
Towards Feedback-Based Generation of Hardware
Characteristics

Marcus Jägemar
Sigrid Eldh

Andreas Ermedahl
Ericsson AB

first.last at ericsson.com

Björn Lisper
Mälardalen University

bjorn.lisper at mdh.se

ABSTRACT
In large complex server-like computer systems it is difficult to
characterise hardware usage in early stages of system develop-
ment. Many times the applications running on the platform
are not ready at the time of platform deployment leading to
postponed metrics measurement. In our study we seek an-
swers to the questions: (1) Can we use a feedback-based con-
trol system to create a characteristics model of a real produc-
tion system? (2) Can such a model be sufficiently accurate
to detect characteristics changes instead of executing the pro-
duction application?

The model we have created runs a signalling application, simi-
lar to the production application, together with a PID-regulator
generating L1 and L2 cache misses to the same extent as
the production system. Our measurements indicate that we
have managed to mimic a similar environment regarding cache
characteristics. Additionally we have applied the model on a
software update for a production system and detected charac-
teristics changes using the model. This has later been verified
on the complete production system, which in this study is a
large scale telecommunication system with a substantial mar-
ket share.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures; B.3.2 [Memory Structures]: Design styles—Cache
Memories; C.4 [Performance of Systems]: Measurement
techniques

General Terms
Measurement, Performance

Keywords
Control Theory, Feedback computing, Performance Analysis,
Characteristics, Cache memories, Simulation, Load Testing
and Design Aids

1. INTRODUCTION
Measuring behavioural characteristics for complex large scale
computer systems is difficult since this requires either a full
production system or advanced test programs with large test
systems. After a software update, it is essential to measure
behavioural characteristics and check that the nature of the
system has not changed. Behavioural changes results in costly
and time consuming verification in the development cycle.
Late detection of unfulfilled requirements due to character-
istics changes leads to increased lead time, since parts of the
system must be re-investigated and re-implemented. Such in-
crease in development time may not be accepted since short
time-to-market is essential[6]. The system we are investigating
is a telecommunication system with a market share of about
38% in 2011 [6]. It consists of 5M SLOC [3] and runs on more
than 20 types of boards with different hardware layout and
functionality servicing both voice and data communication.

We define one instance of the computer system we are inves-
tigating as a node. One node can consist of many CPUs but
from a system point of view they are grouped as one exe-
cution entity. A large scale node has many CPUs, a small
scale node may consist of only a single CPU. A node com-
municates extensively both internally and externally between
nodes using signals, i.e., operating system messages. We in-
troduce two concepts central to our investigation. The first;
behavioural characteristics is in our case CPI, CPU-load or
signal turnaround time but can be any metric that describes
the behaviour or performance of the system. The second is
load characteristics which is described by metrics that will
affect the behavioural characteristics of the system. In our
investigation we have concentrated on cache misses but it can
be any other metric such as TLB usage, branch statistics,
number of system calls or interrupts etc.

For early detection of behavioural characteristics changes we
suggest to create a model of the production system on a small
scale node. The benefit of doing so is that we don’t have
to wait for the availability of large scale nodes which are ex-
pensive and difficult to obtain. Additionally, changes in the
platform may require modifications in the application soft-
ware which even more extends the time before characteris-
tics measurements can be made. Our approach is to alter
load characteristics, in our case cache miss rate, to change
the behavioural characteristics. Our model system consists of
a signalling application and a load regulator. The signalling
application simulates the production system by communicat-
ing extensively between processes. Additionally, it is used to
detect performance differences when applying the model, i.e.
instead of using IPC/CPI as a metric. The load regulator is
implemented as a Proportional-Integral-Derivative (PID) reg-
ulator and generates hardware load in the form of cache misses



Recorded HW
characteristics

Charmon

Production Appl.

Old Platform

a) Recording characteristics from a
production system

Production Node

Retrieve generator
parameters characteristics

Recorded HW

Signalling Appl.

Old Platform

b) Creating a simulation environment from previously 
recorded characteristics and retrieve regulator settings 

Load
RegulatorGenerator

Load

Test Node

Charmon

Use retrieved
generator parameters

Charmon

Signalling Appl.

using signalling application and load generator 

New Platform

c) Observe characteristics for a new platform by 

Generator
Load

Test Node

Figure 1: Our procedure in three steps to measure characteristics for a new software release by modelling a production system.

at a rate consistent with a real production system. Changes in
the production system can now be tested on the model system
with similar behaviour. The model in itself is easily extend-
able with additional regulators and generators for additional
hardware metrics such as L3-cache hit/miss rate, branch pre-
diction statistics etc. The results we have achieved is to PID-
regulate L1 Instruction, L1 Data and L2 Data cache misses
according to a predefined rate measured on a real production
system. Additionally we have succeeded to detect behavioural
characteristics changes in the production environment by us-
ing the model node to test a new software release.

2. PROCESS
We define the platform as the operating system bundled with
basic cluster functionality such as program handling, error
recovery mechanism, load balancing etc. On top of the plat-
form one or several telecommunication applications run using
the platform API. The system denotes the complete execut-
ing software on the hardware. In our investigation we have
followed this procedure to model a large system on a much
smaller node.

1. Record characteristics for an existing production system,
see Figure 1a.
(a) Run a complete customer system for which we want

to create a hardware (HW) characteristics model.
(b) Measure load-characteristics, in our case L1 Data,

L1 Instruction and L2 Data cache misses.
2. Create an environment that mimics the characteristics,

obtained in step 1, on a test node, see Figure 1b.
(a) Start the platform (same release as in step 1) to-

gether with the signalling application.
(b) Use the HW load regulation algorithm to reach the

same load-characteristics ratio as in step 1b.
(c) Retrieve metrics from the regulation algorithm. In

our case the internal counters used to describe the
amount of cache-misses generated by the load gen-
eration algorithm.

In the scenario above we have sampled behavioural character-
istics from a real customer system and then recreated a similar
execution environment for a limited platform signalling appli-
cation. By storing the internal load-generation parameters,
in 2c, we can generate the same rate of cache misses without
using the regulation algorithm. This allows us to change the

platform and then apply the same rate of misses. Investigat-
ing the ratio of misses allows us to detect changes in platform
behaviour. In the continued procedure below we can measure
characteristics for a different release of the platform to get an
indication of how it will perform running the complete system.

3. Detecting behavioural characteristics changes, such as
signal turn-around time, on small scale hardware, see
Figure 1c.
(a) Start the new platform together with the signalling

application.
(b) Generate HW-load at the same rate as obtained in

step 2c.
(c) Check behavioural characteristics for the benchmark-

ing application, such as signal turnaround time.

3. OUR APPROACH
3.1 The Characteristics Monitor
Implemented within the platform is a continuously running
characteristics monitor called charmon. It gathers informa-
tion about the HW-usage of the complete system by periodi-
cally sampling performance monitor counters, PMCs. PMCs
can be configured to count different HW-events such as cache
misses, TLB misses, branch statistics etc. The charmon stores
counted events in a database together with commonly re-
quested key performance indices such as cycles per instruction
(CPI), L1-2-3 cache hit/miss rate and ratio, TLB hit/miss
rate and ratio, branch statistics, CPU load and others. The
probe effect is low since the PMCs are located inside the CPU
with low or no performance penalty and the database stor-
age and PMC reprogramming occurs infrequently. Further-
more, using PMCs gives us the opportunity to measure non-
instrumented code reducing the intrusiveness of the monitor.
For more information regarding the characteristics monitor
and load generator see [9].

3.2 The Load Regulator
The load regulator operates in two modes. The first mode is
a client to charmon, subscribing to metrics for certain HW-
properties. With a user supplied ratio as reference the regu-
lator tries to generate HW-load reaching the reference value.
The second mode operates in a stand-alone manner generating
cache misses at a specific rate without any feedback of current
metrics. To generate a specific HW-load ratio a PID-regulator
is used to control each parameter. Each HW-property, such



 0

 5

 10

 15

 20
52

:0
0

52
:3

0

53
:0

0

53
:3

0

54
:0

0

54
:3

0

55
:0

0

55
:3

0

56
:0

0

56
:3

0

57
:0

0

57
:3

0

58
:0

0

58
:3

0

 0

 0.5

 1

 1.5

 2
M

is
sr

at
e 

[%
]

C
yc

le
s P

er
 In

st
ru

ct
io

n 
an

d 
Si

gn
al

 tu
rn

ar
ou

nd
 ti

m
e[

us
]

Time [mm:ss]

L1 I$
L1 D$
L2 D$

CPI
Signal turn-

aorund time [us]
Figure 2: Cache misses and CPI when running a simple sig-
nalling application bouncing signals between two processes
located on the same core. The load regulation application
strives to have a system miss rate of 0.74% L1 I-cache, 3.3%
L1 D-cache and 22% L2 D-cache which is similar to a produc-
tion system. The regulation scenario described in this figure
was started after the system was completely stable, in our case
after about 52:00 minutes

as cache miss-rate, is controlled by its own PID-regulator. See
Figure 2 for a typical regulation scenario. The test application
has an initial characteristics (to the left) that differs from the
final characteristics reached after the regulation has started
converging. The effect of increasing number of cache misses
can be observed by looking at the CPI and signal turn-around
time that increases as the cache usage is increased. The spike
(57:00) in the graph is difficult to explain but there are many
services running on the system being monitored. It can be any
periodically running signalling service synchronising informa-
tion with other boards generating a burst of load causing a
spike. However, the regulation algorithm keeps converging af-
ter the spike has occurred. The initial control loop parameters
for each of the properties were empirically discovered to pro-
vide stability rather than quick convergence. See [9, 12] for a
detailed description of how cache misses are generated.

4. RESULTS
4.1 Mimicking a Production Node Environment
The assumption is that introducing cache misses will cause
the application to execute in a less efficient way. According
to Doucette and Federova [4] an introduction of L2 D-cache
load causes a significant slowdown of simultaneously running
applications. We have used cache misses to mimic the exe-
cution environment of a real customer based system within
the constraints of a much smaller test suite. A first test of
the procedure outlined in Section 2 reveals that a load regu-
lator can add a hardware load yielding a similar load profile
as the real application. As can be seen in Figure 3 the cache
usage by the test applications itself does not mimic the real
application. When running the load regulator in parallel to
the test application the hardware usage becomes almost iden-
tical. Additionally CPI has increased from 1.15 to 1.96 which

 0

 5

 10

 15

 20

Production
System

Signalling
Appl.

Signalling
Appl. with

Generated Load

 0

 0.5

 1

 1.5

 2

 2.5

 3

M
is

sr
at

e 
[%

]

C
PI

 [C
yc

le
s/

In
st

ru
ct

io
n]

Application Setup
CPI[Cyc/Instr]

2.04

1.15

1.96

L1 ICache missrate

0.74
0.06

0.75

L1 DCache missrate

3.3

0.14

3.35

L2 DCache missrate

22

1

21.2

Figure 3: Measured cache usage and CPI for the reference sys-
tem, test application and a recreated execution environment
with the test application. Characteristics for the reference
system is similar to the mimicked scenario.

is close to the original real world measurements of 2.04. We
can conclude that introducing a load-generator together with
an already present application-benchmarking suite improves
the result.

4.2 Characteristics Evaluation in Daily Produc-
tion Test Environment

We have evaluated our approach described in Section 2 on a
real scenario where a software update was implemented for
the platform. All applications running on the platform were
left unchanged. The platform change relates to incorrect be-
haviour of cache handling in some rare circumstances. Before
implementing the suggested solution it was suspected that it
could affect the behavioural characteristics of the platform
therefore leading to increased load when running the produc-
tion system. We have been using a signalling application
together with a load generator to simulate the much larger
and complex telecommunication system. The application cre-
ates two processes per core bouncing signals between them
at a certain rate. As a behavioural characteristics we mea-
sure the signal turnaround time, which increases by 1,43%
(average of 312 samples on 7 cores) with the software up-
date running the signalling application alone. When altering
the load characteristics to mimic the cache usage for a real
production system (with respect to L1 Instruction, L1 Data
and L2 Data cache usage) the difference is much larger and
easily detectable. With the software update, the signal turn-
around time increases by 9,13% (average of 74 samples on 7
cores) compared to running without the software change. As a
reference running the same software update on the complete
production system the CPU load change is 7.57% (average
of 606 samples on 6 cores). We should be careful making a
direct comparison between signal turnaround time and CPU
load since they do not quantify the same metric. They should
however be related since a higher CPU-load gives an increased
signal turnaround time due to longer processing time at the



sending and receiving processes. Measuring CPU load for the
signalling application is not easily done since the cache-miss
generators also cause some CPU load. For the production sys-
tem signal turnaround time is not possible to measure since
the production code lack this mechanism. We have not yet
found a fully comparable metric that is easily measurable
among both systems. Interpreting the figures from the evalu-
ation shows, in this particular case, a relationship between the
CPU-load on the production system and signal turnaround-
time on the model system. How to quantify this relationship
is something that needs to be further studied.

5. RELATED WORK
Bell and John [2] describes a similar approach to ours. They
define a method to model an application by synthesizing vi-
tal metrics. The model is then used to automatically create
a representative test application with similar characteristics
to the original one. They have applied this method on the
SPEC2000 benchmark suite and the result shows that IPC
differs on average 2.4% between the original applications and
the model applications. Other metrics differ a degree slightly
higher than ours, I-Cache 8.6% and L2 cache misses not ex-
plicitly written but to a large degree. Starting with the syn-
thesizing procedure we use a feedback control loop to model
the system while Bell and John [2] use statistical simulation
with instruction traces, described by Nussbaum and Smith
[10]. Bell and John states that the synthesis procedure is
semi-automatic and an average of ten passes with some man-
ual intervention is needed to tune the synthesis parameters.
As a comparison feedback control allows the synthesis proce-
dure to converge with no user interaction. Additionally, the
model in our case is described by configuration parameters
fed to a generic application. For Bell and John this is done
at compile time requiring recompile to change its configura-
tion. Another difference in our approaches is that we use a
signalling application to detect any performance changes be-
tween releases while Bell and John uses IPC.
Doucette and Fedorova [4] have implemented a similar func-
tionality to ours when generating cache misses to determine
application sensitiveness for different architectures. For ex-
ample if an application is sensitive on one particular resource
and another architecture has different amount of that resource
the application performance is to some extent related to the
hardware in the same way as the generator functions. One
can in other words to some extent predict the performance of
an application without actually running it on the target plat-
form. As in Cache Pirating by Eklöv et al. [5] our application
steals hardware-resources from other applications thus starv-
ing them. Our approach is to use the a cache miss generator
to mimic a certain environment, while the cache pirate is used
to reduce the available hardware-cache to determine the ap-
plication demand for cache and memory bandwidth. We also
work on a core-private cache instead of a shared cache. Saave-
dra and Smith [11] explain how to understand cache memory
structure and how to generate misses, associativity etc. In the
area of continuous system monitoring we can find interesting
relations, such as Anderson et al. [1]. In their approach they
implement a low intrusive (1%-3%) sample based mechanism
to gather system wide information.

6. CONCLUSIONS AND FUTURE WORK
We have managed to synthesise the behavioural characteris-
tics of a real-life production system without using any code
instrumentation. The obtained characteristics have been used
to create a model that can reproduce the behaviour on a small
test system detecting characteristics changes without running

the large and complex production system. The feedback con-
trol system used in the synthesis phase works well and con-
verges in a stable manner. A natural way to proceed further
with this investigation is to decrease the time to converge
without sacrificing stability. Also introducing additional met-
rics, such as L3 cache and branch statistics, would improve
the accuracy of the model.

Acknowledgment
This work is funded by Ericsson AB and by the Swedish
Knowledge Foundation (KK stiftelsen) through the ITS-EASY
program.

7. REFERENCES
[1] J. Anderson, L. Berc and J. Dean. Continuous profiling:

where have all the cycles gone?. In ACM Transactions on
Computer Systems, pp. 357–390, Vol. 15, No. 4, November
1997

[2] R. Bell and L. K. John Improved automatic testcase
synthesis for performance model validation. In Proceedings of
International Conference on Supercomputing (ICS), pp.
111–120, 2005.

[3] M. Bergqvist, J. Engblom, M. Patel and L. Lundegard. Some
experience from the development of a simulator for a telecom
cluster (CPPemu). In Proceedings of the 10th International
Association of Science and Technology for Development, pp.
13–15, Nov. 2006.

[4] D. Doucette and A. Fedorova. Base vectors: A potential
technique for microarchitectural classification of applications.
In Proceedings of the Workshop on the Interaction between
Operating Systems and Computer Architecture (WIOSCA),
in conjunction with ISCA-34, 2007

[5] D. Eklöv, N. Nikoleris, D. Black-Schaffer and E. Hagersten.
Cache Pirating: Measuring the Curse of the Shared Cache.
In Proceedings of Parallel Processing (ICPP), 2011 40th
International Conference, Sept. 2011.

[6] Ericsson. Ericsson unveils new products, partnerships and
increased market share at mwc 2012. www.ericsson.com/
thecompany/press/releases/2012/02/1589097c, 2012.

[7] S. Eyerman, L. Eeckhout, T. Karkhanis and J. E. Smith. A
top-down approach to architecting CPI component
performance counters. In IEEE micro, pp. 84–93, Vol 27,
Jan-Feb, 2007.

[8] A. Joshi, L. Eeckhout, R. H. Bell Jr. and L. K. John
Distilling the essence of proprietary workloads into miniature
benchmarks. In ACM Transactions on Architecture and
Code Optimization, pp. 1–33, Vol 5, 2008.

[9] M. Jägemar, S. Eldh, A. Ermedahl, B. Lisper
Feedback-Based Generation of Hardware Characteristics -
Technical Report. http://www.mrtc.mdh.se/index.php?
choice=publications&id=3078, 2012

[10] S. Nussbaum and J.E. Smith. Modeling superscalar
processors via statistical simulation. In Proceedings of
Parallel Architectures and Compilation Techniques, pp.
15–24, 2001

[11] R.H. Saavedra and A.J. Smith. Measuring cache and TLB
performance and their effect on benchmark runtimes. In
IEEE Transactions on Computers, pp. 1223–1235, October
1995.

[12] Stackoverflow. Generate Instruction Cache misses. In
Stackoverflow forum,
stackoverflow.com/questions/9793660/
what-are-the-causes-for-instruction-cache-miss,
2012.


