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MRTC PROGRESS project provides a part of funding for DICES project.
DICES (Distributed Component-based Embedded Software Systems) project has a goal to advance 
development of distributed embedded software systems, particularly with emphasis  on software 
reusability  and  predictability  of  software  quality.  By adopting  a  component-based  approach  to 
engineering  of  embedded  software  systems,  DICES aims  to  advance  theories  and  methods  for 
prediction of certain system properties (such as resource utilization, and performance), as well as to 
provide  tools  that  will  help  in  reusability  of  software  components,  and  assure  performance 
efficiency of systems.
PROGRESS and DICES project have many interests in common. Except for interest in the same 
systems domain (embedded systems), both projects are focusing on adaptation and extension of 
component-based development into a mature engineering discipline for efficient development of 
embedded software.
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Executive summary
As component-based software engineering is  growing and its  usage expanding,  more and more 
component models are developed. In this report we present a survey of software component models 
in which models are described and classified respecting the classification framework for component 
models proposed by Crnković et.  al.  [1]. This framework specifies several  groups of important 
principles  and  characteristics  of  component  models:  lifecycle,  constructs,   specification  and 
management  of  extra-functional  properties,  and  application  domain.  This  report  analyzes  a 
considerable amount of component models, including widely used industrial models, as well  as 
research models.
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1   Introduction
Component models are a paramount concept in component-based software engineering,  as they 
define how components are specified and connected. A large number of component models have 
been developed to date, but mostly having substantial differences in their approaches, meaning that 
a  comparison  between  them  by  simply  listing  their  properties  is  not  achievable.  Therefore, 
developing a systematic classification framework for component models is worthwhile. 

In  this  technical  report  we use  a  classification  framework  proposed  by Crnković  et.  al.  [1] to 
classify a number of component models. In  [1] these component models are given brief general 
overviews with their classification against the framework given only in tables. We expand this by 
providing a somewhat more detailed textual description of each model's classification, while also 
covering key properties of every model. 

In Figure 1 we give a graphical representation of the classification framework. We also give tables 
of the classification. The figure and the tables are taken from [1] and are repeated here for the sake 
of completeness, and easier comprehension and readability. For details on the framework we refer 
the reader to the referenced article.
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Figure 1: The classification framework visualized



                         

Table 1: Lifecycle

Component 
models Modeling Implementation Packaging Deployment

AUTOSAR use of virtual 
functional bus C

non-formal 
specification of 

container
at compilation

BIP
a three-layered 
representation: 

behavior, interaction 
and priority

BIP language and 
C++ N/A at compilation

BlueArX ASCET-MD C packages at compilation

CCM N/A language 
independent

deployment unit 
archive (DLLs, 

JARs)
at run-time

COM N/A
language 

independent to 
some extent

DLL files, EXE files at compilation, at 
run-time

COMDES II ADL-like language C N/A at compilation

CompoNETS behavior modeling 
(Petri Nets)

language 
independent

deployment unit 
archive (DLLs, 

JARs)
at run-time

EJB N/A Java EJB-Jar files at run-time

Fractal

ADL-like language
(Fractal ADL, 
Fractal IDL),
Annotations 

(Fractlet)

Java (in Julia, 
Aokell)

C/C++ (in Think)
.Net lang. (in 

FracNet)

file system based 
repository at run-time

IEC 61499 function block 
diagram

language 
independent N/A at compilation

JavaBeans N/A Java JAR files at compilation

Koala CDL, IDL, DDL C

component file 
based repository, 

interface file based 
repository

at compilation

KobrA UML language 
independent

file system based 
repository at compilation

OpenCOM N/A language 
independent N/A at run-time

Palladio
domain-specific 

language for each 
role

Java N/A at run-time

PECOS ADL-like language 
(CoCo) C++ and Java

deployment unit 
archive (DLLs, 

JARs)
at compilation

Pin ADL-like language C DLL at compilation
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(CCL)

ProCom ADL-like language, 
timed automata C file system based 

repository
at compilation

ROBOCOP
ADL-like language, 

resource 
management model

C and C++ structures in zip files
at compilation and 

run-time

Rubus Rubus Design 
Language C file system based 

repository
at compilation

SaveCCM

SaveCCM graphical 
language, XML 
adhering to the 
SaveCCM DTD, 

timed automata with 
tasks

C, Java file system based 
repository, JAR files

at compilation

SOFA 2.0
meta-model based 

specification 
language

Java repository
at run-time
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Table 2: Constructs - interface specification

Component 
models Interface type

Distinction of 
provides and 

requires
Distinctive 

features
Interface 
language Interface levels

AUTOSAR operation-based,
port-based yes AUTOSAR 

Interface C header files syntactic

BIP port-based no N/A BIP language
syntactic, 
semantic, 
behavioral

BlueArX port-based, 
operation-based yes

Configuration 
Interface, 
Analytic 
Interface

XML adhering to 
the MSRSW 

DTD
syntactic

CCM operation-based
port-based yes

facets and 
receptacles,

event sinks and 
event sources

CORBA IDL, 
CIDL syntactic

COM operation-based no ability to extend 
interface MIDL syntactic

COMDES II port-based yes N/A
C header files,

state chart 
diagrams

syntactic,
behavior

CompoNETS operation-based,
port-based yes

facets and 
receptacles,

event sinks and 
event sources

CoORBA IDL, 
CIDL, Petri nets

syntacic,
behavior

EJB operation-based no N/A Java  + 
annotations syntactic

Fractal operation-based yes
Component 
Interface, 

Control Interface

IDL, Fractal 
ADL, or

Java or C,
Behavioural 

Protocol

syntactic,
behaviour

IEC 61499 port-based yes

event input and 
event output,

data input and 
data output

XML syntactic

JavaBeans operation-based yes N/A Java syntactic

Koala operation-based yes

diversity 
interface, 
optional 
interface

IDL syntactic

KobrA operation-based no N/A UML
syntactic, 
semantic, 
behavioral

OpenCOM operation-based yes N/A OMG IDL syntactic
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Palladio operation-based yes
inheritance, 
RDSEFFs, 
protocols

OMG IDL based syntactic, 
semantic, 
behavior

PECOS port-based yes
ability to extend 

interface
CoCo language, 

Prolog query, 
Petri nets

syntactic,
semantic,
behavior

Pin port-based yes N/A

Component 
Composition 

Language 
(CCL), UML 
statechart

syntactic,
behavior

ProCom port-based yes data- and trigger 
ports

XML based, 
timed automata

syntactic, 
behavioral

ROBOCOP port-based yes

ability to extend 
different types of 
interface/annotat

ions

Robocop IDL 
(RIDL), protocol 

specification

syntactic,
behavior

Rubus port-based yes data- and trigger 
ports C header files syntactic

SaveCCM port-based yes
data-, trigger- 
and combined 

ports

XML adhering to 
the SaveCCM 

DTD

syntactic

SOFA 2.0 operation-based yes

Utility Interface,
possibility to 

annotate 
interface and to
control evolution

Java,
SPC algebra

syntactic,
behaviour
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Table 3: Constructs - interaction

Component 
models Interaction styles Communication 

type
Binding type

Exogenous Hierarchical

AUTOSAR request-response, 
message passing

synchronous, 
asynchronous no delegation

BIP
triggering 

rendezvous, 
broadcast

synchronous, 
asynchronous no delegation

BlueArX sender-receiver, 
request-response

asynchronous,
synchronous no delegation

CCM request-response, 
triggering

synchronous, 
asynchronous no no

COM request-response, 
events

synchronous, 
asynchronous no delegation, 

aggregation

COMDES II pipe-and-filter synchronous no no

CompoNETS request-response synchronous, 
asynchronous no no

EJB request-response synchronous, 
asynchronous no no

Fractal multiple interaction 
styles

synchronous, 
asynchronous yes delegation, 

aggregation

IEC 61499 event-driven, pipe-
and-filter synchronous no delegation

JavaBeans request-response, 
events synchronous no no

Koala request-response synchronous no delegation, 
aggregation

KobrA request-response synchronous no delegation, 
aggregation

OpenCOM request-response synchronous yes no

Palladio request-response synchronous yes delegation

PECOS pipe&filter synchronous no delegation

Pin
request-response, 
message passing, 

triggering

synchronous, 
asynchronous no no

ProCom pipe-and-filter, 
message passing

synchronous, 
asynchronous yes delegation

ROBOCOP request-response synchronous, 
asynchronous no no

Rubus pipe-and-filter synchronous no delegation

SaveCCM pipe-and-filter synchronous no delegation

SOFA 2.0 multiple interaction synchronous, yes delegation
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styles asynchronous
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Table 4: EFPs

Component 
models Management of EFPs Properties specification Composition and analysis 

support

AUTOSAR endogenous per 
collaboration (A) N/A N/A

BIP endogenous systemwide (B) timing properties behavior composition

BlueArX endogenous systemwide (B) resource usage, timing 
properties Reasoning Frameworks

CCM exogenous systemwide (D) N/A N/A

COM endogenous per 
collaboration (A) N/A N/A

COMDES II endogenous systemwide (B) timing properties N/A

CompoNETS endogenous per 
collaboration (A) N/A N/A

EJB exogenous systemwide (D) N/A N/A

Fractal exogenous per collaboration 
(C)

ability to add properties (by 
adding

“property” controllers)
N/A

IEC 61499 endogenous per 
collaboration (A) N/A N/A

JavaBeans endogenous per 
collaboration (A) N/A N/A

Koala endogenous systemwide (B) resource usage compile-time checks of 
resources

KobrA endogenous per 
collaboration (A) N/A N/A

OpenCOM endogenous per 
collaboration (A) N/A N/A

Palladio endogenous systemwide (B) performance properties 
specification

performance properties at 
design-time

PECOS endogenous systemwide (B)
timing properties, generic 

specification of other 
properties

N/A

Pin exogenous systemwide (D) analytic interface, timing 
properties

different EFP composition 
theories, example latency

ProCom endogenous systemwide (B) timing and resources timing and resources at 
design- and compile-time 

ROBOCOP endogenous systemwide (B)
memory consumption, timing 
properties, reliability, ability 

to add other properties

memory consumption and 
timing properties at 

deployment

Rubus endogenous systemwide (B) timing properties timing properties at design-
time

SaveCCM endogenous systemwide (B) timing properties, generic timing properties at design-
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specification of other 
properties

time

SOFA 2.0 endogenous systemwide (B) behavioral (protocols) composition at design
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Table 5: Domains

Component 
models Domain

AUTOSAR specialized

BIP specialized

BlueArX specialized

CCM general-purpose

COM general-purpose

COMDES II specialized

CompoNETS general-purpose

EJB general-purpose

Fractal general-purpose, generative

IEC 61499 specialized

JavaBeans general-purpose

Koala specialized

KobrA general-purpose

OpenCOM general-purpose

Palladio specialized

PECOS Specialized

Pin general-purpose

ProCom specialized

ROBOCOP specialized, generative

Rubus specialized

SaveCCM specialized

SOFA 2.0 general-purpose, generative
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2   Overview of selected component models

2.1   AUTOSAR
AUTOSAR is a new standardized architecture created by a partnership of a number of automotive 
manufacturers and suppliers. The goal of AUTOSAR is to provide a way for managing increasing 
complexity of vehicular embedded systems, enable detection of errors in early design phases and 
improve flexibility, scalability, quality and reliability of such systems [2].

AUTOSAR defines  a  layered software  architecture  consisting  of  five layers.  First  three layers, 
Microcotroller Abstraction Layer, ECU Abstraction Layer and Service Layer sit on top of hardware 
and  provide  a  standardized  and  hardware-independent  interface  to  the  AUTOSAR  Runtime 
Environment.  This  Runtime  Environment  then  supports  the  Application  Layer,  the  AUTOSAR 
Component Model.

The main goal of AUTOSAR is to provide a standard for location independence and portability of 
software components for the automotive industry.  Thus, the component model itself  is not very 
advanced and does not fully reflect the capabilities of current state-of-the-art models [3].

During the development process, AUTOSAR provides some levels of system modeling by giving us 
the ability to interconnect components using a Virtual Functional Bus (VFB). The VFB provides an 
abstract  level  of  viewing all  communication  mechanisms  provided by AUTOSAR. In this  way 
AUTOSAR  enables  early  system integration  that  is  independent  of  the  physical  allocation  of 
components.  At  the  time  of  deployment,  the  VFB  is  replaced  by  the  AUTOSAR  Runtime 
Environment that provides implementation for selected communication mechanisms.

During deployment of a system, AUTOSAR Software Components are compiled and linked into 
ECU specific executable. Although this provides a more efficient systems, ti also means losing the 
benefits of the component-based approach during run-time.

AUTOSAR Software Component package consist of implementation and component description. 
Implementation of a component can be either object code, or C source code. Component description 
consists of operations and data that the component provides and requires, requirements that the 
component has on the infrastructure, resources needed by the component and information about 
specific implementation of the component. Because of the hardware abstraction layer provided by 
AUTOSAR  Runtime  Environment  the  component's  implementation  is  independent  from  the 
hardware infrastructure, e.g. type of microcontroller or ECU.

The AUTOSAR Software Components are defined as applications which run on the AUTOSAR 
infrastructure. These components are  atomic, meaning that one component cannot be distributed 
over several AUTOSAR ECUs. An exception to this is  composition, a logical interconnection of 
components  packaged  as  a  new  component.  The  components  inside  the  composition  can  be 
distributed over several ECUs.

A  special  type  of  AUTOSAR  software  components  are  sensor/actuator  components.  These 
components encapsulate dependencies on specific sensor or actuator hardware. They are dependent 
on a specific sensor or actuator, but independent of the ECU.

AUTOSAR  Software  Components  interact  with  each  other  through  their  well-defined  ports. 
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Services  or  data  that  a  port  provides  or  requires  are  defined by AUTOSAR Interfaces  (which, 
accordingly, a port can provide or require). AUTOSAR Interfaces are described by C header files 
and cover only syntactical information.

Communication  between  components  can  follow  either  Client-Server  (Request-Response)  or 
Sender-Receiver  (message  passing)  pattern.  In  case  of  Client-Server  communication  pattern 
providing port (server) implements operations defined by the interface, while the port that requires 
the  interface  (client)  can  invoke  those  operations.  This  type  of  communication  can  be  either 
synchronous (if the client blocks its execution until the server returns a response) or asynchronous 
(in  case the client  does not block after  the operation request is  initiated).  The Sender-Receiver 
pattern  allows  only  asynchronous  transfer  of  data.  In  this  pattern  the  providing  port  (sender) 
generates the data and requiring port (receiver) has the ability to read this data. After the sender 
generates the data it doesn't wait or expect any response from the receiver. Type of communication 
is defined by the AUTOSAR interface that a port provides or requires.

Binding  of  AUTOSAR components  is  endogenous,  having  no  separate  connector  entities.  The 
connection between ports is managed by the ports themselves.

AUTOSAR allows use of compositions for sub-system abstraction. However, they are only used to 
group  existing  software  components  to  manage  complexity  when  designing  logical  system 
architecture [4]. They do not add any new functionality to that already defined by the components 
inside the composition, and do not have any binary footprint when deployed to ECU. Surface ports 
of a composite exposes can by explicitly defined by delegating ports of the aggregated components.

Although  AUTOSAR Software  Component  descriptions  have  the  ability  to  specify some extra 
functional properties, like resource (memory, CPU-time, etc.) that a software component requires, 
there is a lack of the capability to express the multitude of non-functional constraints, insufficient 
expressiveness  of  the  interfaces  [3].  In  AUTOSAR,  there  is  also  a  lack  of  ability  to  analyze 
properties  of  component  composition,  e.g.  ability  to  guarantee  that  component's  properties  are 
preserved across  integration,  or that  requirements  of global  properties  of composed objects  are 
meet.

2.2   BIP
BIP (Behavior, Interaction, Priority)  [5] is a framework developed at Verimag used for modeling 
heterogeneous real-time components. In BIP the heterogeneity can refer to either: synchronous or 
asynchronous (or one of the variety of intermediate and hybrid models); and  timed  or untimed 
components. 
Each BIP component is a superposition of three layers: Behavior layer which specifies a set of 
transitions; Interaction layer which uses a set of connectors that describe the interactions between 
the transitions of behavior and Priority layer which is used to define interaction priorities.

BIP components are defined with: a  set of ports used for synchronization with other components 
which can also be used for data transfer; a set of control states defining internal component states; a 
set of variables used to store data and a set of transitions representing steps from one control state to 
the other while carrying an internal computation if a certain condition (so called guard) holds and 
synchronization happens on the specified port. Interfaces of BIP components are port-based and are 
defined on the syntactical, semantical and behavioral level. 
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For defining components BIP uses a mix of custom BIP syntax and C/C++ code.

Main BIP constructs are:

• atomic components whose behavior is specified with a set of transitions, but which have 
empty interaction and priority layers. 

• connectors  which  are  sets  of  ports  of  atomic  components  which  can  be  involved in  an 
interaction.  Non-trivial  interactions  (interactions  with  at  least  two  ports)  denote  a 
synchronization  between  included  ports.  BIP  differentiates  two  basic  synchronization 
modes:

◦ Rendezvous or strong synchronization which includes all ports contained in a connector.

◦ Broadcast or weak synchronization when all feasible interactions of a connector contain 
a particular port which initiates the broadcast. 

• Priority relations are used for prioritizing interactions.

Compound  components  are  composed  from  either  atomic  components  or  other  compound 
components by creating their instances with the addition of specifying connectors between them 
and priorities of their interactions. BIP is a hierarchical component model.

The process of system construction can be viewed as a series of formal transformations of the three 
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layers (Behavior, Interaction, Priority) where corresponding layers are separately composed.  

BIP execution platform is partially implemented in the IF tool-set and the PROMETHEUS tool and 
also includes a front-end for parsing BIP and generating C++ code which can be executed and 
analyzed.

2.3   BlueArX
BlueArX1 [6] is a domain-specific component model developed and used by Bosch for real-time 
embedded automotive applications, for example in engine control systems or chassis systems. These 
are closed control loop systems, meaning that they receive physical values from sensors, perform 
computations and then control actuators with new physical values. 

BlueArX provides support in all stages of the lifecycle. Modeling is usually done using ASCET-
MD2 models.  Implementation is done in C. Components are delivered as so called packages, and 
are both exchanged between Bosch teams and shipped to customers in this format. Each component 
consists  of  the  specification,  documentation  and  implementation.  Deployment  is  done  at 
compilation.  BlueArX  focuses  on  design-time  (see  signal  flows  below)  and  does  not  impose 
additional run-time overhead.

BlueArX supports two types of components: atomic and structural. An atomic component is a unit 
of specification that has an implementation (as stated earlier – in C), while a structural component is 
a unit of specification that has a decomposition (i.e. it  is composed from several atomic and/or 
structural components). A structural component can export a subset of subcomponents' interfaces, in 
other words BlueArX provides support for hierarchical binding through delegation. The binding 
type is endogenous. 

BlueArX  divides  interfaces  into  two  types:  import and  export.  An  import  interface  specifies 
variables, messages, services calibration parameters, etc. required by a component to execute, while 
an  export  interface  specifies  the  same  types  of  elements  that  a  component  provides.  Interface 
specification  is  done  in  XML adhering  to  the  MSRSW  (Manufacturer  Supplier  Relationship 
Software)  DTD3,  and  it  includes  computation  methods,  calibration  parameters  (maps,  curves), 
physical units etc. The interface contractualization level is syntactic, but some semantic consistency 
checks are also preformed (e.g. unit consistency, value range). The interface type is both port-based 
(via messages) and operation-based (via service calls).

As distinctive features BlueArX has two additional types of interfaces: Configuration and Analytic. 
A Configuration Interface4 specifies  the variability of a  software component,  as  it  contains and 
describes all  variant  points  and the dependencies  between these variant  points.  For  example,  a 
component C supports either a turbo charger, or a compressor, or neither of them. This is expressed 
by the component having two variant points (TURBO_CHARGER (boolean) and COMPRESSOR 

1 We thank Martin Herrmann from Bosch for providing additional information on BlueArX, and for his comments and 
review of this BlueArX overview.

2 A  software  modeling  tool  developed  by  the  ETAS  group, 
http://www.etas.com/en/products/ascet_md_modeling_design.php

3 Available at  www.msr-wg.de/medoc/download/msrsw/v110/msrsw_v110-eadoc-en/msrsw-eadoc-en.pdf.  MSR is a 
consortium of car manufacturers and suppliers that aims to enable process synchronization and proper information 
exchange based on XML 

4 A concept still under development.
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(boolean)), with three legal (01, 10, 00) and one illegal combination (11) between them.

An  Analytic  Interface  is  used  to  store  components'  EFPs.  EFP values  are  specified  in  XML 
conforming to the MSRSW DTD. Since EPF values have dependencies to the hardware platform, 
compiler,  software context etc.,  the context has to be specified.  Analytic Interfaces in BlueArX 
systems  are  connected  to  Reasoning  Frameworks,  which  are  used  for  various  EFP consistency 
checks. Thus, management of EFPs is endogenous systemwide.

Components  communicate  using  messages  (global  variables)  and  service  calls  (function  calls). 
Thus, the communication type is both asynchronous (when using messages) and synchronous (when 
using  service  calls).  The  interaction  styles  are  sender-receiver  (messages)  and  request-response 
(service calls). 

BlueArX puts  a  special  focus  on  the  concept  of  signal  flows.  The  idea  is  to  use  signal  flow 
visualization to provide crucial behavior information on the component level, and get an explicit 
functional view from implicit component specifications. There are three types of signal flows:

• component internal flow,

• flow between components, and

• end-to-end flow (originates at a sensor, propagates through various components and ends at 
an actuator).

In many cases signal flows through a system depend on the mode of operation, meaning that the 
flow of information may change its path depending on the mode in which the system is operating. 
BlueArX provides  support  for  mode  dependent  signal  flows,  which  enables  more  precise  flow 
analysis. Mode dependent signal flows manage the complexity of flow visualization by highlighting 
only those flows that are relevant for a particular mode.

2.4   COM
Component Object Model (COM)  [7],  [8] is a platform independent5, distributed, object-oriented 
software  architecture  for  creating  and  connecting  binary  software  components,  developed  by 
Microsoft. It is a general-purpose component model, one of the most commonly used component 
models for desktop- and server side applications. Microsoft is applying COM to address specific 
areas such as controls, compound documents, automation, data transfer, storage, naming and so on 
[9]. 

The  COM technology represents  one  of  the  earliest  attempts  (introduced  in  1993)  to  increase 
program independence and allow programming language heterogeneity [10]. COM has its origins in 
OLE  (Object  Linking  and  Embedding),  a  technology  that  enables  compound  documents  by 
maintaining  active  links  between  documents  or  even  embedding  one  type  of  document  within 
another. In 1996 COM was extended to support distribution, which resulted in DCOM (Distributed 
COM), Microsoft's answer to CORBA. In the same year,  some parts of OLE were renamed to 
ActiveX. ActiveX components  are  used for creating distributed applications that  work over  the 
Internet through Microsoft's Internet Explorer browser. With Windows 2000, COM+ was released. 
COM+  added  support  for  enterprise-level  features  (distributed  transactions,  resource  pooling, 

5 COM is  mostly used  in  the  Windows family of  operating  systems,  however  Unix  implementations  exist,  and 
Microsoft provides an implementation for Macintosh systems.
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disconnected applications, event publication and subscription,  better thread management etc.)  to 
COM. Today under the COM name the DCOM and COM+ technologies are included, and COM is 
used as the underlying architecture for OLE and ActiveX.

The COM platform has been superseded by .NET, and to some extent COM is now deprecated in 
favor  of  .NET,  as  Microsoft  recommends  that  developers  use .NET rather  than  COM for  new 
development. However, COM is used in core parts of Windows and Microsoft Office, and continues 
to be supported as part of Windows.

COM provides support in the implementation, packaging and deployment stages of the lifecycle, 
while the modeling stage is not supported. COM is a binary standard, it applies after a component 
object6 has been translated to binary machine code. Any language that produces binary compatible 
code,  in a sense that the language can create structures of pointers and support method calling 
through pointers, can create and use component objects. These are for instance C, C++, Smalltalk, 
Ada, Pascal etc. This makes COM language independent to some extent. Component objects can be 
packaged either as EXE files or as dynamic-link libraries (DLL files). Deployment can be done 
either at compilation or at run time. The emphasis is on the former. This is enabled through the use 
of the QueryInterface method (details follow later).

One  of  the  key  principles  of  COM  is  that  interfaces  are  specified  separately  from  both  the 
component objects that implement them and component objects that use them. An interface cannot 
be instantiated, a component object has to implement the interface and that component object is to 
be instantiated. Different component objects may implement the same interface differently. Thus, 
polymorphism fully applies to COM.  A component object can, and typically does, implement more 
than one interface. 

A client has access to a component object through a pointer to the object's interface. This interface 
pointer hides all aspects of the internal implementation of the component object, the object's data 
cannot  be  accessed,  only  interface  methods  can  be  called.  Therefore,  encapsulation  also  fully 
applies to COM.

Component objects are identified by class IDs (CLSIDs), while interfaces are identified by interface 
IDs (IIDs). Both CLSIDs and IIDs are globally unique, which eliminates any chance of collision 
that would occur with human-readable names and result in run-time failure. CLSIDs and IIDs are 
128-bit integers.

COM interfaces  are  never  versioned,  which means that  version conflicts  between new and old 
component objects are avoided. A new version of an interface, created by adding more methods or 
changing existing ones, is an entirely new interface and is assigned a new IID. Therefore, a new 
interface does not conflict with an old interface even if all that changed is the semantics (but not 
even the  syntax)  of  an existing  method  [9].  That  way other  component  objects  that  rely on  a 
particular  interface can continue to  work.  New functionality is  added to component  objects  by 
adding support for new interfaces. Since interfaces remain constant, their implementation can be 
altered without breaking component objects that use these interfaces.

Since component objects communicate through method calls, the interface type is operation-based. 
There if no distinction between the provides- and requires part of the interface. A distinctive feature 
of COM is the ability to  extend interfaces.  As the interface specification language a dialect  of 

6 COM's term for component, not to be confused with object-oriented source code objects, class instances.
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Object  Management  Group's  Interface  Definition  Language (OMG IDL) is  used,  the Microsoft 
Interface Definition Language (MIDL). The contractualization level of interfaces is syntactic.

The interaction style is request-response, this is determined by method calling. Also, DCOM and 
COM+ enable the event interaction style. The communication type is synchronous in the former 
case  and asynchronous in  the  latter.  Exogenous binding  is  not  supported.  There  is  support  for 
hierarchical  binding,  through two techniques  – delegation and aggregation.  With delegation the 
composite object component "contains" the object subcomponent, and when the composite object 
component wishes to use the services of the object subcomponent, the composite object component 
simply delegates implementation to the object subcomponent, by delegating the method call to the 
object subcomponent's interface. In other words, the composite object component uses the object 
subcomponent's services to implement some of its own functionality (or possibly all of its own 
functionality). With aggregation the composite object component exposes interfaces of the object 
subcomponent as if they were implemented on the composite object component itself [9]. 

The binary standard enables COM to perform method calls transparently – all component objects, 
in-process, cross-process or remote, are available to clients in a uniform and transparent way.

All  component  objects  implement  the  standard  IUnknown interface,  otherwise  they  are  not 
component objects. All COM interfaces are derived from IUnknown. This interface defines three 
methods, QueryInterface, AddRef and Release. 

AddRef and Release are used for reference counting. AddRef is called when a client is using 
an interface. Release is called when the client no longer requires use of the interface. When the 
reference count falls to zero, the component object can safely unload itself from the memory. 

The  QueryInterface method provides  the  mechanism for  dynamic  (run-time)  discovery of 
capabilities of a specific component object. In other words, the method is used to find out whether 
or not an interface is supported by a component object. At the same time, QueryInterface is 
the mechanism that a client uses to get an interface pointer from a component object. When an 
application  wants  to  use  some  function  of  a  component  object,  it  calls  the  object's 
QueryInterface method. If the component object supports the desired interface, it will return 
the appropriate interface pointer and a success code. Otherwise, it will return an error value. The 
application will then examine the return code – if successful, it will use the interface pointer to 
access the desired method [9]. The combination of immutable interfaces and QueryInterface 
allows  development  of  applications  in  which  component  objects  can  be  dynamically  updated, 
without the need to update other component objects or recompile the application.

The Component Object Library is a part of the operating system which provides the mechanics of 
COM.  It  encapsulates  the  work  associated  with  launching  component  objects  and  establishing 
connections between them. When an application wants to use a component object,  it passes the 
CLSID of the component object to the Component Object Library. The Component Object Library 
uses that CLSID to look up the associated component object code in the registration database. The 
library  then  returns  the  object's  class  factory  to  the  application.  The  class  factory  is  used  to 
instantiate  the  component  object.  Upon  instantiation  the  class  factory  returns  a  pointer  to  the 
requested interface back to the calling application. The application neither knows nor cares where 
the component object is run, it simply uses the returned interface pointer to communicate with the 
object.  The  Component  Object  Library  is  implemented  in  the  COMPOBJ.DLL file  for  newer 
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versions of Windows. 

COM has no support for EFP specification or composition and analysis. Management of EFPs is 
endogenous per collaboration. This is rather understandable, as in COM's primary domains EFPs 
are not of great relevance.

To sum up, basic COM concepts include [9]:

• A binary standard for method calling between component objects. 

• A provision for strongly-typed groupings of methods into interfaces. 

• A base IUnknown interface providing: 

◦ A way for component objects to dynamically discover the interfaces implemented by 
other component objects (QueryInterface method). 

◦ Reference counting to allow component objects to track their own lifetime and delete 
themselves when appropriate (AddRef and Release methods). 

• A mechanism to  uniquely identify  component  objects  and  their  interfaces  (CLSIDs  and 
IIDs). 

• A "component loader" to set up component object interactions (Component Object Library). 

2.5   COMDES-II
COMDES-II (COMponent-based design of software for Distributed Embedded Systems, version II) 
is a component-based software framework aimed for efficient development of reliable distributed 
embedded  control  systems  with  hard  real-rime  requirements  [11],  and  gives  solutions  for  this 
specific domain.

The methodology that COMDES-II defines provides the ability to model both architectural  and 
behavioral aspects of systems.  The goal of this modeling is to provide the ability to analyze and 
verify system behavior at high abstraction level, and enable automatic code generation which would 
reduce  the  effort  of  implementing  the  systems  and  minimize  the  errors  introduced  by manual 
coding. As a consequence of this code generation, components are deployed at compilation time.

COMDES-II defines a two-layer component model. Components in the first layer are called actors. 
Actors are active software artifacts consisting of multiple I/O drivers, which define their port-based 
interface,  and  a  single  actor  task.  I/O  drivers  can  be  either  communication  drivers,  used  for 
communication over network, or  physical drivers, used for sensing or actuating from/to physical 
units. There is a distinction between input and output I/O drivers. Actors interact with each other by 
exchanging labeled messages. This interaction is asynchronous and follows a producer-consumer 
protocol known as content-oriented message addressing. There are no connecting entities between 
actors, leaving the binding endogenous.

In the second layer of component model,  as specification of functional behavior of actor tasks, 
COMDES-II  uses  function  block  instances,  which  are  instantiations  of  function  block  types. 
Function blocks are pure functional components implementing concrete computational or control 
algorithms,  and communicate  with each other  with their  port-like  inputs and  outputs.  Function 
block types can be categorized as either basic, modal,  state machine or composite. Basic function 

2009-02-20 Classification and survey of component
models Page 23 / 61



                         

blocks are elementary function blocks, from which more sophisticated kinds of function blocks can 
be  constructed.  Composite  function  enable  for  hierarchical  composition  of  functional  behavior. 
Their  functionality  is  represented  using  function  block  diagrams  consisting  of  interconnected 
function block instances. The connections between function blocks employ a synchronous data flow 
model  of  computation.  State  machine  and  modal  function  blocks  are  used  together  to  specify 
sequential system behavior. State machine function blocks consist an event-driven state machine 
model, binary inputs that are used as events/guards for the state machine, and two outputs which 
signal the current state of the state machine and notify environment about changes of that state. To 
eliminate non-deterministic behavior transitions of the state machine are ordered using a number 
indicating the importance of a transition.  State machines can also be historical.  Output of state 
machine function blocks can be directed to one or more modal function blocks, changing the mode 
of operation of these modal function blocks and allowing for the change of functionality of the 
system depending  on  the  state  of  a  state  machine  function  block.  Modal  function  blocks  are 
hierarchical in their nature; different modes of operation of a modal function are specified using 
function block diagrams.

At the actor  level,  systems  demonstrate  a  distributed  timed multitasking operation model.  This 
allows  for  a  system-wide  specification  and  reasoning  about  timing  extra-functional  property. 
Verification of such properties using UPPAAL timed automata has been explored [12].

2.6   CompoNETS
CompoNETS  is  a  simple  general-purpose  component  model  designed  in  an  effort  to  combine 
component-based software engineering and high-level Petri nets, with the goal to provide a formal 
semantic framework for software components [13]. Benefits of this would be the ability to describe 
internal behavior of concurrent and distributed components, a formal, unambiguous semantics for 
features  as  event  multicasting,  and  in  the  end  having  means  to  reason  about  compositions  of 
components designed with this approach.

The component model itself is inspired by CORBA Component Model (CCM). However, it is more 
simple and precise, and focuses on behavioral semantics, thus more adequate for research. These 
simplifications allow for mapping between component model constructs and Petri  net  elements, 
thus providing the ability to model behavior of components and compositions of components.

Although the current implementation of CompoNETS is in Java, the model is not tied to any Java 
specifics, leaving the possibility of implementation in any programming language.

Interfaces  of CompoNETS components  are  defined by  ports that  that  either  provide or  require 
operations (facets  and receptacles), act as an provide or require event data (event sources and event  
sinks),  or  provide  access  to  configurable  properties.  These  types  of  ports  are  chosen  to  cover 
interaction  styles  seen  in  many  component-based  technologies  used  in  industry:  multicast 
asynchronous  event-based  communication,  synchronous  method  invocation,  and  design-time 
configuration. Ports are defined using Java interfaces.

CompoNETS  allows  for  hierarchical  structure  by  providing  ability  to  view  assemblies  of 
components as new components by hiding, promoting or renaming lower lever features at the upper 
level.

There is no support for extra-functional properties in CompoNETS.
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2.7   Corba Component Model (CCM)
CORBA Component Model is a part of the CORBA 3 standard defined by Object Management 
Group (OMG). Its purpose is to reduce the effort of developing and deploying CORBA applications 
[14]. By  using  CORBA middleware  as  a  base  for  component  model,  the  CCM  technology 
inherently  provides  a  good  method  for  defining  software  components  and  connecting  such 
components  into  distributed  systems.  The  CCM  standard  is  focused  on  implementation  of 
applications and doesn't provide any modeling capabilities.

Components in the CCM can be implemented in any programming language and on any platform as 
long as they use the CORBA middleware. A component package in the CCM consists of compiled 
program code (e.g. library file for C++ or class file for JAVA), and a CORBA component descriptor. 
Component descriptor is an XML file that contains information about the interfaces and services 
that the component supports.

The CCM components are deployed at run-time into CCM framework elements called containers. 
The deployment is done using  assembly archives, which contain component archives, component 
property files  and  a  component  assembly descriptor.  During  run-time  the  container  provides  a 
framework  for  components  that  hides  any  specifics  of  the  underlying  platform.  services  like 
component life-cycle management, naming, transactions and security to the components it hosts, 
relieving  component  developers  and  application  builders  of  the  burden  of  implementing  these 
functionalities.  Operations  for  life-cycle  management  of  components  are  isolated  from  the 
components themselves and implemented by objects  called  component  homes.  Each component 
type has to have a component home that is associated with the type. CCM development process also 
supports automated code generation using CCM Component Implementation Framework (CIF). For 
this purpose CCM also defines a declarative language called Component Implementation Definition 
Language (CIDL) for describing components. A CIF compiler reads component descriptions made 
using CIDL and generates some parts of component implementation (e.g. introspection, activation, 
state management) and CORBA component descriptors used in packaged components.

CCM defines two levels of components:  basic level and  extended level. Basic components have 
operation-based interfaces  and provide a way to wrap regular CORBA objects. Components on this 
level are also fully compatible with Enterprise JavaBeans (EJB) component model specification, 
allowing for easier integration and mapping between these two models [15]. Extended components 
provide a much richer set of functionality. Their interfaces are defined by  ports. CCM extended 
components support five different types of ports:

• Facets, which declare interface implemented by components,

• Receptacles, which explicitly represent which interfaces a component uses,

• Event sources, which enable components to be emitters or publishers of events,

• Event sinks, through which components declare that they accept events from event sources,

• Attributes, exposed named values that are primarily intended for component configuration.

Using  these  types  of  ports,  component  implementer  can  define  that  a  component  provides  or 
requires data or services using synchronous or asynchronous communication.  Interfaces of both 
basic  and  extended  components  are  defined  using  Interface  Definition  Language (IDL).  IDL 
definitions cover only syntactical information. Connection between ports are handled endogenously, 
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by components themselves. CCM does not support hierarchical composition.

CCM defines four common patterns for implementing components called  component categories. 
These categories are [14]:

• Session. Session components are temporary objects that do some work on the behalf of a 
client. They are often created for each client that connects to a server and discarded when 
the client disconnects. Session components are stateful.

• Service. Service components are stateless temporary objects that provide services to clients. 
One service component can service multiple clients.

• Entity.  Entity components have a  persistent state managed by the component container. 
They are mainly used to represent data stored in a database.

• Process. Process components have, like entity components, persistent state. They are used 
for  representing  business  processes  where  the  state  of  the  process  needs  to  be  stored 
persistently or the process has to participate in a distributed transaction.

CCM does not provide any support for extra functional properties.

2.8   EJB
Enterprise JavaBeans (EJB) is a component model developed by Sun Microsystems with current 
version 3.0 [16]. EJB has quite limited scope but despite its limitations, it has been widely used and 
popular  in  Java  community.  EJB  is  primarily  used  for  a  client  –  server  model  of  distributed 
computing. It envisions the construction of object-oriented and distributed business applications. 
The  model  simplifies  the  development  of  middleware  by providing server  support  for  a  set  of 
services, such as transactions, security, persistence, concurrency and interoperability.

The  EJB component  model  logically  extends  the  JavaBeans  [17] component  model  to  support 
server  components.  Server  components  are  reusable,  prepackaged  pieces  of  application 
functionality that are designed to run in an application server.  They are similar to development 
components,  but  they  are  generally  larger  grained  and  more  complete  than  development 
components. EJB components (enterprise beans) cannot be manipulated by a visual Java IDE in the 
same  way that  JavaBeans  components  can.  Instead,  they  can  be  assembled  and  customized  at 
deployment time using tools provided by an EJB-compliant Java application server.

2.8.1   Constructs
EJB components
An  enterprise  bean  is  a  reusable,  portable  J2EE  component  which  consists  of  methods  that 
encapsulate business logic, and run inside an EJB Container. EJB components are limited to Java 
programming language, but they may be invoked from various other languages e.g. C++, C#, Visual 
Basic  .NET. The EJB 3.0 bean class can be a pure Java class often referred as POJO and the 
interface can be a simple business interface. 

EJB specification introduces three kinds of components called beans:  Entity beans,  Session beans 
and Message – driven beans.
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Entity beans
An entity bean is a complex business entity which represents a business object that exists in the 
database. Its purpose is to access to data remotely over network. Each entity bean represents an 
object view on one record from the database and is defined by primary key. Entity beans may be 
shared between multiple users that use a primary key to access a particular bean. Invocations are 
performed synchronously. Entity beans are state full due to permanent storage background.

Entity beans  introduced in  EJB 3.0 specification  are  represented  by Java Persistence  API  [18] 
entities,  and  they  differentiate  from the  concept  of  entity  beans  that  existed  in  previous  EJB 
specifications  (EJB 1.x,  EJB 2.x).  The  EJB 1.x and 2.x  entity beans  must  conform to  a  strict 
component model. Each bean class must implement a home and a business interface. The EJB 1.x 
and 2.x container requires very detail XML configuration files to map the entity beans to tables in 
the relational database. All these requirements are the reason why entity beans were obviated by 
software developers.. Introducing of entity beans as POJOs, made EJB 3.0 much more eligible an it 
simplified enterprise Java development with EJB.

Session beans
Session beans perform a task for a client; optionally they may implement a web service. Contrary to 
entity beans, session beans are not permanent and have no primary key since they are not backed by 
a database or other form of permanent storage.

Session  beans  are  not  shareable,  as  each  session  bean  represents  a  single  client  inside  the 
application server. To access an application that is deployed on the server, the client invokes the 
session bean’s methods. The session bean performs work for its client, shielding the client from 
complexity  by  executing  business  tasks  inside  the  server.  Invocations  of  session  beans  are 
synchronous.

Session beans may be statefull or stateless. Statefull bean maintains its state across different method 
calls through its instance variables which represent the state of a unique client-bean session. As a 
consequence, statefull session bean can be used by one remote client at a time. Stateless bean does 
not  hold  its  state,  when  a  client  invokes  the  methods  of  a  stateless  bean,  the  bean’s  instance 
variables may contain a state specific to that client, but only for the duration of the invocation. 
Except during method invocation, all instances of a stateless bean are equivalent, therefore stateless 
beans may be used by more than one remote client at a time.

Message – driven beans
Message-driven beans act as a listener for a particular messaging type, such as the Java Message 
Service  (JMS)  API.  Similar  to  session  beans,  message-driven  beans  do  not  represent  any data 
directly, however they may access any data in an underlying database. The most visible difference 
between message-driven beans and session beans is that clients do not access message-driven beans 
through  interfaces.  In  other  words,  client  components  do  not  locate  message-driven  beans  and 
invoke methods directly on them. Instead, a client accesses a message-driven bean through some 
messaging service (for example JMS). Message-driven beans are executed when a message from a 
client arrives on a server, this means that their invocation in asynchronous. A single message-driven 
bean can process messages from multiple clients.

EJB Interfaces
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An interface  of  an  enterprise  bean  is  specified  as  a  set  of  methods  and attributes,  using  Java 
programming  language.  Unlike  session  beans,  message-driven  and  entity  beans  do  not  have 
interfaces that define client access because they have a different programming model.

A client  can  access  a  session  bean  only  through  the  methods  defined  in  the  bean’s  business 
interface.  All  other  aspects  of  the  bean  (method implementations  and deployment  settings)  are 
hidden from the client. Session beans can expose one of two kinds of interfaces:

• remote interface: represents provisions of a bean.  Provides an access point for a remote 
client and defines the business and life cycle methods that are specific to the bean 

• local interface: defines the bean’s business and life  cycle  methods that allow only local 
access (a local client must run in the same Java virtual machine (JVM) as the enterprise bean 
it accesses)

Each  session  bean  has  to  implement  at  least  one  interface  (remote  or  local).  Although  it  is 
uncommon, it is possible for an enterprise bean to allow both remote and local access. Both kinds of 
bean interfaces are provided interfaces. EJB does not support required interfaces of a bean.

Message-driven beans and entity beans can also define and implement some interface, but it is not 
obligatory.

In addition, bean class can, but is not required to implement interfaces that it defines. However, 
implicitly, the interface of an enterprise bean is a set of the methods it implements and its attributes.

In order to additionally specify an enterprise bean, EJB 3.0 uses metadata annotations which are 
inspected  by  service  framework.  The  EJB  3.0  specification  itself  defines  a  wide  range  of 
annotations that cover different attributes such as transaction or security settings, object-relational 
mapping and injection of environment or resource references. Metadata annotations are also used to 
specify the bean or interface and run time properties of enterprise beans. For example, a Session 
bean is marked with @Stateless or @Stateful to specify the bean type, message-driven beans are 
marked with @MessageDriven annotation.

As an alternative to Java annotations, there are deployment descriptors which were also used in 
previous versions of EJB (EJB 1.x, EJB 2.x). Deployment descriptor is an XML file which can be 
used to override some annotations, but also for describing application level metadata.

Composition of constructs
It is important to mention that EJB does not support connection-oriented programming, but follows 
traditional  object-oriented  composition (third  party can  not  bind EJBs,  but  an  EJB can specify 
dependencies  to  other  components).  Binding  of  enterprise  beans  is  performed  at  runtime.  In 
addition  the  composition  specification  of  EJB components  is  location-transparent;  the  run-time 
location of components (placed on a local or a remote node) is specified separately from the binding 
information.  A strength of EJB is automatic composition of component-instances with appropriate 
services  and  resources  that  component-instances  are  dependent  on.  This  includes  automatic 
configuration of necessary implicit middleware services based on needs specified by annotations or 
in the deployment-descriptor (transactions, persistence and security)

Communication between beans or between client and a bean is performed using Remote Method 
Invocation  [19],  which  is  a  Java  implementation  of  a  Remote  Procedure  Call.  Communication 
between enterprise beans is managed by JVM.
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An example of an EJB component system and its interaction with clients is shown on Figure 1..

2.8.2   Life cycle
Packaging
EJB are packaged into an EJB JAR file, the module that stores the enterprise bean. An EJB JAR file 
is portable and can be used for different applications. To assemble a Java EE application, one or 
more modules (such as EJB JAR files) are packaged into an EAR file, the archive file that holds the 
application.

Deployment
EJB beans are deployed in an EJB Container which is in charge of their management at runtime 
(start, stop, passivation or activation) and extra-functional properties (such as security, reliability, 
performance).  The  Container  can  hide  to  application  programmers  some  of  the  complexities 
inherent in the handling of non-functional aspects in a software system, such as distribution and 
fault-tolerance.

2.8.3   Extra-functional properties
EJB is primarily aiming at industrial use and it has been designed to support component developers 
at an implementation level, while lacking the sufficient support for specifying or analyzing extra-
functional properties.

2.8.4   Benefits of Enterprise Beans
For several reasons, enterprise beans simplify the development of large, distributed applications. 
First, the EJB Container provides system-level services to enterprise beans so the bean developer 
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can  concentrate  on  solving  business  logic  problems.  The  EJB  container,  rather  than  the  bean 
developer, is responsible for system-level services such as transaction management and security 
authorization.

Another  benefit  is  that  enterprise  beans  contain  the  application’s  business  logic,  therefore  the 
developer  of  an  enterprise  bean  client  can  focus  on  the  presentation  of  the  client.  The  client 
developer does not have to code the routines that implement business rules or access databases. As a 
result, the clients are thinner, a benefit that is particularly important for clients that run on small 
devices.

Due to the fact that enterprise beans are portable components, the application assembler can build 
new applications from existing beans. These applications can run on any compliant Java EE server 
provided that they use the standard APIs.

2.9   Fractal
Fractal [20] is a component model developed by France Telecom R&D and INRIA. The main goal 
of Fractal is to provide an extensible, open and general component model that can be tailored to fit a 
large variety of applications and domains. It tends to cover the whole development life cycle from 
design and implementation, up to deployment and maintenance/management (i.e. monitoring and 
dynamically reconfiguring) of various complex software systems. 

Fractal can be used with any programming language and can be applied to variety of systems and 
applications  from operating  systems,  middleware  platforms to  graphical  user  interfaces.  Fractal 
currently provides different instantiations and implementations such as a C-implementation called 
Think [21], which targets especially the embedded systems and a reference implementation called 
Julia [22] written in Java.

Fractal component model includes several important features, such as:
• nesting components into composite components
• reflectivity  –  component  has  introspection  capabilities,  it  can  expose  its  externals  and 

internals to other components, and  it may respectively be created from other components
• component  sharing  –  a  given  component  can  be  included  (shared)  by  more  than  one 

component
• binding components – component connections are represented by a single abstraction called 

bindings which  covers  any  communication  style  such  as  synchronous  method  calls  or 
remote procedure calls

• execution model independence
• extra-functional properties associated to a component can be customized

2.9.1   Constructs
Fractal  components  are  represented  through  operation-based  interfaces  they  expose.  Every 
component, besides its functionality, can include a set of control capabilities. These capabilities are 
not fixed in the component model, but can be extended and adapted to fit programmer's constraints 
and   objectives.  Therefore  the  Fractal  component  model  is  defined  as  an  extensible  system of 
relations between well defined concepts and corresponding APIs that Fractal components  may or 
may not implement, depending on what they can or want to offer to other components. This set of 
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specifications can be organized as increasing "levels of control":

• At the lowest level, a Fractal component does not provide any control capability and can be 
used only by invoking operations provided by the component.

• At the next level which is called the external "introspection" level, a Fractal component can 
provide introspection functions to introspect its external features (in other words, to explore 
operations and control capabilities that the component provides or requires).

• At the top level of control capability, which can be called the "configuration" level a Fractal 
component can provide ways to introspect and reconfigure its content (to manage the set of 
its subcomponents, bindings between these components etc.).

It is important to note that in Fractal everything is optional (a component can, but is not required to 
provide specific capabilities), also everything in Fractal is extensible and can be customized to fit 
specific needs. In Fractal specification, frameworks and features are specified using the interface 
declarations  (called  language interfaces)  that  a  component  should  implement  in  order  to  reach 
certain control capabilities. Within this overview, some of these interfaces and their purpose will be 
mentioned, for further details see the Fractal specification [23].

The advantage of extreme modularity and extensibility of the Fractal model is that it can be applied 
to many situations. The drawback is that two arbitrary Fractal components will generally not be able 
to work together,  because they may use very different,  and potentially incompatible,  options or 
extensions of the Fractal model.

Interfaces
Fractal  defines  a  component  interface as  “an  access  point  to  a  component,  i.e.,  a  place  where 
operation invocations can be emitted or received”. The component interface implements a language 
interface which  is  made  of  several  operation  declarations  and  it  represents  a  type.  Fractal 
component interfaces can be defined either directly in any programming language (e.g. Java, C), or 
indirectly via any IDL. As a consequence, the constraints and costs associated to the use of an IDL 
do not have to be paid for, if interoperability between distinct Fractal components is not needed.

When seen as black box, i.e. when its internal organization is not visible, the only visible details of 
a Fractal component are access points to this black box, called its external interfaces (see Figure 3).

One  may  distinguish  two  kinds  of  interfaces:  a  client (or  required)  interface  emits  operation 
invocations, while a server (or provided) interface receives them. In addition, Fractal distinguishes 
between a functional and a control interface. A functional interface is an interface that corresponds 
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to a provided or required functionality of a component, while a control interface is a server interface 
that  corresponds  to  a  "non  functional  aspect",  such  as  introspection,  configuration  or 
reconfiguration, and so on.

Each interface can have a name, in order to distinguish it from the other interfaces of the component 
(a component can have several interfaces implementing the same language interface) . To do so, 
Fractal offers a framework based on names and naming context. A name identifies a component 
interface and is always associated to a naming context. The name is generally invalid outside the 
context, for example the naming context of a Java reference is the Java Virtual Machine (JVM) in 
which the designated object resides, this name is meaningless outside this context and, in particular, 
in another JVM. A name and its context are represented by Name and NamingContext interfaces 
which should be implemented by the component in order to use the framework. These interfaces 
allow to manage the name of a component (e.g. serialize it) and to create new ones.

Internal component structure
Internally, a Fractal component is formed out of two parts: a controller (also called membrane), and 
a  content (see  Figure 4). The content of a component is composed of (a finite number of) other 
components, called sub components, which are under the control of the controller of the enclosing 
component. The Fractal model is thus recursive and allows components to be nested (i.e. to appear 
in the content of enclosing components) at an arbitrary level.

A component  that  exposes its  content  is  called a  composite component  (configuration level).  A 
component  that  does  not  expose  its  content,  but  has  at  least  one  control  interface,  is  called  a 
primitive component (external introspection level). A component without any control interface is 
called a base component (first level of control).

The controller of a component can have  external and  internal interfaces. External interfaces are 
accessible  from outside  the  component,  while  internal  interfaces  are  accessible  only  from the 
component's sub components. The controller embodies the control behaviour and in particular it 
can: 

• Provide  an  explicit  and  causally  connected  representation  of  the  component's  sub 
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components.

• Intercept oncoming and outgoing operation invocations targeting or originating from the 
component's sub components.

• Superpose a control behavior to the behavior of the component's sub components, including 
suspending, check pointing and resuming activities of these sub components.

A Fractal  component  may  appear  in  the  content  of  (be  shared by)  several  distinct  enclosing 
components. A component that is shared among two or more components is under the control of 
their respective controllers. The resulting configuration (e.g. which control behavior is enacted) is in 
general determined by an encompassing component that encloses all the relevant components in the 
configuration.

Composition of constructs
A binding in Fractal, is a communication path between component interfaces, whence to access the 
interface designated by a name, a binding must be established to this interface. For example, in 
order  to  access  a  remote  interface  designated  by  an  CORBA Interoperable  Object  Reference 
(CORBA IOR), a socket must be opened to send an invocation message to the remote interface. 
Bindings are created by binders. A binder is represented by the Binder interface, which allows to 
create  a  binding  to  the  interface  designated  by  the  given  name.  By  specifying  the  Binder 
interface, Fractal supports all kinds of communication and interaction styles.

The Fractal model distinguishes between  primitive bindings and  composite bindings. A primitive 
binding is a binding between one client interface and one server interface,  in the same address 
space, which means that the operation invocations emitted by the client interface should be accepted 
by the specified server interface.

A  composite  binding  is  a  communication  path  between  an  arbitrary  number  of  component 
interfaces, of arbitrary language types. These bindings are represented as a set of primitive bindings 
and binding components (stubs, skeletons, adapters etc..). A binding component is a normal Fractal 
component,  whose  role  is  dedicated  to  communication.  Binding  components  are  also  called 
connectors.
Component introspection and control
The interfaces of a component can be introspected (external introspection level) with two language 
interfaces, Component and Interface: one to get the list of interfaces of a component, and one to 
introspect the interfaces themselves. These two interfaces are of course optional, as everything in 
the Fractal model.

At the configuration level, a component can offer various controlling features. A component can 
implement interfaces such as:

• the ContentController interface to add and remove sub components of this component
• the  BindingController interface  to  bind  and  unbind  its  client  interfaces  to  other 

components through primitive bindings
• the  LifeCycleController interface  to  help  and  support  changing  of  a  component 

(changing an attribute or a binding, or removing a sub component) while it is executing, 
since dynamic reconfigurations can cause the inconsistent application state or lost of data.
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Instantiation
Except for the frameworks to introspect,  configure and reconfigure existing component,  Fractal 
defines a framework to create new components. In the instantiation framework, components are 
created by other components called component factories. The Fractal model distinguishes between 
generic  component  factories,  which  can  create  several  kinds  of  components,  and  standard 
component factories, which can create only one kind of components, all with the same component 
type. In addition Fractal has a special kind of standard factory component that creates components 
based on a template. 

2.9.2   Extra-functional properties
Extra-functional properties of Fractal components are supported through the notion of an attribute. 
As defined in Fractal specification; an attribute is a configurable property of a component. Every 
attribute  can  be  read  and  changed,  in  order  to  read  and  write  its  attributes  from outside  the 
component,  a  component  can  provide  an  AttributeController interface.  Having  attribute 
compositions and analysis is not considered in the Fractal specification, but due to the extensibility 
of Fractal model, it can be supported.

2.10   IEC 61499
IEC 61499 standard has been developed by the International Electrotechnical Commission (IEC) to 
support the development of automation and control systems. It has evolved from the IEC 61131-3 
standard  that  is  widely  used  in  development  of  software  for  Programmable  Logic  Controllers 
(PLCs).

An IEC 61499  systems consist of  devices, which in turn consist of  resources and interfaces to a 
communication network [24]. A resource is an element that independently executes a part of an IEC 
61499  application.  One application can be distributed,  meaning that they can be deployed over 
several resources or devices. IEC 61499 supports component-based approach only during design 
time  as  applications  are  deployed  as  compiled  executables.  Implementations  of  IEC  include 
languages like Java [25], C++ [26], or other.

IEC 61499 applications are built from reusable software components called Function Blocks (FBs) 
by connecting these FBs into  Function Block Networks.  FBs encapsulate  a  part  of applications 
functionality and expose is through their explicit interfaces, leaving no hidden interface.

Interfaces are defined by port-like inputs and outputs. Inputs and output can either handle control 
flow (events) or data flow. Definition of inputs and outputs is on the syntactical level. Execution of 
the FBs is event driven, while the data is transferred using the pipe-and-filter pattern. All interaction 
between  FBs  is  synchronous.  Connections  between  inputs  and  outputs  is  handled  by  the 
components themselves.

There are three types of FBs defined by IEC 61499:

• Basic function blocks (BFB). The behavior of a BFB is defined by an event driven state 
machine called Execution Control Chart (ECC). Whenever the active state of ECC changes, 
an action that is associated with the new state is executed.  This action can either be an 
algorithm written in any programming language, an output event, or both.
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• Composite Function Blocks (CFB). The behavior of a CFB is defined by a FB network 
that consists of instances of any FB type, parameters and connections between FBs. In this 
way a developer can accomplish hierarchical composition of FBs.

• Service  Interface  Function  Blocks  (SIFB).  SIFBs  are  a  way  for  encapsulating  the 
interaction with external elements not defined by IEC 61499. They enable developers to 
wrap this external functionality and provide same interface as all other FB types. Although 
their functionality is hidden, it can by described using sequence diagrams.

Definitions of FBs, including their interfaces and behavior definitions, are stored in XML files.

IEC 61499 standard does  not  provide any facilities  to  specify or  reason about  extra  functional 
properties. 

2.11   JavaBeans
The JavaBeans technology7 [17] is a portable, platform-independent software component model for 
the  Java Standard Edition platform. The technology was introduced in 1997 and is developed by 
Sun Microsystems. The current version of the specification is 1.01 from year 2002, which includes 
some  minor  changes  to  the  original  document.  The  technology  consists  of  a  Java  package 
(java.beans) and the JavaBeans specification which describes how classes and interfaces from 
the package should be used to implement the Java bean8 concept. In simple words, a Java bean is a 
Java class that complies with conditions stated in the JavaBeans specification.

JavaBeans is a general-purpose component model, widely accepted and used, mostly in the desktop- 
and  Web  application  domains.  It  focuses  on  making  small  lightweight  components  easy  to 
implement and use, while making heavyweight components possible. Basic JavaBeans concepts can 
be learned very quickly and little effort is needed to start writing and using simple beans.

The specification defines  Java beans as reusable  software components  that  can be manipulated 
visually in a builder tool. The visual manipulation is one of the strongest aspects of the technology, 
as it allows “visual programming” by dragging beans from a palette onto a workspace where they 
can be configured and connected to other beans, thus enabling easy and intuitive development of 
applications. This is especially suitable for building graphical user interfaces (GUIs), where beans 
are most commonly employed. For instance, all GUI components, such as buttons, panels, check 
boxes etc., from Swing, the Java SE GUI framework, are beans. Currently, two most used bean 
compliant tools are Eclipse [27] and NetBeans [28]. However, although beans are primarily targeted 
at builder tools, they are also entirely usable by human programmers, as their use is not dependent 
on tools.

Each Java bean has to be able to run in two different environments. First, a bean needs to be capable 
of running inside a builder tool, it must be able to provide the builder tool with design information, 
so a user is able to configure it. This is referred to as the design environment or design-time.  For 
this configuration process a lot of extra baggage (metadata, property editors, customizers, icons 

7 It  is  important  to  differentiate  between  JavaBeans  and  Enterprise  JavaBeans.  Both  technologies  are  software 
component models, use a similar name and are implemented in Java. However, their purpose and architecture are 
different.

8 The term “JavaBeans” stands for the technology, while the term “Java bean” or simply “bean” signifies a particular 
software component that conforms to the JavaBeans component model.
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etc.) is carried by the bean. In addition, a bean must be able to be used during  run-time within a 
generated application. During run-time there is much less need for customization of the behavior 
and appearance, so a bean carries less baggage than during design-time.

Many beans have a strong visual aspect, but while this is common, it is not required. Beans can be 
visual or  non-visual (invisible).  The GUI representation of beans may be the most obvious and 
compelling part of the JavaBeans technology. However, it is possible to implement non-visual beans 
that have no GUI representation. These beans are still able to call methods, fire events etc. They are 
also represented visually in a builder tool, so they can be configured. They simply have no screen 
appearance of their own. In other words, non-visual beans are invisible only at run-time, but are 
visible during design-time. Visual beans are visible both during design-time and run-time.

JavaBeans  provides  support  in  the  implementation,  packaging  and  deployment  stages  of  the 
lifecycle, while the modeling stage is not supported. The implementation language is, as expected, 
Java. Beans are packaged in JAR (Java Archive) files. These are archive files in ZIP format. One 
JAR can contain one or more beans. A JAR containing beans must have a manifest file, which 
describes the beans in the JAR. Each JAR holding beans includes the following:

• Class files representing beans. These entries must have names ending in “.class”.

• Optional source code files of beans. These entires have names ending in “.java”.

• Optional serialized prototypes of beans. These entries must have names ending in “.ser”.

• Optional help files in HTML format to provide documentation for the beans. 

• Optional internationalization information to be used by beans to localize themselves.

• Other resource files needed by the beans (images, sound, video etc.).

Deployment, i.e. integration of beans into systems is done at compilation time.

Individual Java beans vary in functionality, but have the following typical common features:

• properties,

• events,

• methods,

• customization,

• introspection, and

• persistence.

A bean property is a named attribute of a bean that can affect its behavior or appearance. Examples 
of bean properties include color, label, font etc. Properties can have arbitrary types, including both 
primitive types and class or interfaces types. Properties are accessed via method calls on the owning 
bean.

There are four types of properties defined in the JavaBeans specification:

1. simple,

2. indexed,

2009-02-20 Classification and survey of component
models Page 36 / 61



                         

3. bound and

4. constrained.

A simple property has a single value whose changes are independent from other properties. 

Indexed properties support a range of values instead of a single value. It is possible to read or write 
a single element or the whole array corresponding to the indexed property. 

Sometimes when a bean's property changes, another object might need to be notified of the change 
and react to it. These are bound properties. Whenever a bound property changes, a notification of 
the change is sent to interested listeners. Bound properties are normally used when a number of 
beans want to keep a shared value.  For instance,  for maintaining a common background color. 
When one bean changes its background color, the change is then promoted to all beans registered as 
listeners of that property change. That way they can adjust their background colors too.

Constrained properties are similar to bound properties. When a constrained property changes, an 
event is generated. However, the change is not necessarily accepted by the listeners, it first needs to 
be validated. If the change is not appropriate for a listener, it can be rejected, keeping the old value 
of the property.

Beans use the Java Event Model for communication.  Events provide a convenient mechanism for 
allowing beans to be plugged together in a builder tool. For a bean to be the source of an event, it 
must implement methods that add and remove listeners for a particular type of event. For a bean to 
receive an event, it must implement an event listener interface9. 

The methods of a bean are normal Java methods which can be called from other objects. A bean's 
methods represent its interface, through which the bean can be accessed and manipulated. Since the 
interface of a bean consists from the bean's methods, the interface type is operation-based. There is 
a distinction between the provides- and requires part of the interface. The provides part consists of 
the bean's methods., i.e. the bean offers its methods to be called from other beans. In order for a 
bean to be the listener of another bean's property changes, the listener has to implement a listener 
interface, i.e. implement a particular method. That way the source bean defines which methods it 
requires from the listener beans. 

There are no distinctive features which bean interfaces introduce and which don't exist in other 
component models. The interface language is inherently Java, and the contractualization level is 
syntactic. Through methods JavaBeans supports the request-response interaction style. Additionally, 
thanks  to  the event  communication  model,  JavaBeans supports  the event  interaction style.  The 
communication type between beans is  synchronous. JavaBeans does not support  exogenous nor 
hierarchical binding.

When a user is composing an application in a builder tool, he needs to be able to configure the 
beans he is using. Customization is the process of modifying the appearance and behavior of a bean 
within a builder tool, so that the bean meets the user's specific needs. Customization is done at 
design-time.

Introspection is  the  automatic  process  of  analyzing  a  bean  to  reveal  its  properties,  events  and 

9 This is a Java interface. It is not to be confused with the interface of the bean, which consists from the methods of 
the bean. These two terms (Java interface and bean interface) overlap but are not entirely the same. When a bean 
implements a Java interface by implementing methods proscribed in the Java interface, these methods become part 
of the bean interface.
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methods.  Introspection  is  used  by  builder  tools.  By  uncovering  beans'  properties,  events  and 
methods, tools provide support for easy visual manipulation of beans. The simplest way to enable 
introspection is to write beans' source code by following particular design patterns, i.e. by using 
conventional names and type signatures for methods.

Persistence refers to the characteristic of data to outlive the execution of the program that created it. 
The mechanism that makes persistence possible is called serialization. Object serialization means 
converting an object into a data stream and writing it to storage. A serialized object can then be 
reconstructed by deserialization. All beans are required to support serialization. 

JavaBeans has no support for EFP specification or composition and analysis. Management of EFPs 
is endogenous per collaboration. Regarding the envisioned domain of JavaBeans (desktop- and Web 
applications) the lack of EFP support is understandable.  

2.12   Koala
Koala  is  a  specialized  component  model  and  architectural  description  language  developed  by 
Philips.  It  targets  embedded software,  more  specifically  consumer  electronics.  Philips  software 
architects and developers use it to develop software for their mid- and high-range TV sets. 

Koala is intended to handle the diversity and complexity of embedded software, at an increasing 
production  speed,  by  using  and  reusing  software  components  within  an  explicit  software 
architecture  [29].  It  does  not  address  third-party  development  or  run-time  reconfiguration 
mechanisms (like for instance OpenCOM), it  rather focuses on consumer electronics embedded 
software, respecting the requirements from that narrow domain. 

Koala  tries  to  achieve  a  strict  separation  between  component-  and  configuration  development. 
Component builders make no assumptions of the configurations in which the components are to be 
used. Likewise, configuration designers are not allowed to change the internals of components to 
suit  their  configuration  [29].  This  means  that  Koala  follows  the  CBSE principle  of  separating 
component- and system development, and also the principle of using components as black-boxes. 

Koala supports all stages of the lifecycle. Modeling is done using ADL like languages (CDL, IDL, 
DDL).  Implementation  is  done  in  C.  Packaging  is  supported  through  the  use  of  repositories. 
Deployment is done at compilation. Particulars about each phase are given throughout this section.

Main  entities  of  Koala  are  components, interfaces, configurations,  modules  and  switches. 
Components are units of encapsulation, design, development and reuse. They communicate with 
their environment through interfaces. Components can be basic or compound – Koala has support 
for hierarchical binding, both through delegation and aggregation. The binding type is endogenous.

Interfaces are, as in for instance COM or OpenCOM, small sets of semantically related functions. 
Through interfaces a component: (i) provides its functionality to the environment, and (ii) requires 
functionality from the environment. Therefore, there is a distinction between provides and requires 
interfaces.  The  latter  are  similar  to  OpenCOM's  receptacles  (see  Section  2.14).  All  requires 
interfaces must be bound to exactly one provides interface,  and each provides interface can be 
bound to zero or more requires interfaces. All communication of a component with its context is 
routed through requires interfaces. This makes components to a large extent context-independent, as 
they rely on services only, rather than on specific servers (implementations of services) [30]. 
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A component can have  optional interfaces, both requires and provides. There is a function which 
tells if an optional requires interface is connected to a non-optional provides interface. A component 
must  implement  a function which tells  if  it  actually implements an optional  provides interface. 
Optional interfaces are modeled after COM's QueryInterface (see Section 2.4). 

Although components should not contain configuration-specific information to be reusable,  non 
trivial  reusable  components  are  allowed  to  be  parametrized  over  all  configuration-specific 
information. This is achieved by using requires interfaces – a component can require properties to 
be filled in by the configuration. Such interfaces are called diversity interfaces. Koala can express 
properties of inner components in terms of properties of outer components. These optional and 
diversity interfaces are distinctive features of Koala. The contractualization level of interfaces is 
syntactic. Interfaces are immutable, they cannot be changed once published. 

A configuration is a set of components connected together to form a product, i.e. a system made 
from interconnected components. It is a top-level component with no interfaces on the border. Only 
configurations can be compiled and linked into executables [30].

A module is a unit of code, it represents the implementation of a basic component. Modules are also 
used to glue interfaces, as interfaces do not always fit perfectly. Modules are implemented in C. 
Since components communicate through C function calling, the interface type is operation-based, 
the interaction style is request-response, and the communication type is synchronous. 

A switch allows to create bindings that depend on values of certain functions, thus enabling run-
time reconfiguration of connections between components. A switch is equivalent to a conditional 
expression in a module.

Koala defines three languages:

• component definition language (CDL),

• interface definition language (IDL), and

• datatype definition language (DDL).

CDL describes the boundaries of a components. IDL describes an interface as a list of function 
prototypes in C syntax. DDL describes a datatype referring to other datatypes. An example of an 
interface definition, a basic component definition and a compound component definition is given in 
Table 610. 

Table 6: An interface-, basic component- and compound component definition

Interface definition Basic component 
definition Compound component definition

interface ITuner 
{
void SetFrequency(int f);
int  GetFrequency(void);
}

component CTunerDriver
{
provides ITuner ptun;
         IInit  pini;
requires II2c   ri2c;
}

component CTvPlatform
{
provides IProgram pprg;
requires II2c slow, fast;
contains
  component CFrontEnd cfre;
  component CTunerDriver ctun;
connects
  pprg      = cfre.pprg;

10 Code examples from [29].
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  cfre.rtun = ctun.ptun;
  ctun.ri2c = fast;
}           

Koala provides a tool (also named Koala) for component and configuration development. The tool 
uses  partial  evaluation  techniques  to  optimize  generated  code  –  for  instance  unreachable 
components are not included, switch conditions that can be evaluated at compile time are turned 
into normal function calls.
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The graphical notation of Koala is given in Figure 5 and a simple Koala configuration in Figure 611. 
Components are deliberately made to resemble IC chips and configurations to look like electronic 
circuits. Interfaces look like pins of an IC chip. The triangles designate the direction of function 
calls.

Koala  interfaces  and Koala components are  stored in  an interface and a  component  repository, 
respectively. Changes to the interface repository can be made only after they have been approved by 
the interface management team. The following rules apply:

• Existing interface types cannot be changed.

• New interface types can be added.

Each component has a CDL description, a data sheet (a short document describing the component), 
and a set  of  C and header  files.  Changes to  the component  repository can only be made after 
approval by the architecture team. The following rules apply:

• New components can be added.

• An existing component can be given a  new  provides interface,  but  an existing  provides 
interface cannot be deleted.

• An existing component can be given a new requires interface, but it must then be optional.

• An existing requires interface cannot be deleted, but it can be made optional [29].

In Koala there is a mechanism for specifying static EFPs, concretely resource usage (for instance 
static memory [31]). There is also support for compile-time checks of resources. Management of 
EFPs is endogenous system wide.

2.13   KobrA
KobrA (KOmponentenBasieRte  Anwendungsentwicklung)[32] is  a  general-purpose  software 
engineering method for the development of component-based application frameworks. It is also a 
hierarchical component model in which every component, regardless of its position in the hierarchy, 
is treated using the same set of concepts – a complete system is a component and every component, 
if it has appropriate properties, can be considered a system.

Components are described using text and UML models at two levels of abstraction: 

• Specification – defines the components externally visible properties and behaviors which 
define the contract that the component fulfills.

• Realization – describes how the component fulfills its contract by using contracts with its 
sub-components. 

Component interfaces are defined with UML models used by the specification of the component. 
Interface operations are defined on all three levels:

• Syntactic  level  –  component  operations  are  listed  in  the  UML class  diagrams  with  the 
distinction of optional operations. 

11 Figure from [29].
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• Semantic  level – for each operation an operation schemata is  defined,  which shows the 
effects of the operation in terms of input parameters, changed variables, output values and 
pre- and post conditions.

• Behavior level – UML state-chart diagrams are used to describe how the component reacts 
to external stimuli. 

Components are synchronously communicating via method calling (request-response).

No support is being provided for extra-functional properties.

KobrA augments the typical “binary-module” view of the component with a UML-based model, in 
a  way  enabling  that  the  analysis  and  design  activities  are  component-oriented  and  that  the 
description  of  the  core  structure  and  behaviors  are  independent  of  the  chosen  component 
implementation technology.

KobrA method is composed of the two sets of activities. In the first set of activities the goal is to 
generate textual and UML-like component descriptions, and they are the following:

• Framework engineering  activity –  developing  a  generic  framework that  contains  all  the 
functionality of a family of applications which results with framework models that  have 
certain variabilities due to differences between applications in the family of applications. 

• Application engineering activity – all the variabilities in the framework models are resolved 
and in that way transforming them to application models.

The goal of the second set of activities is to generate an executable of the application, and they are:

• Implementation  activity  –  maps  the  instantiated  UML  models  to  an  executable 
representation.

• Build activity – creates binary modules that can be deployed in a target environment. 

2.14   OpenCOM
OpenCOM is a component model developed at Lancaster University. OpenCOM v1 was originally 
described in [33], but has since then had a number of revisions listed in [34]. Currently OpenCOM 
v2 [35], [36] is under development. In this report we give an overview of OpenCOM v2.

OpenCOM v1 was based on a subset of Microsoft's COM, however, OpenCOM v2 removes its 
reliance from COM, as it aims to be truly platform independent. It is a general-purpose component 
model  for  construction  of  low-level  systems  software,  such  as  embedded  systems,  operating 
systems,  communications  systems,  programmable  networking  environments  or  middleware 
platforms. The goal of OpenCOM12 is to support the unique requirements of a wide range of target 
domains and deployment environments. It tries to address target domain independence, deployment 
environment independence and negligible overhead. This is achieved by splitting the programming 
model into a simple, efficient and minimal kernel, and then providing on top of the kernel a set of 
extension mechanisms that allow the necessary tailoring [36]. 

12 From now on when saying OpenCOM we mean OpenCOM v2.
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The OpenCOM architecture is shown in Figure 7. Immediately above the deployment environment 
lies the component runtime kernel that supports basic services of loading and binding components. 
It  is  policy  free,  and  its  APIs  are  target  system  independent  and  deployment  environment 
independent. For static systems it is used for initial configuration after which it can be unloaded so 
that it does not consume any resources. For dynamic systems it continues to exist at runtime. Above 
the  kernel  is  the  extensions layer,  which  enhances  the  basic  kernel's  loading  and  binding 
mechanisms in accordance with the target domain and deployment environment needs. One of the 
key architectural features of OpenCOM are component frameworks (CFs). A component framework 
is a tightly coupled set of components that: 

• cooperates to address some focused area of concern,

• provides a well-defined extension protocol that accepts additional “plug-in” components that 
modify or extend the CF’s behavior, and 

• constrains how these plug-ins may be organized [36].

Main entities of the OpenCOM programming model at the kernel level are  capsules,  components 
and  interaction  points.  Capsules  are  containing  entities  into  which  components  are  loaded, 
instantiated and composed. Each capsule has a single kernel instance which offers the kernel's run 
time  API  used  for  dynamic  loading  and  dynamic  linking  of  components.  Components  are 
encapsulated units of functionality which interact with other components in their containing capsule 
exclusively  through  interaction  points.  Component  types  are  templates  from which  component 
instances can be instantiated at runtime. There are two types of interaction points,  interfaces and 
receptacles. Interfaces are units of service provision offered by components, and are defined as sets 
of operation signatures and associated data types. Receptacles are “required interfaces” that make 
explicit the dependencies of a component on other components. Receptacles support  third-party 
deployment, as one can tell by looking at a components receptacles which other components must 
be present to satisfy the component's dependencies [36]. 

For definition of interfaces, receptacles and component types Object Management Group's Interface 
Definition Language (OMG IDL) is used.  This programming model at the kernel level has been 
realized in C, C++ and Java. An IDL compiler is used to generate language specific representations 
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of the entities (component types, component instances, interfaces and receptacles) and glue code.

On the extensions level the main entities are caplets, loaders and binders. They are supported by a 
CF called the Platform Extensions CF. Caplets  are specialized component-support environments 
that can be dynamically instantiated within a capsule. There are three main motivations for caplets. 
The  first  is  for  different  caplets  to  represent  different  technology  domains  in  the  deployment 
environment.  The second motivation is  to use caplets  to provide privacy and isolation between 
components of different privileges. The final motivation is to support heterogeneous component 
styles, i.e. different implementations of the abstract component concept. Loaders are used to load 
component types and instantiate component instances into a caplet in some particular manner. For 
instance a loader can perform security checks on the component types it loads. Binders are used for 
creating  bindings  between  an  interface  and a  receptacle,  within  and across  caplets  of  a  single 
capsule, in particular ways [36].

OpenCOM differentiates between two programmer roles:

• deployment environment programmer, and

• target system programmer.

The former creates caplets, loaders and binders for a particular deployment environment using the 
environment's native facilities. The latter develops target systems using the kernel's and Platform 
Extensions  CF's  API,  together  with the  palette  of  caplets,  loaders  and binders  provided by the 
deployment environment programmer.

OpenCOM provides support in the implementation and deployment stages of the lifecycle, while 
the  modeling  and  packaging  stages  are  not  handled.  Implementation  is  language  independent. 
Deployment is done at run-time. 

The following remarks apply only to the kernel level of OpenCOM. Remarks for the extensions 
layer  cannon  be  given,  as  they depend  on  a  particular  implementation  of  caplets,  loaders  and 
binders.

Interface type is operation-based. There is a distinction between the provides- and requires parts, 
through  OpenCOM's  interfaces  and  receptacles.  The  contractualization  level  of  interfaces  is 
syntactic. 

The interaction style is request-response, and the communication type is synchronous. The binding 
type is exogenous, as the interface of one and receptacle of another component are binded in a third 
component. There is no support for hierarchical binding.

There is no support for EFP specification or composition and analysis. Management of EFPs is 
endogenous per collaboration.

2.15   Palladio Component Model
Palladio Component Model (PCM) [37], [38], [39] is a domain-specific component model designed 
to enable early performance predictions for component-based software architectures of business 
information systems. Development of the model started in 2003 at the University of Oldenburg and 
is since 2006 continued at the University of Karlsruhe.  Currently the model is at version 3.0 and is 
used both in industrial and academia projects. It is defined as a meta-model specified in Ecore [40]. 
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An integrated modeling environment based on Eclipse RCP [41], called PCM-bench, is currently 
being developed, now being in the prototype phase. It enables creating PCM models using graphical 
editors, and then deriving performance metrics from these models using analytical techniques and 
simulation.

Two key features of PCM are:

• parameterized component quality-of-service (QoS) specification, and 

• developer role concept. 

The former is a special QoS specification for software components, which is parameterized over 
environmental influences that are unknown to component developers during component- design and 
implementation.  This  specification  is  called  resource  demanding  service  effect  specifications 
(RDSEFF). Regarding the latter, PCM is aligned to different roles involved in component-based 
development and as such distinguishes between the following roles:

1. component developer,

2. system architect,

3. system deployer, and

4. domain expert.

RDSEFFs and particular roles are detailed in the following text. First a brief overview of all roles is 
presented in the following paragraph, than particulars about each role are given, with emphasis on 
the component developer.

A component developer specifies the functional-  and extra-functional properties of components, 
which results in a repository model. A system architect assembles component specifications to form 
an assembly model. A system deployer specifies the resource environment to which the system will 
be  deployed,  providing  a  resource  environment  model.  The  system  deployer  also  models  the 
allocation  of  components  from  the  assembly  model  to  different  resources  of  the  resource 
environment, resulting in an allocation model. A domain expert is familiar with users of the system, 
and provides a  usage model describing usage scenarios. Each role has its  own domain-specific 
modeling language. From these partial models13, a model of the complete system can be derived and 
then analyzed in terms of performance using multiple analysis methods, such as queuing networks, 
stochastic regular expressions or stochastic process algebra.

Regarding the lifecycle, the emphasis is on modeling, as seen above. However, the effort spent on 
creating a model of a system should be preserved when implementing it. In that sense a model-to-
text transformation generates code skeletons from PCM models. The implementation uses either 
POJOs (Plain Old Java Objects) of EJBs (Enterprise JavaBeans). Deployment is done at run-time, 
which is inherent from EJB.

Component developer
In repository models  components and interfaces are first class entities. Interfaces contain a list of 
service signatures, thus interfaces are operation-based. A signature has a name, a list of parameters, 
a return type and a list of exceptions it can raise during its execution. Its syntax is based on Object 

13 In this overview we don't go deep into technical aspects of the models.  Details can be found in the referenced 
literature.
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Management  Group's  Interface  Definition  Language  (OMG  IDL).  Interfaces  have  optional 
protocols and optional RDSEFFs (mentioned above, explained later). Protocols specify the order in 
which  services  are  called,  and can  be modeled with various  formalisms  (finite  state  machines, 
regular expressions, Petri nets...). Signatures provide the syntactic interface contractualization level, 
RDSEFFS provide the semantic level and protocols provide the behavior level. Palladio supports 
interface inheritance. 

Components  either  require  or  provide  an  interface,  and  implement  services  specified  in  their 
provided interfaces by using services  specified in their  required interfaces.  Components can be 
either  basic or  composite. Composite hierarchies can be of arbitrary depth. Inner components are 
connected  using  assembly  connectors.  An  assembly  connector  binds  a  provided  role  of  one 
component  with  a  required  role  of  another  component.  Delegation  connectors connect 
provided/required  roles  of  composite  components  with  provided/required  roles  of  inner 
components. Thus, Palladio has support for hierarchical binding through delegation, and the binding 
type is exogenous.

The interaction style in Palladio is request-response and the communication type is synchronous.  

Management  of  EFPs  is  endogenous  system-wide.  RDSEFFs  abstractly  model  the  externally 
observable  behavior  of  a  component.  They specify:  how a  provided  service  calls  the  required 
services  of  a  component,  resource  usage,  transition  probabilities,  loop  iteration  numbers  and 
parameter  dependencies,  all  this  to  allow  accurate  performance  predictions.  RDSEFFs  can  be 
considered as a domain-specific modeling language which the component developer uses to specify 
performance related information for components. They represent the gray-box view of components. 

Software architect
Software architects put components in so called  assembly contexts, which are representations of 
component  instances.  Assembly  contexts  are  connected  using  system  assembly  connectors.  A 
system assembly connector binds a required role of a component in a given assembly context with a 
provided role of a component in a different assembly context. A set of connected assembly contexts 
is called an assembly14, which is part of a system. Every system has exactly one assembly. A system 
exposes  system provided- and  system required roles.  System delegation connectors bind system 
roles with the roles of the system's inner components. System provided roles are used by domain 
experts to model the usage of the system. System required roles model external services, which are 
not considered by the system architect to be part of the system.

System deployer
Palladio distinguishes between active-,  passive- and linking resources. Active resources (eg. CPU, 
hard disk,  memory)  can execute  requests,  while  passive (eg.  threads,  semaphores)  can only be 
acquired and released. System deployers group active- and passive resources in resource containers. 
Resource containers are connected by linking resources. Allocation contexts are used to specify that 
a resource container executes an assembly context. 

Domain expert
Domain experts specify user behavior using control flow constructs such as  sequence,  alternative 
and  loop.  For  alternatives  they  specify  branching  probabilities  and  for  loops  they  specify  the 

14 An assembly is different from a composite component in its visibility for the system deployer, as he can see the 
internals of an assembly, but cannot see the internals of a composite component. 
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number of iterations. Additionally, domain experts can specify the user workload and parameter 
values.

2.16   Pecos
The PECOS project [42], [43], [44], [45] provides a component model, a composition language and 
tools for development of software for field devices15.

Life cycle
In the PECOS project defined a new language, named CoCo, for describing components and their 
compositions. Behavior of such compositions of components can be further modeled using Petri 
nets.  PECOS  currently  supports  specification  of  component  implementation  in  C++  and  Java 
programming  languages.  Within  the  project,  tools  for  automatic  generation  of  stub  code  for 
components  and  application  for  these  two  languages  have  been  developed.  Once  compiled, 
components, and their compositions, are packed in Jar or DLL executable files. Inherently, PECOS 
components can only be deployed at compile time.

Constructs
The PECOS component model defines three types of components:

• Active components, which have their own thread of execution. They are used for performing 
long-term  activities.  PECOS  systems  are  always  modeled  as  active  components  whose 
behavior is defined by a composition of components.

• Event components. These components components have their own thread of execution, but 
do not model an on-going activity.  Instead, their functionality is triggered by events. An 
example would be components that encapsulate hardware elements that generate periodical 
events.

• Passive components that execute synchronously, and their execution is scheduled by their 
active parent components.

Interfaces of PECOS components are described by the CoCo language. Interfaces constitute of ports 
that can be specified as either input or output, or both. Besides their direction, ports are defined by 
their name and data type. Additionally, properties like default values or value ranges for ports can 
be  defined.  Properties  definition  can  include  any  functional  or  non-functional  properties  of 
components, ports or connections. Properties can also be grouped into property bundles which can 
then be assigned to multiple components or other CoCo architectural elements. Behavior of the 
components can be defined using Peri nets.

The CoCo language supports the concept of component inheritance. One component can inherit 
interface, or even parts of behavior, of another component, and possibly extend it or make it more 
specific.  To  facilitate  this,  the  notions  of  abstract  component and  component  roles  have  been 
introduced. An abstract components serves as a template for a system, leaving placeholders named 
component roles. Component roles define the interfaces that  components need to implement by 
actual components that will be used in the implementation of the abstract components. This enables 
specification of architectural style for a family components or the entire applications.

15 A field device is an embedded system often used in the area of process control. It  uses sensors to continuously 
gather data, analyses and reconciles this data, and reacts by controlling actuators [42].

2009-02-20 Classification and survey of component
models Page 47 / 61



                         

Component in a data-flow (i.e. pipe and filter) manner, exchanging data through their ports. Special 
semantics is given to the ports of active and event components, because these types of components 
execute in their own threads. In these cases, synchronization between data used in different threads 
needs to take place for the composition to be predictable. In the C++ and Java implementation, 
these connections are realized using shared variables.

PECOS component  model  supports  hierarchical  component  composition  through  the  notion  of 
composite  components.  A  composite  component  consists  of  instances  of  components,  and 
connections between those instances. Moreover, as already stated, all PECOS systems are modeled 
as active composite components. Ports of a composite component are defined by delegating some of 
the ports from its subcomponents to its outside interface.

Extra functional properties
Extra functional properties for components, their ports and connections can be defined using the 
CoCo property elements. Properties can be defined component description, but also as additional 
description of component instances when defining composite components.

Tools developed in the PECOS project also enable automatic generation of a Prolog knowledge 
base  from the  CoCo component  definitions.  This  then  enables  testing  of  some properties  of  a 
component, or a composition of components, by using Prolog queries.

PECOS  composite  components  are  also  associated  with  a  scheduling  definition  for  their 
subcomponents. Each subcomponent should have a worst-case execution time and the desired cycle 
time defined. Scheduling definitions also include order of execution for all subcomponents that a 
composite  component  consists  of.  PECOS  supports  both  manual  definition  of  scheduling  or 
generation of scheduling definitions using information about component composition and properties 
of components. It is also possible to verify the scheduler using Petri nets.

2.17   Pin
Pin  [46] [47] is  a  simple  component  technology  developed  at  Carnegie  Mellon  Software 
Engineering  Institute.  Its  purpose  is  to  be  used  as  a  basis  for  prediction-enabled  component 
technologies (PECTs).

Pin software components consist of prefabricated containers that provide a standardized interface, 
and  custom  code  that  they  implement  internally.  Pin  systems  are  modeled  using  ADL-like 
construction  and  composition  language  (CCL).  Their  implementation  is  defined  by  the  C 
programming language, and such software components are packaged as .DLL files. Services like 
timers,  interrupts,  input  devices,  shared  resources,  process  scheduling  and  intercomponent 
communication  are  provided  to  the  components  by  the  component  run-time  environment.  Pin 
systems, called assemblies, are automatically generated and compiled to executable programs from 
the  CCL specifications.  Once  compiled,  Pin  assemblies  are  fixed  and  the  notion  of  internal 
components is lost.

Interfaces of Pin components are defined by pins. Pin component technology distinguishes between 
input  pins,  sink  pins,  and  output  pins,  source  pins.  Sink  pins  denote  incoming  events  to  a 
component, and source pins denote outgoing events or procedure calls. Interfaces of components 
are specified by CCL. CCL supports specifying the syntax of the interface, but also the behavior of 
the component. Behavior of a component is described by  reactions,  which specify the relations 
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between the stimulus on sink pins and possible responses on output pins.

Software components in Pin component technology can interact only through their sink and source 
pins. This interaction can be either synchronous (procedure call) or asynchronous (event-based). 
Connections between sink and source pins are realized using connectors. Besides the definition of 
interconnection of pins, connectors can also have connection policies. An example policy would be 
the size of an input buffer. Units of component composition in Pin are called assemblies. Binding of 
the  components  is  endogenous.  Pin  does  not  support  hierarchical  composition  of  component 
assemblies.

Pin  components  expose  their  analytical  interface  by  specifying properties for  components, 
assemblies, pins, reactions and the environment. Properties are n-tuples consisting of a name, value, 
and additional property-specific information (e.g. confidence interval of the property value). These 
properties can be used by a reasoning framework to predict properties of component compositions. 
PECT  currently  supports  three  reasoning  frameworks  for  Pin  component  model:  λABA –  for 
predicting average latency in assemblies with periodic tasks, λSS – for predicting average latency in 
stochastic tasks managed by a sporadic server, and ComFoRT – for formal verification of temporal 
safety and liveness.

2.18   ProCom
ProCom  [48] is  a  component  model  for  control-intensive  distributed  embedded systems  and is 
designed  to  cover  the  whole  development  process  in  the  vehicular-,  automation-  and 
telecommunication domains.

Typically,  complex  distributed  embedded  systems  from  targeted  domains  have  different 
characteristics at different levels of granularity. ProCom tackles this problem by using two layers: 
ProSys and ProSave.

ProSys is a hierarchical component model which acts as an upper layer that models the system as a 
number  of  active  and  concurrent  subsystems  which  communicate  by  asynchronous  message 
passing. 

ProSys subsystems can be: composite subsystems, subsystems realized with ProSave or wrapped 
legacy subsystems. Each subsystem is specified by:

• Typed input- and output ports which express what messages the subsystem receives and 
sends.  Message  ports  are  connected  with  message  channels  which  support  n-to-n 
communication.

• Attributes and models related to functionality, reliability, timing and resource usage. 

ProSave is the lower layer which models the internal design of a single ProSys subsystem down to 
primitive functional components implemented by code. 

ProSave components are passive, reusable units of functionality that can either be realized by code 
(C  functions),  or  by  interconnected  sub-components.  They  use  pipe-and-filter  communication 
paradigm and are typically not distinguishable as individual units in the final executing system.

The architectural style is based on a data/control flow model with a separation of data transfer and 
control flow, which is manifested with the existence of data- (enable data read, write) and trigger 
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ports (control the activation of components). 

Information about a component is represented using structured attributes and its functionality is 
made  available  by a  set  of  services.  Attributes  define  simple  or  complex  types  of  component 
properties such as behavioral models, resource models, dependability measures and documentation. 
Each service consists of: 

• Input port group – contains a trigger port for activation and a set of data ports for required 
data. 

• Output port groups – contains a set of data ports and a trigger port which indicates when 
new data is available.

Components can be connected using:

• Simple connections that connect two ports and that can be used to transfer data or control.

• Connectors – constructs that may be used to control the data- and control-flow, for example 
to fork or join data or trigger connections.

Components  and  information  about  them (requirements,  behavior  models,  resource  usage)  are 
stored in a file system based repository.

Connecting ProSave and ProSys
ProSys  subsystems  can  be  defined  with  a  collection  of  interconnected  ProSave  components, 
ProSave connectors, and additional connector types such as:

• Input message port which acts as a ProSave connector with one output trigger port and one 
output data port. Whenever a ProSys subsystem receives a message, the message port writes 
message data to the output port and activates the output trigger. 

• Output message port is similar to the input message port only it has one input trigger and 
one input data port. When a trigger is received it sends a message with the data from the 
data port. 

• Clock  is  used  for  generating  periodic  triggers.  It  only  has  one  output  port  which  is 
periodically triggered. 

2.19   Robocop
Robocop  [49] [50] is a project that defines an open middleware layer for high volume consumer 
electronics. It aims to support definition, modeling and trading of software components, their use in 
consumer electronics applications, and run-time upgrades and reconfiguration of such applications.

Life cycle
Robocop defines components as units of trade. A Robocop component is a set of different models 
that are related to each other. These models address different aspects of the component that can be 
of interest to different stakeholders. An example of such models are interface definition, behavioral 
models, resource consumption models, etc. Robocop is open in the way that it does not limit the 
number or types of models that a component consists of. A special type of model is the executable 
component. Executable component is a binary representation of the component that implements its 
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functionality  and  can  be  executed.  A  Robocop  component  can  contain  multiple  executable 
components that are targeted for different platforms or operating systems.

Robocop architecture defines three frameworks that support different concerns of component's life 
cycle.

The Development framework defines how different stakeholders (e.g. component vendors, system 
integrators) relate to each other, to the component model and entities like component repositories, 
and target devices.

The  Run-time  framework defines  a  partial  architecture  for  Robocop  devices.  It  consists  of  the 
Robocop component model and the Robocop Runtime Environment (RRE). To achieve a minimal 
resource  footprint,  standard  RRE  supports  only  registration  of  components  and  services,  and 
location and instantiation of services. Robocop component model defines a standardized part of 
service interface that, together with RRE, provides mechanisms for run-time binding of components 
and reconfiguration of Robocop systems.

The Download framework enables run-time upgrades and extension applications built with Robocop 
technology. This is achieved by providing mechanisms for locating new components, testing if they 
are suitable for use in a given system, and transfer of new components from repositories to target 
devices.

Constructs
The functionality of executable Robocop components is encapsulated in  services. To expose that 
functionality, services define interfaces they provide. Interfaces are groups of semantically related 
named operations. Services also explicitly expose their dependencies on functionality from other 
components through their required interfaces.

One service can define that it is compliant with another service. When one service defines that it is 
compliant with another, it indicates that it provides at least the same interfaces that the latter service 
provides, and that it requires the same interface that the latter service requires.

Concept of interface inheritance is supported. When one (derived) interface inherits another (base) 
interface,  it  indicates  that  the  derived  interface  supports  all  operations  that  the  base  interface 
defines, and that those operations have the same semantics in both interfaces. Only single interface 
inheritance is supported, but the depth level of nesting is not limited.

Service and interface definitions are defined using  Robocop IDL (RIDL), an interface definition 
language derived from Corba IDL. Although RIDL definitions provide only syntactical information, 
semantics  and  behavior  of  components  can  be  described  by  other  models  that  the  component 
consists of.

Robocop  services  support  reflective  behavior,  in  the  sense  that  they  can  dynamically  discover 
interfaces that a service supports.

Services interact with each other in a client-server manner, in which a client service calls methods 
that the server service provides through its interfaces.

Information about binding between required and provided interfaces of different services is stored 
in the services themselves. Standard service management interface that each service must expose 
provides  mechanisms  for  interface  binding  management.  This  enables  dynamic  and  run-time 
configuration of assemblies of components.
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Robocop does not provide any means for hierarchical composition of components.

Extra functional properties
Extra functional properties of Robocop components can be given in models that the component 
consists of. These extra functional models can include timeliness, reliability, safety, security and 
resource consumption.

Robocop implements resource management through the Resource management framework. The aim 
of this  framework is  to prevent  resource overloads on embedded devices that  support  dynamic 
updates or upgrades. It introduces a notion of  resource-aware consumers,  which are application 
entities  that  have  information  about  resources  needed for  its  operation.  A special  type  of  such 
entities are the quality-aware consumers, which consume different amount of resources depending 
on the level of quality they provide in a given moment. The consumers can register their resource 
needs to the framework, which can then guarantee them requested resources or deny their request. 
The framework can also optimize system quality depending on the available resources.

A solution of memory consumption of Robocop applications is given in [51].

2.20   Rubus Component Model
The  Rubus  concept  [52] is  a  collection  of  methods  and  tools  from  Arcticus  Systems  for 
development of dependable embedded real-time systems. It was introduced for industrial use in 
1996, but has since then evolved, in cooperation with various partners of Arcticus Systems, both 
from industry and academia. The Rubus concept encompasses (among other) the Rubus Component 
Model, the Rubus Integrated Component Environment (an IDE for component-based development 
of real-time systems) and Rubus OS (a real-time OS designed for dependable real-time systems).

The  Rubus  Component  Model16 is  developed  in  cooperation  with  Mälardalen  University.  It  is 
currently in version 3  [53], and is intended for development of distributed, resource-constrained, 
embedded control systems, with a mix of hard-, soft- and non real-time requirements. Thus it is a 
domain-specific component model. It aims at supporting an overall high-level descriptive view of 
the system functionality, focusing on three important activities in real-time development – design, 
analysis  and synthesis.  The model  supports  all  stages  of  the  lifecycle.  Modeling is  done using 
Rubus  Design  Language,  a  non  standard  modeling  language  with  an  intuitive  graphical 
representation. Implementation is done in C. Rubus components are packaged in a file system based 
repository.  Deployment is done at compilation, and Rubus components are executed as tasks of 
Rubus OS. 

Architectural  elements  of  Rubus  are  collectively  named  software  items (SWIs).  Basic  Rubus 
components are called software circuits (SWCs). Each SWC is defined by its behavior, internal state 
data and interface. An SWC can have multiple behaviors, each one represented by a specific C entry 
function. Internal state data is used to preserve data across multiple executions. 

Rubus interfaces are port-based. There is  a distinction between the provides- and requires part, 
through output- and input ports, respectively. Each port has a direction to symbolize in which way 
the  signal  flows.  Interfaces  are  specified  as  C  header  files,  and  the  contractualization  level  is 
syntactic. As distinctive features Rubus has data- and trigger ports, which capture data- and control 
flow,  respectively.  The  distinction  between  data- and  trigger  ports makes  data  access  and 
16 From now on when saying Rubus, we mean Rubus Component Model.
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synchronization explicitly visible from the design. Data ports are typed. Trigger output ports can be 
unconditional and conditional. The former always produce a trigger signal after the execution of a 
SWC, while  the latter  may or  may not  produce  a  trigger  signal  after  execution,  depending on 
conditions within the SWC.

The run-cycle of an SWC is the following: idle → ready → copy input → execute → produce 
output → terminate → idle. The SWC becomes eligible for execution when it receives a signal at its 
trigger  input  port.  Before  execution  data  input  port  values  are  read.  After  execution  the  SWC 
produces data- and trigger signals at its output ports and then returns to idle state. 

Assemblies (ASMs) and  composites (CMPs) provide the means for hierarchical binding through 
delegation. They have sets of input- and output ports whose signals are delegated to ports of internal 
SWIs. ASMs and CMPs give structure and abstraction, but provide no semantics and can in that 
sense be flattened to contain only SWCs. CMPs can be divided as parts of it can be deployed on 
different nodes, whereas an ASMs is undividable and can only be deployed as a whole on a single 
node. 

The  binding  type  in  Rubus  is  endogenous.  The  interaction  style  is  pipe-and-filter  and  the 
communication type is synchronous.

A system is  a  top  level  hierarchical  entity  that  describes  the  software  logic  and  the  software 
architecture (not the hardware architecture showing which SWIs execute on which hardware nodes) 
of a complete distributed system. At run-time a system executes in one out of a set of predefined 
modes,  and can make transitions (mode shifts)  from one mode to another.  Modes are means to 
distinguish different states or conditions of a system – for instance a system executes a certain type 
of  functionality  during  start-up,  another  type  during  normal  operation,  and  a  third  type  during 
errors.

Rubus also defines several SWIs for data and triggering [53]: source items, sink items, named data 
items, clock  items (generate  periodic  triggering),  interrupt  and  event  items (generate  sporadic 
triggering), down sampling items and precedence items.

External devices, such as sensors and actuators have no special status in Rubus and are treated as 
other components. Sensors are modeled by SWCs without any data input ports and with at least one 
trigger input port, while actuators are modeled by SWCs without any data output ports.  

Management of EFPs in Rubus is endogenous system wide. Timing properties of SWCs and real-
time  requirements  on  the  execution  can  be  specified.  Regarding  the  former,  to  enable  timing 
analysis  at  design time, each SWC is associated with a run-time profile describing its run-time 
properties on different platforms. The latter are specified within the context of an ASM/CMP as 
bounds on time from the generation of a trigger signal to the generation of another trigger signal. 

2.21   SaveCCM
SaveCCM (SaveComp Component Model)  [54] is a research, domain-specific component model 
developed at Мälardalen University. It is intended for embedded control applications for vehicular 
systems,  mainly  considering  the  safety-critical  subsystems  responsible  for  controlling  vehicle 
dynamics (such as power-train, steering, braking, etc.). It is a simple component model that limits 
the flexibility of modeling to enable analyzability with respect to timing. 
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SaveCCM systems are developed using a custom development environment called Save-IDE [55], 
which is implemented in the form of a plugin for the Eclipse platform  [27]. SaveCCM provides 
support for all stages of the lifecycle. System architecture modeling is done using the SaveCCM 
graphical  language  (Figure  8),  which  is  similar  to  UML component  diagrams  [56].  From the 
graphical  description  of  a  system,  Save-IDE  can  generate  its  textual  representation  in  XML 
adhering  to  the  SaveCCM DTD. Component  behavior  modeling  is  done using timed automata 
extended with tasks [57]. SaveCCM has two realizations, one by transforming components to real-
time operating system tasks [58] and a realization in JavaBeans [59]. In the former case components 
are  implemented  in  C  and  packaged  in  a  file  system based  repository,  and  in  the  latter  case 
components  are  implemented  in  Java  and  packaged  as  JAR  packages.  In  both  realizations 
deployment is done at compilation.

The  main  architectural  elements  of  SaveCCM  are  components,  switches and  assemblies.  The 
interface of an architectural element is defined by a set of input- and output ports, thus the interface 
type is port-based and there is a distinction between the requires- and provides part. Interfaces are 
specified  in  XML adhering  to  the  SaveCCM  DTD.  The  interface  contractualization  level  is 
syntactic. The interaction style is pipe-and-filter and the communication type is synchronous. 

As distinctive features SaveCCM has  data-,  trigger- and  combined ports. Data ports capture data 
transfer, while trigger ports capture control flow. Data ports are typed and have overwrite semantics, 
and only data ports of matching types can be connected. Combined ports have both triggering- and 
data functionality, but semantically a combined port is equivalent to one trigger port and one data 
port.

In addition to ports, the interface of a component contains a series of quality attributes, for instance 
worst case execution times, reliability estimates etc. Each attribute is associated with a value and 
possibly a confidence measure. The quality attributes are used for analysis.

Components represent basic units of encapsulated behavior. The functionality of a component is 
typically  defined  by  an  entry  function.  These  are  basic  components.  However,  there  are  also 
composite  components,  for  which  the  functionality  is  defined  by  an  internal  composition  of 
subcomponents (and possibly delays and switches, described below). Subcomponents can be basic 
components  or  again composite  components (thus creating a  hierarchy of arbitrary depth).  The 
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hierarchical binding is done by delegation. The binding type is endogenous.

A component is initially idle and remains in that state until all its trigger input ports are activated. At 
that point it goes to active state, i.e. it has been triggered. This initiates the read phase, in which the 
data input port values are stored internally, to ensure consistent computation. Next is the execute 
phase, in which computations are performed. Then comes the write phase, in which data is written 
to  the  data  output  ports.  Finally,  the  input  triggers  are  deactivated  and the  output  triggers  are 
activated,  before  the  component  returns  to  idle  state.  The  strict  “read-execute-write”  semantics 
ensures  that  once  a  component  is  triggered,  the  execution  is  functionally  independent  of  any 
concurrent activity.

There are two additional types of components, clock and delay, which are in charge of manipulating 
trigger signals. A clock is a trigger generator, while a delay detains a trigger signal for a certain 
amount of time.

Switches enable dynamic modification of the connections between components by providing means 
for conditional  transfer  of data and/or  triggering.  A switch consists  of a  number  of conditional 
mappings between an input- and an output port of the switch (either data or trigger). Each mapping 
is guarded by a logical expression. If this expression evaluates to true, the mapping holds, otherwise 
it is broken. Data input ports of a switch which are part of such a logical expression are called 
setports. Switches are not triggered, they respond immediately to arrival of data- or trigger signals 
at their input ports, and relay them according to the current mappings.

Assemblies are  encapsulated  subsystems.  As  an  assembly  can  break  the  “read-execute-write”' 
semantics, it should only be viewed as a mechanism for naming a collection of components and 
hiding the internal structure, rather than a mechanism for component composition.

External  devices,  such  as  sensors  and  actuators  should  not  be  modeled  by  SaveCCM.  Their 
presence is seen through the use of external ports. An external port is a port that is not connected 
with any other port in the model, but has a label mapping it to some external entity.

The SaveCCM semantics is formally defined by a two step transformation – first from the full 
SaveCCM language to a similar but simpler language called SaveCCM Core, and then into timed 
automata with tasks. SaveCCM Core is a minimal language consisting of three elements (basic 
component,  composite component,  conditional connection) with which all  constructs  of the full 
SaveCCM can be described.

Management of EFPs in SaveCCM is endogenous system wide. Specification of timing properties 
is supported, but aforementioned attributes enable generic specification of EFPs. Timing properties 
can be analyzed at design time using the UPPAAL Port model checker [60].

2.22   Sofa
Software Appliances – SOFA is a component model developed within the SOFA academic project 
at  Charles  University  in  Prague  [61]. It encompasses  several  software  domains,  such  as  the 
communications middleware, component management, component design and security.  Key issues 
addressed by SOFA include component transmission protocol, dynamic component downloading 
and updating, hierarchical top-down design, distributed deployment and versioning, and support for 
component trading and licensing.
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The SOFA 2.0 [62]component model is an extension of the SOFA component model with several 
new  services:  dynamic  reconfiguration,  control  interfaces  and  multiple  communication  styles 
between the components.

Components
In  SOFA a  system is  built  out  of  a  set  of  dynamically  updateable  components.  Every  SOFA 
component is specified by its frame and architecture.

The frame provides a black box view of a component through the provided and required interfaces. 
Optionally, a behaviour protocol and component properties can be declared. Behaviour protocol  is 
used  to  formally  specify  communication  between  SOFA components,  while  the  properties  are 
intended for parametrizing the component.

SOFA architecture is an implementation of a frame. Every frame can be implemented by more than 
one architecture. The architecture may be either composed or primitive. Composed architecture is 
built of other components – subcomponents with specified interconnections via interface ties. It 
provides a grey-box view of a component, as it describes the structure of a component until the first 
level of nesting in the component hierarchy. A primitive architecture contains no subcomponents, 
only a code implementing the component's functionality described by the frame.

When defining internal structure of a composed component, its subcomponents are specified by 
frames at a design time, At deployment time, architectures that implement the subcomponents are 
determined  and  instantiated.  This  separation   of  component's  external  view  (the  frame),  from 
component's internal view (the architecture) is one of big advantages of SOFA component model. It 
allows  use  of  component  types  (frames)  at  compile  time,  and  specifying  implementation  of 
component functionality at deployment time.

Interfaces
SOFA components and systems are specified by an ADL-like language, Component Description 
Language (CDL). CDL descriptions are used to describe provided and required interfaces, frames 
and architectures of SOFA components. Interfaces are based on CORBA IDL's interfaces with an 
extension to provide means to specify version and behaviour protocol of interfaces.

The resulting CDL is compiled by a SOFA CDL compiler to their implementation in a programming 
language C++ or Java, and then is stored in the Type Information Repository (TIR). TIR manages 
an evolution of component's description and can store several versions of every element. In the 
CDL descriptions, a developer can specify references to a concrete version of previously compiled 
types stored in TIR.

Connectors
SOFA components can be composed by connectors. Connectors separate interconnection semantics 
and  deployment  dependant  details  from an  application  logic  placed  in  components.  In  SOFA, 
connectors are first-class entities like components. Each type of connector implements semantics of 
specific type of interaction,  and are similarly to components,  specified by connector frame and 
connector  architecture.  Connector  frame defines the type of a  connector  by describing services 
provided by a connector. Connector architecture describes connector internals and can be  simple 
(containing  only  primitive  elements,  directly  implementing  connector  frame)  or  compound 
(containing instances of other connectors or components).
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There are three predefined connectors in SOFA: CSProcCall (for synchronous calls), EventDelivery 
(for asynchronous calls) and DataStream (for data streaming).

In addition to connector types, connectors can be distinguished depending on entities they connect:

• bind – connects required interface to provided interface on the same hierarchy level.

• delegate – forwards requests from provided interface of a component to provided interface 
of its subcomponent.

• subsume – passes requests from a subcomponent's required interface to a required interface 
of a component.

SOFANode
SOFANode  is  an  environment  for  developing,  distributing  and  running  SOFA applications.  It 
consists of several logical parts:

• Template  repository  –  which  contains  CDL descriptions  as  well  as  implementations  of 
components

• CDL Compiler,  Template  Information  Repository  and  Code  generator  –  for  application 
development

• RUN – the runtime environment for launching component applications

SOFANode can be distributed across a network over several hosts. Several SOFANodes connected 
form a SOFANet.
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