base. This means that some nodes will 
consider events to be This concurrent (i.e., having 
identical time stamps), while other nodes will assign 
distinct time stamps to the same events. is illustrated in 
Figure 6, where node 2 will give the events e1 and e2 
identical time stamps, while they will have difference 2 
and 1 on nodes 1 and 3, respectively. That is, only events 
separated by more than 2∏ can be globally ordered.  

4 A small example  
We are now going to give an example of how the entire 
recording and replay procedure can be performed. The 
considered system has four tasks A, B, C, and D (Figure 
7). The tasks A, B, and C are functionally related and 

Figure 6. The effects of a sparse time base. 
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Figure 7. The data-flow between the tasks 
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Figure 5 The occurrence of local ticks on three nodes 



 

exchange information. Task A samples an external process 
via an analog to digital converter (A/D), task B performs 
some calculation based on previous messages from task C 
and samples an external process, and task C receives both 
the processed A/D value and a message from B; 
subsequently C sends a new message to B.  

Task D has no functional relation to the other tasks, but 
preempts B at certain rare occasions, e.g., when B is 
subject to interrupt interference, as depicted in Figure 8. 
However, task D and B both uses a function that by a 
programming mistake is made non re-entrant. This 
function causes a failure in B, which subsequently sends 
an erroneous message to C, which in turn actuates an 
erroneous command to an external process, which fails. 
The interrupt Q hits B, and postpones B’s completion 
time. Q causes in this case B to be preempted by D and 
therefore becomes infected by the erroneous non-reentrant 
function. This rare scenario causes the failure. Now, 
assume that we have detected this failure and want to track 
down the error. 

We have the following control transfer recording for time 
50 -117: 

 

Together with the following data recording: 

 

The historian then generates conditional breakpoints at 
location x, and y as well as programs that cause the 
Interrupt Q to occur at x and the preemption of task B by 
task D at location y. Task A’s access to the read_ad() 
function is short circuited and fed with the recorded value 
instead. Task B gets at its start a message from D, which is 
recorded before time 50. 

The message transfers from A and B to C is performed by 
the kernel in the same way as it would on-line. 

The programmer/analyst can breakpoint, single step and 
inspect the control and data flow of the tasks as he or she 
see fit in pursuit of finding the error. Since the replay 
mechanism reproduces all significant events pertaining to 
the real-time behavior of the system the debugging will 
not cause any probe-effects.  

As can be gathered from the example it is fairly 
straightforward to replay a recorded execution. The error 
can be tracked down because we can reproduce the exact 
interleavings of the tasks and interrupts repeatedly. 
Experience has shown that reproducing failures of the 
exemplified kind is very difficult in practice. A 
deterministic replay mechanism is thus an invaluable tool. 

5 Recording 
With respect to recording we have several options 

ranging from intrusive-free hardware and immobile 
recorders, to intrusive but deterministic software and 
mobile recorders. We also have the option of leaving the 
recording mechanism in the deployed system, with the 
equivalent benefit of a black-box (as in airplanes). If the 
deployed system crashes we can extract the information 
from the black-box and use it for deterministic replay of 
the system up to the crash. We are going to describe three 

1. Task A at time 51, read_ad() = 234 

2. Task B at time 60, message from C = 78 

Figure 8. The recorded execution order scenario 
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2. Task A stops at time 55 

3. Task B starts at time 60 

4. Interrupt Q starts at time 70, and preempts
task B at PC=x 
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6. Task B resumes at time 72, at PC=x  

7. Task D starts at time 80, and preempts task B
at PC=y 

8. Task D stops at time 87 

9. Task B resumes at time 87, at PC=y 

10. Task B stops at time 89 

11. Task C starts at time 100 

12. Task C stops at time 117 



 

stereotypes. However, which one is most suitable depends 
on the application.  

Type 1. Non Intrusive Hardware Recorders. 
Hardware in-circuit emulators using dual port ram are 
used (e.g., Lauterbach, AMC, etc.) 

This type of history recorder need no instrumentation 
whatsoever of the target system, if the in circuit emulator 
(ICE) has real-time operating system (RTOS) awareness, 
or interrupt service routine awareness. Many commercial 
ICEs (like e.g., Lauterbach, AMC, etc) provide this 
functionality. That is, no instrumentation is needed and 
you can observe the state of the RTOS by monitoring the 
changes in the data structures of the RTOS via the dual 
port memory. The same can be done for simpler event 
triggered systems by observing interrupt occurrences, and 
data (I/O, communication and access to memory) can be 
recorded if you know the location of it in memory, of 
which most compilers and linkers can provide. 

This type of history recorder is non-intrusive since it 
will not steal any CPU-cycles or target memory. One 
drawback however is that this type of system cannot be 
delivered with the deployed target system (the black-box) 
since its too expensive, especially for high volume systems 
like car subsystems or consumer electronics. Another con 
is that these systems are hard to expand to multiprocessor 
and distributed systems due to cost and synchronization 
issues. The application of this type of history recorder is 
consequently best suited for pre-deployment lab testing 
and debugging.   

Type 2. Hybrid Hardware Software Recorders. This 
recorder type has hardware support and a minimum of 
target software instrumentation. Hardware in-circuit 
emulators or logic analyzers collect histories using bus 
snooping and instrumented software. (e.g., Agilent, 
Lauterbach, VisionICE, Microtek, etc.)  

This type of recording system could also be intrusive 
free if all data manipulations and states were reflected in 
the systems external memory, and we had RTOS and data 
awareness. However, many micro-controllers and CPUs 
have on-chip memory and caches which means that any 
changes in state or data of the system is not reflected in the 
external memory. In the latter case it is necessary to 
instrument the operating system such that interrupts and 
task-switches are recorded and stored in external memory, 
bypassing the cache. Many existing RTOSs have “hooks” 
that can be used for instrumentation. The same goes for 
data and internal state of the application. The cost for this 
overhead is roughly 10-20 read write operations, and 
about 12-20 bytes of data stored at every task switch, 
depending on the CPU. The external historian then 
collects all changes in this buffer and constructs a history. 

This type of history recorder is cheaper than an ICE, 
but has the same problem of scalability with respect to 
multiprocessor systems and distributed systems as the type 
1 recorder above. Likewise it is not possible to leave the 
monitoring hardware monitoring mechanisms in the target 
system (the black-box) due to cost and size issues. 
Specially designed co-processors could however be 
deployed with the target system to some expense. The 
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Figure 10. Monitoring via bus snooping and instrumented software. 
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Figure 9. Monitoring via dualport memories and in circuit emulators. 



 

application of this type of history recorder is consequently 
also best suited for pre-deployment lab testing and 
debugging. 

Type 3. Software Recorders. The target operating 
system and software is automatically instrumented for 
storage of histories in circular memory buffers of 
programmable length.   

This type of system is intrusive in the sense that is 
consumes CPU cycles and memory for storing task switch 
information and application data, but it is deterministic 
since the intrusion is constant, i.e., what is run during 
testing and debugging is run in the delivered system. The 
instrumentation consists of a cyclic series of buffers in the 
target RTOS and software for storage of tasks-switches, 
interrupts, timing and application data, as well as code for 
storing these events and data. In essence it is a type 2 
system with more memory. 

During testing you periodically upload the contents of 
the cyclic buffers (history) to the historian for assembly of 
longer histories, or you run the system until if crashes and 
then upload the history stored in the target to the historian. 

This approach, in contrast to the hardware and hybrid 
approaches, makes it possible for us to diagnose and 
debug the system after deployment (the blak-box). This 
means that when a customer reports a failure, you can 
relive the recorded history and diagnose what happened. 
You can travel back in time and deterministically 
reproduce exactly what happened during runtime. 
Examples of suitable application areas are safety-critical 
systems, like those in the automotive industry and medical 

systems. More examples are robotic production lines, or 
other systems were production stop costs plenty of money 
and where it is not possible to stop the entire system for 
debugging.  

The cost for this software recording approach is an 
overhead of roughly 10-20 read/write operations, and 
about 12-20 bytes of data for every task switch depending 
on the CPU. Each buffer entry contains data of an event, 
for example, who started, who preempted, who terminated, 
who resumed, etc? At which program counter value did it 
happen, at what time, etc? The memory cost is a function 
of the length of the recording and the size of the buffer 
entries. Typically this amounts to ca 0.2kB – 2kB (10 – 
100 events). It is also necessary to record the data that 
cannot be restored off-line by re execution, e.g., sampling 
via A/D converters, state, messages received via a 
communication network, access to the real-time clock, etc. 
Note, that it is not necessary to store data, like messages 
passed between tasks since these transmission can be re 
executed off-line. The memory need for data storage is 
also a function of the length of the recording, but also 
dependent of the size of the data. 

Software recording is also a great deal cheaper for 
multiprocessor and distributed systems applications, than 
the hardware of hybrid approaches.  

6 Discussion 
Statement: One can only replay what has previously been 
observed, and no guarantees that every significant system 
behavior will be observed accurately can be provided. 
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Figure 11. Monitoring via instrumented RTOS and application software. 



 

Since replay takes place at the machine code level the 
amount of information required is usually large. All 
inputs and intermediate events, e.g. messages, must be 
kept.  

Reply: The amount and the necessary information required 
is of course a design issue, and it is not true that all inputs 
and intermediate messages must be recorded. The replay 
can as we have shown actually re-execute the tasks in the 
recorded event history. Only those inputs and messages 
which are not re-calculated, or re-sent, during the replay 
must be kept. This is specifically the case for RTS with 
periodic tasks, where we can make use of the knowledge 
of the schedule (precedence relations) and the duration 
before the schedule repeats it self (the LCM – the Least 
Common Multiple of the task period times.) In systems 
where deterministic replay has previously been employed, 
e.g., distributed systems [11] and concurrent programming 
(ADA) [14] this has not been the case. The restrictions, 
and predictability, inherent to scheduled RTS do therefore 
give us the great advantage of only recording the data that 
is not recalculated during replay. 

Statement: If a program has been modified (e.g., 
corrected) there are no guarantees that the old event 
history is still valid.  

If a program has been modified, the relative timing 
between racing tasks can change and thus the recorded 
history will not be valid. The timing differences can stem 
from a changed data flow, or that the actual execution time 
of the modified task has changed. In such cases it is likely 
that a new recording must be made. However, the 
probability of actually recording the sequence of events 
that pertain to the modification may be very low. As 
explained earlier, debugging in general and deterministic 
replay especially is not suited for speculative 
investigations of the system behavior. This is an issue for 
regression testing, as explained in [15][16].  

7 Related work  
There are a few descriptions of deterministic replay 

mechanisms (related to real-time systems) in the literature: 

• A deterministic replay method for concurrent Ada 
programs is presented by Tai et al [14]. They log the 
synchronization sequence (rendezvous) for a 
concurrent program P with input X. The source code 
is then modified to facilitate replay; forcing certain 
rendezvous so that P follows the same 
synchronization sequence for X. This approach can 
reproduce the synchronization orderings for 
concurrent Ada programs, but not the duration 
between significant events, because the enforcement 
(changing the code) of specific synchronization 
sequences introduces gross temporal probe-effects. 

The replay scheme is thus not suited for real-time 
systems, neither are issues like unwanted side-effects 
caused by preempting tasks considered. The 
granularity of the enforced rendezvous does not allow 
preemptions, or interrupts for that matter, to be 
replayed. It is unclear how the method can be 
extended to handle interrupts, and how it can be used 
in a distributed environment. 

• Tsai et al present a hardware monitoring and replay 
mechanism for real-time uniprocessors [17]. Their 
approach can replay significant events with respect to 
order, access to time, and asynchronous interrupts. 
The motivation for the hardware monitoring 
mechanism is to minimize the probe-effect, and thus 
make it suitable for real-time systems. Although it 
does minimize the probe-effect, its overhead is not 
predictable, because their dual monitoring processing 
unit causes unpredictable interference on the target 
system by generating an interrupt for every event 
monitored [1]. They also record excessive details of 
the target processors execution, e.g., a 6 byte 
immediate AND instruction on a Motorola 68000 
processor generates 265 bytes of recorded data. Their 
approach can reproduce asynchronous interrupts only 
if the target CPU has a dedicated hardware instruction 
counter. The used hardware approach is inherently 
target specific, and hard to adapt to other systems. 
The system is designed for single processor systems 
and has no support for distributed real-time systems.  

• The software-based approach HMON [1] is designed 
for the HARTS distributed (real-time) system 
multiprocessor architecture [13]. A general-purpose 
processor is dedicated to monitoring on each 
multiprocessor. The monitor can observe the target 
processors via shared memory. The target systems 
software is instrumented with monitoring routines, by 
means of modifying system service calls, interrupt 
service routines, and making use of a feature in the 
pSOS real-time kernel for monitoring task-switches. 
Shared variable references can also be monitored, as 
can programmer defined application specific events. 
The recorded events can then be replayed off-line in a 
debugger. In contrast to the hardware supported 
instruction counter as used by Tsai et al., they make 
use of a software based instructions counter, as 
introduced by [10]. In conjunction with the program 
counter, the software instruction counter can be used 
to reproduce interrupt interferences on the tasks. The 
paper does not elaborate on this issue. Using the 
recorded event history, off-line debugging can be 
performed while still having interrupts and task 
switches occurring at the same machine code 
instruction as during run-time. Interrupt occurrences 
are guaranteed off-line by inserting trap instructions at 



 

the recorded program counter value. The paper lacks 
information on how they achieve a consistent global 
state, i.e., how the recorded events on different nodes 
can consistently be related to each other. As they 
claim that their approach is suitable for distributed 
real-time systems, the lack of a discussion concerning 
global time, clock synchronization, and the ordering 
of events, diminish an otherwise interesting approach. 
Their basic assumption about having a distributed 
system consisting of multiprocessor nodes makes their 
software approach less general. In fact, it makes it a 
hardware approach, because their target architecture 
is a shared memory multiprocessor, and their basic 
assumptions of non-interference are based on this 
shared memory and thus not applicable to distributed 
uniprocessors.  

8 Conclusions 
Traditional debugging methods provide little insight 

into the cause of a real-time system crash. The 
TimeMACHINE records execution and data history, and 
lets you re-execute and analyze the events leading up to a 
crash. The TimeMACHINE allow you to replay the 
history over and over again; forward, backward, and in 
greater detail than recorded by means of an instruction 
level simulator debugger or standard JTAG/BDM or ICE 
debuggers.  

Since the histories (task-switches, interrupts, inputs, 
and communication) are replayed in the debugger, which 
has its own timeline, we can replay (re execute) the system 
history faster or slower than the recorded “executed real-
time” (this is specifically the case with instruction level 
simulators). This also allows you to insert any number of 
breakpoints, single-step, probe or poke the system while 
still executing the exact same series of events that 
occurred during run-time.  

There exists now a commercial tool based on the 
TimeMACHINE technology provided by ZealCore 
Embedded Solutions AB (www.Real-TimeMachine.com). 
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