
The Data Field ModelBj�orn Lisper and Per HammarlundM�alardalen UniversityandRoyal Institute of Technology (KTH)Stockholm, SwedenJune 19, 2001AbstractIndexed data structures are prevalent in many programming applications.Collection-oriented languages provide means to operate directly on these struc-tures, rather than having to loop or recurse through them. This style ofprogramming will often yield clear and succinct programs. However, theseprogramming languages will often provide only a limited choice of indexeddata types and primitives, and the exact semantics of these primitives willsometimes vary with the data type and language.In this paper we develop a unifying semantical model for indexed datastructures. The purpose is to support the construction of abstract data typesand language features for such structures from �rst principles, such that theyare largely generic over many kinds of data structures. The use of these ab-stract data types can make programs and their semantics less dependent ofthe actual data structure. This makes programs more portable across di�erentarchitectures and facilitates the early design phase. The model is a general-isation of arrays, which we call data �elds: these are functions with explicitinformation about their domains. This information can be conventional arraybounds but it could also de�ne other shapes, for instance sparse.Data �elds can be interpreted as partial functions, and we de�ne a meta-language for partial functions. In this language we de�ne abstract versions ofcollection-oriented operations, and we show a number of identities for them.This theory is used to guide the design of data �elds and their operations sothey correspond closely to the more abstract notion of partial functions. Wede�ne '-abstraction, a lambda-like syntax for de�ning data �elds in a shape-independent manner, and prove a theorem which relates '-abstraction and�-abstraction semantically. We also de�ne a small data �eld language whosesemantics is given by formal data �elds, and give examples of data �eld pro-gramming for parallel algorithms with arrays and sparse structures, databasequering and computing, and speci�cation of symbolic drawings.1 IntroductionMany computing applications require indexed data structures, i.e., a collection ofuniformly typed data which can be (directly or indirectly) indexed in order toretrieve values. Simple examples are homogenous lists and arrays, but the conceptalso includes more complex structures such as trees, graphs, nested sequences, hashtables, data parallel entities, and relational databases. The indexing capability neednot be explicit (like, for instance, when representing a set by a list), but in manyapplications it provides an important part of the model. Examples of the latter are1

when solving partial di�erential equations, where the index is closely related to aphysical coordinate, in image and signal processing, and in linear algebra.The traditional way to compute with indexed data structures is to explicitlyloop or recurse through them. It has since long been recognized, however, thata programming model which provides operations directly on the data structurescan be very convenient. This model is an instance of collection-oriented program-ming [58]. The classical example is APL [16], which provides arrays and a rich setof operations on them.Indexed data structures are very important in high performance computing. Thedata parallel programming model [25] is a collection-oriented paradigm for explicitparallelism, originally for SIMD architectures where distributed entities, like arraysindexed by processor coordinates, are manipulated in parallel. Many historicaldata parallel languages, like C* and *Lisp for the Connection Machine [64, 65],modeled the underlying machine closely: for instance, they typically demandedarrays to have the same dimensions as the processor array. This made it easierto generate e�cient code for a particular machine but was less
exible from aprogramming point of view. Modern array languages, like Fortran 90 [7], HighPerformance Fortran (HPF) [24] and Sisal [17, 59], provide a less machine-dependentprogramming model where array dimensions need not be related to machine size.This makes them more
exible with regard to programming, but it becomes harderto compile them into e�cient code. Still, they are better in that regard thantraditional languages since collection-oriented programs tend to expose more of theinherent parallelism than programs with explicit loops or recursions. This alsofacilitates the kind of reordering transformations which are useful for improving theinstruction level parallelism and cache hit ratio.In general, modern computers have very complex performance characteristics.As a consequence, an important task when programming for high performance is to�nd elaborate data structures which provide the right tradeo�s between parallelism,locality, and memory consumption. This is particularly crucial when consideringthe possibility of sparse algorithms and representations, and dense/sparse hybridsolutions. Thus, there is a need to support the rapid prototyping of such structuresand associated algorithms: on an abstract level, close to the problem formulationand thus portable, but also the transition to concrete implementations for di�erentarchitectures. We believe this process can be facilitated by a programming modelwhich aids the parameterization of programs with respect to data structures.In other situations, the ability for concise modeling is more important thanperformance. The matrix language MATLAB [53], for instance, is widely used ineducation and engineering. Also the scripting language Perl provides collection-oriented features, like association arrays and advanced string operations. Theselanguages are not known to have fast implementations, their popularity stems fromthe fact that they enhance the productivity of programmers for certain applications.We believe that also application-speci�c collection-oriented languages bene�t fromwell-designed underlying models for the collections, which are designed accordingto common principles.The data �eld model is an attempt to provide such principles for indexed datastructures, through a common semantical framework for such structures. Anotherobjective is to make the collection-oriented paradigm applicable to new problemsby supporting a very generic programming model. The approach is to �rst considerthe more abstract view of indexed structures as partial functions, and then add theexplicit extra information about their domains which is necessary to perform alldesired operations on them, while not making any undue restrictions. We call thisextra information \bounds", and they are essentially set representations. This ap-proach leads naturally to an axiomatic de�nition of bounds, where some operationswith certain properties are postulated. We thus view bounds as an abstract data2

type.Partial functions can be de�ned through �-abstraction and we de�ne a similarsyntax, called '-abstraction, for data �elds. Array languages often have convenientconstructs to de�ne arrays whose bounds are given implicitly. An important pur-pose of '-abstraction is to provide a semantics for such constructs, and to aid thegeneralisation of them to other data structures. In particular, we target sparsestructures.A data �eld de�ned by '-abstraction has its bounds implicitly given such thatthey approximate the domain of the corresponding partial function safely. Again,since there are tradeo�s between e�cient implementations and exactness of domainapproximation, we use an axiomatic approach where only certain properties of therewrite system are prescribed. Thus, we actually de�ne a class of '-calculi ad-hering to the axioms. These calculi are given as higher order rewrite systems. Weprove con
uence and demonstrate that the well-known leftmost-outermost reductionstrategy is normalizing for all '-calculi in this class. We then formulate a theoremwhich relates the semantics of a '-expression with the semantics of the correspond-ing �-expression, and we prove it for an increasingly specialized suite of '-calculiwhere rewrite rules are successively added to make the calculation of bounds moreprecise. We also outline an alternative class of '-calculi, which de�ne the kind ofcomputation of implicit bounds traditionally found in array languages, and indicatehow to de�ne general mutable data �elds which can be updated in-place.What are the bene�ts of the data �eld approach? In Sipelstein's and Blelloch'ssurvey of collection-oriented languages [58], a number of common collection-orientedoperations are de�ned and a taxonomy is introduced. All these operations can beexpressed in a kernel language consisting of a minimal functional language enrichedwith bounds and their operations, a function constructing data �elds from func-tions and bounds, and '-abstraction. Sipelstein and Blelloch furthermore identi�edcertain semantical ambiguities for some of these operations. If these operations arede�ned as outlined above, then the ambiguities are resolved in a natural fashion.Programming languages can provide data �elds and '-abstraction, and will thenenable a highly generic style of programming where a change of data collectionrepresentation will require only a minimal change in the code. Some codes arefully \bounds-generic" { an example is found in Sect. 8.4. The theorem aboutsemantical correspondence between '- and �-expressions ensures that the semanticsof '-expressions in the code will not change in a certain sense (to be made precisein Sect. 7) when the underlying data structure is changed. We believe this propertyis especially useful in the early design phase of collection-oriented programs, wheredi�erent representations and algorithms are tried out.'-abstraction, as de�ned here, enables a lazy style of programming where in�nitedata �elds make sense. The advantage of lazy evaluation and in�nite data structuresfrom a software-engineering perspective is well known. Two particular applicationsin collection-oriented programming are the use of in�nite constant data �elds whichadapt to the right shape when used in a certain context, and predicates which actas \masks" over �nite data �elds. See Sect. 2.In [45], we de�ned a highly generic framework for extent analysis of data struc-tures, using the more abstract view of indexed data structures as partial func-tions. We have also de�ned and implemented \Data Field Haskell", a dialectof Haskell where the arrays are replaced with an instance of data �elds (essen-tially the sparse/dense arrays of Sect. 7.5), according to the framework de�nedhere [27, 30, 29, 47].The rest of this paper is organized as follows. In Sect. 2 we give a taxonomyof collection-oriented operations and identify the major syntactical styles for these.Sect. 3 provides a �rst, informal de�nition of data �elds and a small motivatingexample in the form of a simple data �eld language and some programs. In Sec-3

tions 4-6 we develop a small metalanguage for partial functions and describe howalmost all collection-oriented operations can be conveniently expressed in this lan-guage. We also give a number of identities for these operations. Section 7 providesthe formal de�nitions of data �elds and all related concepts, some results are proved,and an example of a possible instance of data �elds is developed. A substantial partis devoted to '-abstraction and how their bounds can be computed. In Sect. 8 wegive some larger examples how our small data �eld language can be used to expressa variety of collection-oriented algorithms in a generic and convenient way. Sect. 9gives an account for related work. In Sect. 10, �nally, we wrap up and give somedirections for future research.An early presentation of the more abstract data-structures-as-partial-functionsmodel, given here in Sections 5-6, is found in [23]. In [43], a tutorial over this modelis given. A short, preliminary account for the data �eld model as presented here isgiven in [44].2 Operations on indexed data structuresWhich operations on indexed data structures are there, then, and how are theyexpressed syntatically? One can distinguish six major groups of operations andthree syntactical styles. All operations considered in [58] fall into some of thesegroups or can be expressed through operations from these.Elementwise applied operations (apply-to-each in [58]) apply a \scalar" operationf to every element a in a data structure A. That is, the resulting data structurewill contain the elements f(a), where a belongs to A. The canonical example is themap operation on lists.A common extension is to allow elementwise applied operations taking severalarguments. map provides this on lists if there are zip_n functions available whichcreate lists of n-tuples from n lists. Data parallel and array languages usually pro-vide direct syntactical support. The simplest syntax is to introduce a syntacticallydistinct elementwise applied operation for each \scalar" operation. It is often moreconvenient to overload the scalar operation. In Fortran 90,X+Ydenotes the elementwise addition of X and Y if these are arrays. An operation thatcan be overloaded in this way is called an elemental intrinsic. This assumes a typingof X and Y, such that the overloading can be resolved.A third, comprehension-like kind of notation \quanti�es" over a given rangeof indices, in order to explicitly mention each of the individual elements of theresulting structure. The parallel for construct in Sisal is an example: adding X andY elementwise for indices 1 to n can be expressed asfor i in 1,n returns array of X[i]+Y[i]The FORALL statement [1] in HPF is very related.The exact semantics of elementwise applied operations varies, in particular whenthey take several arguments with di�erent extents. For operations on lists as above,the semantics of zip_n decides the semantics of the elementwise applied operation(typically, zip_n yields a list as long as the shortest argument). Another commonsolution is to require conformance of the operands, which for one-dimensional arraysmeans that they must have the same length. The semantics is that the arrays arealigned and then added elementwise. But what should the index range of the resultbe? In the imperative language Fortran 90, the range of a right-hand side arrayexpression in an array assignment is given by the range of the left-hand side. But4

what if the expression occurs in some other environment, as in a purely functionallanguage?A second group of operations reorder data structures (permute operations in [58]).A common operation is \parallel read" (inverse permute in [58]) from a data struc-ture A, where, for each index i within some range, A(source(i)) is selected. Here,source is some function from indices to indices, which possibly is de�ned by anotherindexed data structure. Parallel read can be expressed in the same three ways asabove, in HPF, for instance, through FORALL:FORALL (I=1:N) B(I) = A(SOURCE(I))where SOURCE is an array. HPF and Fortran 90 also support the overloaded syntaxB = A(SOURCE). This is precisely indexing by arrays like in APL, which thus can beseen as parallel read where the range of the result is the range of the index array.The third group of operations perform some kind of replication. For instance,The Sisal operation array_fill creates an array of copies of a given value. Inlanguages with elemental intrinsics, the following syntax is often allowed:A+17where A is an array. The meaning of this expression is an array, with the same rangeas A, whose element for each index i is A(i)+17. This can be seen as a two-stepoperation where �rst an array with the same range as A, �lled with the value 17, iscreated, and then these arrays are elementwise added. This automatic replication ofa scalar into an array is sometimes called promotion. Array languages often supportthe replication of arrays into arrays of higher dimensions, e.g., replicating a vectorinto a matrix with copies of the vector as columns, or rows.A fourth group of operations select parts of data structures. Projections arecommon in array languages: these select subarrays of lower dimension. For instance,in Fortran 90, A(1,:) refers to the �rst row of the matrix A. Restriction operationsapply a boolean condition elementwise, as a \mask", in order to select a part of adata structure. In Fortran 90,WHERE (A < 0.0) A = -Ae�ectively sets every element of A to its absolute value. Also dimension-preservingsubarray selection, likeA(I:J)in Fortran 90, which selects the subarray of A ranging from I to J, can be seen as arestriction, as well as the range speci�cation in a HPF FORALL statement. Projectionand restriction are also common operations on relational databases.A common restriction operation for lists is a filter function which yields a listof all elements in a list where a predicate is true. There is a subtle di�erence in thesemantics: for array operations, selected elements usually retain their indices. The�lter operation, on the other hand, typically produces a \compressed" list wherethe selected elements have their positions changed.Domain operations (a case of information operations in [58]) return some kindof information about the domain of the data structure. Examples are the lengthof a list, or the bounds of an array. A domain operation which is often implicit inthe structure is an ordering of the elements. Domain information is needed to buildcatenation operations { an important group of operations which can be derivedfrom the kinds of operations listed here.Reduction operations, �nally, compute some value as a function of the elementsof a data structure. Usually, the function is composed of some repeatedly appliedbinary operation. If the operation is associative, the reduction can be implemented5

Figure 1: Some possible generalised bounds.in parallel, and if it is commutative the execution order is even less restricted.Examples of reduction operations are the foldl and foldr operations on lists.Reduction is often thought of as an operation over a multiset of values (e.g.,summing them). But unless the binary operation is associative and commutativethe elements must be ordered if the reduction is to be well-de�ned. For lists andone-dimensional arrays, there are natural orderings. The situation is less clear formultidimensional arrays and sparse structures.3 Data Fields, InformallyThe term \data �elds" is borrowed from Crystal [10]. Our data �elds are pairs (f; b),where f is a function and the \bound" b is a set representation. We denote theset de�ned by b by ffbgg, and the corresponding predicate by [[b]]bool . ffbgg containsindices from which arguments to f may be drawn. (f; b) ! x denotes application of(f; b) to x. Operationally, this means \if x 2 ffbgg then return f(x) else returnan out-of-bounds error value". This de�nes an interpretation of (f; b) as a partial,hyperstrict function whose domain is contained in ffbgg. The canonical example isthe array: then b is a tuple of index bounds and [[b]]bool is a conjunction of linearinequalitites de�ning a \hyperrectangle" in the index space of the array. But we canalso allow other bounds which yield less restricted \array shapes", such as triangularshapes, nested shapes, general convex polyhedra, and �nite sparse structures, seeFig. 1. We can allow more general associations, indexed by other data types thantuples of integers. We can even have data �elds with bounds de�ning in�nite sets,although operations that require all the de�ned elements in the data �eld will notbe applicable to such �elds.We de�ne data �elds to be hyperstrict when seen as functions since memoiseddata �elds seem important (in conventional models for high performance computingmemoised structures are the norm). Although nonstrict lookup procedures arepossible [32], hyperstrict lookup is easier to implement and seems conceptuallysimpler.The out-of-bounds error value, which we denote by \�", has algebraic propertiessimilar to the divergent element ? (see [46] for details), and sometimes we will evenidentify them (as in Haskell [31]) although they represent quite di�erent behaviours.When they are not identi�ed we will sometimes consider a test \is�" which returnstrue for �.Clearly, the bounds are central to the data �eld concept. To keep the concept ofbounds generic our approach is to view bounds as an abstract data type, where cer-tain operations and properties are postulated, rather than constructing the boundsexplicitly. Operations on data �elds can then be de�ned using the abstract oper-ations on bounds. Languages could either have prede�ned instances of bounds, orprovide means for programmers to de�ne their own bounds and operations on them.In the former case, operations on bounds and data �elds can be given specialised,6

e�cient implementations. In the latter case it is convenient if the host languagehas some kind of class system which can be used to overload the operations.The postulates for bounds are roughly the following (exact formulations aregiven in Sect. 7):� Every bound has an interpretation as a predicate (or set).� There are binary operations u, t on bounds that correspond to (possible over-approximations of) the intersection and union operations on the sets de�nedby the bounds. (They are not to be confused with the domain-theoretic g.l.b.and l.u.b.)� There are two bounds all and nothing that represent the universal and emptyset, respectively.� A bound is either �nite or in�nite, depending on whether the set de�ned byit is surely �nite or possibly in�nite.� For every bound b de�ning a �nite set ffbgg, size(b) yields the size of ffbggand enum(b) is a function enumerating the elements in ffbgg.Why do we postulate these operations? The classi�cation of bounds into in�niteor �nite is needed since certain operations on data �elds, like reduction, are well-de�ned only for �nite data �elds. Applying a data �eld to an argument requires atest that the argument is within the bounds: thus, the need to interpret bounds aspredicates. Size and enumeration are needed for �nite data �elds to make reductionand other iterative operations over them well-de�ned, since we then must know ingeneral which elements to reduce over and in which order. u and t are used inthe propagation of bounds which occurs when reducing '-expressions as de�ned inSect. 7.1. all and nothing , �nally, can also appear as a result of this reduction.Two interesting derived operations are reduction (or fold) \redD" of a data �eldwith a binary operation, and explicit restriction \#" of a data �eld with a bound.The former is a fold of the elements in the data �eld, in the order given by theenumeration of its bound, and the latter returns a data �eld which is the �rstargument with its bound intersected with the second argument. Exact de�nitionsare found in Sect. 7.Our particular requirements on bounds stem from their intended use in collection-oriented programming. Other applications may have other requirements. In set-based program analysis, for instance, enumerations are not important while a testfor equality becomes essential. Relational databases (which also can be seen as sets)have a third set of operations, distinct from the other two.The postulated operations on bounds have been selected to only require thatelements of a �nite bound can be ordered. An important extension, which we makein Sect. 7.3, is to de�ne product bounds and their properties. If b1 and b2 are bounds,for instance, then (b1; b2) is a two-dimensional bound where b1 constrains the �rstdimension and b2 the second. The predicate, �niteness, size, enumeration, \inter-section", and \union" of product bounds are all derived from the correspondingoperations on the components, as de�ned in Sect. 7.3. Product bounds can thusbe used to de�ne multidimensional data �elds. However, multidimensional boundscan also be non-product bounds, and we exemplify in Sect. 7.6.The canonical example of bounds is conventional array bounds. In the one-dimensional case, these are pairs (l; u) of integers. These bounds are apparently�nite. We have [[(l; u)]]bool = �x:l � x � u, size(l; u) = max(u � l + 1; 0),enum(l; u) = �x:(x�l), (l; u)u(l0; u0) = (max(l; l0);min(u; u0)), and (l; u)t(l0; u0) =(min(l; l0);max(u; u0)). See Fig. 2. Note that t may overapproximate the union ofthe sets given by its operands. Multidimensional array bounds can be constructed7

Figure 2: u and t on array bounds.
Figure 3: u and t for multidimensional array bounds.as products of one-dimensional bounds. See Fig. 3 for an illustration. Sect. 7.5contains a thoroughly worked example of more general sparse/dense array boundsand their operations.In Sect. 7.1 we introduce '-abstraction, which provides a formal \forall" kindof syntax for de�ning data �elds. The term 'x:t can be read \for all x (where tis de�ned), t", and it de�nes a data �eld (�x:t; b) where b is derived from boundsof data �elds occurring in t. Exact de�nitions are given in Sect. 7 through rewritesystems.Derivation of bounds in some \natural" way is common in array languages,and it can relieve the programmer from tedious speci�cations of bounds. Threekinds of operations that often provide this derivation are elementwise application ofscalar operator, selection and projection on higher-dimensional arrays, and indirectindexing. Some array languages also provide shift or translation operations withthis facility, and selection operations with possible non-unit stride. The semanticsof '-abstraction is designed to provide derivations of bounds for these operations.Since the operations have di�erent scope we actually de�ne three di�erent '-calculi.Elementwise application and indirect indexing can be de�ned regardless of the kindof data �eld, and our �rst rewrite system de�nes how bounds are \propagated"for these operations. Selection and projection operations are speci�c for higher-dimensional data �elds, and our second rewrite system, which extends the �rst,de�nes how bounds are derived for these. Translation and selection with stride,�nally, is de�ned only for data �elds indexed by (tuples of) integers, and our thirdrewrite system adds rewrite rules that de�ne how bounds are derived for theseoperations.The bound for a term 'x:t is designed to provide an approximation of thedomain for the corresponding partial function �x:t. We believe this is a particularly\natural" way to de�ne bounds. The domain of �x:t can be de�ned in terms of setoperations on domains of partial functions occurring in t, and the bounds for 'x:tare then de�ned through the corresponding, postulated operations on bounds. Thus,our way to derive bounds does not require any a priori choice of data structure. Forelementwise applied strict operations this approach leads naturally to the \implicit8

intersection rule" known from FIDIL [57].Our particular rewrite systems only provide some of many possible ways to de-�ne the derivation of bounds. There is a tradeo� between how \tightly" a boundcan approximate the domain of a partial function and how complex the derivationis. Our rewrite systems are designed to be easy to modify for other tradeo�s. Fur-thermore, there are situations where the requirement of conformance for operandsof elementwise applied operations can be the most natural choice (for instance, ifwe have a matrix algebra then elementwise addition of di�erently sized matricescould be considered a kind of type error). In Sect. 7.9 we outline a slightly modi�edrewrite system which enforces the conformance requirement rather than the implicitintersection rule.3.1 A First ExampleIt is possible to de�ne a small but powerful and generic core language for data �eldsfrom a small, conventional \host language" extended with bounds, data �elds, and'-abstraction. On top of this language, the syntax can be proliferated to meetdi�erent needs in special applications. As an example, we de�ne a minimal higherorder language extended with data �elds from a subset of the sparse/dense arraysde�ned in Sect. 7.5. The language has types� ::= Int j Float j Bool j �1 ! �2 j Df �1 �2 j Bnds �1and expressionst ::= n j True j False jx j t1 aop t2 j not t1 j t1 bop t2 j t1 rop t2j if t0 then t1 else t2 j nx-> t1 j t1 t2j forall x-> t1 j t1 at t2 j t1!t2 j foldj oub j isoub j in j size j enum j all j nothing j t1:t2Here, n ranges over integer constants, aop over arithmetical operators, bop overboolean connectives, and rop over relational operators. x ranges over identi�ers.We assume all identi�ers have a given typing. Identi�ers which are not introducedlocally are de�ned by a global declaration.This is an explicitly typed, higher order variation of the language REC in [70],extended with data �eld primitives. The typing rules for the extensions are straight-forward and we omit them here. The data-�eld-free part of the language can begiven a denotational semantics in a standard way, as a function mapping from termsand identi�er-binding environments to elements in cpo's, with semantical entitiesexpressed in the metalanguage in Sect. 4. The extensions can be given a seman-tics in the following way, using informally introduced entities that will be formallyde�ned in Sections 4, and 7:[[forall x-> t]]� = [['x:(t�jx)]]D(�1;�2)[[t1 at t2]]� = [[t1]]� # [[t1]]�[[t1!t2]]� = [[t1]]� ! [[t2]]�[[fold]]� = redD[[oub]]� = �[[isoub]]� = is�
[[in]]� = �b:[[b]]bool[[size]]� = size[[enum]]� = enum[[t1:t2]]� = ([[t1]]�; [[t2]]�)[[all]]� = all[[nothing]]� = nothingIn the semantics for forall, the type of forall x -> t is assumed to be Df�1 �2. The'-expression in the right-hand side is a syntactic object, whose semantics [[�]]D(�1;�2)is de�ned in Section 7.1 through a con
uent rewrite system. �jx stands for � withthe binding for x removed. t�jx is the term that results when �jx is applied as asubstitution to t. 9

We deliberately de�ne only a minimal number of primitives for constructingbounds at this point. \:" constructs a dense array bound from two integers. Wealso allow predicates � ! Bool and data �elds of type Df � Bool to be (in�nite)bounds of type Bnds � . Finally, there are �nite sparse bounds. We give no explicitway to construct them, but they result from the intersection of a �nite bound witha predicate or boolean data �eld.We now introduce Fortran 90 array style overloading of arithmetical operators asa kind of syntactic sugar, which can be removed by a type-directed source-to-sourcetransformation \;":t1; t2: Df � Int =) t1 aop t2 ; forall x->(t1!x aop t2!x)t1: Int; t2: Df � Int =) t1 aop t2 ; forall x->(t1 aop t2!x)t1: Df � Int; t2: Int =) t1 aop t2 ; forall x->(t1!x aop t2)We de�ne this kind of overloading similarly for the other kinds of operators in thelanguage.As a simple example of a data �eld de�nition we now de�ne a function forcomputing histograms over data �elds. First, some Haskell-style de�nitions forconvenience:sum d = fold (+) d 0b2i x = if x then 1 else 0The histogram over a data �eld in general can now be expressed as the functionhist d = forall x-> sum forall y-> (b2i (x = d!y))How does this de�nition work? the x in the outer forall ranges over the indicesof the result. This is an in�nite data �eld, not surprisingly since the domain ofa histogram depends on the range of the �eld being histogrammed over, and thisrange cannot be known �a priori in general. The data �eld de�ned by the innerforall will have the same bound as d. This is since d!y occurs in a strict positionin the body. The sum thus ranges over this bound, and the net result is that forany x the number of occurrences of elements in d equal to x is computed. (Notethe similarity between the idiom \sum forall y->" and \Py".)If we know something about the range of d, for instance that elements of d mustlie in the range 1 : : : n, then we can restrict the bound of the histogram accordingly:(hist d) at 1:nThe bound of this data �eld is 1:n and it is thus �nite. This demonstrates the lazynature of data �elds. It is furthermore a \dense" data �eld, which possibly containsmany zeroes, for instance if the size of d is much less than n. We may thereforewant to de�ne a sparse histogram, which is de�ned only in the points where it isnonzero. We de�ne a general \data �eld sparsi�er" for this purpose:sparse d = d at d /= 0We can now write(sparse (hist d)) at 1:nto obtain a sparse histogram over the nonzero values of d in the range 1 : : : n.Note the declarative and generic nature of these de�nitions. The only placewhere the index type of d is \given away" is in the restriction with the bound 1:n.Apart from that, d could be indexed by any valid index type for data �elds, andthe de�nitions could thus be reused for any kind of data �eld.10

4 Preliminaries4.1 A Metalanguage for Partial FunctionsWe now de�ne a small metalanguage for partial functions. (Essentially this is avariation of the metalanguage for continuous functions in [70].) Since we want tobe able to embed our concepts into various host languages we do not specify all thedetails of the language completely; rather, we give a language scheme. We considerthe following kind of cpo's:� Basic cpo's which are
at cpo's denoted by constant symbols, in particularthe
at cpo of booleans bool and the
at cpo of integers int,� Products of cpo's, constructed with �, lifted sums of cpo's, constructed with+, and cpo's of continuous functions constructed with [!],� Recursively de�ned cpo's given by equations D = F(D), where F(D) is builtout of the cpo variable D, cpo constants, and the cpo operations �, +, and!.These cpo's correspond to recursive types de�ned in the usual way. We assume thatelements in basic cpo's can be compared for equality. We de�ne Eq-cpo's as above,but excluding the function cpo operation! in the de�nitions. Eq-cpo's correspondto the \Eq-types" of ML. Now, we de�ne the following language scheme for de�ningelements in these cpo's:� Symbols D ranging over (pointed) cpo's.� For every cpo D a constant \?D" denoting the bottom element (usually, wewill just write \?"), and a constant \�D" (usually written \�") denoting adistinguished error value. � is an isolated, maximal element such that only ?lies below it.� For every Eq-cpo D a predicate is�D 2 [D ! bool], usually written \is�",de�ned by: is�D (�D) = trueis�D (?D) = ?Dis�D(x) = false ; x =2 f�D ;?Dg� The following constructors: tupling (; : : : ;) to construct elements of productcpo's, and injections ini to construct elements of sum cpo's.� A number of n-ary function symbols denoting n-ary operations over
at cpo's,which are strict (in all arguments) when no argument equals �. If some argu-ment equals �, then the function value must be either � or ?.� Variables typed with the cpo they range over (e.g. f 2 [D ! E]). (We use setmembership notation to suggest the intended interpretation.) We will omitthe typing when it is not necessary.� For every cpo D a conditional ifD 2 [bool�D�D ! D], usually written \if ",de�ned by: ifD (true; x ; y) = xifD (false ; x ; y) = yifD (?; x; y) = ?ifD (�bool ; x; y) = �D11

� �-abstraction and function application.� A least �xed point operator �. We will often give recursive de�nitions ratherthan using � explicitly.We use the n-ary notation �(x1; : : : ; xn):t, where xi 2 Di, to denote a function in[D1�� � ��Dn ! E]. In principle, we have a typed �-calculus with constants, wherethe cpo inclusions t 2 D are typing judgements. It is clear (see [70]) that every well-formed term of type D in this language has a direct interpretation as an elementin D: in particular, function-typed terms denote continuous functions. We willoften, especially in equations, let terms in the language denote their interpretationsdirectly.On the other hand, if we remove the constants ?D, then we have a syntax for asimple, higher-order functional language. In Sect. 5 we will use it as a convenientsyntax to de�ne collection-oriented operations on partial functions. In Sections 7.1and 7.2 we will consider terms in the metalanguage as terms rather than elementsof cpo's, and consider rewrite semantics rather than denotational semantics. Theconnection between rewite and denotational semantics is well known [3, 12]. Higherorder languages can be given rewrite semantics based on Klop's Combinatory Re-duction Systems (CRS), see Appendix B, and in Appendix A we de�ne a CRS Mwhich gives an alternative rewrite semantics for the metalanguage. In Sect. 7.1we will successively extend the metalanguage with constructions for data �elds andbounds, including '-abstraction, and we extendM to cover the extended languages.4.2 HyperstrictnessHyperstrictness was �rst de�ned by Turner [67]. His de�nition was informal. Wegive more stringent de�nitions of hyperstrictness and related concepts below.De�nition 1 For any element d in an Eq-cpo D and for any element d0 in anappropriate cpo, we de�ne the relation \in" by: d0 in d i�:� d0 = d,� d = (d1; d2), and d0 in di for some i, or� d =2i (d1) for some i, and d0 in d1.De�nition 2 For any cpo D, D � D is de�ned by: d 2 D i� d v d0 =) d = d0,and d = F1i=0 di =) 9i:d = di.We call the elements in D �nite maximal elements in D. Clearly, for elementsd in Eq-cpo's we have that d is �nite maximal i� d is of �nite size and it does nothold that ? in d.De�nition 3 For any f 2 [D ! D0], where D is an Eq-cpo, f 2 D ! D0 is de�nedby: f(x) = 8<: f(x); x 2 D ^ :(� in x);�; x 2 D ^ � in x;? otherwise:f is hyperstrict if f = f .It is straightforward to verify that f is continuous whenever f is. We havef = f . Operationally, the evaluation of a hyperstrict function terminates only if itsargument can be fully computed in �nite time.12

i

j

i

j

Figure 4: \replicate as columns" �(i; j):f(i) and \replicate as rows" �(i; j):f(j).5 Collection-Oriented Operations on Partial Func-tionsIn this section we de�ne higher order operations in the metalanguage of Sect. 4,which yield abstract versions of all the collection-operations from Sect. 2 except thedomain operations.Elementwise application of an n-ary operation g on the partial functions f1; : : : ; fnis a kind of function composition: �x:g(f1(x); : : : ; fn(x)). It will often be convenientto use \elemental intrinsics style overloading" of g and write g(f1; : : : ; fn). We willmake frequent use of this syntax.Parallel read of the partial function f w.r.t. source function g is also functioncomposition, but to the \right": �x:f(g(x)) (or f(g)). This models both \indexingwith arrays" (when g is a partial function) and communication schemes such ashifts, permutations, broadcasts, etc.Replication is �-abstraction with respect to a fresh variable: if x does not occurfree in t, then �x:t is independent of x and can be seen as the value of t replicated foreach possible value for x. This provides an exact notation for replicating an arrayalong some axis into an array of higher dimension. For instance, a \one-dimensional"function f can be replicated into the \matrices" �(i; j):f(i) (\replicate as columns")and �(i; j):f(j) (\replicate as rows"). See Fig. 4.�-abstraction also provides a convenient notation for projection. For instance, iff represents a matrix, then �i:f(i; 1) represents the �rst row of f .Explicit restriction of a partial function f w.r.t. the predicate b is de�ned viz.:f n b = �x:if (b(x); f (x); �). The following result is easy to prove. It will becomeuseful in Sect. 7.Proposition 1 For any f 2 [D ! D0] and b 2 [D ! bool] it holds that f n b = fnb.Reduction with respect to a binary operation op over a partial function f isperformed over all elements of the domain of f taken in some particular order,provided that this domain is �nite. It can be given a simple recursive de�nition inthe metalanguage. We need to provide explicit domain information: an integer nwhich gives the size of the domain, and an enumeration i of the domain (a functionfrom f0; : : : ; n � 1g to the domain of f). We assume that op has a left identityelement e such that op(e; x) = x for all x. Then, reduction \red" is de�ned by:red(op ; f ; e; i ; 0) = ered(op; f ; e; i ;n) = let r = red(op; f ; e; i ;n � 1) inif (is�(f (i(n � 1))); r ; op(r ; f (i(n � 1)))); n > 013

dom(f1)

dom(f2)

dom(f3)

b(x) = false

b(x) = true

dom(b)

dom(f)

dom(g)

Figure 5: The domain of g(f1; f2; f3) and of if (b; f ; g). (dom(f) stands for fx jf(x) 6= ?g.)This de�nition \�lters out" points x where f(x) = �. Thus, it is appropriate touse in situations where n and i stem from an overapproximating bound for a data�eld. Indeed, we will use it when de�ning reduction for data �elds in Sect. 7. Thede�nition is not parallel. But if op is associative, then it is very easy to show thatthis de�nition is equivalent to a balanced recursion with O(logn) recursion depth.red can be used to de�ne other common reduction-like operation on partialfunctions, such as scan (parallel pre�x), segmented reduction, and segmented scan.See [46].6 Some Simple IdentitiesWe now give a number of identities for the explicit restriction operator de�ned inSect. 5. Clearly, they can be used for program optimizations. The aforementionedextent analysis [45] is based on these rules: this analysis tries to �nd the \extent"of a partial function, i.e., its domain, at compile-time. The laws have also inspiredhow bounds are computed for '-abstraction, as de�ned in Sections 7.1 and 7.7.All the results below follow more or less immediately, usually by a simple caseanalysis. \^" below refers to the non-strict version of conjunction, for which false ^? = false , extended to handle � in the following way:� ^ x = �true ^ � = �false ^ � = false?^ � = ?Note that ^ can be de�ned through the if -conditional in the metalanguage. We useelemental intrinsics syntax throughout.Proposition 2 (Flattening of nested restrictions) (f n b) n b0 = f n (b0 ^ b).Proposition 3 (Communication of restriction) (f n b)(g) = f(g) n b(g), and if ghas a left inverse g�1, then f(g) n b = (f n b(g�1))(g).6.1 Elementwise ApplicationFor elementwise application there are a number of identities. The �rst essentiallysays that an outer restriction always can be \pushed" to the arguments of an ele-mentwise applied operation: 14

Proposition 4 (Elementwise application) For any i, g(f1; : : : ; fi; : : : ; fn) n b =g(f1; : : : ; fi n b; : : : ; fn) n b.This identity explains why the live-domain analysis of FIDIL [57] is valid.Proposition 5 and its two corollaries below hold under the condition that � and? are identi�ed, i.e., that the equation ? = � is valid. Since � represents an errorcondition detectable in �nite time and ? represents divergence, this means that thedi�erent sides of the equality possibly may have di�erent termination properties.Thus, the results can be used if we don't care about the distinction between errorand nontermination (similar to lenient semantics [15]), or in a situation wherewe know that the functions involved will always terminate, (like, say, if they arememoised data structures). In [46] the situation when � and ? are kept distinct isinvestigated in depth.Proposition 5 (Elementwise application of strict function) If g is strict in argu-ment i, then g(f1; : : : ; fi n b; : : : ; fn) = g(f1; : : : ; fi; : : : ; fn) n b.Corollary 1 If g is strict in all arguments, then g(f1nb1; : : : ; fnnbn) = g(f1; : : : ; fn)n(b1 ^ : : : ^ bn).Finally, for the elementwise applied conditional, we have the following identity:Proposition 6 if (b n b0; f n bf ; g n bg) = if (b; f ; g) n b0 ^ ((b ^ bf) _ ((:b) ^ bg)).(Negation is extended to � by :� = �.) The validity of this identity requires thatthe identities false _ x = x _ false = x holds. Thus, _ must be extended to handle? and � so these identities still hold. This is for instance the case if it is extendedto be evaluable in a left-to-right fashion, similarly to the previously extended ^.Corollary 1 and Proposition 6 are illustrated in Fig. 5.7 Data FieldsIn Sect. 3 we de�ned data �elds informally as pairs of functions and bounds. Wenow give formal de�nitions. First we de�ne exactly what we require from bounds,and we then proceed to de�ne data �elds.De�nition 4 Let � be an Eq-cpo. The cpo B(�) is a cpo of bounds for � if thefollowing operations, with the properties below, are de�ned:�nite 2 [B(�)! bool] test for �niteness[[�]]bool 2 [B(�)! [�! bool]] interpretation as predicateenum 2 [B(�)! [int ! �]] enumerationsize 2 [B(�)! int] sizeu 2 [B(�)�B(�)! B(�)] intersection of boundst 2 [B(�)�B(�)! B(�)] union of boundsall� 2 B(�) universal boundnothing� 2 B(�) empty boundThe following properties should hold:� If b 2 B(�) and �nite(b), then size(b) � 0. If furthermore size(b) > 0, thenenum(b)jf0;:::;size(b)�1g is a bijection from f0; : : : ; size(b)� 1g to ffbgg = fx j[[b]]bool(x) = true g.� If b; b0 2 B(�), then b u b0 2 B(�), b t b0 2 B(�), ffbgg \ ffb0gg � ffb u b0gg,and ffbgg [ffb0gg � ffb t b0gg. 15

� [[all�]]bool = �x:true, [[nothing�]]bool = �x:false, and size(nothing�) = 0.We will usually drop the index � when it is clear from the context. We saythat b is �nite if �nite(b) = true, otherwise in�nite. If size(b) = 0 then b is empty.Thus, nothing is empty, but other bounds may also be empty. De�nition 4 actuallyde�nes a class of continuous algebras [12, 20] but we will not use this fact here.De�nition 5 If [� ! �] is a cpo of continuous functions, and if B(�) is a cpo ofbounds for �, then D(�; �) = [�! �]�B(�) is a cpo of data �elds from � to �.In the sequel symbols f stand for functions, d for data �elds, and b for bounds.The following proposition is needed to prove Lemma 2 in Sect. 7.2.Proposition 7 b v b0 =) ffbgg � ffb0gg.Proof. If b v b0 then, by monotonicity of [[�]]bool , follows that [[b]]bool(x) = true =)[[b0]]bool(x) = true, which yields the result.We now de�ne some derived operations on data �elds:De�nition 6 The following functions are de�ned by the following equations. In-terpretation of data �eld as function, [[�]]�!� 2 [D(�; �)! [�! �]]:[[(f; b)]]�!� = f n [[b]]bool[[?D(�;�)]]�!� = ?�!�Data �eld application, ! 2 [D(�; �) � �! �]:d ! x = [[d]]�!� xExplicit restriction of data �eld, # 2 [D(�; �) �B(�)! D(�; �)]:(f; b) # b0 = (f; b0 u b)?D(�;�) # b = ?D(�;�)Reduction of data �eld, redD 2 [(� �
 !
)�D(�; �) �
 !
]:redD(op ; (f ; b); e) = red(op; f ; e; enum(b); size(b))We will drop the index � ! � for the interpretation and write [[d]] when it isclear that d is a data �eld and its type is not important. Reduction of data �eldsis de�ned directly from the reduction over partial functions in Sect. 5. Explicitrestriction of data �elds is modeled after the restriction \n" on partial functions,and its de�nition is inspired by Proposition 2.7.1 '-abstractionWe now de�ne '-abstraction formally. This is a syntax with bound variables, ex-actly analogous with �-abstraction, which de�nes data �elds. Thus, we extend themetalanguage of Sect. 4 with terms formed according to the following rule:x 2 � � Eq-type t 2 �'x:t 2 D(�; �)16

In the rest of this section and the �rst part of Sect. 7.2 we consider terms in the meta-language as terms rather than elements of cpo's, and names of cpo's as types. Thereason for this change of view is that we will de�ne the semantics of '-abstraction byrewrite systems. We de�ne the semantics relative to some host language, which at aminimum contains operations on data �elds and bounds as speci�ed in De�nitions 4{ 6. In order to stay fully within this kind of semantics we will assume that also thesemantics for the host language is given by some rewrite system R in this part ofthe paper. We furthermore assume that if t $�R t0, where $�R is the convertibilityrelation generated by R, then t and t0 have the same denotational semantics. (Thisis a basic soundness property for rewrite system semantics.)Actually we de�ne three di�erent semantics, which yield an increasingly precisecomputation of bounds: �rst a \basic" semantics which is independent of the typeof indices; then, in Sect. 7.3, an extension to de�ne and handle multidimensionaldata �elds; and then, in Sect. 7.7, a further extension to handle scalings and o�setsof array-like data �elds. The semantics are given as higher order rewrite systems(Combinatory Reduction Systems, or CRS: see Appendix B) �i(R), i = 0; 1; 2.Thus, �i(R) [R gives the rewrite semantics for the host language extended with'-abstraction of \version i".In particular, the host language could be the metalanguage of Sect. 4 extendedwith the operations de�ned earlier in Sect. 7. In Appendix A an orthogonal CRSM is de�ned for the metalanguage, and we can assume a CRS I for the extension.Then, �i(M [I) [M [I gives rewrite semantics for the metalanguage extendedwith data �elds, bounds, their basic operations, and '-abstraction.We assume that M [I is orthogonal. We do not give I explicitly (its exactde�nition will depend on the kind of bounds, and how the postulated operations onthem are de�ned). Note, however, that any de�nition f(x) = t can be directed intoa rewrite rule f(x)! t. This applies directly to the de�nition of derived operationsin De�nition 6 and to the instances of the postulated operations on sparse/densearray bounds given in Sect. 7.5. For these bounds M [I will indeed be orthogonal.De�nition 7 For any cpo
, let T
 be the set of terms of type
, V
 the set ofvariables of type
, and V the set of variables of any type. B is a bounds-computingfunction for R if, for some Eq-cpo � and cpo �, it is a partial function T��V��2V !TB(�) such that B(t; x; Y) is de�ned if and only if:� FV (t) � fxg [Y ,� t is a R-nf, and� t has no closed subterm of the form 'y:t0.Now, each �i(R) is de�ned by a rule scheme'x:t! (�x:t; Bi(t; x; ;)) (1)where Bi is a bounds-computing function for R, which de�nes one rule for each tsuch that Bi(t; x; ;) is de�ned. It is possible to give a more operational de�nitionof each Bi through a rewrite system Ri: Bi(t; x; Y) is then seen as a term initself, rather than as a metaterm whose meaning is given by the function Bi. IfRi is orthogonal, mutually orthogonal with �i(R) [R, and terminating, then Ri [�i(R) [R is orthogonal, and, in a normalising reduction strategy, the evaluationof Bi(t; x; Y) can be carried out a soon as t ful�ls the conditions in De�nition 7.The rewrite semantics given by Ri is then consistent with the partial functionview, where each right-hand side in (1) is \precomputed". As will be seen shortly,Bi(t; x; Y) is de�ned over the structure of t so the properties above are natural.17

However, de�ning Ri would require the modelling of explicit representations of setsof variables and we prefer to keep the de�nitions of the Bi free from such details. Ade�nition of the reduction rules (1) in formal CRS syntax is given in Appendix C.We have chosen to give a rewrite semantics to '-abstraction for a number ofreasons. One reason is to highlight the similarities and di�erences to �-reductionin the �-calculus. Another reason is that languages which have a rewrite semanticsare referentially transparent w.r.t. the convertibility relation of the rewrite system.Furthermore, it is well known how to relate rewrite semantics to both denotationalsemantics and operational semantics. We discuss the operational semantics of '-abstraction in Sect. 7.2. For the denotational semantics, note that Bi(t; x; Y) ishyperstrict in t since it is de�ned only when t is a normal form. Thus, the compu-tation of 'x:t diverges unless t has a normal form, and we de�ne[['x:t]]D(�;�) = � (�x:t0; Bi(t0; x; ;)); if t0 is the normal form for t?; if t has no normal form(In Sect. 7.2 we show that �i(R)[R is con
uent under mild conditions on R: thus,normal forms are unique, so [[�]]D(�;�) is well-de�ned.) Finally, we de�ne [['x:t]],i.e. the function de�ned by 'x:t, as [[[['x:t]]D(�;�)]]�!� .We now proceed to de�ne the di�erent Bi(t; x; Y). For all i we de�ne Bi(t; x; Y)by cases over the possible syntactical forms of normal forms t. For simplicity, weassume that all bound variables are distinct:Bi(c; x; Y) = all (c closed nf 6= �) (2)Bi(�; x; Y) = nothing (3)Bi(y; x; Y) = all y 2 fxg [Y (4)Bi(op(t1 ; : : : ; tm); x ;Y) = Bi(t1; x; Y) u � � � u Bi(tm; x; Y) (op strict) (5)Bi(if (t1 ; t2 ; t3); x ;Y) = Bi(t1; x; Y) u (Bi(t2; x; Y) t Bi(t3; x; Y)) (6)Bi(�y:t; x; Y) = Bi(t; x; fyg [Y) (7)Bi('y:t; x; Y) = Bi(t; x; fyg [Y) (8)Bi((f; b) ! x; x; Y) = b; FV (f ; b) = ; (9)Bi((f; b) ! t; x; Y) = Bi(t; x; Y); FV (f ; b) = ;; t 6= x (10)For cases not explicitly covered, where Bi(t; x; Y) still should be de�ned, we assumea default de�nition Bi(t; x; Y) = all : (11)Let us motivate these de�nitions informally: a more formal account will follow inSect. 7.2. (2) is appropriate since 'x:c should be de�ned for all x, unless c = �in which case it should be nowhere de�ned as stated by (3). Also 'x:x shouldbe de�ned everywhere which partly motivates (4). (5) corresponds to the implicitintersection rule in FIDIL [57] and is motivated by Corollary 1. In (5) we requirethat op is consistently extended to from a strict function on a �-free cpo to a cpowhere � is added, which basically means that it should handle � in the same way as? (see [46] for details). An important function which is not a consistently extendedoperation is the test is�. (6) is similarly motivated by Proposition 6: informally, itholds since 'x:if (t1 ; t2 ; t3) should be de�ned only when t1 is de�ned and some oft2, t3 are. (7) and (8) are treated below. 'x:(f; b) ! x should be de�ned only forarguments in ffbgg, which motivates (9). (10), �nally, is sound since (f; b) de�nes ahyperstrict function: therefore, 'x:(f; b) ! t should be de�ned only when t is.In Bi(t; x; Y), x is the variable bound by the ' for which the bound is calculated.Y is the set of variables bound by other constructs under the ', as e�ectuated by (7)and (8). Clearly, the bound derived for a '-expression must not be dependent on18

any variables bound inside the expression. Thus, the only reasonable approximationfor their contribution to the bound is all .By similar reasons we demand that FV (f ; b) = ; in (9) and (10). Consider,for instance, 'x:�y:(f; b(y)) ! x. This is a data �eld of functions, where the boundof the applied data �eld depends on the function argument. b(y) is thus a locallyde�ned entity and should not a�ect the bound of the '-expression. It is interestingto contrast this case with �y:'x:(f; b(y)) ! x, which is a function returning data�elds. Here, Bi((f; b(y)) ! x; x; ;) is not de�ned, since FV (b(y)) = fyg 6� ;. Thismeans that the bound for 'x:(f; b(y)) !x cannot be computed until y is instantiatedto some value c and b(c) is computed.De�nition 8 B0(t; x; Y) is de�ned by equations (2) { (11).7.2 Properties of '-abstractionWe now prove some results about '-abstraction and discuss its properties. Firstthere are four propositions about the rewrite systems. These rely only on the formof the rule scheme (1) and the fact that the Bi are bounds-computing functionsfor R: thus, they are valid for all rewrite systems �i(R). The proofs are found inAppendix D.Proposition 8 �i(R) is orthogonal.Proposition 9 If R is left-linear and if no left-hand sides of any rules in R haveany subterms of the form 'x:t, then �i(R) and R are mutually orthogonal.Proposition 10 If R in addition is con
uent, then �i(R) [R is con
uent.Proposition 11 Any '-subterm of a closed �i(R) [R-nf must contain a variablebound by some other abstraction mechanism than '.Why are these results interesting? Con
uence guarantees uniqueness of normalforms, which means that every '-term has a unique meaning. Orthogonality sim-pli�es con
uence proofs and also makes it possible to use standard results aboutreduction strategies, see below. A reduction strategy directly yields an operationalsemantics for evaluating '-terms which is consistent with the rewrite semantics.Proposition 11, �nally, implies that no '-terms will remain after the evaluation ofclosed '-terms, unless it is in the body of a remaining �-abstraction (where it will,eventually, become reduced when the �-abstraction is applied and thus its formalargument is instantiated).What about reduction strategies for �i(R)[R (and thus operational semanticsfor the language de�ned by this rewrite system)? Since the left-hand sides of all�i(R) are closed, they are trivially left-normal [38]. If R in addition is orthogonal,left-normal, and satis�es the condition in Proposition 9, then each �i(R) [R isorthogonal and left-normal. For rewrite systems with this property, the leftmost-outermost reduction strategy is normalising [37, 38].However, every �i(R) is de�ned by a rule scheme generating a possibly in�nitenumber of rules. Thus, this generation of rules must be taken into account for therewrite strategy. Given a term 'x:t to evaluate, it must �rst be checked whetherBi(t; x; ;) is de�ned and then what it evaluates to. But it is easy to see thatBi(t; x; ;) is de�ned i� t is a �i(R)[R-nf such that FV (t) � fxg. Thus, an adequateoperational semantics for a closed term 'x:t is to �rst evaluate t to normal formt0, and, if this succeeds, to compute Bi(t0; x; ;) and reduce 'x:t0 accordingly. This�ts into the left-normal evaluation strategy with the extension that Bi(t0; x; ;) isevaluated before making the �nal reduction.19

'x:C[t] (�x:C[t]; Bi(C[op]; x ; ;))
'x:C[t0] (�x:C[t0]; Bi(C[op]; x ; ;))

//��� ���
//Figure 6: Con
uence of reductions with explicitly hyperstrict terms. op stands fora hyperstrict operation such that Bi(C[op]; x ; ;) is de�ned.Finally, note how the evaluation of 'x:t ! t0 proceeds:'x:t ! t0 !� 'x:t00 ! t0 ! (�x:t00; b) ! t0 ! �x:t00 n [[b]]bool t0So there is no direct �-reduction for applied '-abstractions. A data �eld must �rstbe computed into its \data �eld normal form" of form (f; b) before it can be appliedto its argument.If M [I is orthogonal, left-normal, and satis�es the conditions in Proposition 9,then �i(M [I) [M [I is orthogonal and left-normal. Thus, an operational se-mantics for the metalanguage in Sect. 4, extended with data �eld constructs and'-abstraction, can be derived as sketched above.Our semantics for '-expressions 'x:t as a rewrite system given by (1), where t isa R-nf, has the advantage that it is reasonably straightforward and makes it easy toprove orthogonality. However, it will in general require \computing under the '",with an open term, even when 'x:t is closed. This is in contrast to the evaluation offunction-typed terms, where evaluation typically is not done under a lambda. Someof this symbolic computing can always be done at compile-time, like applicationof a �-term to an argument, but in general symbolic run-time computing may berequired which can be costly.A closer examination reveals two problematic cases: higher-order variables, andrecursive de�nitions. An example of the �rst case is the term �g:'x:d!g(x). Here, animplementation which is faithful to the rewrite semantics must delay the calculationof bounds for 'x:d!g(x) until g is instantiated, and its value is symbolically evaluatedwith x as formal argument. Recursive functions applied to open arguments cangive even worse problems: consider, for instance, 'x:(�f:t x) where t = �y:if (y =0 ; 0 ; y � f (y�1)). �f:t x has no normal form and thus the evaluation of 'x:(�f:t x),which is necessitated by the rewrite semantics, will not even terminate!A possible solution is to consider higher order variables and terms of the form�f:t, occurring under a ', to be hyperstrict, i.e., a term t of one of these formsis seen as syntactic sugar for t. Then, one can consider all terms of the form tas equivalent, w.r.t. Bi, to constant function symbols which stand for hyperstrictfunctions, and add the corresponding cases for Bi. For instance, (5) then gives riseto the new caseBi(t(t1; : : : ; tm); x; Y) = Bi(t1; x; Y) u � � � u Bi(tm; x; Y);even when t is not a normal form. A veri�cation that �i(R)[R still is con
uent isoutside the scope of this paper, but an informal motivation is given in Fig. 6.We now show a theorem which relates '-abstraction and �-abstraction. It es-sentially states that if � and ? are identi�ed, then [['x:t]] = �x:t when restricted tomaximal elements. We show the theorem for the \basic" semantics for '-abstractiongiven by �0: later, we extend the theorem to the semantics given by �1 and �2.From now on we also revert, unless otherwise stated, to the view where terms inthe metalanguage are considered elements in cpo's rather than syntactical terms.20

Throughout the rest of Sect. 7.2, we will assume that � = ?. In [46] we studythe relationship between cpo's where � = ? and the corresponding cpo's where ?and � are kept distinct: for a cpo D where these elements are equal we denote thecorresponding cpo, where � is distinguished, with D�. Functions over D� whichdistinguish ? and � have no counterpart in D: in our metalanguage the only suchfunction is is�. Formally, the translation from D� to D is given by a homomorphism� which maps both ?D� and �D� to ?D.We will take an extensional view of functions and data �elds. Thus, f = �[�!�]i� f(x) = �� for all x 2 �. Therefore, whenever ?[�!�]� v f v �[�!�]� , it musthold that �(f) = ?[�!�]. Similarly, for data �elds, we equate d with �D(�;�)�whenever [[d]] = �x:�� . Again, whenever ?D(�;�)� v d v �D(�;�)�, it holds that�(d) = ?D(�;�). For instance, �(�x:�� ; b) = ?D(�;�) for any bound b.We also assume, for the rest of this section, that the domain of bounds B(�)under consideration is such that for any b 2 B(�) there is a maximal elementb0 2 B(�) such that b v b0. (By maximal we mean that b0 v b00 =) b0 = b00.) Thisis a technical condition which we need in order to prove Lemma 2, and it is ful�lledby all cpo's which appear in practice in denotational semantics.Some notation: we de�ne res(f) = fx j f(x) 6= ?g, and ffpgg = fx j p(x) =true g for all predicates p (similar to the notation ffbgg for the set de�ned by thebound b). Let t be a term, Y a set of variables and v a type-preserving functionfrom Y to values: then tv denotes the resulting term when substituting v(y) for yin t for all y 2 Y .The lemma below is useful in the proof of Lemma 2, and for proving the extendedversions of this lemma which will appear in Sections 7.3 and 7.7.Lemma 1 res(�x:(f; b) ! g(~x)) � f[[b]]bool � gg.Proof. See Appendix E.The following lemma is a major stepping stone:Lemma 2 For all sets of variables Y , type-preserving mappings v from Y to values,variables x, and terms t such that �x:tv is closed, there exists a bound b, which ismaximal in B(�), such that res(�x:tv) � ffbgg and B0(t; x; Y) v b.Proof. See Appendix E.Theorem 1 For all terms t with normal form t0 such that B0(t0; x; ;) is maximal,and for all �nite maximal elements y, it holds that 'x:t ! y = �x:t y.Proof. See Appendix E.Th. 1 is restricted to the case where B0(t0; x; ;) is maximal. It is possible to provea theorem where this restriction is lifted, but then the property in De�nition 4 thatffbgg \ ffb0gg � ffb u b0gg and ffbgg [ffb0gg � ffb t b0gg must hold for all bounds,not just maximal bounds. It can be di�cult to give a reasonable semantics for uand t for partially de�ned bounds so this property holds: thus, we have chosenthe version above. It is really a matter of whether partially de�ned bounds shouldbe considered valid set representations or not, and we have chosen not to considerthem as such.
21

7.3 Multidimensional Data FieldsMultidimensional arrays are important in many applications. Thus, it is of greatinterest to provide adequate means to de�ne multidimensional data �elds. First,we identify a canonical way to de�ne product bounds and their operations. Thesebounds generalise conventional multidimensional array bounds:De�nition 9 Let B(�1); : : : ;B(�k) be cpo's of bounds (for k > 1). Then B(�1)�� � � � B(�k) is the cpo of canonical product bounds for �1 � � � � � �k, when itsoperations are given by:�nite(b1 ; : : : ; bk) = �nite(b1) ^X � � � ^X �nite(bk)[[(b1; : : : ; bk)]]bool(x1; : : : ; xk) = [[b1]]bool(x1) ^X � � � ^X [[bk]]bool(xk)enum((b1; : : : ; bk); n) = (enum(b1; n mod size(b1));enum((b2; : : : ; bk); n� size(b1)));when size(b1) > 0size(b1; : : : ; bk) = size(b1) � : : : � size(bk)(b1; : : : ; bk) u (b01; : : : ; b0k) = (b1 u b01; : : : ; bk u b0k)(b1; : : : ; bk) t (b01; : : : ; b0k) = (b1 t b01; : : : ; bk t b0k)all�1������k = all�1 � � � � � all�knothing�1������k = nothing�1 � � � � � nothing�k\�" is integer division.Theorem 2 A cpo of canonical product bounds for �1�� � ���k is a cpo of boundsfor �1 � � � � � �k.Proof. It is straightforward but tedious to verify that the operations indeed ful�lthe requirements in De�nition 4. We omit the details.The notation \^X" in De�nition 9 means that we do not specify the strictnessproperties fully; this operation just has to coincide with ^ on the fully de�ned truthvalues for the theorem to hold. Here and henceforth we will use the notation \opX "when the strictness properties of op are left unspeci�ed.Note that enum orders ff(b1; : : : ; bk)gg lexicographically with respect to the or-ders given by enum on ffb1gg; : : : ; ffbkgg, respectively. (This ordering is the sameas the \column-major order" in which Fortran arrays are laid out in memory.) Wewill occasionally use the notation �ki=1bi for the k-tuple (b1; : : : ; bk).Finally, note that bounds for �1�� � ���k need not be product bounds as givenby De�nition 9: for instance, it is possible to have multidimensional sparse bounds,which we consider in Sect. 7.6, or higher-dimensional non-rectangular polyhedralbounds.We now introduce an extended '-calculus for multidimensional bounds. Arraylanguages often provide convenient constructs for, e.g., selecting rows and columnsof matrices where the bounds of the resulting arrays are implicitly given by thebounds of the matrices. Our calculus generalises these constructs both to non-array-like data �elds, and to other situations than selection and projection operations onarrays.We use a pattern-matching syntax for '-abstraction over tuples: '(x1; : : : ; xn):t,which de�nes a data �eld in D(�1 � � � � � �n; �) when xi 2 �i, for i 2 f1; : : : ; ng,and t 2 �. We use a similar syntax for �-expressions. To avoid lenghty expressionswe use the notation ~t for the tuple (t1; : : : ; tn) when the arity n is understood fromthe context. In particular, ~x stands for (x1; : : : ; xn), '~x:t for '(x1; : : : ; xn):t and�~x:t for �(x1; : : : ; xn):t. Finally, we write ~� for the n-ary tuple type �1 � � � � � �n.22

The CRS �1(R) extends �0(R) with more advanced derivation of multidimen-sional bounds. �1(R) is de�ned through the bounds-computing function B1, whichis derived from B0 by adding more explicit cases where the result is computed tosomething di�erent than all . We also add cases where the second argument of B1 isa tuple of variables, and �1(R) will thus also contain rules '~x:t! (�~x:t; B1(t; ~x; ;)).For each of the equations (2) { (11) except (9) an equation with x replaced by ~x isadded: we number these equations (2.1) { (11.1). If we introduce the conventionthat ~x can stand both for a tuple (x1; : : : ; xn) and a single variable x, then (2) { (11)can be replaced by the new versions. (2.1) { (6.1) and (11.1) are straightforward tode�ne. (7.1) and (8.1) are given by the following equations, for i 2 f1; 2g (by abuseof notation, we write ~x also for fx1; : : : ; xng):Bi(�~y:t; ~x; Y) = Bi(t; ~x; ~y [Y)Bi('~y:t; ~x; Y) = Bi(t; ~x; ~y [Y) (7:1)(8:1)(10.1) will be de�ned later.We do not introduce any new version of (9), since it will be subsumed by therule introduced in this section. The new rule applies to cases where the componentsof ~x occur as individual arguments to data �elds under the '. This enables the useof '-abstraction to express matrix operations such as projection, transposition andreplication for general multidimensional data �elds.As an example, consider '(x1; x2; x3):(f; (b1; b2; b3; b4)) ! (x2; c; x1; x1). This isa three-dimensional data �eld, de�ned by selecting a two-dimensional sub�eld ofthe four-dimensional data �eld (f; (b1; b2; b3; b4)) which is then replicated in the x3-direction. What should its bounds be? Obviously, x2 should be constrained by b1,and x1 by both b3 and b4. x3, on the other hand, should be left unconstrained.Furthermore it must be checked whether c belongs to ffb2gg or not: if not, then theresulting bound should be empty. We thus obtain the following expression for thebound: if ([[b2]]bool(c); (b3 u b4 ; b1 ; all);nothing).A variation of this example is '(x1; x2; x3):'y:(f; (b1; b2; b3; b4)) ! (x2; y; x1; x1).This is a data�eld of data�elds. For the bound of the \outer" data �eld, it should notbe checked whether y belongs to ffb2gg, since y now is a variable bound inside theouter '-abstraction rather than a constant. An appropriate bound is thus simply(b3 u b4; b1; all). The bounds of an \inner" data �eld can be computed as soon asx1; x2; x3 are instantiated (say, to c1; c2; c3), and is then given by if ([[b1]]bool(c2) ^[[b3]]bool(c1) ^ [[b4]]bool(c1); b2 ;nothing).We need some formal notation for how the indices for the elements in ~x aremapped to positions in argument tuples1. Let ~x have arity n and ~y arity m, let Ibe a subset of f1; : : : ;mg, and let p be a partial function f1; : : : ;mg ! f1; : : : ; ng.Then ~y[p; ~x] is an m-tuple de�ned by:~y[p; ~x]j = � xp(j); p(j) de�nedyj ; otherwiseFor instance, if n = 3, m = 4, p(1) = 2, and p(3) = p(4) = 1, then ~y[p; ~x] =(x2; y1; x1; x1).We now postulate, for every b 2 B(�1�� � ���m), partial function p: f1; : : : ;mg !f1; : : : ; ng, I � f1; : : : ;mg, and yi 2 �i, i 2 f1; : : : ;mg n dom(p) n I , a boundbproj p;I (b; ~y) in B(�01 � � � � � �0n) such that9(yi j i 2 I [dom(p)):[[b]]bool(~y[p; ~x]) = true =) [[bproj p;I (b; ~y)]]bool(~x) = true(12)1When ~x is a simple variable we consider it equivalent to a tuple with one element, and similarlyfor data �eld arguments which are not tuples. 23

y1

x2

y1

x2

b b

Figure 7: Selection and projection of b.for all ~x in �01 � � � � � �0n. For instance, with the previous values of n, m, and p weobtain2 [[bproj p;;(b; ~y)]]bool(~x) = [[b]]bool(x2 ; y1 ; x1 ; x1), and [[bproj p;f2g(b; ~y)]]bool(~x) =9y1 :[[b]]bool(x2 ; y1 ; x1 ; x1). We of course assume that types are respected, that is:�i = �0p(i) for all i where p(i) is de�ned.bproj can be seen as a quite general selection/projection-operation on bounds.To see this, consider the following examples. De�ne p by p(2) = 2. We have[[bproj p;;(b; ~y)]]bool(~x) = [[b]]bool(y1 ; x2). This is a bound for x2 which is a function ofy1. This can be seen as a selection of the \slice" of [[b]]bool given by y1. It is interestingto compare this with [[bproj p;f1g(b; ~y)]]bool(~x) = 9y1 :[[b]]bool(y1 ; x2). This is rathera projection onto the x2-axis of ffbgg. See Fig. 7. Other interesting examples are,with p(1) = 2, p(2) = 1: [[bproj p;;(b; ~y)]]bool(~x) = [[b]]bool(x2 ; x1) (\transpose" ofb), and with p(1) = 1, p(2) = 1: [[bproj p;;(b; ~y)]]bool(~x) = [[b]]bool(x1 ; x1) (\maindiagonal" of b).We now de�ne, whenever FV (f ; b) = ;,Bi((f; b) ! ~t[p; ~x]; ~x; Y) = bproj p;I (b;~t); (13)where: ; � FV (ti) � Y for i 2 I and FV (ti) = ; for i =2 I . Note that ifbproj p;I (b; ~y) = b when p is the identity function, which is in accordance with (12),then (13) subsumes (9) when ~x is a single variable. We can now give (10.1):Bi((f; b) ! ~t; ~x; Y) = Bi(~t; ~x; Y); FV (f ; b) = ;;~t 6= ~t 0[p; ~x] (10:1)for all ~t0[p; ~x] as de�ned in (13).De�nition 10 For canonical product bounds, bproj p;I is de�ned by:bproj p;I (�mi=1 bi ; ~y) = if (^i2f1 ;:::;mgndom(p)nI [[bi]]bool(yi);�nj=1 (up(j)=ibj);nothing)Here, up(j)=ibj equals all if there is no j such that p(j) = i, and Vi2; Pi is truefor any propositions Pi.Proposition 12 bproj p;I (�mi=1 bi ; ~y) satis�es (12).Proof. Consider the left-hand side of (12) for b = �mi=1bi. By De�nition 9 thisexpression equals 9(yi j i 2 I [dom(p)):Vmi=1 [[bi]]bool(~y[p; ~x]i). This evaluates totrue i�:2Assuming a \tight" bproj such that (12) is an equivalence.24

1. For all i 2 dom(p), [[bi]]bool(xp(i)) is true,2. For all i 2 f1; : : : ;mg n dom(p) n I , [[bi]]bool(yi) is true, and3. For all i 2 I n dom(p), there is a yi such that [[bi]]bool(yi) is true.1 and 2 implies that [[bproj p;I (�mi=1 bi ; ~y)]]bool(~x) is true.Continuing the example above, with ~y[p; ~x] = (x2; y1; x1; x1) and I = ;, weobtain bproj p;I (�mi=1 bi ; ~y) = if ([[b2]]bool(y1); (b3 u b4 ; b1 ; all);nothing):We now formally de�ne B1 and extend Lemma 2 to cover B1. Th. 1 then carriesover directly to '-expressions with semantics given by �1(R) [R, as can be seenby its proof in Appendix E.De�nition 11 B1(t;X; Y) is de�ned by equations (2.1) { (8.1), (10.1), (11.1), and(13).Lemma 3 For all sets of variables Y , type-preserving mappings v from Y to values,variable tuples ~x, and terms t such that �~x:tv is closed, there exists a bound b, whichis maximal in B(�), such that res(�~x:tv) � ffbgg and B1(t; ~x; Y) v b.Proof. See Appendix E.7.4 An Example: Multidimensional Language FeaturesWe extend the simple data �eld language in Sect. 3.1 to handle multidimensionaldata �elds. For that purpose we introduce tuple types (�1, : : : ,�n), tuple ex-pressions (t1, : : :,tn), and pattern matching on tuple arguments to lambda- andforall-abstraction: n(x1, : : : ,xn)-> t and forall(x1, : : : ,xn)-> t. We also de-�ne projections proj_1; : : : ;proj_n which select elements of tuples. Tuples of type(Bnds �1, : : :,Bnds �n) are interpreted as canonical bounds over (�1, : : : ,�n) (butwe do not prohibit other multidimensional bounds). We obtain a language powerfulenough to take full advantage of the propagation of bounds de�ned by �1.We now demonstrate how a common array notation for selection and projectioncan be generalised to data �elds and put on top of our language. The syntax ist!(u1, : : : ,un)where t: Df(�1, : : : ,�n)� and each ui is either an argument term of type �i, a boundof type Bnds �i, or the symbol \:". This syntactic sugar can be removed by thefollowing source-to-source transformation:t!(u1, : : : ,un)! forall(xi1, : : : ,xik)-> t!(t1, : : :,tn) at (t01, : : : ,t0n)where ui: Bnds �i or ui = : precisely when i 2 fi1; : : : ; ikg, and:ui: Bnds �i =) ti = xi and t0i = uiui: �i =) ti = ui and t0i = allui = : =) ti = xi and t0i = allFor instance, d!(:,c,m:n)! forall(x1,x3)->d!(x1,c,x3) at (all,all,m:n).A simple example of a de�nition using these features is matrix multiplicationgeneralised to two-dimensional data �elds:25

dfmult a b = forall(i,j)-> sum a!(i,:)*b!(:,j)Here, a!(i,:) is the ith row of a and b!(:,j) the jth column of b. These one-dimensional data �elds are elementwise multiplied and the result is summed. Thefunction de�nes a two-dimensional data �eld whose �rst dimension is constrainedby a's bound in the �rst dimension and by b's bound in the second dimension. Thisde�nition works also if a and b are sparse, although the bound of the result may bean overapproximation since it has to be a product bound. In Sect. 8 we will givelarger examples with multidimensional data �elds.7.5 Bounds for Sparse and Dense ArraysAs a concrete example, we now de�ne cpo's of bounds for array-like data �elds.We de�ne these cpo's in a way that allows both dense and sparse data �elds, andcombinations of these: this extends our example well beyond the ordinary densearray model. Since arrays are indexed by
at tuples of integers we will de�ne cpo'sof array bounds Barr (intn) for n > 0:Barr (int) = (int � int) + Set int +Nothing +All + [int ! bool] (14)Barr (intn) = Barr (int)n + [intn ! bool]; n > 1 (15)All is the two-point cpo with non-bottom element all , and Nothing the one withnon-bottom element nothing . int � int is the cpo of one-dimensional dense arraybounds, where each integer pair de�nes an array range. Set int is the
at cpo of�nite sets of integers. They provide sparse one-dimensional array bounds: eachelement in a set S represents a coordinate where a data �eld (f; S) is de�ned. Someexamples of bounds in Barr (int2) are shown in Fig. 8.Set int is seen as an abstract data type. We do not specify exactly which elementsit contains: rather, we postulate a number of set operations: the usual union ([),intersection (\), membership (2), and cardinality (j � j), plus removal of element(�), least element (least), elementwise application of function (smap), and �lteringwith predicate (s�lter), de�ned by:S � i = f j j j 2 S ^ j 6= i gleast(S) = i where i 2 S ^ 8j 2 S:j � i (S nonempty)smap(f; S) = f f(i) j i 2 S gs�lter(p; S) = f i j i 2 S ^ p(i) gThese operations are all assumed hyperstrict: for smap and s�lter , we also assumethat the result is ?Set int whenever f(i) = ? (or p(i) = ?) for some i 2 S. Finally,we assume that Set int contains the empty set ;.Later in this section we will use an abstract data type Set intn for �nite subsetsof intn , n > 0, with the same abstract operations as on Set int . The generalisationis obvious, except that least(S) now should be the least element in S w.r.t. thelexicographical order on intn .The �nite one-dimensional bounds belong either to int� int , Set int or Nothing .all , and predicates in [intn ! bool], n > 0, are in�nite. An n-dimensional bound inBarr (intn) is either a product bound or a predicate. We assume that the productbounds have all their properties and operations canonically de�ned according toTh. 2: this also yields elements all and nothing for Barr (intn).We have, for predicates p 2 [intn ! bool] (n > 0):[[p]]bool = p26

l1

u1

l2 u2

l1

u1Figure 8: Some bounds in Barr (int2), of type: (int � int)2 , (int � int) � Set int ,and (Set int)� (Set int).For dense array bounds in Barr (int) (l, u range over int):[[(l; u)]]bool = �i:(l � i � u)size(l; u) = max(u� l + 1; 0)enum(l; u) = �i:(i� l)For sparse array bounds in Barr (int) (S ranges over Set int):[[S]]bool = �i:i 2 Ssize(S) = jSjenum(S) = �i:if (i = 0 ; least(S); enum(S � least(S); i � 1)) (S nonempty)It is next to trivial to verify that the postulated properties for [[b]]bool , size(b) andenum(b) holds for all �nite nonempty bounds b 2 Barr (int).We now de�ne t and u for bounds in Barr (int). For all , we specify:all u x = x?u all = ?b u all = b; b 2 Barr (int) all t x = all?t all = ?b t all = all ; b 2 Barr (int) (16)These equations are consistent with a left-to right evaluation order. Note that wedo not specify buall and btall for non-maximal, non-bottom bounds b: this meansthat we leave the exact strictness properties of u and t in their left argument open.We could for instance have b t all = b for such bounds b (nonstrict evaluation), orb t all = ? (hyperstrict evaluation).We de�ne t and u for nothing as the exact dual of (16): replace all with nothingand switch t and u.For one-dimensional dense array bounds, we de�ne(l; u) u (l0; u0) = (max(l; l0);min(u; u0))(l; u) t (l0; u0) = (min(l; l0);max(u; u0))If b; b0 2 (int � int) + Set int and at least one of them belongs to Set int , thenb u b0 = toset(b) \ toset(b0)b t b0 = toset(b) [toset(b0)where toset : [(int � int) + Set int ! Set int] is de�ned bytoset(b) = toset 0(b; 0); wheretoset 0(b; n) = if (n = size(b); ;; fenum(b;n)g [toset 0(b;n + 1))27

Figure 9: Finite set S 2 Set int2 , and projections �1(S), �2(S).If b 2 (int � int) + Set int and b0 2 [int ! bool], thenb u b0 = b0 u b = s�lter([[b0]]bool ; toset(b))b t b0 = [[b]]bool _X b0b0 t b = b0 _X [[b]]bool :If b; b0 2 [int ! bool], then b u b0 = b ^X b0b t b0 = b _X b0:The remaining cases for t and u for bounds in Barr (intn), n > 1, are de�ned inthe following way. If b 2 [intn ! bool] and b0 = b01 � � � � � b0n, thenb t b0 = b _X [[b0]]boolb0 t b = [[b0]]bool _X bIf b0 is �nite, then b u b0 = b0 u b = �ni=1�i(s�lter(b; toset(b0)))where the projections �i 2 [Set intn ! Set int], 1 � i � n, are de�ned by�i(S) = f j j 9~x 2 S:xi = j g and toset(b0) is generalized into a function in[((int � int) + Set int + Nothing)n ! Set intn] in the obvious way (its de�nitioncarries over verbatim). See Fig. 9. If b0 is in�nite, thenb u b0 = b ^X [[b0]]boolb0 u b = [[b0]]bool ^X bIf, �nally, b; b0 2 [intn ! bool], thenb u b0 = b ^X b0b t b0 = b _X b0:The de�nitions above should be seen as abstract semantical de�nitions. Imple-mentations should of course use more e�cient, specialized versions of functionsand representations whenever possible. For instance, it is easy to verify thattoset(S) = S for �nite sets S.Finally, let us verify that u, t as de�ned above do enjoy the postulated propertiesin De�nition 4:Proposition 13 For all maximal b, b0 in Barr (intn) it holds that b u b0 and b t b0both are maximal, ffbgg \ ffb0gg � ffb u b0gg, and ffbgg [ffb0gg � ffb t b0gg.28

Proof. It is trivial that b u b0 and b t b0 are maximal whenever b and b0 are.Similarly, for most cases it is trivial to prove that ffbgg \ ffb0gg � ffb u b0gg andffbgg [ffb0gg � ffb t b0gg for maximal b, b0. The possibly nontrivial case is whenb u b0 = b0 u b = �ni=1�i(s�lter(b; toset(b0))). But then, we can �rst note thatffbgg \ ffb0gg = s�lter(b; toset(b0)) whenever b and b0 are maximal, and then thatS � �ni=1�i(S) for all S 2 Set intn . This yields the result also in this case.7.6 Sparse Multidimensional Bounds and Relational Data-basesSo far, we have considered mainly multidimensional product bounds. We now turnto �nite multidimensional sparse bounds and how operations on them could bede�ned. At �rst sight, it may seem that we simply could de�ne sparse n-dimensionalbounds as members of the abstract data type Set (�1 � � � � � �n) and de�ne theoperations on bounds in terms of the abstract set operations on this data type.However, this data type cannot be closed under the operations we consider. To seethis, reconsider the expression t = '(x1; x2; x3):(f; b) ! (x2; c; x1; x1). In Sect. 7.3we considered the case where b is a product bound and arrived at a bound for twhere x3 is unconstrained. This should still hold if b is a sparse bound. x2 and x3,on the other hand, should be constrained by the following: the bound for t shouldcontain only tuples (x1; x2; x3) where there exists an element (e1; e2; e3; e4) 2 ffbggsuch that e1 = x2, e2 = c, and e3 = e4 = x1. This is an in�nite set, but since bis �nite it can be given a �nite representation as a sparse set of two-dimensionaltuples (x1; x2), obeying the above, which de�nes a three-dimensional bound whichis unconstrained in the third dimension.We thus need bounds which are sparse �nite sets embedded into a higher-dimensional space. To de�ne these it is convenient to generalise n-tuples into recordsindexed by attribute sets: x = (x:a j a 2 A) where A is a �nite set of attributenames. (n-tuples can then be seen as records with attribute set f1; : : : ; ng.) Seman-tically, these records are functions in [A ! Sa2ADa], where x:a 2 Da for a 2 A.Sparse sets of records are elements in Set [A! Sa2ADa]. For such sets S we writeAttr(S) for A. In light of the above, we de�ne that if S 2 Set [A ! Sa2ADa]then S 2 B([A0 ! Sa2A0 D0a]) whenever A � A0 and D0a = Da for a 2 A.We now de�ne, somewhat informally, the operations in De�nition 4 on boundsin B([A0 ! Sa2A0 D0a]) as follows (cf. Sect. 7.5):� �nite(S) i� Attr(S) = A0� [[S]]bool = �x:9y 2 S:8a 2 Attr(S): x:a = y:a� Enumeration according to lexical order of records (we assume a total order onA)� size(S) = jSj when Attr(S) = A0In order to de�ne t, u, and bproj p;I we introduce the following operations,known from relational database theory (see, for instance, [49]):Project(S;A) = fx j 9y 2 S:8a 2 A: x:a = y:a gJoin(S1; S2) = f t j (9t1 2 S1:8a 2 Attr(S1): t:a = t1:a) ^(9t2 2 S2:8a 2 Attr(S2): t:a = t2:a) g:We can then de�ne:� S1 u S2 = Join(S1; S2) 29

� S1 t S2 = Project(S1;Attr(S1) nAttr(S2)) [Project(S2;Attr(S2) nAttr(S1))� bproj p;I (S ; t) = f (x :b j b 2 rg(p)) j 9y 2 S :8a 2 dom(p): x :p(a) = y :a ^8a 2 Attr(S) n dom(p) n I : x :p(a) = t :a gHere, I � Attr(S). rg(p) stands for the range of p. We omit the veri�cation thatthese operations do have the the properties required in De�nition 4 and in (12): itis fairly straightforward but tedious to carry out.Relational databases can be seen as sparse sets of records indexed by attributes.Thus, it is possible to de�ne data �elds whose bounds are databases. Let us con-sider brie
y how our data �eld language from Sect. 3.1, extended with records andbounds which are sparse sets of records, can be used as a language for querying andcomputing over relational databases. We introduce an obvious syntax for records:(a1:t1, : : :,an:tn)Forall-syntax with pattern-matching on records is straightforward to de�ne, as wellas syntactic sugar for selection/projection similar to the sugaring for data �eldswith product bounds de�ned in Sect. 7.4.In order to use data �eld primitives to compute with databases we need a func-tion to \lift" a database into a data �eld:df b = (\x->x,b)To create a data �eld of all the values of attribute a from database s, we writeforall x-> ((df s)!x).aor, using elemental intrinsics overloading, simply(df s).aWe can now, for instance, write hist (df s).a for the histogram over the valuesof the attribute.Now consider a database s with attribute set fssn; salary; ageg, and a data�eld frac_of_inc over a database with attribute set fssn; expenseg. The settingcould be that s is a database over individuals, each identi�ed by its ssn and havingpossibly several incomes, and that frac_of_inc tabulates, for each individual, thefractions of the total income spent on di�erent kinds of expenses. Maybe we wouldlike to compute, for all individuals of age 43 who have any income, how they spendtheir money in absolute �gures. The following forall-expression de�nes a data�eld with this information:forall(id:x1, exp:x2)-> (sum (df s)!(ssn:x1, age:43).salary) *frac_of_inc!(ssn:x1, expense:x2)How does this work? The term being summed over has the attribute salary omit-ted. As for the syntax in Sect. 7.4 we transform this term intoforall x-> (df s)!(ssn:x1, salary:x, age:43).salaryInformally, the net e�ect is that for each x1 the sum of all salaries is computed,over each set of records r with r.ssn = x1 and r.age = 43. As the secondfactor we select, for the same x1 and each possible x2, the corresponding entry infrac_of_inc. The result is a data �eld over a database with attributes id and expwhich holds a table over each individual of age 43 and his income split on di�erentexpenses.Formally, the following happens. The data�eld being summed over has, forany given value x1 of x1, the bound bproj p;;(s; (ssn:x1, salary:x, age:43))30

with dom(p) = fsalaryg, and p(salary) = 1. This bound equals f z j 9y 2s: y:salary = z ^ y:ssn = x1 ^ y:age = 43 g. For the �rst factor, with respect tothe outermost forall, the bound bproj p0;fxg(s; (ssn:x1, salary:x, age:43)) isobtained, with dom(p0) = fssng, and p0(ssn) = id. This bound is the set S1 =f (z:id) j 9y 2 s: y:ssn = z:id ^ y:age = 43 g. Note that S1 does not constrain x2and is thus in�nite. The second factor, �nally, has the bound bproj p00;;(S ; (ssn:x1,expense:x2)), where S is the bound of frac_of_inc, with dom(p00) = fssn; expenseg,p00(ssn) = id, and p00(expense) = exp. This bound equals S2 = f (z:id; z:exp) j9y 2 S: z:id = y:ssn ^ z:exp = y:expenseg. The bound for the whole forall-expression is S1 u S2 = Join(S1; S2), which is a �nite set constraining both x1 andx2. Thus, it is a �nite bound even though S1 is in�nite.7.7 Translations and Scalings of Sparse/Dense ArraysMany array operations require that arrays, with their bounds, are translated w.r.t.some constant o�set vector. Other operations require that arrays are reversed, oraccessed with some constant stride. These operations can be seen as a scaling of thearray, possibly with a negative factor. B0 and B1 do not de�ne implicit propagationof bounds w.r.t. these operations. We now propose an extension B2 which de�nesthis for our sparse/dense array bounds from Sect. 7.5. (This could also easily bedone for the sparse multidimensional bounds in Sect. 7.6.)Translation and scaling of a data �eld d can be expressed as '~x:d!g(~x), where g isan a�ne function. So we should de�ne B2((f; b) ! g(~x); ~x; Y) when g is a�ne. Whatshould it be? For bounds which de�ne �nite sets, we can state some general facts.Consider a general function g, bound b, and function G taking bounds to boundssuch that B2((f; b) ! g(~x); ~x; Y) = G(b). We want to have ff[[b]]bool � ggg � ffG(b)gg:then we can use Lemma 1 to extend Lemma 2 to cover B2, which in turn extendsTh. 1 to B2. We have ff[[b]]bool � ggg = fx j g(x) 2 ffbgg g. If g is invertible, thenthis set equals f g�1(x) j x 2 ffbgg\ Im(g) g = b0 (here, Im(g) stands for the imageof g). Now, if b is a �nite bound and we can compute g�1, then we can computeG(b) from b in the following way:� directly as b0, if G(b) is a sparse bound,� as (min(x j x 2 b0);max(x j x 2 b0)), if G(b) is a dense bound.In the following, we will use elemental intrinsics overloading of addition andmultiplication on integer tuples, that is: ~t+ ~t0 = (t1 + t01; : : : ; tn + t0n) and similarlyfor ~t � ~t0. We also de�ne ~n = (n; : : : ; n) for numerical constants n. First, we de�netranslations of bounds:B2((f; b) ! (~x+ ~a); ~x; Y) = tr(b; ~a); FV (~a) = ; (17)tr(b; ~a) is de�ned as follows, for the di�erent forms of b:tr((l ; u); a) = (l � a; u� a); (l; u) 2 int � int (18)tr(S ; a) = smap(�x:(x � a); S); S 2 Set int (19)tr((b1 ; : : : ; bn); (a1 ; : : : ; an)) = (tr(b1 ; a1); : : : ; tr(bn ; an)) (20)tr(all ; ~a) = all (21)tr(nothing ; ~a) = nothing (22)tr(p; ~a) = �~x:p(~x+ ~a); p 2 intn ! bool (23)See Fig. 10 for a simple example. Also note that tr(b; ~0) = b.The correctness of tr is stated in the following proposition, which is straightfor-ward to prove. 31

ϕ

a
d

x.d!(x+a)Figure 10: Translation of data �eld d to 'x:d ! (x+ a).Proposition 14 ff[[b]]bool � (�~x:(~x+ ~a))gg = fftr(b; ~a)gg.Next, we de�ne scaling:B2((f; b) ! (~z � ~x); ~x; Y) = sc(~z ; b); FV (~z) = ; (24)sc(~z ; b) is de�ned as follows, for the di�erent forms of b:sc(0 ; b) = if ([[b]]bool(0); all ;nothing); all forms of b (25)sc(z ; (l ; u)) = (dl=ze; bu=zc); (l; u) 2 int � int ; z > 0 (26)sc(z ; (l ; u)) = (du=ze; bl=zc); (l; u) 2 int � int ; z < 0 (27)sc(z ;S) = smap(�x:(x=z); s�lter (�x:(x=z = bx=zc); S));S 2 Set int ; z 6= 0 (28)sc((z1 ; : : : ; zn); (b1 ; : : : ; bn)) = (sc(z1 ; b1); : : : ; sc(zn ; bn)) (29)sc(~z ; all) = all (30)sc(~z ;nothing) = nothing (31)sc(~z ; p) = �~x:p(~z � ~x); p 2 intn ! bool ; z 6= 0 (32)Note that (25) simpli�es into (30) and (31) for all and nothing , respectively. Alsonote that sc(~1 ; b) = b.As for tr , there is a correctness result for sc. It is tedious but straightforwardto prove, so we omit the proof:Proposition 15 ff[[b]]bool � (�~x:~z � ~x)gg = ffsc(~z ; b)gg.Finally, we combine scaling, translation, and the \selection/projection" of Sec-tion 7.2 into a more general case for B2(t; ~x; Y). In order to do this, we need thefollowing result which is easy to prove.Proposition 16 If ff[[b]]bool � ggg � ffG(b)gg and ff[[b]]bool � hgg � ffH(b)gg for allbounds b, then ff[[b]]bool � g � hgg � ffH(G(b))gg for all bounds b.We now make the following de�nition.B2((f; b) ! (~z � ~t[p; ~x] + ~a); ~x; Y) = tr(sc(~z ; bproj p;I (b;~t)); ~a); (33)where ; � FV (ti) � Y for i 2 I , FV (ti) = ; for i =2 I , and FV (~z) = FV (~a) = ;.Finally, we extend (10.1) into (10.2):B2((f; b) ! ~t; ~x; Y) = B2(~t; ~x; Y); FV (f ; b) = ;;~t 6= ~z �~t [p; ~x] + ~a (10:2)for all ~z �~t[p; ~x] +~a as de�ned in (33). If we consider ~t[p; ~x] as equal to ~1 �~t[p; ~x] and~z � ~t[p; ~x] as equal to ~z � ~t[p; ~x] + ~0, then (33) and (10.2) subsume (13), (24), (17),and (10.1). 32

De�nition 12 B2(t; ~x; Y) is de�ned by equations (2.1) { (8.1), (10.2), (11.1), and(33).As for B1 Lemma 2 and thus Th. 1 can be extended, through Propositions 14,15, and 16, to cover B2. We omit the details.7.8 An Example: Data Fields for Symbolic DrawingsWe now describe how data �elds could be used to de�ne drawings comprised ofsymbolic objects. Some operations on these objects will rely on the transformationof bounds under translation and scaling in Sect. 7.7. We will consider two kinds ofdata �elds for this purpose:� scenes, which are functions describing images in real scale. These are repre-sented as data �elds of type Df (Float,Float) a;� bitmaps, which are \sampled" scenes represented as data �elds of typeDf (Int,Int) a.a is some type which describes the image property in each point (e.g., colour, inten-sity). Scenes are built from objects, which also are data �elds of type Df (Float,Float) a.In this context, the data �eld de�nes an image property for each point in the planewhere it is de�ned, and can be seen as \transparent" in points where it is unde-�ned. The �nite, enum, and size functions on bounds are not needed for objectsand scenes since these will be evaluated only when \viewed" through a bitmap. Wecan imagine a superclass to data �elds for which these functions need not be de�ned.It is even possible to simply use functions of type (Float,Float) -> a to repre-sent objects and scenes, but for e�ciency reasons (like if objects are moved w.r.t.a mutable bitmap, see Sect. 7.10) it may make sense to have bounds for objectswhich can act as \bounding boxes".The following function computes a m�n-bitmap from a scene, with a scale factorfor pixels per length unit and an o�set which de�nes the origin of the bitmap:bitmap scene scale (off_i,off_j) col m n =forall (i,j)-> (bg col scene!(i/scale+off_i,j/scale+off_j))at (1:m,1:n)bg col x = if isoub x then col else xSee Fig. 11. The elementwise applied bg col de�nes a background colour. (We useHaskell style pattern-matching on arguments in the de�nition of bitmap.)How are objects composed into scenes? We de�ne a connective over which putsan object above another:d1 `over` d2 = forall x-> if not (isoub d1!x) then d1!x else d2!xObjects can be transformed in di�erent ways. For instance, the function belowchanges the colour of an object:dye d col = (forall x-> if not (isoub d1!x) then col else oub)at bounds dNote the explicit restriction: the data �eld de�ned by the forall-expression hasbound all. The function bounds is de�ned by:bounds (_,b) = bAnother group is geometrical transformations, e.g., translating an object:33

scene

i

j
i/scale

j/scale
offset

bitmapFigure 11: Connecting bitmaps with scenes.translate d (off_x,off_y) = forall (x,y)-> d!(x-off_x,y-off_y)Other geometrical translations require that objects have some origin. If we considermore complex objects which are pairs of objects and origins (pairs of
oats), thenwe may for instance de�ne a function which \
ips" objects in the �rst dimension:flip_x (d,(ox,oy)) = (forall (x,y)-> d!(ox-x,y),(ox,oy))It is straightforward to rede�ne the previous operations on objects and scenes whichare simple data �elds so they work also on objects with origins.7.9 Alternative '-calculi for ConformanceMost existing array languages require that the operands of elementwise applied op-erations are conformant, that is, that their extents are the same after they have beenaligned. The model developed here is di�erent { it yields the implicit intersectionrule for elementwise applied strict operations, and a related rule for elementwiseapplied conditional. It is, however, simple to modify the '-calculi given here toyield conformance instead. In order to obtain conformant versions of the calculiwhich are independent of the type of bounds, the following is needed:� A new required operation on bounds in De�nition 4, which is a test \=" forequality of bounds, and� The following rewrite rule, which replaces (5) and (6):Bi(op(t1 ; : : : ; tm); x ;Y) = if (m̂j=1 m̂k=1 Bi (tj ; x ;Y) = Bi (tk ; x ;Y);Bi (t1 ; x ;Y); �)These modi�cations alone do not yield the alignment of array operands thattypically takes place in array languages before the extents of the operands arematched. This alignment is strongly tied to the dense array type and makes littlesense for other indexed data structures. Actually, to avoid ambiguities about whichoperand to align with which, one should probably de�ne this alignment only forarray types where the lower bound is �xed (say, 0). The alignment then becomes amatter of de�ning the array operations in the language so they always yield arraysof this kind. We leave the details for the interested reader to work out.
34

7.10 Mutable Data FieldsE�ciency is often a concern. Many languages therefore provide mutable arrayswhich can be updated in place. We now outline how mutable data �elds could bede�ned.For simplicity we do this in a simple imperative language (similar to IMP in [70])extended to allow concurrent assignments of data �elds, with types and terms ac-cording to Sect. 3.1. We only give enough details to make the point. The languagehas typed program variables, and states which are mappings from program variablesto values. In particular, program variables of type Df �1 �2 hold data �elds. For anydata �eld d we use the notation df and db for its function and bound, respectively(i.e., d = (df ; db)).The meaning of a program c is a function C[[c]] which maps states to states, andfor any term there is a function which maps states to values of the correct type. Inparticular F [[t]] maps data �eld-typed terms to data �elds. For states �, �[v=x] isde�ned by �[v=x](x) = v, and �[v=x](y) = �(y) whenever y 6= x.The language has assignments x := t, where x is a program variable and t isa term. Assignments of data �eld-typed variables can be seen as a concurrentassignment of some or all of their elements. To make in-place update possible it isimportant that these variables don't have their bounds changed. To accomplish this,we can give semantics to data �eld assignments in one of the two following ways:� Requiring conformance: C[[x := t]]� = if ((F [[t]]�)b = �(x)b ; �[F [[t]]�=x]; �)� Updating only the elements where the right-hand side is de�ned: C[[x:= t]]� =�[(�y:if (([[F [[t]]�]])b ; (F [[t]]�)f y ; �(x)f y); �(x)b)=x](Cf. denotational semantics for \ordinary" assignments [70].) De�ning the semanticsin this way has the advantage that the issue of mutability becomes largely orthogonalto the exact semantics of data �eld expressions.8 ExamplesWe now exemplify the use of data �elds for the speci�cation of parallel algorithms.We will use the simple functional data �eld language developed in Sections 3.1and 7.4, extended with some conveniences. We give three examples: Strassen'salgorithm for matrix multiplication, which is a recursive divide-and-conquer styleblock-structured matrix algorithm, data parallel LU factorization with pivoting,which is an array algorithm with data dependent structure, and a sparse parallelneural network algorithm. An early version of the latter algorithm was presentedin [23].8.1 Extensions of the Data Field LanguageFirst we add ordinary if..then..elseif..else as shorthand for nested condition-als. Then, we de�ne a notation to de�ne di�erent parts of data �elds by cases. Theexpression case(b1 -> t1; : : : ; bn -> tn; otherwise t)is syntactic sugar forforall x-> if in b1 x then (t1 at b1)!xelseif in b2 x then (t2 at b2)!x...elseif in bn x then (tn at bn)!xelse t 35

b1

b2

b3Figure 12: Illustration of case(b1 -> t1; b2 -> t2; b3 -> t3).(We may allow an empty otherwise which is equivalent to t = forall x->oub.)See Fig. 12 for an illustration.Furthermore, we de�ne notation for 2-dimensional data �elds d: Df (Int,Int) �with canonical product bounds. (It is easily extended to n-dimensional data �elds.)When these bounds are �nite and nonempty we de�ne, for i = 1; 2:l_i (_,b) = enum (proj_i b) 0u_i (_,b) = enum (proj_i b) (size b - 1)align d = forall(x1,x2)-> d!(x1-(l_1 d)-1,x2-(l_2 d)-1)++_1 d1 d2 = forall(x1,x2)->if x1 > u_1 d1 then d2!(x1-(u_1 d1)+(l_1 d2)-1,x2) else d1!(x!,x2)++_2 d1 d2 = forall(x1,x2)->if x2 > u_2 d1 then d2!(x1,x2-(u_2 d1)+(l_2 d2)-1) else d1!(x!,x2)l_i and u_i give lower and upper limit, respectively, in direction i. align dreturns d with the left-hand upper corner aligned with (1; 1). ++_i is data �eldconcatenation in direction i. Finally, for convenience, we de�ne:first b = enum b 0We will also make use of some other conveniences like let-constructs.8.2 Strassen's Matrix MultiplicationStrassen's matrix multiplication [63] is famous since it was the �rst known matrixmultiplication algorithm with complexity strictly less than O(n3) for n�n-matrices.It is a recursive block-structured algorithm where the matrices are successively splitin four similar blocks. When the matrices are of size n�n, where n = 2m for somenatural number m, the blocks will always have the same size. We restrict ourpresentation to this case.Consider the matrix product C = AB. In a block formulation� c11 c12c21 c22� = � a11 a12a21 a22�� b11 b12b21 b22�there are four computations likec11 = a11b11 + a12b21to perform, which yields 8 matrix multiplies and 4 matrix adds. Using Strassen'smethod we can perform the same computation using 7 matrix multiplies and 18 ma-trix adds. The following operations are performed, where the method is applied36

recursively for the multiplications of blocks:m1 = (a12 � a22)(b21 + b22) c11 = m1 +m2 �m4 +m6m2 = (a11 + a22)(b11 + b22) c12 = m4 +m5m3 = (a11 � a21)(b11 + b12) c21 = m6 +m7m4 = (a11 + a12)b22 c22 = m2 �m3 +m5 �m7m5 = a11(b12 � b22)m6 = a22(b21 � b11)m7 = (a21 + a22)b11We now de�ne a data �eld function for Strassen's algoritm, where matrices are rep-resented by data �elds restricted by bounds in (int� int)2 � Barr (int2). Strassen'salgorithm operates on square matrices with upper left corner (1; 1): thus, we willmake heavy use of the alignment function. It is also convenient to de�ne func-tions which select the four di�erent (north, south) � (east, west) sub�elds of a2m � 2m-data �eld:letn d = l_1(d):u_1(d)/2s d = u_1(d)/2+1:u_1(d)e d = l_2(d):u_2(d)/2w d = u_2(d)/2+1:u_2(d)inne d = align (d at (n d,e d))nw d = align (d at (n d,w d))se d = align (d at (s d,e d))sw d = align (d at (s d,w d))With these de�nitions, the data �eld function is de�ned viz.strassen a b =if size (bounds a) == 1 then a*belseletm1 = strassen ((nw a)-(sw a)) ((se b)+(sw b))m2 = strassen ((ne a)+(sw a)) ((ne b)+(sw b))m3 = strassen ((ne a)-(se a)) ((ne b)+(nw b))m4 = strassen ((ne a)+(nw a)) (sw b)m5 = strassen (ne a) ((nw b)-(sw b))m6 = strassen (sw a) ((se b)-(ne b))m7 = strassen ((se a)+(sw a)) (ne b)c11 = m1 + m2 - m4 + m6c12 = m4 + m5c21 = m6 + m7c22 = m2 - m3 + m5 - m7in(c11 `++_1` c21) `++_2` (c12 `++_1` c22)Note that the resulting code is void of any explicit bounds.8.3 Data parallel LU factorisationLU factorisation is a classical problem in linear algebra [13]. The task is to factorisean n � n-matrix A = LU where L is a lower-triangular matrix and U is upper-triangular. The standard algorithm computes L and U in such a way that thediagonal elements of L all are equal to one, and stores U and the nondiagonal37

k

pivot

k

n

k n

(k:k,k:n)

(k+1:n,k:k)

L

U

L

U

Figure 13: Pivoting and recursive assembly of result in the LU factorisation algo-rithm.elements of L in a single n � n-matrix. This algorithm has quite some inherentparallelism, which can be revealed by a collection-oriented programming style withextensive use of elementwise applied operations. Array languages like HPF canexpress this part well. However, the pivoting (data-dependent exchange of rows asto minimise the numerical error) is not so straightforward to express in a collection-oriented way in these languages. Data �elds with sparse and dense array boundscan be used for this purpose.The following is an informal description of the classical algorithm. The input isthe n� n-matrix A1. For k = 1 to n� 1:1. Shift rows in Ak as to bring to the top the row whose �rst element has thegreatest magnitude. (Pivoting)2. If this element (the pivot element) is zero, return with error.3. Divide �rst column (except �rst element) with pivot element. Negate.4. For all elements in Ak(k+1 : n; k+1 : n), add corresponding element in �rstrow times corresponding element in �rst column.5. Apply recursively to Ak+1 = Ak(k + 1 : n; k + 1 : n), concatenate results.The data �eld formulation follows. For this algorithm it is natural to let results\stay in place" rather than aligning their upper left corners. Therefore, the assemblyof the result can be done by a simple case rather than data �eld concatenation.We de�ne a function for exchanging two rows in a matrix:swap a k l = forall(i,j)-> if i==kthen (a!(:,l:l))!(i-k+l,j)elseif i=l then (a!(:,k:k))!(i-l+k,j)else aBelow is the data �eld function for LU factorisation.lu a = if size (bounds a) == 1 then aelseletk = l_1 an = u_1 apivot = first (bounds a!(:,k)) at38

abs a!(:,k) == fold max (abs a!(:,k)) minnuminif a!(pivot,k) == 0.0 then *elseleta' = swap a k pivotincase((k:k,k:n) -> a';(k+1:n,k:k) -> -a'/a'!(k,k);otherwise ->LU (a'+forall(i,j)->(a'!(k,k+1:n))!i * a'!(k+1:n,k)!j))See Fig. 13 for an illustration of some steps in the algorithm. Also note how thelocation of the pivot element is found by �rst generating a sparse data �eld de�nedexactly in the (possibly several) locations where the element of a!(k,:) has maxi-mal magnitude, and then picking the �rst of these locations (minnum is a constantrepresenting the least number for a numeric data type of bounded size). This is afairly generic way to �nd the location of a data �eld element satisfying a certaincondition.8.4 A Sparse Neural NetworkNeural networks can be sparse both in connections and activity. Sparse connectivitymeans that not all neurons are connected and sparse activity means that not allneurons and synapses are active all the time.Arti�cial neural networks in the SANS model [41] can, when stimulated withan input, recall a stored pattern by an iterative relaxation method. Let I be theset of units in the network. The patterns are stored as biases �i and weights wij ,for i; j 2 I . An input can be fed into the network which is then iterated until atermination criterion is ful�lled. The following equations are used as a basis for theiteration: si = �i +Xj wij�j ; (34)dEidt = si �Ei�E ; (35)�i = f(Ei; �i) = 8<: 0 Ei � �ieEi �i < Ei � 01 0 < Ei (36)Ei is a slowly changing \activity" of unit i, �i is the unit's output, and �E is thetime constant of the units.In the iteration, new activities and outputs are calculated for the units from theold ones. Typically, after an initial phase, most elements will have Ei as either 0 or1 and very few will change, which means that very few outputs �i will change. Aparallel implementation will therefore bene�t from communicating di�erences be-tween new and old outputs rather than the absolute output levels: most di�erenceswill be zero and need therefore not be sent, which greatly reduces the communica-tion and also the arithmetics needed when updating the activities. See [22]. Thefollowing is an iterative data �eld algorithm:recall beta w tau_e pi_in e_init delta_t f ==39

letrelax pi e s =letpi_new = f e betadelta_pi = sparse (pi_new-pi)delta_b = forall(i,j)->delta_pi!jdelta_s = forall i->sum forall j->(w*delta_b)!(i,j)s_new = s+delta_se_new = e+delta_t*(s_new-e)/tau_einif converged pi pi_new then pi_newelserelax pi_new e_new s_newinrelax pi_in e_initbeta+forall i->sum forall j->(w!(i,j)*pi_in!j)Here, beta, pi, E, s and related entities are data �elds of type Df � Float with�nite bounds, w: Df(�; �)Float, and delta_s is a data �eld with bound b whose ele-ments delta_s!i are sums over the sparse data �elds forall j->(w*delta_b)!(i,j).The contribution from delta_s is then added into s and a new activity level is com-puted. The initial value of s is computed as a data �eld of sums in the \j"-direction.The code above presumes that the weight matrix w is a dense data �eld, i.e.,that it has dense bounds. But neural networks are often sparsely connected. Thenmost entries in w will be zero, and it can be e�cient to turn w into a data �eldwith sparse product bound (b1; b2) instead. The change to the code will be minor.delta_s will now have bound b1 rather than b, and the line computing s_new mustbe changed into s_new = s + fill delta_s 0 where fill is de�ned asfill d c = forall x->if isoub d!x then c else d!xWith this change, the code will work as before but with a sparse weight matrix.9 Related workThere are a number of functional formalisms which can be used as an abstractprogramming notation, to specify computations with indexed data structures on amathematical level, or to identify and prove algebraic laws which can be used forprogram transformations.An early example is Backus' FP [2]. FP is a formalism entirely based on functionsand operations on functions, most prominently function composition. Values in FPare either atoms or tuples (sequences): the latter can be seen as (implicitly) indexeddata structures.Similar to FP in spirit is the Bird-Meertens formalism (BMF). Here an alge-bra with unary and binary functions forms a base for a set of theories for di�erentdata types [4, 5]. In particular, there is a theory for functions over lists. Thisformalism was originally developed to support the formal calculation of programsfrom speci�cations, but it can also serve as an abstract model for explicit dataparallel programming, with a cost model [60]. The systematic transformation inBMF of speci�cations into parallel algorithms has been studied by Gorlatch [21].Formal parallelisation in BMF is achieved by transforming functions into list ho-momorphisms: such functions can be computed in parallel in logarithmic time. Apotential weakness of BMF in this context is that lists sometimes do not provide thebest collection-oriented data type for modelling computational problems: in many40

cases, explicitly indexed and possibly multidimensional structures are much morenatural. Data �elds are designed to express multidimensional problems well, andan interesting topic for future research is to investigate whether a correspondingconcept of \data �eld homomorphism" can be developed and used in a similar wayas the list homomorphisms in BMF.A more machine-oriented, explicitly parallel model is the Bulk-Synchronous Par-allel model (BSP), originally proposed by Valiant [68]. In this model, computationsare indexed by processor ID's and are divided into distinct computation and com-munication phases. This makes it possible to assign a fairly simple cost model tothe BSP model. A formal BSP calculus (an enriched �-calculus) has been developedby Loulergue et. al. [48]: this calculus is di�erent from our '-calculi in that indicesare implicit. There have also been attempts to apply a stepwise re�nement programdevelopment methodology to the BSP model [61]. The BSP model could be seen asa restricted instance of the data �eld model, and it could serve as a target formatfor transformations from less restricted data �eld instances.Algorithmic skeletons [11] are higher order patterns which can be used to imple-ment collection-oriented operations in a way tailored to suit given parallel architec-tures. They thus �t very well in a functional context and it is not hard to imaginean implementation strategy for data �elds where certain operations on data �eldsare translated into skeletal code.There is some work on the formal modelling of arrays. The Array Theory [50]of Trenchard More, Jr. is an attempt to de�ne an axiomatic theory of APL arrays.A virtue of this theory is the consistent handling of singularities, like empty arrays.This model is highly APL-speci�c and it is not easily generalized to other indexedstructures. Another approach to arrays is taken by Fitzpatrick et. al. [18]: theyde�ne arrays as pairs of \shapes" and functions (essentially a simple instance ofdata �elds) and consider algebraic transformations of high-level functional arrayalgorithm speci�cations into forms suitable to implement on SIMD processors.Formal models of arrays as functions from \index sets" are closely related to thepartial function view of data �elds. A Mathematics of Arrays (MOA) [51] is a modelwhere APL-like arrays are de�ned in this manner, and operations on arrays are for-mally de�ned. In [9] space-time recursion equations are studied, a kind of recursivelyde�ned partial functions which give semantics to systolic arrays. This work laterdeveloped into the language Crystal [10, 71], where array-like entities called data�elds are de�ned as functions ranging over �nite index domains. These domainsare constructed from a number of �nite base domains (integer intervals, hypercubecoordinates, trees) which can be combined using constructors for product, directsum, function space, and restriction. The functions are explicitly typed with theirindex domains. A similar language is Alpha [42], where restrictions which ensurethe e�cient compilation are posed on the de�nition of recursive arrays [54, 55].A similar view, but for more unstructured data, appears in the data parallellanguage Connection Machine Lisp [62]. Here, the parallel data type is the xapping,which is a set of pairs of lisp objects where the �rst component of a pair cannotoccur in another pair. Thus, xappings are really set-theoretical functions over a�nite domain and they correspond to sparse data �elds. A formalization of theConnection Machine Lisp model was done by Boug�e and Paulin-Mohring [6].These formalisms are all based on a single type of indexed data structure, anda purpose of our work is to develop a more generic model which is less dependenton the choice of structure. The work on Shape Polymorphism [34] is a step in thatdirection, where a category-theoretical model is used to specify shapely types andidentify operations which are polymorphic over these types. The \usual" algebraictypes of lists, trees, graphs etc. are shapely types. The canonical example of ashape-polymorphic function is map. The array language FiSh [35] is based on thistheory. FiSh only supports regular arrays. Each array has a shape (similar to41

bounds for data �elds), and FiSh has fairly strong restrictions which ensure that theshape can be inferred at compile time. FiSh functions can be shape-polymorphic.A somewhat similar approach is the polytypic model, where functions like map arede�ned for classes of recursive types [33].Another approach is to use systematic overloading to obtain a generic collection-oriented programming model. Peyton Jones [36] uses the class system of Haskell tode�ne a class of bulk types with associated operations. Similar e�orts have been donein the object-oriented community, like the STL C++ library [52]. Object-orientedapproaches to generic program development for high-performance parallel comput-ing have also been considered [14]. The enum function for data �elds correspondsto the \iterator" design pattern in object-oriented design [19]. Common for theseoverloading-based e�orts is that they do not pay much attention to multidimen-sional structures. It is possible to de�ne a class for bounds in Haskell's current classsystem but multidimensional bounds cannot be handled well in this system [28].Although the data �eld model is inspired by collection-oriented constructs in ex-isting languages, it is still a formal model and therefore this section focusses on for-malisms rather than languages. An excellent survey of collection-oriented languagesand features up to around 1990 is found in [58]. However, the languages ZPL [8] andFIDIL [57] deserve special mentioning since they consider bounds (called regions inZPL and domains in FIDIL) to be more or less �rst-class data. In particular, thedomains of FIDIL are much richer than simple array bounds: they can also besparse, or \boxed" (exact unions and set di�erences of array bounds). The data�eld model would be well suited to describe them formally. FIDIL is also the onlyexisting array-like language we know which does not require conforming argumentsfor elementwise applied strict operations: rather, it uses the \implicit intersectionrule" which corresponds to our equation (5) for computing bounds of '-terms.10 Conclusions and Further ResearchWe have presented the data �eld model, which is a extension of the traditionalarray concept into a general model for indexed data structures. A major aim isto provide semantically sound and general principles for how to design languageswith collection-oriented features. Data �elds are pairs of functions and generalbounds equipped with a number of abstract operations satisfying some axioms.The operations are selected to support the usual collection-oriented operations.Indexed structures can also be seen as partial functions. �-abstraction turns outto provide a very
exible and generic syntax for de�ning many collection-orientedoperations on partial functions. We de�ne '-abstraction as a similar syntax for data�elds. The purpose is twofold: it supports a style of de�ning data �elds as if theywere partial functions, and its gives a way to de�ne data �elds without explicitlyde�ning the bounds. The bounds are instead implicitly de�ned through the seman-tics of '-abstraction. We give a family of possible semantics for '-expressions ashigher order rewrite systems. They de�ne how bounds should be inferred in somecases which occur to some extent in existing languages: elementwise applied opera-tions, selection and projection on higher-dimensional arrays, and indirect indexing.We prove a number of properties for the semantics of '-expressions, including atheorem which relates the semantics of a �-expression and the corresponding '-expression. This is, however, not the only possible way to de�ne bounds implicitly,and we outline an alternative '-calculus which models the more conventional \con-formance requirement" for operands to elementwise applied operations. We alsoconsider brie
y how mutable data �elds, which can be updated in-place, could beformally de�ned.We de�ne a small functional language with data �elds and forall-abstraction42

which we use for programming and language design examples throughout the text.The data �eld part is given a semantics in terms of formal data �elds and '-abstraction. The language provides a possible core language for data �elds, andwe show how a number of syntactical conveniences can be built on top of it. Theprogram examples include database queries, symbolic representations of drawings,and parallel algorithms for arrays and sparse structures. Our aim is to prove thatdata �elds can provide a suitable programming concept for a wide range of appli-cations, including but not restricted to parallel algorithms and their speci�cation.On the other hand it is also possible to de�ne application-speci�c languages basedon specialised data �elds, where the language features and the exact data �eld se-mantics are tuned to provide the best tradeo� for the application at hand betweene�ciency, expressiveness and
exibility.We have implemented a dialect of Haskell which o�ers an instance of data�elds [27]. This dialect provides data �elds with sparse/dense array bounds al-most exactly as de�ned in Sect. 7.5, and several of the examples given here havebeen implemented in it. One topic of research for the future is to develop this di-alect further, both regarding language features and implementations, and to try itout in a more varied range of applications.Another topic of research is how to integrate the elemental intrinsics overloadingwith more advanced type systems than the simple, explicitly typed system of ourexample language. It is not known how type systems with type inference �a laHindley-Milner should be best modi�ed to accomodate this. In Haskell, the classsystem could be used to some extent to provide this overloading but it does notseem to provide the best way of doing it. We are currently working on a modi�edHindley-Milner type system which resolves this overloading at compile-time [66].This presentation has focussed on the language design aspects of the data �eldmodel, but it could also potentially act as a foundation for formal program devel-opment methodologies. We have already mentioned the possible connection withparallel algorithm development in the Bird-Meertens formalism. Another, fairlyobvious use of the model which we have not developed here is as a framework forstudying formal mappings of data structures, e.g., from abstract index domainsclose to the problem to concrete index domains close to the address space of thetarget machine.AcknowledgmentsWe would like to thank Jan-Olof Eklundh, Karl-Filip Fax�en, Jonas Holmerin,Fredrik N�ou, and Claes Thornberg for valuable comments. This work was par-tially supported by The Swedish Research Council for Engineering Sciences (TFR),grants 91{333 and 94{109. Part of the work was done while the second author wasInvited Professor at Ecole Normale Sup�erieure de Lyon.References[1] E. Albert, J. D. Lukas, and G. L. Steele Jr. Data parallel computers and theforall statement. J. Parallel Distrib. Comput., 13:185{192, Oct. 1991.[2] J. Backus. Can programming be liberated from the von Neumann style? Afunctional style and its algebra of programs. Comm. ACM, 21(8):613{641,August 1978.
43

[3] G. Berry, P.-L. Curien, and J.-J. L�evy. Full abstraction for sequential languages:the state of the art. In M. Nivat and J. C. Reynolds, editors, Algebraic Methodsin Semantics, chapter 3, pages 89{132. Cambridge University Press, 1985.[4] R. S. Bird. A calculus of functions for program derivation. In D. A. Turner,editor, Research Topics in Functional Programming, The UT Year of Program-ming Series, chapter 11, pages 287{307. Addison-Wesley, Reading, MA, 1989.[5] R. S. Bird. Constructive functional programming. In M. Broy, editor, Mark-toberdorf International Summer school on Constructive Methods in ComputerScience, NATO Advanced Science Institute Series. Springer Verlag, 1989.[6] L. Boug�e and C. Paulin-Mohring. Towards a theory of data-parallel computa-tion: from Connection Machine Lisp to Connection Machine ML. Unpublisheddraft, Mar. 1991.[7] W. S. Brainerd, C. H. Goldberg, and J. C. Adams. Programmer's Guide toFORTRAN 90. Programming Languages. McGraw-Hill, 1990.[8] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and W. D.Weathersby. The case for high level parallel programming in ZPL. IEEEComputational Science and Engineering, 5(3):76{86, 1998.[9] M. C. Chen. Space-Time Algorithms: Semantics and Methodology. PhD thesis,California Institute of Technology, Pasadena, CA, 1983.[10] M. C. Chen, Y.-I. Choo, and J. Li. Crystal: Theory and pragmatics of gen-erating e�cient parallel code. In B. K. Szymanski, editor, Parallel FunctionalLanguages and Compilers, chapter 7, pages 255{308. Addison-Wesley, 1991.[11] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Compu-tation. MIT Press, 1989.[12] B. Courcelle. Recursive applicative program schemes. In J. van Leeuwen,editor, Handbook of Theoretical Computer Science, chapter 9, pages 459{492.Elsevier Science Publishers B. V., 1990.[13] G. Dahlquist, �A. Bj�orck, and N. Anderson. Numerical Methods. Prentice Hall,Englewood Cli�s, NJ, 1974.[14] F. Dobrian, G. Kumfert, and A. Pothen. The design of sparse direct solversusing object-oriented techniques. ICASE Report 99-38, ICASE, Hampton, VA,Sept. 1999.[15] K. Ekanadham. A perspective on Id. In B. K. Szymanski, editor, Parallel Func-tional Languages and Compilers, chapter 6, pages 197{253. Addison-Wesley,1991.[16] A. Falko� and K. Iverson. The Design of APL. IBM Journal of Research andDevelopment, pages 324{333, July 1973.[17] J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A report on the Sisal languageproject. J. Parallel Distrib. Comput., 10:349{366, 1990.[18] S. Fitzpatrick, T. J. Harmer, A. Stewart, M. Clint, and J. M. Boyle. The au-tomated transformation of abstract speci�cations of numerical algorithms intoe�cient array processor implementations. Science of Computer Programming,28(1):1{41, 1997. 44

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elementsof Reusable Object-oriented Software. Professional Computing Series. Addison-Wesley Longman, 1995.[20] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial algebrasemantics and continuous algebras. J. Assoc. Comput. Mach., 24(1):68{95,Jan. 1977.[21] S. Gorlatch. Extracting and implementing list homomorphisms in parallel pro-gram development. Science of Computer Programming, 33(1):1{27, 1999.[22] P. Hammarlund and A. Lansner. Implementations of very large recurrent ANNson massively parallel SIMD computers. In I. Aleksander and J. Taylor, edi-tors, Proceedings of the 1992 International Conference on Arti�cial NeuralNetworks, pages 1287{1290, Amsterdam, September 1992. ICANN-92, North-Holland.[23] P. Hammarlund and B. Lisper. On the relation between functional and dataparallel programming languages. In Proc. Sixth Conference on Functional Pro-gramming Languages and Computer Architecture, pages 210{222. ACM Press,June 1993.[24] High Performance Fortran Forum. High Performance Fortran language speci-�cation. Scienti�c Programming, 2(1):1{170, June 1993. HPF Version 1.0.[25] W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms. Comm. ACM,29(12):1170{1183, Dec. 1986.[26] J. R. Hindley. The Church-Rosser Property and a Result in Combinatory Logic.PhD thesis, University of Newcastle-upon-Tyne, 1964.[27] J. Holmerin. Implementing data �elds in Haskell. Technical Report TRITA-ITR 99:04, Dept. of Teleinformatics, KTH, Stockholm, Nov. 1999.ftp://ftp.it.kth.se/Reports/paradis/DFH-report.ps.gz.[28] J. Holmerin and B. Lisper. Data Field Haskell. Unpublished draft, 1999.[29] J. Holmerin and B. Lisper. Data Field Haskell. In G. Hutton, editor, Proc.Fourth Haskell Workshop, pages 106{117, Montreal, Canada, Sept. 2000.[30] J. Holmerin and B. Lisper. Development of parallel algorithms in Data FieldHaskell. In A. Bode, T. Ludwig, W. Karl, and R. Weism�uller, editors, Proc.Euro-Par 2000, volume 1900 of Lecture Notes in Comput. Sci., pages 762{766,Munich, Germany, Aug. 2000. Springer-Verlag.[31] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel,M. M. Guzm�an, K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil,W. Partain, and J. Peterson. Report on the programming language Haskell:A non-strict, purely functional language. ACM SIGPLAN Notices, 27(5), May1992.[32] J. Hughes. Lazy memo-functions. In J.-P. Jouannaud, editor, Proc. FunctionalProgramming Languages and Computer Architecture, pages 129{146, Nancy,France, Sept. 1985. Springer-Verlag.[33] P. Jansson and J. Jeuring. PolyP - a polytypic programming language ex-tension. In Proc. 24th ACM SIGPLAN-SIGACT Symposium on Principles ofProgramming Languages, pages 470{482, Paris, France, Jan. 1997. ACM Press.45

[34] C. B. Jay and J. R. B. Cockett. Shapely types and shape polymorphism. InD. Sannella, editor, Proc. 5th European Symposium on Programming, Volume788 of Lecture Notes in Comput. Sci., pages 302{316, Edinburgh, Apr. 1994.Springer-Verlag.[35] C. B. Jay and P. A. Steckler. The functional imperative: shape! In C. Hankin,editor, Proc. 7th European Symposium on Programming, volume 1381 of LectureNotes in Comput. Sci., pages 139{53, Lisbon, Portugal, Mar. 1998. Springer-Verlag.[36] S. P. Jones. Bulk types with class. In Electronic Proceedings of the 1996Glasgow Functional Programming Workshop, Ullapool, July 1996.[37] J. W. Klop. Combinatory Reduction Systems. PhD thesis, CWI, Amsterdam,1980. Mathematical Centre Tracts Nr. 127.[38] J. W. Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, andT. S. E. Maibaum, editors, Handbook of Logic in Computer Science, vol. 2,chapter 1, pages 1{116. Oxford University Press, Oxford, 1992.[39] J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reductionsystems: Introduction and survey. Theoret. Comput. Sci., 121:279{308, 1993.[40] D. Knuth and P. Bendix. Simple word problems in universal algebra. InJ. Leech, editor, Computational Problems in Abstract Algebra, pages 263{297.Pergamon Press, Elmsford, N.Y., 1970.[41] A. Lansner and �O. Ekeberg. A one-layer feedback, arti�cial neural networkwith a Bayesian learning rule. Int. J. Neural Systems, 1(1):77{87, 1989.[42] H. Le Verge, C. Mauras, and P. Quinton. A language-oriented approach to thedesign of systolic chips. Journal of VLSI Signal Processing, 3:173{182, 1991.1991.[43] B. Lisper. Data parallelism and functional programming. In G.-R. Perrin andA. Darte, editors, The Data Parallel Programming Model: Foundations, HPFRealization, and Scienti�c Applications, Vol. 1132 of Lecture Notes in Comput.Sci., pages 220{251, Les M�enuires, France, Mar. 1996. Springer-Verlag.[44] B. Lisper. Data �elds. In Proc. Workshop on Generic Programming,Marstrand, Sweden, June 1998.http://wsinwp01.win.tue.nl:1234/WGPProceedings/.[45] B. Lisper and J.-F. Collard. Extent analysis of data �elds. In B. Le Charlier,editor, Proc. International Symposium on Static Analysis, Vol. 864 of LectureNotes in Comput. Sci., pages 208{222, Namur, Belgium, Sept. 1994. Springer-Verlag.[46] B. Lisper and P. Hammarlund. The data �eld model. Technical Report TRITA-IT R 99:02, Dept. of Teleinformatics, KTH, Stockholm, Mar. 1999.ftp://ftp.it.kth.se/Reports/TELEINFORMATICS/TRITA-IT-9902.ps.gz.[47] B. Lisper and J. Holmerin. Development and veri�cation of parallel algorithmsin the data �eld model. In S. Gorlatch and C. Lengauer, editors, Proc. 2nd Int.Workshop on Constructive Methods for Parallel Programming, pages 115{130,Ponte de Lima, Portugal, July 2000.46

[48] F. Loulergue, G. Hains, and C. Foisy. A calculus of recursive-parallel BSPprograms. In S. Gorlatch, editor, Proc. First International Workshop on Con-structive Methods for Parallel Computing, pages 59{70, Marstrand, Sweden,June 1998.[49] D. Maier. The Theory of Relational Databases. Pitman, London, 1983.[50] T. More, Jr. Axioms and theorems for a theory of arrays. IBM Journal ofResearch and Development, 17(2):135{175, Mar. 1973.[51] L. M. R. Mullin. Psi, the indexing function: a basis for FFP with arrays.In L. M. R. Mullin, M. Jenkins, G. Hains, R. Bernecky, and G. Gao, editors,Arrays, Functional Languages, and Parallel Systems, chapter 10, pages 185{200. Kluwer Academic Publishers, Boston, 1991.[52] D. R. Musser and A. Saini. STL Tutorial and Reference Guide. Addison-Wesley, Reading, MA, 1996.[53] E. Part-Enander, A. Sj�oberg, B. Melin, and P. Isaksson. The MATLAB Hand-book. Addison-Wesley, 1996.[54] P. Quinton, S. Rajopadhye, and D. Wilde. Derivation of data parallel code froma functional program. In 9th International Parallel Processing Symposium,pages 1{15, 1995.[55] P. Quinton, S. Rajopadhye, and D. Wilde. Deriving imperative code fromfunctional programs. In 7th Conference on Functional Programming Languagesand Computer Architecture, La Jolla, CA, June 1995.[56] J.-C. Raoult and J. Vuillemin. Operational and semantic equivalence betweenrecursive programs. J. Assoc. Comput. Mach., 27(4):772{796, Oct. 1980.[57] L. Semenzato and P. Hil�nger. Arrays in FIDIL. In L. M. R. Mullin, M. Jenkins,G. Hains, R. Bernecky, and G. Gao, editors, Arrays, Functional Languages,and Parallel Systems, chapter 10, pages 155{169. Kluwer Academic Publishers,Boston, 1991.[58] J. M. Sipelstein and G. E. Blelloch. Collection-oriented languages. Proc. IEEE,79(4):504{523, Apr. 1991.[59] S. K. Skedzielewski. Sisal. In B. K. Szymanski, editor, Parallel FunctionalLanguages and Compilers, chapter 4, pages 105{157. Addison-Wesley, 1991.[60] D. B. Skillicorn. Architecture-independent parallel computation. Computer,23(12):38{50, Dec. 1990.[61] D. B. Skillicorn. Building BSP programs using the re�nement calculus. Exter-nal Technical Report TR96-400, Dept. of Computing and Information Science,Queen's University, Kingston, Ontario, Oct. 1996.[62] G. L. Steele and W. D. Hillis. Connection Machine LISP: Fine grained par-allel symbolic programming. In Proc. 1986 ACM Conference on LISP andFunctional Programming, pages 279{297, Cambridge, MA, 1986. ACM.[63] V. Strassen. Gaussian elimination is not optimal. Numerical Mathematics,(13), 1969.[64] Thinking Machines Corporation, Cambridge, MA. Connection Machine: Pro-gramming in C*, 6.1 edition, 1991. 47

[65] Thinking Machines Corporation, Cambridge, MA. Connection Machine: Pro-gramming in *Lisp, 6.1 edition, 1991.[66] C. Thornberg. Towards Polymorphic Type Inference with Elemental FunctionOverloading. Licentiate thesis, Dept. of Teleinformatics, KTH, Stockholm, May1999. Research Report TRITA-IT R 99:03.[67] D. Turner. Functional programming and communicating processes. In Proc.PARLE'87 vol. 2, Volume 259 of Lecture Notes in Comput. Sci., pages 54{74,Berlin, 1987. Springer-Verlag.[68] L. G. Valiant. A bridging model for parallel computation. Comm. ACM,33(8):103{111, Aug. 1990.[69] V. van Oostrom. Private communication.[70] G. Winskel. The Formal Semantics of Programming Languages { An Introduc-tion. MIT Press, 1993.[71] J. A. Yang and Y. Choo. Data �elds as parallel programs. In Proceedings ofthe Second International Workshop on Array Structures, Montreal, Canada,June/July 1992.A A Rewrite Semantics for the Metalanguage inSection 4The following CRS M gives an alternative semantics to the metalanguage de�nedin Sect. 4, including the \hyperstricti�cation" operator de�ned in Sect. 4.2. (Forreadability the notation is not in formal CRS syntax, but it is straightforward toput the rules in this format. See Appendix B.)op(c1 ; : : : ; cn) ! c; (37)is�(�) ! true (38)is�(c) ! false (39)if (true; x ; y) ! x (40)if (false ; x ; y) ! y (41)if (�; x ; y) ! � (42)�x:t t0 ! t[t0=x] (43)�f:t ! t[�f:t=f] (44)f c ! f c; c normal form with no occurrence of � (45)f c ! �; c normal form with some occurrence of � (46)(t[t0=x] denotes substitution with t0 for x in t.) We call this CRS M . (37) isreally a rule scheme with an instance for every strict operation op, possible tuple(c1; : : : ; cn) of normal forms for which f is de�ned, and resulting function valuec. (This is a standard way to specify strictness in rewrite systems. Cf. the eager�-calculus [70].) (45) and (46) are also rule schemes of this kind. Similarly, (39)is a rule scheme, where c ranges over an assumed set of nonoverlapping patternswhich together match exactly the possible canonical forms corresponding to non-(?,�) values in the cpo which is� maps from. (We omit the details. Just to givethe
avour, for a lazy language where expressions are reduced to weak head normalform the patterns are of the form C(x1; : : : ; xn), for each constructor C of arityn � 0.) 48

The other rules except (42) are more or less the same as the reduction rules ofPCF [3]. The correspondence between least �xpoint and rewrite models for thiskind of language is well known [3, 12, 56]. Let us just make two remarks: �rst, Mis left-normal and orthogonal, which means that it is con
uent and the leftmost-outermost reduction strategy is normalizing (see Appendix B). Second, if t $� t0where t, t0 are terms in the metalanguage and $� is the convertibility relation ofM , then t and t0 must be equal also w.r.t. the denotational semantics.B Combinatory Reduction SystemsCombinatory Reduction Systems (CRS) is a generalization of (�rst order) termrewriting systems (TRS) which includes reduction systems with bound variables,like di�erent �-calculi. Many important concepts and results for TRS, such asorthogonality, and results about reduction strategies, carry over directly to CRS.For a full description, including fully formal de�nitions, see [37, 39].Consider a set of terms T , constructed out of constant function symbols with�xed arity, nullary variables, and a binary abstraction operator, written [] (i.e., if tis a term and x is a variable, then [x]t is a term). A Combinatory Reduction Systemover T is a set of reduction rules s! t, where s, t are metaterms, constructed as theterms in T , plus terms containing metavariables, written in upper case (Z, Z 0, etc.).Each metavariable has an arity (possibly 0): if Z has arity k, then Z(t1; : : : ; tk),where t1; : : : ; tk are metaterms, is a metaterm. The metavariables correspond tothe free variables in TRS rules.(Meta)terms are considered equivalent modulo renaming of bound variables.For metaterms s, t in reduction rules s! t, we demand (i) s and t are closed (i.e.,a variable x occurs only within the scope of a binding [x]), (ii) s has the formF (t1; : : : ; tn), where F is a constant function symbol, (iii) any metavariable in toccurs also in s, and (iv) a metavariable Z of arity k occurs in s only in the formZ(x1; : : : ; xk), where x1; : : : ; xk are pairwise distinct variables. Examples are theCRS rules for �-reduction and unfolding of �xpoint abstractions:@(�([x]Z(x)); Z 0) ! Z(Z 0)�x:Z(x) ! Z(�x:Z(x))(\@" is a binary function symbol for application.)A CRS R generates a reduction relation !R on the set of terms, very muchlike a �rst order TRS. The main di�erence is that the matching of rule to subtermis performed by a valuation rather than a �rst order substitution. Valuations areessentially a complex form of substitution which allows the possibility to specifysyntactically in rules whether bound variables can occur in certain subterms or not.The only way for a bound variable to occur in a subterm matched to a metavariableis if it is explicitly \passed" as a formal argument to the metavariable, i.e., a termwhich is matched by [x](: : : Z : : :) (where Z is a nullary metavariable) can haveno occurrence of x in the subterm corresponding to Z, whereas a term matchedby [x](: : : Z(x) : : :) (with Z unary) may have this. This allows purely syntacticalspeci�cations of rules like �-reduction in the �-calculus.Two important concepts for CRS are orthogonality and left-normality. Tworewrite rules are mutually orthogonal if both are left-linear and if they don't over-lap [39] (i.e., there are no \critical pairs" in the terminology of Knuth-Bendix com-pletion [38, 40]). A CRS is orthogonal if all its rules are mutually orthogonal. Anorthogonal CRS is con
uent [37, 39]. A CRS is left-normal if, in the left-hand sidesof all rules, all constants and function symbols (in linear term notation) precedethe variables and metavariables. For a left-normal CRS the leftmost-outermostreduction strategy is normalising [37]. 49

Most facts about CRS still hold for substructures, i.e., systems where the setof terms is restricted but closed under reduction, valuation, and taking of context.Such substructures include typed systems. In particular, the facts about orthogonaland left-normal systems mentioned above still hold.C CRS rules for '-abstractionThe reduction rules 'x:t! (�x:t; Bi(t; x; ;))which de�ne the CRS �i(R) have the following formal CRS de�nition: for all termst and variables x such that Bi(t; x; ;)) is de�ned, there is a rule'([x]t) ! (�([x]t); Bi(t; x; ;))The rules are particularly simple since they contain no metavariables. Rules'(x1; : : : ; xn):t! (�(x1; : : : ; xn):t; Bi(t; (x1; : : : ; xn); ;))with pattern-matching over tuples have the following formal CRS de�nition:'([x1] � � � [xn]t)! (�([x1] � � � [xn]t); B(t; (x1; : : : ; xn); ;))D Proofs of properties of �i(R)Proof of Proposition 8. Bi(t; x; Y) is de�ned only if FV (t) � fxg [Y . Thus,'x:t ! (�x:t; Bi(t; x; ;)) belongs to �i(R) only if 'x:t is closed. Therefore �i(R)is trivially left-linear, since all left-hand sides are closed. Furthermore, Bi(t; x; Y)is de�ned only if t contains no closed '-subterm. Since all left-hand sides in �i(R)are closed '-terms, it follows that there can be no overlap between them.Proof of Proposition 9. It remains to check that there is no overlap between rulesin �i(R) and R. No rule of �i(R) can match any subterm in a left-hand side of arule in R, since these cannot have any subterms of form 'x:t. Conversely, no rulein R can match any subterm in a left-hand side of a rule in �i(R), since any suchleft-hand side is an R-nf.Proof of Proposition 10. The reduction relations of two mutually orthogonalCRS'es commute [56, 69]. �i(R) is orthogonal, thus con
uent. Then Hindley-Rosen's lemma [26] yields that the union is con
uent.Proof of Proposition 11. Consider any closed �i(R) [R-nf t. Either t containsno closed '-subterms. But then, since t is closed, any '-subterm contains somevariable each which is bound by some other abstraction mechanism than '. t isthen allowed to be a �i(R) [R-nf. Otherwise, t must have some closed subterm'x:t0. Let us show, by contradiction, that t then cannot be a �i(R)[R-nf. Since tis a �i(R)[R-nf, t0 must be an R-nf. If all its '-subterms are open, then Bi(t0; x; ;)is de�ned: thus, 'x:t0 is a �i(R)-redex and t cannot be a �i(R)[R-nf. Otherwise t0has some closed '-subterm. We can now recursively test this subterm in the sameway, until we either arrive at a subterm which has only open '-subterms, and thenis a �i(R)-redex, or an innermost closed '-subterm without any '-subterm. Thisinnermost subterm must then be a �i(R)-redex.50

E Proofs of Theorem 1 and Related LemmasThe following two lemmas are variations on the results in Section 6. We need themto prove Lemma 2. Their proofs are entirely straightforward.Lemma 4 If g is strict, then res(g(f1; : : : ; fn)) � res(f1) \ � � � \ res(fn).Lemma 5 res(if (b; f ; g)) � res(b) \ (res(f) [res(g)).Proof of Lemma 1. First note that for any predicate p it holds that fx j p(x) =true g � f x j p(x) = true g. We have res(�x:(f; b) ! g(x)) = res(�x:f n b(g(x)) =(by Proposition 1) = res(�x:(fnb)(g(x)) = (by Proposition 3) = res(�x:f(g(x))nb(g(x)) � fx j [[b]](g(x)) = true g � f x j [[b]](g(x)) = true g = ff[[b]] � ggg.Proof of Lemma 2. By induction on expressions, considering each of the equations(2) { (11) de�ning B0(t; x; Y):� B0(t; x; Y) = all : then the statement is trivially true. This case includes thebase cases t = c and t = y 2 fxg [Y .� t = (f; b)!x, FV (f ; b) = ;: then B0(t; x; Y) = b and res(�x:tv) = res(�x:((f; b)!x)) � ffbgg by Lemma 1. By the assumed property of B(�) there exists a max-imal bound b0 such that B0(t; x; Y) = b v b0. Thus, res(�x:tv) � ffb0gg, andby Proposition 7 we also obtain ffB0(t; x; Y)gg � ffb0gg.� t = (f; b) ! t1, FV (f ; b) = ;, t1 6= x: induction on t1. Since FV (f ; b) = ; wehave tv = �x:(f; b) ! tv1. We have z 2 res(�x:(f; b) ! tv1) =) (�x:(f; b) ! tv1) z 6=? =) (f; b)!tv1 [z=x] 6= ? =) f n b(tv1 [z=x]) 6= ? =) (f n b hyperstrict) =)tv1[z=x] 6= ? =) z 2 res(�x:tv1). Thus, res(�x:tv) � res(�x:tv1). By the in-duction hypothesis there is a maximal b0 such that res(�x:tv1) � ffb0gg andffB0(t1; x; Y)gg v b0. Since ffB0(t; x; Y)gg = ffB0(t1; x; Y)gg the result fol-lows for t.� t = op(t1 ; : : : ; tm), op strict: then B0(t; x; Y) = B0(t1; x; Y)u� � �uB0(tm; x; Y).We have tv = op(tv1 ; : : : ; tvm). By induction, there are maximal bounds bi suchthat res(�x:tvi) � ffbigg and B0(ti; x; Y) v bi for 1 � i � n. Finally, note thatDe�nition 4 requires that ffbgg\ffb0gg � ffbub0gg for all maximal bounds b, b0.We have res(�x:tv) = res(�x:op(tv1 ; : : : ; tvm)) = res(op(�x :tv1 ; : : : ; �x :tvm)) �(by Lemma 4) � res(�x :tv1)\ � � � \ res(�x :tvn) � (by induction) � ffb1gg \� � �\ffbmgg � ffb1u� � �ubmgg. Since all bi are maximal it holds that b1u� � �ubmis maximal. Furthermore, B0(t; x; Y) = B0(t1; x; Y) u � � � u B0(tm; x; Y) v(by induction plus monotonicity of u) v b1 u � � � u bm. Thus, b1 u � � � u bmhas the desired properties.� t = if (t1 ; t2 ; t3): analogous to the previous case.� t = �y:t1: the induction hypothesis is 8Y 8v:9b:res(�x:tv1) � ffbgg^B0(t1; x; Y) vb, where b is maximal. The �rst conjunct can be reformulated into 8Y 8v9b:(8z:z 2res(�x:tv1) =) [[b]] z), or 8Y 8v9b:(8z:tv1[z=x] 6= ? =) [[b]] z), or 8Y 8v9b:(8z:tv1[z=x] =?_ [[b]] z). Now, we may replace Y with Y [fyg and v with v [w in the in-duction hypothesis, where v maps from Y to values and w from fyg to values.Also note that tv[w1 = (tv1)w. We obtain 8Y 8y8v8w9b:(8z:(tv1)w[z=x] = ? _[[b]] z)^B0(t1; x; Y [fyg) v b. The second conjunct equals B0(�y:t1; x; Y) v b.Now we want to move the quanti�cation over w inside the existential quan-ti�cation over b. In order to do this, we observe that in general it holdsthat 8x:9y:(P (x) _ Q(y)) ^ R(y) () 9y:(8x:P (x) _ Q(y)) ^ R(y), which51

is straightforward to prove. Thus, we are allowed to move the quanti�ca-tion over w into the �rst disjunct, which becomes 8w:(tv1)w[z=x] = ?. Dueto extensionality, this is the same as �y:tv1 [z=x] = ?. Thus, we obtain8Y 8y8v9b:(8z:�y:tv1[z=x] = ?_[[b]] z)^B0(�y:t1; x; Y) v b, or 8Y 8v9b:(8z:z =2res(�x:�y:tv1) _ [[b]] z) ^B0(�y:t1; x; Y) v b, or8Y 8v9b:(res(�x:�y:tv1) � [[b]]) ^ B0(�y:t1; x; Y) v b.� t = 'y:t1: We need the following lemma: 8v:tv = ?� =) 'x:t = ?D(�;�).From this, the proof can be carried out exactly as in the previous case.We now prove the lemma. There are two cases. First, assume t has nonormal form. Then directly 'x:t = ?D(�;�). Otherwise, t has a normal formt1. Then 'x:t = (�x:t1; B0(t1; x; ;)). Since rewrite systems are closed undersubstitutions and t!� t1 we obtain tv !� tv1 . This means that tv = tv1 whentheir meanings in the metalanguage are considered, since this meaning mustbe consistent with the rewrite semantics for the language. Thus, tv1 = ?� , and'x:t = (�x:?� ; B0(t1; x; ;)). Thus, [['x:t]] = ?�!� which, by extensionalityof data �elds, implies that 'x:t = ?D(�;�).Proof of Theorem 1. Let t be as stated in the theorem and let y be �nite maximal.We have 'x:t ! y = �x:t0 n [[B0(t0; x; ;)]] y = (since y �nite maximal) = �x:t0 n[[B0(t0; x; ;)]] y. Now, if y 2 res(�x:t0), then, by Lemma 2 follows that there is amaximal b such that [[b]] y = true and B0(t0; x; ;) v b. Since B0(t0; x; ;) is maximalit must then be equal to b, and it follows that [[B0(t0; x; ;)]] y = true. Thus, 'x:t ! yequals �x:t0 y. If, on the other hand, y =2 res(�x:t0), then �x:t0 y = ?, and thus also'x:t0 ! y = ?.The above proves that 'x:t ! y = �x:t0 y. But since t reduces to t0 we must have�x:t0 y = �x:t y, since the meaning of the �-abstraction must be consistent withthe rewrite semantics for the metalanguage (cf. the proof of Lemma 2). Thus, thetheorem is proved.Proof of Lemma 3. For all the cases where B0 is de�ned, the proof of Lemma 2carries over more or less directly. The new, nontrivial case, is t = (f; b) ! ~t[p; ~x],where ; � FV (ti) � Y for i 2 I and FV (ti) = ; for i =2 I . Then tv = (f; b) !~tv[p; ~x] and B1(t; ~x; Y) = bproj p;I (b;~t). By Lemma 1, res(�~x:(f; b) ! ~tv[p; ~x]) �f ~x j [[b]](~tv [p; ~x]) = true g. Set ~y = ~tv. Thus, for any ~x in this set, 9(yi j i 2I[dom(p)):[[b]](~y[p; ~x]) = true. By (12), this implies that [[bproj p;I (b; ~y)]](~x) = true.Now tvi = ti for i =2 I , since these ti are closed. Thus, ti = yi for these i. It thenfollows from (12) that also [[bproj p;I (b;~t)]](~x) = true. (For this, it su�ces thatti = yi for i =2 I [dom(p).) Now, precisely as in the case t = (f; b) ! x in theproof of Lemma 2, the existence of a maximal b0 such that res(�~x:tv) v b0 andffB1(t; ~x; Y)gg � ffb0gg follows.

52

