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ABSTRACT
The Multiprocessor Periodic Resource (MPR) model has
been proposed for modeling compositional real-time guaran-
tees of real-time systems which run on a shared multiproces-
sor hardware. In this paper we extend the MPR model such
that the execution of virtual processors (servers) is not as-
sumed to be synchronized i.e., the servers can have different
phases. We believe that relaxing the server synchronization
requirement provides greater deal of compatibility for imple-
menting such a compositional method on various hardware
platforms. We derive the resource supply bound function
of the extended MPR model using an algorithm. Further-
more, we suggest an approach to calculate an approximate
supply bound function with lower computational complexity
for systems where calculating their supply bound function
is computationally expensive.

1. INTRODUCTION
In order to deal with increasing complexity of real-time sys-
tems, hierarchical scheduling techniques have been proposed
and investigated for scheduling complex real-time systems
consisting of multiple real-time components (applications)
on a shared underlying hardware platform. Using such tech-
niques components are developed independently and their
timing behaviors are studied in isolation, while the cor-
rectness of the system is inferred from the correctness of
its components. In the mean time, following the trend of
servers and PCs, embedded real-time systems are subjected
to the paradigm shift from single processor to multiproces-
sor hardware platforms. Therefore, there is a need for new
techniques that can enable hierarchial scheduling on mul-
tiprocessor platforms which allow us to compose real-time
systems and run them on a multiprocessor hardware. Re-
cently, many studies have been conducted on this subject
and a variety of models have been proposed.

In modeling hierarchical real-time systems, single proces-
sors alike multiprocessor, the system model often consists of
two parts: resource supply model and task demand model.
The resource supply model abstracts the underlying hard-
ware resource such that each application has the illusion of
running solo on an independent hardware, this virtual hard-
ware is often called a server. The resource supply model
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represents the minimum amount of resource that a server
provides in a given time interval. The amount of provided
resource is often represented using a Supply Bound Function
(sbf(t)). The resource demand model, however, represents
the resource demand of real-time tasks. Similarly, the max-
imum demand is often represented using a Demand Bound
Function (dbf(t)) [1]. Consequently, the schedulability test
is performed using the sbf(t), which is dependent on the
resource model, and the dbf(t) which is dependent on the
scheduling policy.

When it comes to multiprocessor platforms, the resource
supply model can either be flexible and represent the collec-
tively provided resource of a set of processors [6], or it can be
more detailed and represent the exact amount of provided
resource by each processor. In the former case, as Lipari and
Bini state in [9], the sbf(t) depends on the fact that whether
different servers (on different processors) are synchronized
together or not. A number of works on multiprocessor hi-
erarchical scheduling assume that the servers are synchro-
nized [6, 13], while in this paper alike [9], we assume that
the servers are not synchronized. Indeed synchronization
on some hardware platforms can be expensive, therefore, we
simplify the implementation phase of the composition for the
system developers by relaxing this assumption. Figure 1
illustrates the supply bound function of a multiprocessor
periodic resource model for two cases: synchronized servers
and unsynchronized servers (the specifications are explained
later in Example 1). The figure shows that when the servers
are not synchronized the supply bound function at some
points in time is lower than the synchronized servers case.
The figure indicates that the schedulability analysis that is
based on the assumption of having synchronized servers is
not valid when this assumption is relaxed.

In this paper, we focus on the supply bound function of
the multiprocessor periodic resource model, and we present
an approach to calculate the sbf(t) of the flexible resource
model that Easwaran et al. presented in [6] with no assump-
tions on the server synchronization. Our approach is based
on mapping the flexible model to a model that represents
the exact amount of the contributed budget by each pro-
cessor to the total budget, and then we derive the sbf(t)
for the new model. Furthermore, we present an approach
for approximating the sbf(t) which has lower computational
complexity than calculating the actual sbf(t).
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Figure 1: The sbf(t) of synchronized and unsynchro-
nized servers

The rest of the paper is organized as follows. We first review
the related work in Section 2, then we present the resource
model in Section 3. The algorithm for calculating the exact
supply bound function is presented in Section 4. Thereafter,
we present the approximate supply bound function in Sec-
tion 5. Finally, we conclude the paper in Section 6.

2. RELATED WORK
Hierarchial scheduling was first proposed as a method for
composing real-time systems on single processor hardware
platforms. Enabling independent development of real-time
systems, Deng and Liu proposed hierarchical scheduling in [4].
Schedulability analysis under global fixed priority scheduling
is presented in [7]. Mok et al. presented the bounded-delay
model for single processor hardware platforms in [10]. Shin
and Lee presented the periodic resource model for single
processors in [11].

Virtual clustered-based multiprocessor scheduling [6], which
is the extension of the periodic resource model for multipro-
cessor platforms, provides a flexible mechanism for schedul-
ing hierarchical systems. In this approach the resource sup-
ply is abstracted using a Multiprocessor Periodic Resource
(MPR) interface. The MPR interface consists of P , Q and
m parameters which denote the total budget Q is provided
in each period P using m virtual processors. This model
provides a great deal of run-time flexibility since the budget
distribution among m processors is performed during run-
time depending on the load of processors. This flexibility can
be exploited by the scheduler to serve the real-time tasks in
an efficient way. It is shown in [6] that the minimum supply
bound happens in the case where the total required budget
is evenly divided among all processors and each processor’s
budget is equal to Q

m
. Therefore, the supply bound func-

tion is derived based on this worst case budget distribution
setting (this setting is called the worst case platform in [9]).

The main problem with the MPR interface is that it has
an implicit assumption of the synchronization among vir-
tual processors. It has been shown in [9] that the worst
case platform does not exist if the virtual processors are
not synchronized. Therefore, Lipari and Bini suggested a
new interface model, namely the Bounded-Delay Multipar-

tition (BDM) model to overcome this problem. The BDM
interface consists of m, ∆ and [β1,...,βm] parameters which
represent the number of virtual processors, the length of the
longest interval with no resource and the bandwidth at each
parallelism level respectively. In fact, the DBM model re-
places the notion of period P in the MPR with delay (the
longest interval with no resource) ∆. The BDM model does
not require the servers to be synchronized. Nevertheless,
due to the nature of the delay based models, the BDM can
be very pessimistic which can result in low system run-time
utilization and consequently higher cost of the system pro-
duction. Besides, from an implementation point of view, pe-
riodic servers are more straight forward to implement, and
the BDM model perhaps should be mapped to the MPR or
any other periodic server based model for the implementa-
tion.

Bini et al. presented the Multi Supply Function (MSF)
model in [3] for modeling the resource supply in hierarchial
scheduling on multiprocessor platforms. The MSF is indeed
a set of supply functions one associated with each server.
The Parallel Supply Function (PSF) model [2] is also pro-
posed as an alternative for modeling the resource supply of
hierarchial multiprocessor systems. This model indicates a
set of supply functions where each of them represent the min-
imum available supply at a certain parallelism level (from
1 to m). Since the MPR model offers greater deal of ab-
straction than the MSF and the PSF model, from a system
integrator perspective, the MPR can be more suitable when
composing real-time systems.

Zhu et al. have extended deferable servers to the context
of multiprocessor platforms [13] where m deferable servers
with a common period and different budgets are running on
m processors. Analogous to the MPR model, the servers are
assumed to be synchronized in this work.

Targeting soft real-time tasks, Leontyev and Anderson have
presented a multi-level scheme for scheduling real-time tasks
and they showed that under their scheme, the deadline tar-
diness of the tasks is bounded [8]. In contrast with other
hierarchical schemes, in this work there is no loss in overall
utilization moving down through the levels of hierarchy.

3. RESOURCE MODEL
We present the resource model for a processor cluster in this
section. On a multiprocessor platform consisting of a total
of n processors, a processor cluster is a set of m processors
where 1 ≤ m ≤ n. The processor clusters can be either
physically or virtually mapped to the physical processors [6].

We present two types of resource interface models for the
processor clusters: flexible and rigid. While the flexible
model is the main focus in this paper, the reason behind
introducing the rigid interface is that we use it to derive the
supply bound function of the flexible interfaces.

3.1 Flexible interface model
Our flexible resource interface model is equivalent to the
one that Easwaran et al. introduced in [6]. In this model
resources are specified by the following tuple: Γ = 〈m,P,Q〉,
which denotes that the multiprocessor cluster consisting of
m processors in total provides Q units of budget every P



period to its corresponding consumers. From a run-time
point of view, this model is very flexible in the sense that
the scheduler can decide how the total budget should be
distributed among the processors in the cluster, in other
words, each processor is free to provide as much resource as
it wants, as long as the collective provided budget is equal
to Q every P time units.

3.2 Rigid interface model
In contrast to the flexible interface model, in the rigid inter-
face model each processor in the cluster is required to pro-
vide a specific amount of resource to its corresponding con-
sumers. The rigid interface model is represented as follows:
ψ = 〈m,P, [q1, ..., qm]〉, where qi represents the exact amount
of the budget of processor i (1 ≤ i ≤ m). Without loss of
generality we assume that all qi are stored non-increasingly
i.e. ∀i qi ≥ qi+1. In this model, the total provided budget is
calculated by accumulating the budget of all processors in
the cluster:

∑m
i=1 qi. We use the following notation to re-

fer to the budget distribution of a known platform (ψ): qψi
where 1 ≤ i ≤ m. Similarly QΓ represents the total available
budget of the flexible interface Γ. Note that in this model
processor i, regardless of the budget of other processors in
the cluster, is obliged to provide qi budget each period and it
does not need to be synchronized with the other processors
in its cluster.

We overload the word “platform” in the rest of the paper
to refer to a rigid processor cluster interface ψ. Since the
total budget can be distributed among processors in many
ways, a single flexible interface Γ can be mapped to many
platforms. We call the set of all possible platforms derived
from a flexible interface Γ the possible platforms of Γ and
we represent this set as follows

ΨΓ =
{
∀ψ :

∑m
i=1 q

ψ
i = QΓ

}
.

Note that when Q is not integer, we solve the mapping prob-
lem for bQc and then we add Q− bQc to q1. Therefore, we
assume that in the rigid model there exist at most one real
budget (q1), while the rest of the processors have integer
budgets. The restriction that only a single processor will
have real budget, limits the set of possible rigid interfaces
that can be derived from a flexible interface.

3.3 Flexible interface versus rigid interface
So far we have introduced two interface models which can
be used for composing real-time components on a multipro-
cessor hardware. When using rigid models, each component
has its own qψi and the system integrator has to find a way
to allocate qi to the physical processors. This problem is a
bin packing like problem which is known to be difficult to be
solved. In addition, when adding or removing components,
the allocation should be repeated.

On the other hand, when using a flexible interface we do
not face this allocation problem and the scheduler is free
to decide the allocations in any fashion at run-time. This
property makes the flexible interfaces more suitable for com-
positional analysis in the sense that the integration phase is
done without the need to consider the physical allocation

of the components. However, calculating the supply bound
function when using flexible interfaces, as we discuss in this
paper, requires more computations than using rigid inter-
faces.

Therefore, there is a downside to both of the models and
choosing either of them is a design decision which should be
made by the system designers.

3.4 Packed platform of a flexible interface
The packed platform (ψp) of a flexible interface Γ is a mem-
ber of ΨΓ in which the total budget Q is packed onto the
minimum number of processors. A packed platform con-
sists of h = bQ

P
c full budgets (qi = P ), one budget equal

to mod (Q,P ), and m − h empty budgets (qi = 0). For
example the corresponding packed platform of the flexible
interface Γ = 〈4, 8, 18〉 is ψp = 〈3, 8, [8, 8, 2, 0]〉.

3.5 Balanced platform of a flexible interface
The balanced platform (ψb) of a flexible interface Γ is a mem-
ber of ΨΓ in which the total budget is evenly divided among
all processors in the cluster. Therefore, the balanced plat-
form consists of k = mod (Q,m) budgets equal to bQ

m
c+ 1

and m− k budgets equal to bQ
m
c. For instance the balanced

platform of Γ = 〈4, 8, 18〉 is ψb = 〈4, 8, [5, 5, 4, 4]〉.

3.6 Deriving the possible platforms of a flexi-
ble interface

This problem of deriving the possible platforms of a flexible
interface is analogous to the well know integer partitioning
problem in number theory [12], where the problem is to find
all possible ways that an integer number x can be written as
a sum of some integer numbers which are called the parti-
tions of x. However, in our problem we have two additional
constraints which are the maximum number of partitions
(m) and the maximum value of each partition (P ). Hence,
we can not directly use the algorithms presented for deriving
the partitions of integer numbers. Therefore, the problem is
to find all possible ways of writingQ as sum of ` integer num-
bers (qi) where ` ≤ m, and each partition value is less than
or equal to P . Recall that for avoiding redundant platforms
we enforce the following requirement ∀i qi ≥ qi+1, which is
due to the fact that redundant platforms have equivalent
sbf(t) and therefore are not of our interest.

In the rest of this section we present an algorithm for deriv-
ing the possible platforms of a given flexible interface. We
start from the balanced platform and construct a tree where
the root is ψb and new nodes are created by transferring a
unit of the budget from one processor to another one. We
present some definitions before presenting the algorithm.

Budget donator candidate is a processor that if its bud-
get is reduced by one the remaining budget set is still or-
dered (non-increasingly). Any given platform has a budget
donator candidate set (Dψ) that is found using Algorithm 1.
The algorithm loops through all budgets and selects the ones
that are compatible with donating a unit of budget. insert

is a function that inserts a new entry (i) to its input set
(here Dψ).

Budget receiver candidate is a processor that if its bud-



Algorithm 1 Deriving the budget donator candidate set

1: function donators(ψ)
2: for i = 2;i < m;i+ + do
3: if qi > 0 & qi > qi+1 then
4: insert(Dψ, i);
5: end if
6: end for
7: if qm > 0 then
8: insert(Dψ,m);
9: end if

10: end function

get is increased by one the remaining budget set is still or-
dered (non-increasingly). There is a budget receiver set as-

sociated with each budget donator of platforms (Rψd ) which
is derived using Algorithm 2. The algorithm only loops
through the budgets that are at the left hand side of the
budget donator d, and finds the processors that are compat-
ible with receiving a unit of budget.

Algorithm 2 Deriving the budget receiver candidate set of
a given budget donator (d)

1: function receivers(ψ, d)
2: for i = 2;i < d;i+ + do
3: if qi < P & qi < qi−1 then
4: insert(Rψd , i);
5: end if
6: end for
7: if q1 < P then
8: insert(Rψd , 1);
9: end if

10: end function

Budget donation operation is an operation in which one
unit of a budget donator’s budget qd is transferred to a bud-
get receiver budget qr.

In order to derive ΨΓ, we start off by running the budget do-
nation operation on ψb, for all combinations of the donators
and their corresponding receivers. Thereafter, we repeat this
step for all children of ψb and create the next level of the
tree. The procedure continues until we reach ψp, which is the
packed platform, and since the budget donation operation
can not be performed on the packed platform the algorithm
stops branching. The pseudocode of this procedure is pre-
sented in Algorithm 3. isNew is a function that looks for its
input platform (ψ′) in its input set (ΨΓ) and returns true if
it fails to find the platform. The budget donation operation
takes place in line 7 and 8 of the algorithm, and in line 11
(when we find a new platform) we do a recursive call pass-
ing the recently found platform. Since the budget donation
operation transfers only one unit of the budget at each step,
and we run this operation on all combinations of donators
and their corresponding receivers, we are guaranteed to i)
reach ψp which is the termination condition of our recursive
algorithm ii) find all possible platforms between ψb and ψp.

Since we start from ψb where

=bQ
m
c+1︷ ︸︸ ︷

q1, ..., qk,

=bQ
m
c︷ ︸︸ ︷

qk+1, ..., qm

Algorithm 3 Deriving possible platforms of a flexible in-
terface
1: function platforms(ψ, ψp)
2: Dψ = donators(ψ);
3: for all d ∈ Dψ do
4: Rψd = receivers(ψ, d);

5: for all r ∈ Rψd do
6: ψ′ = ψ;
7: ψ′.qd = qd − 1;
8: ψ′.qr = qr + 1;
9: if ψ′ 6= ψp & isNew(ψ′,ΨΓ) then

10: insert(ψ′, ΨΓ);
11: platforms(ψ′, ψp);
12: return ψ′;
13: end if
14: end for
15: end for
16: end function

and we want to reach ψp where

=P︷ ︸︸ ︷
q1, ..., qh,

= mod (Q,P )︷︸︸︷
qh+1 ,

=0︷ ︸︸ ︷
qh+2, ..., qm

therefore qh+1 to qm in ψb should be moved to a place be-
tween q1 and qh. In this process each qi can at most move
i− 1 steps to the left, and the longest depth happens when
the donator processor and the receiver processors at all steps
are neighbors (d = r + 1). Therefore, the longest depth (κ)
is calculated by the following equation

κ =

m∑
i=h+1

qi × (i− 1), (1)

where m is the number of processors, h = bQ
P
c, and qi are

the budgets of ψb. The total number of possible platforms
is exponential in κ. Note that κ is derived without consid-
ering that i) all qi are sorted non-increasingly ii) redundant
nodes are not allowed to branch. Therefore, in practice the
longest depth is less than or equal to κ. However, since the
growth rate of the algorithm is exponential it is considered
as a high complexity problem which might be intractable for
some configurations of m, P and Q. A sample trace of the al-
gorithm for the flexible interface Γ = 〈3, 8, 6〉 is presented in
Figure 2. The redundant nodes are presented as gray nodes
which are eliminated using the isNew function. The figure
illustrates the necessity of eliminating redundant nodes since
they are a considerable number of the total nodes.

4. SUPPLY BOUND FUNCTION
The Supply Bound Function (sbf(t)) represents the mini-
mum amount of the resources that servers provide to their
task set in a given time interval t. In this section we derive
the supply bound function of both the flexible and the rigid
interface models. For simplifying the presentation we drop
t when referring to the supply bound function in the rest of
the text.

4.1 The sbf of rigid interfaces
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Figure 2: possible rigid platforms of Γ = 〈3, 8, 6〉

The sbf of a rigid interface sbfψ can be seen as sum of m
servers’ sbfs with the period equal to P and given budgets
qi. Therefore, using the same equation that is presented
in [11] for calculating the sbf we have:

sbf
ψ(t) =

m∑
i=1

(⌊ t− (P − qψi )

P

⌋
× qψi + εi(t)

)
, (2)

where

εi(t) = max
(
t− 2(P − qψi )− p×

⌊ t− (P − qψi )

P

⌋
, 0
)
. (3)

4.2 The sbf of flexible interfaces
In order to calculate the minimum supply provision of a flex-
ible interface (sbfΓ) we need to derive the worst case plat-
form which provides the least amount of resources among all
possible platforms. However, as Lipari and Bini state in [9],
the worst case platform does not exist for the flexible in-
terfaces. Although the balanced rigid platform is the worst
case platform when we assume that the virtual processors
are synchronized [6], when the assumption is relaxed it is
not the worst case platform anymore. Therefore, a poten-
tial solution for calculating the sbf of flexible interfaces is
to take the following steps:

1. Derive ΨΓ using Algorithm 3.

2. From the definition of the supply bound function, sbfΓ

at each time point is the minimum of all sbfψ at that
time:

sbf
Γ(t) = min

{
sbf

ψ(t)
}
, ∀ψ ∈ ΨΓ. (4)

As we discussed in the previous section, the complexity of
step one is exponential, hence this solution might be in-
tractable for some flexible interfaces. Therefore, in the rest
of this section we take some actions in reducing the com-
plexity of step one by removing the platforms that are not
contributing in calculating the sbfΓ. Indeed, we are looking
for the platforms where sbfψ crosses sbfψb at least at one
time point, or mathematically:

∀ψ ∃t : sbfψ(t) < sbf
ψb(t).
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Figure 3: The sbf of all possible platforms of Γ1 =
〈2, 8, 8〉

Example 1. Consider the following flexible interface Γ1 =
〈2, 8, 8〉, the sbf of all possible platforms is shown in Fig-
ure 3 (redrawn from [9]). Among all possible platforms of
Γ1, only sbfψ1 and sbfψ2 are crossing sbfψb . Therefore, in
the proposed approach for calculating sbfΓ, it is sufficient to
only derive ψ1 and ψ2 in step 1, and proceed with the second
step. Roughly speaking, we present an approach to exclude
the platforms where the lower bound of their sbf is higher
than the upper bound of sbfψb (ψ3 and ψp in this example).

To this end, we first show how to calculate the lower bound
(lsbf) and upper bound (usbf) of the supply bound func-
tion, afterwards we derive a subset of ΨΓ which is sufficient
for calculating the sbfΓ.

4.3 The lsbf of rigid interfaces
Analogous to the presented approach for calculating the
sbfψ, linear lower bound for a rigid interface lsbfψ can be
calculated by accumulating the linear lower bound of m in-
dependent servers’ lsbf with a given period (P ) and budget
(qi). According to [11], the lsbf is calculated as follows

lsbf(t) =
qi
P

(
t− 2(p− qi)

)
, (5)

therefore the lsbf of ψ is

lsbf
ψ(t) =

m∑
i=1

qψi
P

(
t− 2(p− qψi )

)
= α(t−∆ψ), (6)

where

α =
Q

P
, (7)

and

∆ψ = 2
(
P −

∑m
i=1 (qψi )

2

Q

)
. (8)

Note that we overload ∆ in the rest of the paper and it does
not refer to the delay in the bounded delay model anymore.



α of all platforms in ΨΓ are equal, however, their ∆ can
differ.

Lemma 1. The budget donation operation always outputs
a platform in which its ∆ is less than the ∆ of its input

platform (∆ψchild < ∆ψparent).

Proof Assuming that qψ
parent

i and qψ
child

i represent the
budget distributions of the input and output platform of
the budget donation operation respectively, based on Equa-
tion 8 we should show:

m∑
i=1

(qψi
child

)2 −
m∑
i=1

(qψi
parent

)2 > 0. (9)

Since all budgets except qd (q of the budget donator) and qr
(q of the budget receiver) are equal we can write:

(qd − 1)2 + (qr + 1)2 − q2
d − q2

r > 0, (10)

qr > qd − 1, (11)

which is true since r < d and the budgets are sorted non-
increasingly.

Lemma 2. The lsbf of the balanced platform (lsbfψb) is
lower than any other possible platforms’ lsbf.

Proof According to Lemma 1, and given that ψb is the root
of Algorithm 3

∆ψb > ∆ψb
′

(12)

where ψb
′ represent any non-balanced platform derived from

Algorithm 3, which according to 6 yields to:

lsbf
ψb(t) < lsbf

ψb
′
(t). (13)

4.4 The lsbf of flexible interfaces
According to Lemma 2, the lsbf of a flexible interface (lsbfΓ)
is calculated by deriving the corresponding balanced plat-
form and calculating lsbfψb ,

lsbf
Γ(t) = lsbf

ψb(t) = α(t−∆ψb). (14)

4.5 Upper bound of the sbf

In this section we present an upper bound for the sbf which
is used for excluding the irrelevant platforms in calculating
the sbfΓ. The upper bound of the supply bound function
(usbf) for independent servers on single processors with a
common period P and given budget qi according to [5] is as
follows:

usbf(t) =
qi
P

(
t− (P − qi)

)
. (15)

Therefore, usbfψ(t) is:

usbf
ψ(t) =

m∑
i=1

qψi
P

(
t− (P − qψi )

)
= α(t− θψ), (16)

where

θψ = P −
∑m
i=1 (qψi )

2

Q
. (17)

Lemma 3. In calculating the sbfΓ for flexible interfaces
it is sufficient to consider the following subset of ΨΓ:

Ψθ =
{
∀ψ ∈ ΨΓ : ∆ψ ≥ θψb

}
.

Proof Recall step two in calculating sbfΓ, since we are us-
ing the min function to calculate sbfΓ at each time point, the
platforms where their sbf are absolutely more than sbfψb do
not affect the min function. Therefore, we want to exclude
the platforms that fulfill the following condition:

∀t : sbf
ψ(t) > sbf

ψb(t), (18)

or

∀t : sbf
ψ(t) ≥ usbf

ψb(t), (19)

which yields to excluding the following set:

∀ψ : ∀t : lsbf
ψ(t) ≥ usbf

ψb(t), (20)

therefore Ψθ is of our interest in calculating sbfΓ.

Based on Lemma 3, Algorithm 3 can be altered such that
the stop condition (ψ′ = ψp) is replaced by the following
condition:

∆ψ < θψb , (21)

and using Equation 8 we have:

m∑
i=1

(qψi )2 ≥ Q(P − θψb

2
), (22)

therefore, the condition at line 9 in Algorithm 3 (ψ′ = ψp)
should be replaced by Inequality 22. Thereafter, we need
to consider all output platforms of the altered algorithm for
calculating the sbfΓ:

sbf
Γ(t) = min

{
sbf

ψ
}
∀ψ ∈ Ψθ. (23)

For instance lets take the flexible interface Γ1 = 〈2, 8, 8〉
presented in Example 1. For this example we have: θψb = 4,
hence the stop condition is:

∑m
i=1(qψi )2 ≥ 48. Therefore, ψ3(∑m

i=1(qψ3
i )2 = 50

)
and ψp

(∑m
i=1(q

ψp
i )2 = 64

)
do not

need to be considered for calculating the sbfΓ:

sbf
Γ1(t) = min

{
sbf

ψb(t), sbfψ1(t), sbfψ2(t)
}
.

5. APPROXIMATE sbf OF THE FLEXIBLE
INTERFACES

According to 23, we can reduce the number of platforms that
have to be investigated when calculating the sbfΓ, however,
this subset (Ψθ) may still include too many platforms that
makes the computations intractable. In this section we pro-
pose an approach to derive an approximate supply bound
function for the flexible interfaces (asbf). In this approach
we consider λ such that θψb ≤ λ ≤ ∆ψb and we replace θψb

with λ in Equation 22 to get a new termination condition
for branching (ψ′ = ψp) in Algorithm 3:

m∑
i=1

(qψi )
2 ≥ Q(P − λ

2
). (24)
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Figure 4: The sbf, the lsbf and the usbf of a bal-
anced platform

Therefore in this approach we consider the following subset
of ΨΓ:

Ψλ =
{
∀ψ ∈ ΨΓ : ∆ψ ≥ λ

}
.

This new condition confines the search space, therefore we
can get an approximate sbf investigating a lower number
of platforms. Using λ we cut the tree in earlier branches
than the original algorithm, therefore, the time complexity
of the algorithm is reduced. Figure 4 illustrates the relation
between the actual upper bound and the approximate upper
bound (Z(t)). For calculating the sbfΓ we exclude the
platforms where the sbf is located at the left hand side of
usbfψb , however, for calculating the asbfΓ we exclude all
the platforms where the sbf is located at the left hand side
of Z(t).

The approximate sbf is:

asbf
Γ(t) = min

{
sbf

ψ(t), Z(t)
}
∀ψ ∈ Ψλ, (25)

where

Z(t) = α(t− λ), (26)

because according to Lemma 1, all other platforms that we
are not considering in the min function have smaller ∆ which
means their lsbf (and consequently their sbf) is more than
Z(t) at all time points. Note that the min operation in
Equitation 25 is critical in ensuring that the approximation
is safe.

Recall Example 1, if we assign λ = 6, the termination condi-
tion is

∑m
i=1(qψi )2 ≥ 40, therefore, for calculating asbfΓ1 we

only need to consider ψb and ψ1 together with the following
line Z1(t) = (t− 6). Hence, we have:

asbf
Γ1(t) = min

{
sbf(t)ψb , sbf(t)ψ1 , Z1(t)

}
.

Γ 〈8, 16, 40〉 time
(sec)

〈4, 64, 80〉 time
(sec)

ΨΓ 6360 192.64 4089 37.06

Ψθ 5650('
88%ΨΓ)

159.22 3652('
89%ΨΓ)

30.43

ψλ1 2259('
35%ΨΓ)

23.12 2245('
54%ΨΓ)

11.30

ψλ2 507('
7%ΨΓ)

0.99 938('
22%ΨΓ)

1.98

Table 1: ΨΓ, Ψθ and Ψλ for sample flexible interfaces
(λ1 = 0.5(θ + ∆) and λ2 = 0.75(θ + ∆))

Table 1 shows two flexible interfaces and corresponding num-
ber of rigid interfaces that should be investigated in order to
calculate the sbfΓ and the asbfΓ in addition to the analy-
sis time that it took for our MATLAB code to derive them.
In these two examples, more than 10% of the possible plat-
forms are irrelevant in calculating sbfΓ, and when calculat-
ing asbfΓ the higher the number of the platforms included
in the min function, the higher the accuracy of the approx-
imation.

The number of possible platforms of a flexible interface is
positively correlated with P and m because when increasing
them, there are more possibilities for the total budget to be
distributed on different processors. However, increasing Q
does not necessarily increase the number of possible plat-
forms. For instance when Q = m×P , we have ψb = ψp and
the number of possible platforms is one. Figure 5 shows the
relation between Q and the number of possible platforms
for the flexible interface Γ = 〈5, 16, Q〉 (Q ∈ [1,m × P ]).
The figure indicates that the number of possible platforms
increases until Q = m×P

2
, and decreases afterwards. The

trend is analogous for all flexible interfaces, which can be
explained by the longest depth (κ) presented in Equation 1,
where increasing Q has two consequences: i) increases qi in
ψb which increases κ ii) increases h (h = bQ

P
c) and therefore

decreases κ. Hence, depending on the dominating factor,
the number of possible platforms may either be positively
or negatively correlated with Q. From the figure we observe
that the dominant factor is (i) until Q = m×P

2
and there-

after it is (ii), therefore the difference between the number
of platforms in calculating asbf and sbf is more significant
in platforms where Q is around m×P

2
.

6. CONCLUSION
In this paper we presented an approach for calculating the
supply bound function of multiprocessor periodic resource
interfaces when the servers are not synchronized. Being
independent from server synchronization makes the model
compatible with all types of hardware platforms (even with
the ones where synchronization is expensive). Furthermore,
due to the exponential complexity of calculating the actual
supply bound function, we proposed an approach for cal-
culating an approximate supply bound function with lower
computational complexity.

The next step in our work is to evaluate the difference be-
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Figure 5: Number of platforms in ΨΓ, Ψθ and Ψλ for
Γ = 〈5, 16, Q〉 (λ1 = 0.5(θ + ∆) and λ2 = 0.75(θ + ∆))

tween using actual and approximate supply bound functions
using an extensive number of randomly generated systems.
We also intend to compare the periodic resource interface
with the bounded delay interface. Finally we will look into
the presented algorithm for mapping the flexible interface to
the rigid interface(s) and try to further reduce its complexity
using some heuristics.
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