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Abstract. In this paper, we describe the four-legged soccer team Upp-
sala Underdogs developed by a group of 4th year computer science stu-
dents at Uppsala University during the fall of 2004. The project is based
on the experience from two similar previous projects. This year the em-
phasis of the project has been on distribution of data and on support for
evaluation and reconfiguration of strategies. To support data distribu-
tion, a middleware has been developed, which implements a replication
algorithm and provides a clean interface for the other software modules
(or behaviors). To enable easy reconfiguration of strategies, an automata-
based graphical description language has been developed, which can be
compiled into code that uses the database and the lower level modules,
such as tactics and positioning, to make decisions and control the robot.
In addition, a graphical simulator has been developed in which the strate-
gies can be evaluated.

1 Introduction

Team Uppala Underdogs is the result of a 4th year student project in computer
science, running anually during the autumn semester at 75% of full time. The
goal is to complete a large programming assignment with the Sony AIBO model
ERS-210A for the four-legged robot league in RoboCup. This is the third time the
project has focused on RoboCup soccer, but so far no student group have decided
to continue the previous year’s work. This is something we have attempted to
change with a well-structured design and good documentation.

When constructing a robot soccer team there are a number of problems to
consider:

– Positioning of the AIBO and other objects on the field
– Communication and data distribution
– Strategy and AI



To gather data for positioning, our main source is visual data from the AIBO
camera. By analyzing the visual data, we are able to recognize known objects and
position ourselves. We also rely on odometrical data collected during movement
to continually update our estimated position. For a global estimation of the ball’s
position, we use information from the whole team to construct a mean value.

Communication is necessary for cooperation, and we handle communication
through a distributed database containing data for all players. This allows every
player to make a local decision based on global data, thus eliminating the need
for a central decision-taking unit.

Having all robots sharing the same data gives a foundation for creating good
strategies. We create strategies based on roles, describing actions. These roles are
handed out during play and an AIBO’s role may change depending on the state
of the game. Roles and the role-deciding rules are all developed in a graphical
user interface and read at run-time.

2 Preliminaries

2.1 RoboCup

The Sony Four-Legged Robot League is one of five leagues that currently form
the RoboCupSoccer domain. In some leagues, the teams are required to design
and build the robot hardware themselves. In the case of the Sony Four-Legged
Robot League, all teams use the same robotic platform, manufactured by Sony.
The robots operate autonomously, i.e. there is no external control, neither by hu-
mans nor by computers, during the game. Since all teams use the same hardware,
the difference lies in the methods they devise to program the robots.

Each soccer team consists of four robots and a game consists of two 10-minute
halves, separated by a 10-minute half-time break.

2.2 Tekkotsu

We decided not to use Sony’s development platform OPEN-R [1] directly for
development of our system, but to use the Tekkotsu [2] framework, developed at
Carnegie Mellon University. By using a framework, we could speed up develop-
ment and focus more on the computer science-related tasks we had at hand.

Tekkotsu is based on three concurrent processes: MainObj, MotoObj and
SoundPlay. SoundPlay handles playback of digital sound on the AIBO, which
is a feature we don’t use. MotoObj handles the state of all joints of the AIBO,
ensuring smooth movement of legs and head even during a high system load.

MainObj is where everything else is handled, and the heart of it is an event
router. Programs made for the framework, called behaviors, are not able to run
simultaneously since everything is in one system process, but switching between
behaviors is possible with the event router. The Tekkotsu system and the behav-
iors generate events that behaviors listen for and act upon. Examples of events
are when the AIBO camera has taken a new picture or when a button on the
AIBO is pressed.



Since it is under development, not all things work as advertised, but overall
it is a very useful framework which simplifies construction of the soccer team.

3 System Overview

On top of Tekkotsu we built our own system consisting of a number of behaviors,
communicating via events. As stated above, none of these run in parallel but
some of them are run when appropriate events happen. That leaves us without
having to think about concurrent access to data.

3.1 Strategy

Strategies are designed as automata, using a language constructed for this pur-
pose. We use TimesTool [3], a tool set featuring a graphical editor for timed
automata, to develop our strategies. We chose this software because:

– It provides a nice graphical interface for creating and editing automata.
– It’s free to use (through an educational software license).
– It came to our attention since it’s developed at the Department of Informa-

tion Technology at Uppsala University.

After creating the automata in TimesTool, they are saved in XML format.
These XML files are then read by our Strategy behavior and translated into an
internal representation that execute the given instructions.

We have chosen to design our strategies in this way mainly because the
graphical representation of the automata gives a better overview than a text
representation and because strategies can be changed easily without recompiling
the system.

Strategy automata A minimum of three automata are required: lineup, role-
caster and at least one role automata.

The lineup is a description of which roles we want to use under different
circumstances. The rolecaster tells each AIBO what role they have in the current
game state. The role is the local strategy for each AIBO.

The XML file is parsed by the Strategy behavior, which sends orders to our
Tactic behavior, which breaks down abstract instructions into a series of simpler
instructions. When the Tactic behavior has done what is was ordered to do, it
sends a message to the Strategy behavior that the order has been carried out.
Data needed for strategic decisions is provided by our Database behavior and
fetched when needed. This data includes the position of all AIBOs in the team
and the global estimation of the ball’s position. With this system it is possible
to create very versatile strategies.



Current strategy Our current strategy consists four roles: goalkeeper, defender,
attacker and supporter. All roles except goalkeeper are dynamically distributed
among the other players depending on the current state. The role of the goal-
keeper is fixed (in order to comply with the rules of the game) and no other
AIBO can take it. In order to prevent all AIBOs from chasing the ball at the
same time, ending up getting entangled with each other, only one of the players,
the attacker, is allowed to approach the ball. The AIBO closest to the ball gets
the attacker role. The attacker’s main objective is to score goals, so it constantly
tries to move towards the ball and shoot against the opponents’ goal. The AIBO
closest to its own goal gets the defender role. The defender positions itself be-
tween the ball and its own goal, on its own side of the field. The AIBO that
does not fulfill the requirements for becoming either attacker or defender gets
the supporter role. The supporter positions itself so that it is ready to take over
the attacking role.

Supported elements in the language used to make strategies are:

– Predicates: ballVisible, closestToBall, closeToGoal, closestToOwnGoal, time-
outReached, tacticDone

– Actions: kick, gotoBall, locateBall, makeSave, obstructBall, gotoPosition
– Boolean operators: AND, OR, NOT
– Misc: timeOut

3.2 Tactic and Movement

Our Tactic and Movement behaviors provide the system with the compound
movements and tactical decisions that the AIBO has to make in the field. These
behaviors work closely together and supply functionality for carrying out the
orders given by the Strategy behavior. Instructions are passed down in the fol-
lowing manner:

Strategy → Tactic → Movement → MotionManager

At each module the orders are broken down into smaller steps suitable for the
module at the level below. The Tactic behavior breaks down the abstract in-
structions given by the Strategy behavior into a series of simpler instructions
that are sent to the Movement behavior. To execute the given commands, the
Movement behavior communicates with MotionManager, which is a part of the
Tekkotsu framework.

Whenever one of the behaviors has completed a task, an event is generated
to notify the behavior giving the order that it has been carried out.

The main task of the Tactic behavior is to provide abstract functions for
moving, locating the ball and kicking the ball. The Movement behavior provides
the fundamental kinematics for the system. This is the walking functionality,
the kicks and the head and tail movements.



Walking The Tactic behavior can be ordered to go to a specified position on
the field. To accomplish this, the function estimates which walking style will
get the AIBO to the destination in the shortest time and chooses that one. The
functionality for walking is then provided by the Movement behavior, which sup-
ports walking specified with an arbitrary combination of forwards/backwards,
sideways and rotational speeds. During the time the AIBO walks, odometrical
data is sent to our Positioning module by the Movement behavior.

The Tactic behavior can also be told to go to the ball. A position near the
ball such that the opponents’ goal is on the opposite side, is then calculated.
This will put the AIBO in a position where it is possible to make a good shot.
It then uses the above functionality to get to this position.

Obstructing the ball is another functionality provided by the Tactic behavior.
The position closest to the AIBO that lies between the ball and the own goal
will then be calculated, whereupon the AIBO is then told to move.

Locating the ball When locating the ball, the AIBO rotates on the spot and
turns the head back and forth in an attempt to spot the ball, regularly checking
the database to know if the ball has been spotted. When it has, the AIBO stops
its movements.

Kicking The Tactic behavior also provides a kicking functionality. Depending
on the position of the AIBO relative to the goal of the opposing team, the
appropriate kick is chosen from the kicks supplied by the Movement behavior.
If the AIBO is standing at an angle in which it is deemed impossible to kick the
ball towards the opponents’ goal, no kick will be carried out.

3.3 Vision

Our Vision behavior implements image analysis for recognition and robot-relative
positioning of objects on the field. The behavior uses the Tekkotsu vision pipeline
(with small modifications) for low-level image analysis and replaces its high-level
image analysis with more advanced algorithms.

The high-level image analysis is able to recognize and position field objects
under lighting conditions well below the minimum requirements given in the 2004
RoboCup rules. It has been tested successfully below the required threshold of
500 lux with standard fluorescent ceiling lamps, using the color calibration tools
provided by Tekkotsu. The lamps introduce a considerable amount of noise in
the image due to the oscillation of the light, as compared to the more stable
light of halogen lamps, commonly used in RoboCup soccer. This problem has
been solved with extensions of the Tekkotsu vision pipeline.

Due to lab conditions it has also been impossible to surround the field with
a uniformly colored wall, which introduces the possibility of objects outside
the field similar to real field objects to be visible. The main strategy to avoid
detecting such objects has been to estimate the height above the field of identified
field objects and discard those that are not within some given accepted height
limits. Identified field objects are balls, beacons, goalposts and other AIBOs.



Low-level image analysis Low-level image analysis is based on the Tekkotsu
incorporation of the CMVision [4] package, developed as an undergraduate thesis
by James Bruce at Carnegie Mellon University. CMVision translates the raw
camera image into lists of color regions matching the calibrated colors. Every
color region contains information about its properties, such as area, centroid and
bounding box coordinates. The information has been extended for our purposes
to also include information about the minimum and maximum coordinates of
every scanline in the color region. This enables us to filter away some of the noise
introduced by the lighting when doing high-level image analysis, and thereby
getting more accurate results.

High-level image analysis The high-level image analysis analyzes identified
color regions and tests them against a set of requirements that corresponds to
properties of color regions belonging to field objects. Examples of such color
region properties are size, shape and height above the field.

Using the properties of color regions identified as belonging to field objects,
the camera-relative angle and distance to the field objects are calculated. The
angles are then adjusted using the AIBO head angles, such that the calculated
field object positions are relative to the AIBO body, with the origo located at the
neck joint. Identified field objects are passed to the Positioning module, which
uses them to estimate the absolute position of the AIBO on the field.

Field object recognition and positioning details Balls are identified by
analyzing the largest orange color regions identified. The relative position of a
non-occluded ball is calculated based on the width of the color region. Balls
that are estimated not to be fully visible are positioned using radius calculations
based on color region edge points, which are obtained through the extensions to
CMVision.

Beacons are identified as two vertically adjacent color regions with approxi-
mately the same height/width proportions and sizes. First, the medians of the
widths of the scanlines in the two color fields are calculated. Then, the distance
is calculated using the mean of these two medians. This information is also ob-
tained via the the extensions to CMVision and allows a considerably improved
beacon positioning under poor lighting conditions and calibrations.

Goalposts are recognized by analyzing the largest color regions with the colors
of the goals. The distance is calculated using the largest height of a specified part
of the color region containing its left or right edge. The width of a goal color
region is typically unusable for distance calculations, as goals are rarely empty
and seen in their full width. This also makes it possible for one goal to be divided
into multiple color regions, all which may be recognized as separate goals. It is
up to the Positioning module to pick out the leftmost and rightmost goalposts
out of all reported goalposts.

Other AIBOs are recognized by grouping together the largest color regions
of the appriopriate colors with smaller color regions close to larger ones. The
distance is calculated based on the area of the bounding box of such a group,



and is very error-prone due to the difficulty in recognizing other AIBOs properly.
This information does not help the AIBO to position itself though and is only
provided as a means for the AIBOs to detect temporary obstacles in the form
of other AIBOs nearby. Currently, this information is not used by any other
modules.

3.4 Positioning

Our Positioning module supplies the database with estimates of the current
positions of the AIBO and the ball, as well as information of whether the ball is
currently visible or not.

The Vision behavior supplies this module with information of objects the
AIBO has seen. Given this information, a position can be computed using tri-
angulation and trilateration. The Movement behavior supplies odometrical data
that the Positioning module use to implement dead reckoning.

Monte Carlo Localization Because of the poor camera resolution and inaccu-
rate object positioning during AIBO movement, the Vision behavior sometimes
provides unreliable data. This can cause subsequently estimated positions to dif-
fer greatly from each other even when the AIBO has not moved. To solve this
problem, some means of inertia needs to be introduced to the system.

The solution has been to implement a particle filtering method called Monte
Carlo Localization (MCL), providing a positioning more tolerant of input data
errors.

The basic principle of MCL is to keep a set of particles, each containing a
possible position and a confidence value corresponding to how accurately this
particular particle represents the correct position.

The particles are initialized with equal confidence values and containing ran-
domly generated positions. Odometrical data from the Movement behavior are
used to update the position of the particles according to the translation contained
in the data. When a new position is calculated from field objects identified by
the Vision behavior, the particles’ confidence values are updated. The closer the
particular particle’s position is to the new position, the greater the confidence
value will be, and vice versa. After any of these updates, a new absolute position
is calculated from the particle set.

Resampling After a few MCL iterations, a majority of the particles will be
depleted due to them drifting so far from the estimated position that their con-
fidence values have become too small for them to contribute to the absolute
position. To redeem this problem, we introduce a concept called resampling.

Rekleitis [5] refers to a measure of when to resample the particles: The ef-
fective sample size (ESS). When ESS drops below a threshold (experimentially
obtained between 0.5-1.0 in our implementation) resampling must be applied to
the particles as they are depleted.



The resampling method we have implemented is called select with replacement
resampling. In this method, the confidence value of the particles will determine
its chances to propagate further, and thus also to be duplicated more often. The
higher the confidence value, the more likely the particle is to propagate further.

Maintaining the variance of distribution when resampling To maintain
the variance of distribution among the particles, we create a small amount (in
our case 10%) of randomly generated particles and let them propogate further.

The kidnapping/teleporting problem Instead of generating random parti-
cles on the entire field when resampling, we generate random particles within a
region, with the center at the estimated position.

Calculating the absolute position The absolute position can be calculated
in several different ways. We have implemented two of them. They are called the
best particle method and the weighted mean method. The best particle method
simply picks the particle with the highest confidence value, while the weighted
mean method calculates a mean value of all particles, weighed by their individual
confidence values.

The weighted mean method is generally better suited for real life applications
and is thus our default method.

3.5 Distributed database

The Database behavior provides a central place in the AIBO system for storing
data that is going to be globally available to other modules in the system. It
provides a global communication channel between the internal modules and the
other AIBOs that are participating in the soccer game. The Database behavior
contains two database parts: A local part where all the data that the AIBO itself
produces are stored, and a replicated part, which contains the data about the
other playing AIBOs in the team. Which part to use depends on what data is
to be stored. The reason for this design is to make it possible to dynamically
connect and disconnect the AIBOs during a game.

Middleware We needed some way of storing data for localization and getting
data from other AIBOs to make strategic decisions on. The solution to this is a
middleware, which is a part of the Database behavior. The middleware’s task is
to setup and maintain connections to the other AIBOs.

The middleware is also responsible for the data distribution. It retrieves
data from the other participating AIBOs and stores it in its own database. The
distribution of data occurs in a predefined interval, currently 1 second. Each
AIBO’s middleware asks every other AIBO’s middleware for their local data
and stores this data in the replicated part of its database.

This enables other modules in the system to ask the Database behavior for
data about another AIBO. Hence, strategic decisions can be made.



Data replication algorithm The data replication/retrieval algorithm works
as follows: An AIBO’s middleware detects that it is time to update the replicated
data from the other AIBOs and sends requests to them for their data.

When data starts to arrive from the other AIBOs, it is stored in the replicated
part of the database. A weighted value of the ball’s position is created from the
received data and stored in the local part of the database.

3.6 Simulator

Constructing strategies is an iterative process where things are constantly eval-
uated and fixed or discarded. We wanted to have some means of testing the
strategies we came up with before the AIBOs were actually able to play soccer.
Therefore we built a simulator whose main goal was to just run strategies in
a simulated representation of the world. This would not only allow us to test
strategies without running them on the AIBOs but also to run them faster (or
slower) than real time.

The simulator uses the Strategy behavior almost as it is (there are only
minor differences) and provides an environment for it. This includes stubs for
the Database behavior, the Tactic behavior and so on. The simulator consists
of a server doing the actual simulation, and a client, written in Java, that is
used to view and control the simulation. This separation makes it possible to
watch the simulation from multiple workstations over a network and connect
and disconnect while a game is running.

Many simplifications have been made to the representation of the real world.
We aimed at getting a good enough model to evaluate strategies, not to simulate
every aspect of the AIBO and gameplay physics. There are other projects that
do this much better than we could manage during the time of the project.

The simulator uses a 2-dimensional representation of the field since we felt
that was enough to reach our goals. It is a frame-based model in which we
evaluate the state of all objects for each time frame.

4 Evaluation and Testing

Initially we used CppUnit [6] to test our modules, but when we started integrat-
ing them with the Tekkotsu framework, this didn’t work anymore.

Since we had eight AIBOs at our disposal, we could often test modules for
real because it didn’t bother anyone else. We also created debugging monitors
for some of the modules, which presented that module’s data in an intuitive way.

5 Conclusion

Tekkotsu By providing much of the low-level functionality that we would oth-
erwise have been required to implement ourselves, Tekkotsu allowed us to move
ahead to the more interesting high-level tasks much faster. This was especially



true for the Movement and Vision modules. The event handling made it very
easy to develop modules separately and make them work together.

Unfortunately, most of the code from the first year of the project was unusable
to us because it was not based on Tekkotsu. The second year’s code used an
older version of Tekkotsu than the one available to us at the start of the project.
Furthermore, we wanted to take a more modular approach, changing the original
Tekkotsu code as little as possible. Much of the code from the second year was
merged with Tekkotsu’s code.

We believe that our code would be much easier to reuse and/or extend, even
with the use of future versions of Tekkotsu.

Tekkotsu presented some problems for the Database behavior though. The
serialization used by Tekkotsu didn’t work that well when we extended the im-
plementation. This led to us having to make our own implementation, and the
effort of extending Tekkotsu’s implementation was wasted.

Strategy Even though TimesTool was not originally intended for this kind of
usage, it worked well. The ability to present the AIBOs behavior visually, and
being able to change the behavior by changing the automaton was neat.

The simulator could have been very useful for trying out strategies. Unfortu-
nately it was developed in parallel with the rest of the project, and so couldn’t
be used until the very end.

Positioning Visual positioning exceeded expectations in terms of lighting con-
ditions, but did not provide usable results during AIBO movement. Odometrical
data could be used to compensate for this problem. Due to the absence of move-
ment calibration, this data was too inaccurate to be useful for positioning. The
result was that the estimated positions were not accurate enough to trigger the
intended AIBO actions. It would have been very useful to have a proper calibra-
tion/monitoring tool, possibly integrated with the simulator, but development
of one was unfortunately omitted in our project plan. This made it difficult to
test the Strategy and Tactic behaviors on the actual AIBOs.

Tactic When implementing the Tactic behavior, we encountered some com-
plications, one of which was to determine correct positions. Since most of the
functionality in the Tactic behavior rely in great deal on the AIBO knowing
where it is, it was nearly impossible to make things work properly with unreli-
able positioning. However, when the ball is seen, the position of the ball relative
to the AIBO is often correct, which makes it possible for the AIBO to approach
the ball successfully, as long as it is kept in sight.
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