
Extent Analysis of Data Fields

Bj�orn Lisper

1 ?

and Jean-Francois Collard

2 ??

1

Department of Teleinformatics, Royal Institute of Technology, Electrum 204,

S-164 40 Kista, SWEDEN

2

LIP, ENS Lyon, 46 All�ee d'Italie, 69364 LYON CEDEX 07, FRANCE

Abstract. Data parallelism means operating on distributed tables, data

�elds, in parallel. An abstract model of data parallelism, developed in

[10], treats data �elds as functions explicitly restricted to a �nite set.

Data parallel functional languages based on this view would reach a very

high level of abstraction. Here we consider two static analyses that, when

successful, give information about the extent of a data �eld with recur-

sively de�ned elements, in the form of a predicate that is true wherever

the data �eld is de�ned. This information can be used to preallocate the

elements and map them e�ciently to distributed memory, and to aid the

static scheduling of operations. The predicates can be seen as extensions,

providing more detail, of classical data dependency notions like strict-

ness. The analyses are cast in the framework of abstract interpretation:

a forward analysis which propagates restrictions on inputs to restrictions

on outputs, and a backward analysis which propagates restrictions the

other way. For both analyses, �xpoint iteration can sometimes be used

to solve the equations that arise. In particular, when the predicates are

linear inequalities, integer linear programming methods can be used to

detect termination of �xpoint iteration.

Keywords: data parallelism, functional programming, abstract inter-

pretation, arrays.

1 Introduction

Data parallelism [11] is a programming paradigm where operations are made in

parallel over a \data �eld". The term was �rst coined by Yang and Choo [19]; we

adopt it since it is not tied to any speci�c \data parallel data type". Arrays are

examples of data �elds, but the concept can also cover more unstructured collec-

tions of data. Typical operations on data �elds are: pointwise applied \scalar"

operations, \reduction" (sums, products and similar), \scan" or \parallel pre�x"

operations (forming a data �eld of all partial \sums"), and various permutations

and rearranging operations that can be interpreted as communication opera-

tions. Data parallelism usually maps well to SIMD parallel and pipelined vector

?

lisper@it.kth.se. Partly supported by The Swedish Research Council for Engi-

neering Sciences (TFR), grant no. 94-109.

??

Jean-Francois.Collard@ens-lyon.fr. Partly supported by the French CNRS Pro-

gram C

3

, and DRET contract 91/1180.

computers, and is therefore often considered an explicit programming method

for such machines. It is, however, often a surprisingly convenient paradigm for

expressing algorithms in several areas, like neural network computations, compu-

tational
uid dynamics, and linear algebra. This indicates that data parallelism

should be considered an abstract programming paradigm rather than a form of

explicit parallel programming of a class of computer architectures. Especially,

data parallelism has been found to be a suitable paradigm for programming

massively parallel, data- and computation-intensive applications, which do not

necessarily have a regular structure.

In [10], the approach was taken to consider data �elds as functions over �-

nite sets, tabulated in a distributed fashion. Operations on data �elds are then

simply second order operations on functions. All commonly occurring data par-

allel operations have side-e�ect free forms that are conveniently expressed in this

way, see [10]. A higher order functional language can be extended with a single

second order operation for explicit restriction of functions to certain arguments.

If a restricted function is de�ned in only a �nite number of points, it can then

be represented by a table with an entry for each argument where it is de�ned.

A higher-order functional language extended with explicit restriction can thus

be seen as a data parallel functional language. Such a language will enjoy all

the good software engineering properties of declarative languages, and it can

be made small, abstract, general, and elegant. For a lazy functional language

extended in this way, recursive programs will have straightforward denotational

semantics given by the least �xpoint solutions of their recursive de�nitions.

The purpose of this paper is to describe a framework for analysis of data

�elds de�ned as functions with explicit restrictions. The aim is (1) for a given

recursive de�nition of a data �eld, to infer the points where it is possibly de�ned,

and (2), given a function call that involves accesses to a data �eld, to infer where

the data �eld is accessed (and thus has to be computed). We will refer to this

as extent analysis. If extent analysis succeeds, the result can be used to allocate

memory at compile time for the data �eld. On distributed memory machines we

can then also map data �eld elements to physical processors, which is a crucial

operation for performance on systems with highly nonuniform memory access

times. Extent analysis will therefore be an interesting program analysis in a

compiler for a functional data parallel language along the lines described above.

Sciences

2 Data Fields

Following [10], we de�ne a data �eld to be a function f :C ! C

0

, where C

and C

0

are complete partial orders (cpo's). Furthermore, we de�ne dom(f) =

fx j f(x) 6= ?g. Clearly, if we want to represent f as a table, it is su�cient

to tabulate f only for the points in dom(f), and consider the result of a table

lookup unde�ned for any argument not in dom(f).

Let B be the
at cpo of booleans ftrue; false;?

B

g. For any cpo C with

bottom element ?

C

, we de�ne the ternary function if

C

:B � C �C ! C by:

if

C

(?

B

; x; y) = ?

C

; if

C

(true; x; y) = x; if

C

(false; x; y) = y: (1)

We will most often drop indices B, C etc. when these are clear from the context.

We now de�ne explicit \unde�nition", or where-restriction, as follows, for any

function f :C ! C

0

and predicate b:C ! B:

f n b = �x:if (b(x); f(x);?):

This can be read \f where b" and it is a function C ! C

0

that is explicitly

unde�ned for all x such that b(x) 6= true. This single new construct turns a

higher order functional language into a data parallel language. An example of

its use is to make an array A[1 . . .n] out of a function A:Z

?

! C (where C is

some cpo and Z

?

is the
at cpo of integers):

A n (�i:1 � i � n):

Cf. array comprehensions in Haskell [1].

The \data �elds as functions" approach is, however, not implementable in

its general form: to decide where f(x) 6= ?, or even whether dom(f) is �nite,

amounts to solving the halting problem. For some combinations of data types

and explicit where-restriction, �niteness is, however, decidable. Some examples

are:

{ Functions over a �nite cpo (trivially).

{ Functions f n b, where f is a function from Z

n

?

for some n > 0, and b con-

sists of a number of disjunctions and/or conjunctions of linear inequalities.

Finiteness can be decided by solving a number of integer linear programming

problems. Interestingly, this can be done even when b contains symbolic pa-

rameters, e.g. through Feautrier's \Parametric Integer Programming" algo-

rithm [7].

Thus, there are instances where this approach to data parallelism is imple-

mentable. Especially, it o�ers a semantically clean way to de�ne arrays and

operations on them. The approach is, however, not limited to arrays, but ap-

plies to other proposed carriers of data parallel entities as well, such as lists [16],

nested �nite sequences [2, 3], or the \xappings" in CM Lisp [17].

Operations on data �elds can be expressed as second order operations on

functions. Elementwise application of a scalar n:ary operation g:C

1

�� � ��C

n

!

C

0

to n data �elds f

i

:C ! C

i

, 1 � i � n, is simply n-ary function composition

of g with f

1

; . . . ; f

n

:

g(f

1

; . . . ; f

n

) = �x:g(f

1

(x); . . . ; f

n

(x)):

This is a data �eld C ! C

0

. Get communication is also function composition,

but with the data �eld to the left: if f is a data �eld C

0

! C and g a function

C

00

! C

0

, then

f(g) = �x:f(g(x))

is a data �eld C

00

! C formed by fetching, for each x, the component of f given

by g(x). More complex operations, like reduction and scan (parallel pre�x), can

be de�ned in terms of these primitive operations and recursion. See [10].

Let us �nally mention an identity (slightly adapted from [10, corollary 1]),

that will be of importance here:

Proposition1. If g is strict in all its arguments, then dom(g(f

1

; . . . ; f

n

)) �

T

n

i=1

dom(f

i

).

3 Extent Analysis of Data Fields

We will describe two analyses: the �rst is an \input to output"-analysis that

considers where outputs can possibly be de�ned given where the inputs are

de�ned. The second is an \output to input"-analysis that given a request for

outputs derives what parts of the inputs will eventually be needed. The �rst

analysis is cast as a traditional forwards analysis in the spirit of Mycroft [15].

The second analysis is formulated as a backwards analysis, see e.g. [12, 18].

We will de�ne our analyses over a simple language of terms �x:t where t is a

term over a many-sorted signature. Any sort � in the signature is then a simple

type with an interpretation [[�]] that is a cpo. Especially, the signature holds a

boolean type � with interpretation [[�]] as the
at cpo B of booleans. The terms

t are de�ned the usual way, as constants or variables of some simple type, and as

expressions f(t

1

; . . . ; t

n

) where f is a function symbol of type �

1

� � � �� �

n

! � ,

where each �

i

, 1 � i � n, is a simple type and t

i

has type �

i

, 1 � i � n. f can be

either a constant function symbol or a variable. If the latter holds, then f may be

given by a (possibly) recursive de�nition f = t

f

. Any constant function symbol

of type �

1

� � � � � �

n

! � is interpreted as a function [[�

1

]]� � � � � [[�

n

]] ! [[�]].

Moreover, it is supposed to be strict in all its arguments { the only exception

being the ternary if-function de�ned by (1).

The terms under consideration will now be of the form �x:t, where x has the

simple type � and t has the simple type � . Operations on data �elds such as

elementwise application, get communication and where-restriction will thus be

expressed through �-abstraction.

The main idea in the input-output analysis is to represent every data �eld

[[�]]! [[�]] with a predicate over [[�]] such that the predicate is always true in any

point where the data �eld is possibly de�ned. The output-input analysis, on the

other hand, assumes an expression to be evaluated, which will in turn generate a

number of calls to di�erent elements of di�erent data �elds. For each data �eld,

the aim of the analysis is to derive a predicate that is true in any point where

the data �eld is possibly called as a result of evaluating the expression.

The predicates we consider are not mappings to the
at cpo B, but rather to

the cpo B with the same elements as B but the ordering ? @ false @ true. This

is since where-restriction uses test for false to \unde�ne", so we want false to

be \less de�ned" than true. An anomaly of B is that negation is not monotone

w.r.t. the ordering false @ true. However, it turns out that the way our analyses

are de�ned, �xpoint iteration w.r.t. abstract versions of functions will still form

monotone chains (see Theorem 4).

4 Input-Output Analysis

The predicates [[�]]! B form a lattice where the bottom element is �x:false, the

top element is �x:true, and the ordering is the standard one obtained by extend-

ing B pointwise. (Then b v b

0

implies b(x) =) b

0

(x) for all x 2 [[�]] for which

b(x) 6= ? and b

0

(x) 6= ?.) �x:true represents \no knowledge", i.e. a function with

abstract representation �x:true can possibly be de�ned everywhere. We now de-

�ne the following abstractions of functions [[�]] ! [[�]] given by expressions as

de�ned above. (The logical connectives below are applied elementwise.)

1. (�x:?)

#

= �x:false.

2. (�x:c)

#

= �x:true whenever c 6= ?.

3. (�x:x)

#

= �x:true.

4. (�x:y)

#

= �x:y

#

for y 6= x.

5. (�x:f(t

1

; . . . ; t

n

))

#

= (�x:t

1

)

#

^ � � � ^ (�x:t

n

)

#

, if f is a constant function

symbol distinct from if.

6. (�x:f(t

1

; . . . ; t

n

))

#

= �x:f

#

(t

1

; . . . ; t

n

) if f is a variable.

7. (�x:if (b; t

1

; t

2

))

#

= [b ^ (�x:t

1

)

#

] _ [(:b) ^ (�x:t

2

)

#

].

8. If f is de�ned by f = t

f

, then f

#

= t

#

f

.

9. If f is a free variable, then f

#

is assumed given.

The abstraction of �x:x is an approximation: it does not take into account

that �x:x(?) = ?. In most cases, we will however only be interested in tabulating

data �elds for arguments which are total elements, and then this approximation

makes no di�erence.

The following two rules can be derived from the above:

{ (f(g)

#

= f

#

(g), when f is a variable (get communication).

{ (f n b)

#

= f

#

n b.

Given a recursive function de�nition f = t

f

, the abstract recursive de�nition

f

#

= t

#

f

can be iterated to a greatest �xpoint starting with f

#

0

= �x:true. The

iteration can be extended to mutually recursive de�nitions in the usual way.

When [[�]] is in�nite the lattice of predicates [[�]]! B has in�nite height, and

there is no guarantee that a �xpoint iteration will terminate. However, also for

in�nitely high lattices there are cases where the �xpoint iteration will converge

in a �nite number of steps:

Proposition2. Let f be a function of type �! � . If, for some j, f

#

j

(x) is true

for only �nitely many x 2 [[�]], then there is a k such that f

#

k

is a �xpoint.

Proof. Then there will only be �nitely many predicates b: [[�]] ! [[�]] such that

b v f

#

j

. Since the sequence ff

#

i

g

1

i=0

is monotonically decreasing (theorem 4

below) it must converge in a �nite number of steps.

In order to use Proposition 2 in practice, it is also necessary to have a �nite

representation of the predicates under consideration. Furthermore, it must be

possible to decide the �niteness of a predicate from its representation, and also

to decide from their representations whether two predicates are equal or not. In

the next section we will see an example.

We will now formulate and prove a correctness theorem for the input-output

analysis. Since termination is not guaranteed, the theorem must be formulated

in terms of the successive iterates f

#

i

, i � 0. For simplicity we prove the the-

orem only for a single recursive de�nition; the extension to mutual recursion is

straightforward. First, a simple lemma:

Lemma3. if (b; x; y) 6= ? () b 6= ?^ [(b ^ x 6= ?) _ (:b ^ y 6= ?)].

Proof. Immediate from (1).

Theorem4. (Correctness of input-output analysis): If f of type � ! � is re-

cursively de�ned by f = t

f

then it holds, for all i � 0, that:

1. f

#

i+1

v f

#

i

.

2. For all x 2 [[�]], f(x) 6= ? =) f

#

i

(x).

Proof. See appendix A.

4.1 Linear Constraints

A kind of predicate over in�nite cpo's that seems possible to handle in many cases

and is of importance in practice is systems of linear inequalities over Z

n

?

. Any

predicate over Z

n

?

formed by the logical connectives and linear inequalities can

be written on disjunctive normal form L

1

_ � � �_L

n

, where each L

i

is a conjunct

l

i1

^ � � � ^ l

im(i)

of linear inequalities l

ij

(i.e. a system of linear inequalities).

Finiteness of an L

i

can be decided by integer linear programming methods:

thus, �niteness of L

1

_ � � � _ L

n

can be decided by solving n ILP problems. In

order to decide equality of two predicates b, b

0

of the form above, we can use

ILP methods to decide whether P and P

0

, the subsets ofZ

n

de�ned by b and b

0

respectively, are equal [14].

Thus, proposition 2 can be applied when, for all i greater than some j, f

#

i

is

a predicate formed from linear inequalities. If A is an a�ne mapping and f

#

is

a predicate of this form, then �i:f

#

(A(i)) is such a predicate too: thus, we can

always analyze data �elds de�ned by a�ne recurrences in this manner. If we,

at some point, arrive at a �nite predicate, then we know that the iteration will

terminate and we also have a method to decide termination.

As remarked before, there are ILP methods that can handle inequalities

with symbolic parameters. Since �niteness and equality both can be checked by

solving a number of ILP problems, it may appear that we will also be able to

handle �xpoint iteration over parameterized predicates with linear inequalities.

This is, however, not necessarily true. The reason is that the symbolic solutions

may contain conditions on the parameters. In order to decide equality, we must

therefore be able to decide whether two disjuncts of symbolic solutions with

conditions are equal or not. In the example below we give a recursive de�nition

with symbolic parameters that can be analyzed, but where a slight modi�cation

of the de�nition makes a straightforward symbolic analysis di�cult.

4.2 An Example: Matrix Multiplication

Consider the following de�nition of the classical matrix multiplication algorithm.

A and B are n � n-matrices, i.e. they have the abstract values A

#

= �ik:(1 �

i; k � n) and B

#

= �kj:(1 � k; j � n), respectively:

mul(A;B; n) = �ij:C(A;B; i; j; n)

C(A;B) = �ijk:if (k = 0; 0; C(A;B; i; j; k� 1) + A(i; k) �B(k; j))

(2)

(Here and henceforth we use the notational convention that \index arguments"

of type �, for data �elds of type � ! � , are introduced as lambda-bound variables

in the right-hand side of the data �eld de�nition, whereas arguments that should

be considered parameters to a data �eld are given as arguments in the left-hand

side.) The system of abstract recursive functions becomes

mul(A;B; n)

#

= �ij:C

#

(i; j; n)

C

#

= �ijk:((k = 0) _

((k 6= 0) ^ C

#

(i; j; k � 1) ^A

#

(i; k) ^B

#

(k; j))):

(For notational convenience, we drop the arguments A, B to C

#

.) This is a

recursive predicate de�nition with a symbolic parameter n. Let us now perform

the �xpoint iteration. It su�ces to iterate w.r.t. C

#

only, with A

#

, B

#

and n

given by the omitted call to mul

#

. C

#

0

= �ijk:true,

C

#

1

= �ijk:((k = 0) _ ((k 6= 0) ^ C

#

0

(i; j; k� 1) ^A

#

(i; k) ^B

#

(k; j)))

= �ijk:((k = 0) _ ((1 � i; k � n) ^ (1 � k; j � n)));

and

C

#

2

= �ijk:((k = 0) _ ((k 6= 0) ^ C

#

1

(i; j; k� 1) ^A

#

(i; k) ^B

#

(k; j)))

= (some manipulations)

= C

#

1

:

Thus, C

#

(i; j; k) = C

#

2

(i; j; k) and

mul(A;B; n)

#

= �ij:C

#

(i; j; n)

= �ij:((n = 0) _ ((1 � i; n � n) ^ (1 � n; j � n)))

= �ij:((n = 0) _ ((1 � i � n) ^ (1 � j � n))):

Note how we get two cases: n = 0 with no restrictions on i and j, re
ecting that

this is a nonstrict case where A, B are not used at all (mul(A;B; 0) is 0 every-

where), and n > 0 where the restrictions on i, j are given by the corresponding

restrictions on A, B.

In the example above the termination of the iteration could be decided,

since we were able to manipulate two successive iterates symbolically so they

became syntactically equal. It is instructive to consider an example where this

does not seem possible. Let us make a slight modi�cation to the de�nition of C

above, so it uses C(i; j; k � 2) rather than C(i; j; k � 1). Intuitively, the \index

set" for C will now be a number of \slices" parallel with the k-axis for k =

n; k = n � 2; . . . ; k = 0 (the result will now be de�ned for even n's only). This

non-convex set can be expressed with linear equalities and inequalities only if

we allow the size of the formula to grow with n: it will then have the form

(k = n ^ . . .) _ ((k = n � 2) ^ . . .) _ . . . _ (k = 0 ^ . . .). But then we will not

be able to decide termination by comparing formulae, since these will grow for

every new iteration. Note, however, that if n is �xed, then also this iteration will

eventually converge. This indicates that program specialization can be helpful

to improve the success of extent analysis. The convergence will, however, require

O(n) steps rather than two.

4.3 A Second Example: List Length Analysis

The input-output analysis can sometimes be used to predict the length of lists.

Thus, it may have applications also for analyzing more conventional functional

programs. Recall that a nonempty list a::L of type List � can be interpreted as a

function from natural numbers to [[�]], de�ned on the interval [0; length(L)� 1],

viz:

{ [[a::L]](0) = [[a]].

{ [[a::L]](i) = [[L]](i � 1), 1 � i < length(L).

Thus, the theory of data �elds can be applied to lists. In particular, input-

output analysis can be performed. We will have L

#

= �i:0 � i < length(L) for

(�nite) lists L: this particular form of predicate is fully represented by length(L),

which we can take as the abstract version of L rather than the predicate. For

functions over lists using cons, head, tail, empty list, test for empty list and

conditional we can use the following abstract interpretation of lists:

{ NIL

#

= 0.

{ (a::L)

#

= 1 + L

#

.

{ tl(L)

#

= L

#

� 1, when L is nonempty.

{ (L = NIL)

#

= (L

#

= 0).

Furthermore, we rede�ne the interpretation of the if-function to be

if (b; L

1

; L

2

)

#

= if (b; L

#

1

; L

#

2

):

For instance, we can analyze the following function that takes a list and puts an

extra copy of each element in the resulting list:

double(L) = if (L = NIL;NIL; hd(L)::(hd (L)::double(tl(L)))):

The abstract version becomes

double

#

(L

#

) = if (L

#

= 0; 0; 1+ (1 + double

#

(L

#

� 1))):

This equation is not suitable to solve with �xpoint iteration. However, we can

assume that double

#

(L

#

) = a �L

#

+ b when L

#

> 0 and try to determine a and

b. We obtain the following system of equations, where the latter comes from the

\boundary condition" double

#

(1) = 2 + double

#

(0), and double

#

(0) = 0:

a �L

#

+ b = 2 + a � (L

#

� 1) + b;

a+ b = 2 + b:

This system has the solutions a = 2, b arbitrary. The least solution, subject to

the constraint L

#

� 0 =) double

#

(L

#

) � 0, is a = 2, b = 0. By theorem 4,

we can then safely assume that length(double(L)) = 2 � length(L).

5 Two-Step Termination of Input-Output Analysis

In the �rst example in Sect. 4.2, the �xpoint iteration terminated in two steps.

A question thus arises: in which cases do this occur? Below we will give a class

of recursive functions where the �xpoint iteration will always terminate in two

steps. Consider the following form of recursive de�nition:

y = �x:if (p(x); g(x); f(h(x); y(b(x))))

where f is strict in both arguments, and p, g and h are not dependent of y. We

have

y

#

= �x:[(p(x) ^ g

#

(x)) _ ((:p(x)) ^ h

#

(x) ^ y

#

(b(x)))]:

If we de�ne P (x) = p(x)^h

#

(x) and A(x) = (:p(x))^h

#

(x), then we can write

y

#

= �x:[P (x)_ (A(x) ^ y

#

(b(x)))]:

Let P and A denote the sets de�ned by P and A, respectively. The following

hypothesis is made on the recursive de�nition:

H1 All the points in A are \computable points", i.e.,

8x 2 A; (b(x) 2 P) _ (b(x) 2 A);

or, equivalently,

A(x) =) P (b(x)) _A(b(x)) for all x.

Notice that H1 is equivalent to the existence of a \used-def" chain between any

point of A and some point in P (or, possibly, a cyclic dependence within A).

This is reminiscent to dependence analysis in automatic parallelizers.

Proposition5. H1 implies that the �xpoint iteration for y

#

terminates in two

steps.

Proof. Assume that H1 holds. We have y

#

0

= �x:true, and subsequently y

#

1

=

�x:P (x) _A(x). Furthermore,

y

#

2

= �x:P (x)_ [A(x) ^ (P (b(x)) _A(b(x)))]:

We have y

#

1

= y

#

2

i� y

#

1

v y

#

2

and y

#

2

v y

#

1

. The latter is always true. y

#

1

v y

#

2

holds if, for all x,

A(x) =) A(x) ^ [P (b(x)) _A(b(x))];

that is:

A(x) =) P (b(x)) _A(b(x))

which is exactly H1.

We can even give the solution as a closed formula:

y

#

= �x:[(p(x)^ g

#

(x)) _ ((:p(x)) ^ h

#

(x))]:

In the example in Sect. 4.2, the recursive de�nition of C obeys H1 with p =

�ijk:(k = 0), g

#

= �ijk:true, h

#

= �ijk:1 � i; j; k � n and b = �ijk:(i; j; k�1).

If we, however, change b to �ijk:(i; j; k�2) as in the modi�ed example, then H1

does not hold: some calls from A will \fall o� the edge" and cause a successive

\unde�nition" of interior points of A as the iteration proceeds.

6 Output-Input Analysis

Let us now turn to the opposite problem: given a request for a part of a data

�eld, what parts of the inputs will eventually be requested? For a recursively

de�ned function we also want to know: which recursive calls will be made? The

result of the analysis will be one predicate for each input (recursive function),

that is true in the requested points, or call arguments, for that input (recursive

function). The basic idea is very simple: just perform a symbolic execution, and

for each call (request for input), add the argument tuple to the predicate (i.e.

OR it).

The framework is that of backwards analysis. Backwards analysis can be

thought of as an environment being propagated from a function call to its argu-

ments. Formally, the environments can be de�ned as projections [18]: a projection

over a cpo C is a continuous function p:C ! C such that:

{ p v ID (ID is the identity function).

{ p � p = p. (idempotence)

Note that for every predicate b:C ! B, �f:(f n b) de�nes a projection over each

function cpo C ! C

0

. So a predicate can be seen as an environment telling in

which points a function is to be called.

The analysis is presented in the spirit of Hughes [12]. Propagation of a con-

straint b through an expression t to a (data �eld) variable f is denoted by

b �t! f : this is a predicate that tells which points of f that can be evaluated,

given that the expression t is evaluated in the points de�ned by b.

For all data �eld variables f of type � ! � and recursively de�ned data �eld

variables g of type �

0

! �

0

, given by g = t

g

, we de�ne

g

#

f

(b) = b �t

g

! f:

g

#

f

transforms the predicate b: [[�

0

]] ! B into a predicate [[�]] ! B. If g is not

recursively de�ned (say, a parameter), then we de�ne

g

#

f

(b) = �x:false:

When f is given, the idea is to �nd recursive de�nitions for all g

#

f

(b) by unfolding

b ��x:t

g

! f according to the rules de�ning b �t! f . The resulting recursive

system of de�nitions can then in principle be solved by a �xpoint iteration over

the lattice ([[�

0

]]! B)! ([[�]]! B). Contrary to input-output analysis, the �x-

point iteration for output-input analysis starts with the least element �b:�x:false

in ([[�

0

]]! B)! ([[�]]! B). Thus, the solution, if found, will be a least �xpoint.

Assume that we know g

#

f

. For a call g n b, g

#

f

(b) can then be evaluated to

yield a predicate that is true in those points where f becomes requested due to

this call. We now present the rules de�ning b �t! f :

{ b ��x:c! f = �x:false for any constant c, including ?.

{ b ��x:y ! f = �x:false for any (simple type) variable y, including x.

{ b ��x:g(t

1

; . . . ; t

n

)! f = b ��x:t

1

! f _ � � � _ b ��x:t

n

! f , if g is a

constant function symbol distinct from if.

{ b ��x:if (v; t

1

; t

2

)! f = [b ��x:v ! f] _ [(b ^ �x:v) ��x:t

1

! f] _ [(b ^

�x::v) ��x:t

2

! f].

{ b ��x:f(t

1

; . . . ; t

n

)! f = b

0

_ f

#

f

(b

0

), where b

0

= �x

0

:9x:(x

0

= (t

1

; . . . ; t

n

)^

b(x)).

{ b ��x:h(t

1

; . . . ; t

n

)! f = h

#

f

(b

0

) when h is a higher order variable distinct

from f , with b

0

as above.

The following is an informalmotivation for the analysis. First order constants

and variables cannot generate any calls to f , thus �x:false is returned for them.

For strict constant function symbols all arguments must be evaluated: therefore

all possible calls to f , resulting from the evaluation of any argument, are col-

lected. For the if-function, the �rst disjunct records any calls to f through the

evaluation of v. The second and third disjuncts, respectively, record the calls

to f that may result from evaluating t

1

and t

2

under the conditions v and :v,

respectively.

The rules for propagation through calls to data �elds deserve special men-

tioning. In the rule for b ��x:f(t

1

; . . . ; t

n

)! f the �rst disjunct records the call,

with the possible values of the arguments given by b. The existentially quanti�ed

x represents the \old" possible values of arguments; x

0

= (t

1

; . . . ; t

n

) gives the

new binding of argument (note that x in general will occur in (t

1

; . . . ; t

n

), thus

x

0

is de�ned in terms of x). b(x) essentially means that b decides the possible

values of the old arguments. The second disjunct gives the recursive call to f

#

f

.

The rule for b ��x:h(t

1

; . . . ; t

n

)! f is similar: the call itself is not recorded

but the recursive call to h

#

f

must still be made, to cater for any possible calls to

f

#

f

resulting from the call.

The following rule for where-restriction can be derived:

b �(�x:t) n v ! f = (b �v ! f) _ ((b ^ v) ��x:t! f):

Some natural properties of b �t! f can be deduced from the above. First,

for any terms t without recursively de�ned variables, b �t! f = �x:false for any

b, f . This also means that for conditions v in conditionals or where-restrictions

not depending on data �elds, the rules for if and where-restriction simplify to

{ b ��x:if (v; t

1

; t

2

)! f = ((b ^ v) ��x:t

1

! f)(_(b ^ :v) ��x:t

2

! f) and

{ b �(�x:t) n v ! f = (b ^ v) ��x:t! f ,

respectively. Second, it is easy to see that �x:false ��x:t! f = �x:false for all

t, f . This rule is important for achieving termination when evaluating abstract

functions.

7 Related Work

The analyses here are formulated in a purely functional setting, but the main

applications of the techniques seem to be found for array-like recursive de�ni-

tions. Related work thus exists for both functional languages and imperative

languages. The formulation of the input-output analysis is in
uenced by My-

croft's thesis [15], and the output-input analysis is inspired by the work by

Wadler and Hughes on projections for backwards analysis [18]. Data �elds over

integer tuples restricted by linear inequalities are akin to array comprehensions

in Haskell, with the exception that an array comprehension must have its extent

speci�ed explicitly (and thus it need not be derived by extent analysis). Ander-

son and Hudak [1] apply dependence tests to array comprehensions in order to

schedule them for thunkless evaluation: the same applies to the corresponding

class of data �elds if the extent analysis succeeds. Optimizing a�ne space-time

mappings should also often be possible to apply in this case, see, for instance,

[13].

Some analyses on graph based intermediate forms for array-based eager func-

tional languages can be seen more or less as special cases of our input-output

analysis. In particular, this applies to the Size Inference for vectors in VCODE

[4] and the Build-in-Place Analysis of the SISAL compiler described by Feo,

Cann and Oldehoeft [8].

For imperative programs, we would like to mention the array reference analy-

sis by �xed point iteration by Duesterwald, Gupta and So�a [6]. Optimization of

array bounds checking [9] is also related to our work: in fact, our analyses could

be used for this purpose. Finally, it is interesting to compare the output-input

analysis with Dijkstra's predicate transformers for imperative programs [5].

8 Conclusion and Future Work

We have presented two methods to perform extent analysis on recursively de�ned

data �elds. Input-output analysis �nds where a data �eld is (possibly) de�ned

given that we know where the inputs are de�ned. This is a forwards analy-

sis. Output-input analysis derives the (possibly) required parts of inputs from

requested outputs. It is a backwards analysis that propagates environments \in-

wards". For the input-output analysis, the abstract domain consists of predicates

de�ned over the same cpo as the data �eld to be analyzed. If that cpo is not �-

nite, then the abstract domain will not be �nite either and �xpoint iteration will

in general not terminate. For linear inequalities over tuples of integers the situa-

tion is di�erent, though: here, symbolic methods can be used to decide equality

between predicates. Also, �niteness can be decided, and if an iterate is �nite then

the �xpoint iteration will eventually terminate. Linear inequalities constitute an

important special case with applications to programs with arrays. We proved a

weak form of correctness for the input-output analysis: if it terminates, then the

resulting predicate is guaranteed to be true in all points where the analyzed data

�eld is distinct from ?. Furthermore, we presented a special case of recursive

de�nition, where the �xpoint iteration for input-output analysis under certain

conditions is guaranteed to terminate in two steps (and then the solution has a

closed form, so no iteration is actually needed). It thus seems plausible that the

input-output analysis can be automated for at least some interesting instances

of recursively de�ned data �elds.

The situation for the output-input analysis is more problematic, however.

Since the abstractions are predicate transformers rather than predicates, it seems

less likely that there will be interesting cases that can be handled symbolically.

An example which displays some of the problems is developed in [14]. Even if

the cpo's under consideration are �nite, the higher order function lattice for the

abstract values will be prohibitively large for all but trivial cases. Yet, it seems

of interest to continue pursuing analysis methods for \compile-time demand

propagation", especially for languages with lazy semantics.

The present analyses are cast in the framework of abstract interpretation,

with the solution of �xpoint equations as the primary method to �nd the solu-

tion. One can wonder whether suitable type systems can be designed, so type

checking algorithms can be employed instead.

9 Acknowledgements

We would like to thank the anonymous referees for their valuable comments.

References

1. S. Anderson and P. Hudak. Compilation of Haskell array comprehensions for sci-

enti�c computing. In Proceedings of the ACM SIGPLAN'90 Conference on Pro-

gramming Language Design and Implementation, pages 137{149. ACM, June 1990.

2. G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha. Imple-

mentation of a portable nested data-parallel language. In Proceedings 4th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages

102{111, San Diego, May 1993.

3. G. E. Blelloch and G. W. Sabot. Compiling Collection-Oriented Languages onto

Massively Parallel Computers. Journal of Parallel and Distributed Computing,

8:119{134, 1990.

4. S. Chatterjee, G. E. Blelloch, and A. L. Fisher. Size and access inference for data-

parallel programs. In Proc. ACM SIGPLAN'91 Conference on Programming Lan-

guage Design and Implementation, pages 130{144, June 1991.

5. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cli�s,

N.J., 1976.

6. E. Duesterwald, R. Gupta, and M.-L. So�a. A practical data
ow framework for

array reference analysis and its use in optimization. In Proc. ACM SIGPLAN'93

Conference on Programming Language Design and Implementation, pages 68{77,

June 1993.

7. P. Feautrier. Parametric integer programming. RAIRO Recherche Op�erationnelle,

22:243{268, Sept. 1988.

8. J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A report on the SISAL language

project. Journal of Parallel and Distributed Computing, 10:349{366, 1990.

9. R. Gupta. A fresh look at optimizing array bound checking. In Proc. ACM

SIGPLAN'90 Conference on Programming Language Design and Implementation,

pages 272{282, June 1990.

10. P. Hammarlund and B. Lisper. On the relation between functional and data paral-

lel programming languages. In Proc. Sixth Conference on Functional Programming

Languages and Computer Architecture, pages 210{222. ACM Press, June 1993.

11. W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms. Comm. ACM,

29(12):1170{1183, Dec. 1986.

12. J. Hughes. Compile-time analysis of functional programs. In D. A. Turner, editor,

Research Topics in Functional Programming, The UT Year of Programming Series,

chapter 5, pages 117{153. Addison-Wesley, Reading, MA, 1989.

13. B. Lisper. Linear programming methods for minimizing execution time of indexed

computations. In Proc. Int. Workshop on Compilers for Parallel Computers, pages

131{142, Dec. 1990.

14. B. Lisper and J.-F. Collard. Extent analysis of data �elds. Research report, LIP,

ENS Lyon, France, 1994. ftp: lip.ens-lyon.fr.

15. A. Mycroft. Abstract interpretation and optimizing transformations for applicative

programs. PhD thesis, Computer Science Dept,. Univ. of Edinburgh, 1981.

16. D. B. Skillicorn. Architecture-independent parallel computation. IEEE Computer,

pages 38{50, December 1990.

17. G. L. Steele Jr. and W. D. Hillis. Connection Machine Lisp: Fine-Grained Paral-

lel Symbolic Processing. Technical Report PL86{2, Thinking Machine Corpora-

tion, Thinking Machines Corporation, 245 First Street, Cambridge, Massachusetts

02142, May 1986.

18. P. Wadler and R. J. M. Hughes. Projections for strictness analysis. In G. Kahn,

editor, Proc. Functional Programming Lang. and Computer Arch., pages 385{407,

Berlin, Sept. 1987. Volume 274 of Lecture Notes in Comput. Sci., Springer-Verlag.

19. J. A. Yang and Y. Choo. Data �elds as parallel programs. In Proceedings of the

Second International Workshop on Array Structures, Montreal, Canada, June/July

1992.

A Proof of Theorem 4

1. The only nonmonotone operation that may occur in t

#

f

is negation \:". f

#

i+1

6v

f

#

i

can thus happen only if f

#

occurs below a negation in t

#

f

, and this may

happen only if f occurs in a condition b in some subterm if (b; t

1

; t

2

) of t

f

.

However, the subterms resulting in t

#

f

from b are b and :b. These terms will

contain f rather than f

#

, and thus f

#

will not occur below possible negations.

(Note that for boolean expressions that do not occur as conditions to if, negation

is treated as a strict unary constant function symbol.)

2. By induction on i:

{ i = 0: vacuously true.

{ i > 0: assume true for i�1. f

#

i

equals t

#

f

[f

#

i�1

=f

#

] (t

#

f

with f

#

i�1

substituted

for f

#

). Proof by structural induction over the �rst order terms t of type �

forming the possible terms �x:t = t

#

f

[f

#

i�1

=f

#

] under consideration:

� t = ?, t = c, t = x: directly true.

� t = y 6= x: true by de�nition, since y

#

is assumed given.

� t = g(t

1

; . . . ; t

n

), where g is a constant function symbol 6= if: assume

true for t

1

; . . . ; t

n

. For any y 2 [[�]] we obtain, using proposition 1, that

�x:t(y) 6= ? =) �x:g(t

1

; . . . ; t

n

)(y) 6= ? =) �x:t

1

(y) 6= ? ^ � � � ^

�x:t

n

(y) 6= ? =) (�x:t

1

)

#

(y) ^ � � � ^ (�x:t

n

)

#

(y) = (�x:t)

#

(y).

� t = f(t

1

; . . . ; t

n

): Then (�x:t)

#

= f

#

i�1

(t

1

; . . . ; t

n

). By the induction on

i, the property holds.

� t = h(t

1

; . . . ; t

n

), where h is a free variable: true by de�nition, since h

#

is assumed given.

� t = if (b; t

1

; t

2

): Assume, for any y, that �x:if (b; t

1

; t

2

)(y) 6= ?. Then,

by lemma 3 and induction on t

1

and t

2

, if (�x:b(y); �x:t

1

(y); �x:t

2

(y)) 6=

? () �x:b(y) 6= ?^ [(�x:b(y)^�x:t

1

(y) 6= ?)_ (:�x:b(y)^�x:t

2

(y) 6=

?)] =) (�x:b(y) ^ (�x:t

1

)

#

(y)) _ ((:�x:b(y)) ^ (�x:t

2

)

#

(y)) =)

[(�x:b^ (�x:t

1

)

#

) _ ((:�x:b)^ (�x:t

2

)

#

)](y) () (�x:if (b; t

1

; t

2

))

#

(y).

This article was processed using the L

a

T

E

X macro package with LLNCS style

