The Data Field Model

Bjorn Lisper and Per Hammarlund
Malardalen University
and
Royal Institute of Technology (KTH)
Stockholm, Sweden

June 19, 2001

Abstract

Indexed data structures are prevalent in many programming applications.
Collection-oriented languages provide means to operate directly on these struc-
tures, rather than having to loop or recurse through them. This style of
programming will often yield clear and succinct programs. However, these
programming languages will often provide only a limited choice of indexed
data types and primitives, and the exact semantics of these primitives will
sometimes vary with the data type and language.

In this paper we develop a unifying semantical model for indexed data
structures. The purpose is to support the construction of abstract data types
and language features for such structures from first principles, such that they
are largely generic over many kinds of data structures. The use of these ab-
stract data types can make programs and their semantics less dependent of
the actual data structure. This makes programs more portable across different
architectures and facilitates the early design phase. The model is a general-
isation of arrays, which we call data fields: these are functions with explicit
information about their domains. This information can be conventional array
bounds but it could also define other shapes, for instance sparse.

Data fields can be interpreted as partial functions, and we define a meta-
language for partial functions. In this language we define abstract versions of
collection-oriented operations, and we show a number of identities for them.
This theory is used to guide the design of data fields and their operations so
they correspond closely to the more abstract notion of partial functions. We
define @-abstraction, a lambda-like syntax for defining data fields in a shape-
independent manner, and prove a theorem which relates @-abstraction and
A-abstraction semantically. We also define a small data field language whose
semantics is given by formal data fields, and give examples of data field pro-
gramming for parallel algorithms with arrays and sparse structures, database
quering and computing, and specification of symbolic drawings.

1 Introduction

Many computing applications require indexed data structures, i.e., a collection of
uniformly typed data which can be (directly or indirectly) indexed in order to
retrieve values. Simple examples are homogenous lists and arrays, but the concept
also includes more complex structures such as trees, graphs, nested sequences, hash
tables, data parallel entities, and relational databases. The indexing capability need
not be explicit (like, for instance, when representing a set by a list), but in many

applications it provides an important part of the model. Examples of the latter are



when solving partial differential equations, where the index is closely related to a
physical coordinate, in image and signal processing, and in linear algebra.

The traditional way to compute with indexed data structures is to explicitly
loop or recurse through them. It has since long been recognized, however, that
a programming model which provides operations directly on the data structures
can be very convenient. This model is an instance of collection-oriented program-
ming [58]. The classical example is APL [16], which provides arrays and a rich set
of operations on them.

Indexed data structures are very important in high performance computing. The
data parallel programming model [25] is a collection-oriented paradigm for explicit
parallelism, originally for SIMD architectures where distributed entities, like arrays
indexed by processor coordinates, are manipulated in parallel. Many historical
data parallel languages, like C* and *Lisp for the Connection Machine [64, 65],
modeled the underlying machine closely: for instance, they typically demanded
arrays to have the same dimensions as the processor array. This made it easier
to generate efficient code for a particular machine but was less flexible from a
programming point of view. Modern array languages, like Fortran 90 [7], High
Performance Fortran (HPF) [24] and Sisal [17, 59], provide a less machine-dependent
programming model where array dimensions need not be related to machine size.
This makes them more flexible with regard to programming, but it becomes harder
to compile them into efficient code. Still, they are better in that regard than
traditional languages since collection-oriented programs tend to expose more of the
inherent parallelism than programs with explicit loops or recursions. This also
facilitates the kind of reordering transformations which are useful for improving the
instruction level parallelism and cache hit ratio.

In general, modern computers have very complex performance characteristics.
As a consequence, an important task when programming for high performance is to
find elaborate data structures which provide the right tradeoffs between parallelism,
locality, and memory consumption. This is particularly crucial when considering
the possibility of sparse algorithms and representations, and dense/sparse hybrid
solutions. Thus, there is a need to support the rapid prototyping of such structures
and associated algorithms: on an abstract level, close to the problem formulation
and thus portable, but also the transition to concrete implementations for different
architectures. We believe this process can be facilitated by a programming model
which aids the parameterization of programs with respect to data structures.

In other situations, the ability for concise modeling is more important than
performance. The matrix language MATLAB [53], for instance, is widely used in
education and engineering. Also the scripting language Perl provides collection-
oriented features, like association arrays and advanced string operations. These
languages are not known to have fast implementations, their popularity stems from
the fact that they enhance the productivity of programmers for certain applications.
We believe that also application-specific collection-oriented languages benefit from
well-designed underlying models for the collections, which are designed according
to common principles.

The data field model is an attempt to provide such principles for indexed data
structures, through a common semantical framework for such structures. Another
objective is to make the collection-oriented paradigm applicable to new problems
by supporting a very generic programming model. The approach is to first consider
the more abstract view of indexed structures as partial functions, and then add the
explicit extra information about their domains which is necessary to perform all
desired operations on them, while not making any undue restrictions. We call this
extra information “bounds”, and they are essentially set representations. This ap-
proach leads naturally to an axiomatic definition of bounds, where some operations
with certain properties are postulated. We thus view bounds as an abstract data



type.
Partial functions can be defined through A-abstraction and we define a similar

syntax, called p-abstraction, for data fields. Array languages often have convenient
constructs to define arrays whose bounds are given implicitly. An important pur-
pose of p-abstraction is to provide a semantics for such constructs, and to aid the
generalisation of them to other data structures. In particular, we target sparse
structures.

A data field defined by @-abstraction has its bounds implicitly given such that
they approximate the domain of the corresponding partial function safely. Again,
since there are tradeoffs between efficient implementations and exactness of domain
approximation, we use an axiomatic approach where only certain properties of the
rewrite system are prescribed. Thus, we actually define a class of y-calculi ad-
hering to the axioms. These calculi are given as higher order rewrite systems. We
prove confluence and demonstrate that the well-known leftmost-outermost reduction
strategy is normalizing for all ¢-calculi in this class. We then formulate a theorem
which relates the semantics of a g-expression with the semantics of the correspond-
ing A-expression, and we prove it for an increasingly specialized suite of ¢-calculi
where rewrite rules are successively added to make the calculation of bounds more
precise. We also outline an alternative class of y-calculi, which define the kind of
computation of implicit bounds traditionally found in array languages, and indicate
how to define general mutable data fields which can be updated in-place.

What are the benefits of the data field approach? In Sipelstein’s and Blelloch’s
survey of collection-oriented languages [58], a number of common collection-oriented
operations are defined and a taxonomy is introduced. All these operations can be
expressed in a kernel language consisting of a minimal functional language enriched
with bounds and their operations, a function constructing data fields from func-
tions and bounds, and p-abstraction. Sipelstein and Blelloch furthermore identified
certain semantical ambiguities for some of these operations. If these operations are
defined as outlined above, then the ambiguities are resolved in a natural fashion.

Programming languages can provide data fields and ¢p-abstraction, and will then
enable a highly generic style of programming where a change of data collection
representation will require only a minimal change in the code. Some codes are
fully “bounds-generic” an example is found in Sect. 8.4. The theorem about
semantical correspondence between - and A-expressions ensures that the semantics
of y-expressions in the code will not change in a certain sense (to be made precise
in Sect. 7) when the underlying data structure is changed. We believe this property
is especially useful in the early design phase of collection-oriented programs, where
different representations and algorithms are tried out.

p-abstraction, as defined here, enables a lazy style of programming where infinite
data fields make sense. The advantage of lazy evaluation and infinite data structures
from a software-engineering perspective is well known. Two particular applications
in collection-oriented programming are the use of infinite constant data fields which
adapt to the right shape when used in a certain context, and predicates which act
as “masks” over finite data fields. See Sect. 2.

In [45], we defined a highly generic framework for extent analysis of data struc-
tures, using the more abstract view of indexed data structures as partial func-
tions. We have also defined and implemented “Data Field Haskell”, a dialect
of Haskell where the arrays are replaced with an instance of data fields (essen-
tially the sparse/dense arrays of Sect. 7.5), according to the framework defined
here [27, 30, 29, 47].

The rest of this paper is organized as follows. In Sect. 2 we give a taxonomy
of collection-oriented operations and identify the major syntactical styles for these.
Sect. 3 provides a first, informal definition of data fields and a small motivating
example in the form of a simple data field language and some programs. In Sec-



tions 4-6 we develop a small metalanguage for partial functions and describe how
almost all collection-oriented operations can be conveniently expressed in this lan-
guage. We also give a number of identities for these operations. Section 7 provides
the formal definitions of data fields and all related concepts, some results are proved,
and an example of a possible instance of data fields is developed. A substantial part
is devoted to ¢-abstraction and how their bounds can be computed. In Sect. 8 we
give some larger examples how our small data field language can be used to express
a variety of collection-oriented algorithms in a generic and convenient way. Sect. 9
gives an account for related work. In Sect. 10, finally, we wrap up and give some
directions for future research.

An early presentation of the more abstract data-structures-as-partial-functions
model, given here in Sections 5-6, is found in [23]. In [43], a tutorial over this model
is given. A short, preliminary account for the data field model as presented here is
given in [44].

2 Operations on indexed data structures

Which operations on indexed data structures are there, then, and how are they
expressed syntatically? One can distinguish six major groups of operations and
three syntactical styles. All operations considered in [58] fall into some of these
groups or can be expressed through operations from these.

Elementwise applied operations (apply-to-each in [58]) apply a “scalar” operation
f to every element a in a data structure A. That is, the resulting data structure
will contain the elements f(a), where a belongs to A. The canonical example is the
map operation on lists.

A common extension is to allow elementwise applied operations taking several
arguments. map provides this on lists if there are zip_n functions available which
create lists of n-tuples from n lists. Data parallel and array languages usually pro-
vide direct syntactical support. The simplest syntax is to introduce a syntactically
distinct elementwise applied operation for each “scalar” operation. It is often more
convenient to overload the scalar operation. In Fortran 90,

X+Y

denotes the elementwise addition of X and Y if these are arrays. An operation that
can be overloaded in this way is called an elemental intrinsic. This assumes a typing
of X and Y, such that the overloading can be resolved.

A third, comprehension-like kind of notation “quantifies” over a given range
of indices, in order to explicitly mention each of the individual elements of the
resulting structure. The parallel for construct in Sisal is an example: adding X and
Y elementwise for indices 1 to n can be expressed as

for i in 1,n returns array of X[i]+Y[il

The FORALL statement [1] in HPF is very related.

The exact semantics of elementwise applied operations varies, in particular when
they take several arguments with different extents. For operations on lists as above,
the semantics of zip_n decides the semantics of the elementwise applied operation
(typically, zip_n yields a list as long as the shortest argument). Another common
solution is to require conformance of the operands, which for one-dimensional arrays
means that they must have the same length. The semantics is that the arrays are
aligned and then added elementwise. But what should the indezx range of the result
be? In the imperative language Fortran 90, the range of a right-hand side array
expression in an array assignment is given by the range of the left-hand side. But



what if the expression occurs in some other environment, as in a purely functional
language?

A second group of operations reorder data structures (permute operations in [58]).
A common operation is “parallel read” (inverse permute in [58]) from a data struc-
ture A, where, for each index i within some range, A(source(7)) is selected. Here,
source is some function from indices to indices, which possibly is defined by another
indexed data structure. Parallel read can be expressed in the same three ways as
above, in HPF, for instance, through FORALL:

FORALL (I=1:N) B(I) = A(SOURCE(I))

where SOURCE is an array. HPF and Fortran 90 also support the overloaded syntax
B = A(SOURCE). This is precisely indexing by arrays like in APL, which thus can be
seen as parallel read where the range of the result is the range of the index array.
The third group of operations perform some kind of replication. For instance,
The Sisal operation array_£ill creates an array of copies of a given value. In
languages with elemental intrinsics, the following syntax is often allowed:

A+17

where A is an array. The meaning of this expression is an array, with the same range
as A, whose element for each index i is A(i)+17. This can be seen as a two-step
operation where first an array with the same range as A, filled with the value 17, is
created, and then these arrays are elementwise added. This automatic replication of
a scalar into an array is sometimes called promotion. Array languages often support
the replication of arrays into arrays of higher dimensions, e.g., replicating a vector
into a matrix with copies of the vector as columns, or rows.

A fourth group of operations select parts of data structures. Projections are
common in array languages: these select subarrays of lower dimension. For instance,
in Fortran 90, A(1, :) refers to the first row of the matrix A. Restriction operations
apply a boolean condition elementwise, as a “mask”, in order to select a part of a
data structure. In Fortran 90,

WHERE (A < 0.0) A = -A

effectively sets every element of A to its absolute value. Also dimension-preserving
subarray selection, like

ACI:D)

in Fortran 90, which selects the subarray of A ranging from I to J, can be seen as a
restriction, as well as the range specification in a HPF FORALL statement. Projection
and restriction are also common operations on relational databases.

A common restriction operation for lists is a filter function which yields a list
of all elements in a list where a predicate is true. There is a subtle difference in the
semantics: for array operations, selected elements usually retain their indices. The
filter operation, on the other hand, typically produces a “compressed” list where
the selected elements have their positions changed.

Domain operations (a case of information operations in [58]) return some kind
of information about the domain of the data structure. Examples are the length
of a list, or the bounds of an array. A domain operation which is often implicit in
the structure is an ordering of the elements. Domain information is needed to build
catenation operations an important group of operations which can be derived
from the kinds of operations listed here.

Reduction operations, finally, compute some value as a function of the elements
of a data structure. Usually, the function is composed of some repeatedly applied
binary operation. If the operation is associative, the reduction can be implemented



Figure 1: Some possible generalised bounds.

in parallel, and if it is commutative the execution order is even less restricted.
Examples of reduction operations are the foldl and foldr operations on lists.

Reduction is often thought of as an operation over a multiset of values (e.g.,
summing them). But unless the binary operation is associative and commutative
the elements must be ordered if the reduction is to be well-defined. For lists and
one-dimensional arrays, there are natural orderings. The situation is less clear for
multidimensional arrays and sparse structures.

3 Data Fields, Informally

The term “data fields” is borrowed from Crystal [10]. Our data fields are pairs (f, b),
where f is a function and the “bound” b is a set representation. We denote the
set defined by b by {{b}}, and the corresponding predicate by [b],,.,;- {{b}} contains
indices from which arguments to f may be drawn. (f,b) !z denotes application of
(f,b) to z. Operationally, this means “if 2z € {{b}} then return f(z) else return
an out-of-bounds error value”. This defines an interpretation of (f,b) as a partial,
hyperstrict function whose domain is contained in {{b}}. The canonical example is
the array: then b is a tuple of index bounds and [b],,,, is a conjunction of linear
inequalitites defining a “hyperrectangle” in the index space of the array. But we can
also allow other bounds which yield less restricted “array shapes”, such as triangular
shapes, nested shapes, general convex polyhedra, and finite sparse structures, see
Fig. 1. We can allow more general associations, indexed by other data types than
tuples of integers. We can even have data fields with bounds defining infinite sets,
although operations that require all the defined elements in the data field will not
be applicable to such fields.

We define data fields to be hyperstrict when seen as functions since memoised
data fields seem important (in conventional models for high performance computing
memoised structures are the norm). Although nonstrict lookup procedures are
possible [32], hyperstrict lookup is easier to implement and seems conceptually
simpler.

The out-of-bounds error value, which we denote by “x” has algebraic properties
similar to the divergent element L (see [46] for details), and sometimes we will even
identify them (as in Haskell [31]) although they represent quite different behaviours.
When they are not identified we will sometimes consider a test “is,” which returns
true for *.

Clearly, the bounds are central to the data field concept. To keep the concept of
bounds generic our approach is to view bounds as an abstract data type, where cer-
tain operations and properties are postulated, rather than constructing the bounds
explicitly. Operations on data fields can then be defined using the abstract oper-
ations on bounds. Languages could either have predefined instances of bounds, or
provide means for programmers to define their own bounds and operations on them.
In the former case, operations on bounds and data fields can be given specialised,



efficient implementations. In the latter case it is convenient if the host language
has some kind of class system which can be used to overload the operations.

The postulates for bounds are roughly the following (exact formulations are
given in Sect. 7):

e Every bound has an interpretation as a predicate (or set).

e There are binary operations M, L on bounds that correspond to (possible over-
approximations of) the intersection and union operations on the sets defined
by the bounds. (They are not to be confused with the domain-theoretic g.1.b.
and lL.u.b.)

e There are two bounds all and nothing that represent the universal and empty
set, respectively.

e A bound is either finite or infinite, depending on whether the set defined by
it is surely finite or possibly infinite.

e For every bound b defining a finite set {{b}}, size(b) yields the size of {{b}}
and enum(b) is a function enumerating the elements in {{b}}.

Why do we postulate these operations? The classification of bounds into infinite
or finite is needed since certain operations on data fields, like reduction, are well-
defined only for finite data fields. Applying a data field to an argument requires a
test that the argument is within the bounds: thus, the need to interpret bounds as
predicates. Size and enumeration are needed for finite data fields to make reduction
and other iterative operations over them well-defined, since we then must know in
general which elements to reduce over and in which order. M and LI are used in
the propagation of bounds which occurs when reducing p-expressions as defined in
Sect. 7.1. all and nothing, finally, can also appear as a result of this reduction.

Two interesting derived operations are reduction (or fold) “redp” of a data field
with a binary operation, and explicit restriction “]” of a data field with a bound.
The former is a fold of the elements in the data field, in the order given by the
enumeration of its bound, and the latter returns a data field which is the first
argument with its bound intersected with the second argument. Exact definitions
are found in Sect. 7.

Our particular requirements on bounds stem from their intended use in collection-
oriented programming. Other applications may have other requirements. In set-
based program analysis, for instance, enumerations are not important while a test
for equality becomes essential. Relational databases (which also can be seen as sets)
have a third set of operations, distinct from the other two.

The postulated operations on bounds have been selected to only require that
elements of a finite bound can be ordered. An important extension, which we make
in Sect. 7.3, is to define product bounds and their properties. If by and by are bounds,
for instance, then (b1,b2) is a two-dimensional bound where b; constrains the first
dimension and by the second. The predicate, finiteness, size, enumeration, “inter-
section”, and “union” of product bounds are all derived from the corresponding
operations on the components, as defined in Sect. 7.3. Product bounds can thus
be used to define multidimensional data fields. However, multidimensional bounds
can also be non-product bounds, and we exemplify in Sect. 7.6.

The canonical example of bounds is conventional array bounds. In the one-
dimensional case, these are pairs (I,u) of integers. These bounds are apparently
finite. We have [(I,u)];,.,, = Azl < z < wu, size(l,u) = max(u LI+ 1,0),
enum(l,u) = Az.(x L), (Il,u)(l',u") = (max(l,1!"), min(u,u")), and (l,u)U(l',u") =
(min(l,1"), max(u,u’)). See Fig. 2. Note that LI may overapproximate the union of
the sets given by its operands. Multidimensional array bounds can be constructed



Figure 2: M and U on array bounds.

Figure 3: M and U for multidimensional array bounds.

as products of one-dimensional bounds. See Fig. 3 for an illustration. Sect. 7.5
contains a thoroughly worked example of more general sparse/dense array bounds
and their operations.

In Sect. 7.1 we introduce g-abstraction, which provides a formal “forall” kind
of syntax for defining data fields. The term ¢z.t can be read “for all z (where ¢
is defined), t”, and it defines a data field (Az.t,b) where b is derived from bounds
of data fields occurring in ¢t. Exact definitions are given in Sect. 7 through rewrite
systems.

Derivation of bounds in some “natural” way is common in array languages,
and it can relieve the programmer from tedious specifications of bounds. Three
kinds of operations that often provide this derivation are elementwise application of
scalar operator, selection and projection on higher-dimensional arrays, and indirect
indexing. Some array languages also provide shift or translation operations with
this facility, and selection operations with possible non-unit stride. The semantics
of p-abstraction is designed to provide derivations of bounds for these operations.
Since the operations have different scope we actually define three different -calculi.
Elementwise application and indirect indexing can be defined regardless of the kind
of data field, and our first rewrite system defines how bounds are “propagated”
for these operations. Selection and projection operations are specific for higher-
dimensional data fields, and our second rewrite system, which extends the first,
defines how bounds are derived for these. Translation and selection with stride,
finally, is defined only for data fields indexed by (tuples of) integers, and our third
rewrite system adds rewrite rules that define how bounds are derived for these
operations.

The bound for a term @x.t is designed to provide an approximation of the
domain for the corresponding partial function Az.t. We believe this is a particularly
“natural” way to define bounds. The domain of Az.t can be defined in terms of set
operations on domains of partial functions occurring in ¢, and the bounds for ¢z.t
are then defined through the corresponding, postulated operations on bounds. Thus,
our way to derive bounds does not require any a priori choice of data structure. For
elementwise applied strict operations this approach leads naturally to the “implicit



intersection rule” known from FIDIL [57].

Our particular rewrite systems only provide some of many possible ways to de-
fine the derivation of bounds. There is a tradeoff between how “tightly” a bound
can approximate the domain of a partial function and how complex the derivation
is. Our rewrite systems are designed to be easy to modify for other tradeoffs. Fur-
thermore, there are situations where the requirement of conformance for operands
of elementwise applied operations can be the most natural choice (for instance, if
we have a matrix algebra then elementwise addition of differently sized matrices
could be considered a kind of type error). In Sect. 7.9 we outline a slightly modified
rewrite system which enforces the conformance requirement rather than the implicit
intersection rule.

3.1 A First Example

It is possible to define a small but powerful and generic core language for data fields
from a small, conventional “host language” extended with bounds, data fields, and
p-abstraction. On top of this language, the syntax can be proliferated to meet
different needs in special applications. As an example, we define a minimal higher
order language extended with data fields from a subset of the sparse/dense arrays
defined in Sect. 7.5. The language has types

7 ::= Int|Float|Bool |7 — 72 |Df 74 75 |Bnds 7y
and expressions

t == n|True|False|z|t; aop to|not & [t; bop ta|t: TOp to
| if ¢ty then t; else i ‘ \$—> t1 |t] to
| forall z-> t1 |t at to |t 'ta | fold

|oub|isoub|in|size|enum|all |nothing]|# :to

Here, n ranges over integer constants, aop over arithmetical operators, bop over
boolean connectives, and rop over relational operators. x ranges over identifiers.
We assume all identifiers have a given typing. Identifiers which are not introduced
locally are defined by a global declaration.

This is an explicitly typed, higher order variation of the language REC in [70],
extended with data field primitives. The typing rules for the extensions are straight-
forward and we omit them here. The data-field-free part of the language can be
given a denotational semantics in a standard way, as a function mapping from terms
and identifier-binding environments to elements in cpo’s, with semantical entities
expressed in the metalanguage in Sect. 4. The extensions can be given a seman-
tics in the following way, using informally introduced entities that will be formally
defined in Sections 4, and 7:

[forall z—>t]p = [pz.(tplz)lp(ry ) [in]p Ab.[0] 4,0
[t1 at t2]p = [t1]pd [t1]p [size]p = size
[ti't=]lp = T[ta]p![t=]p [enum]p = enum
[fold]p = redp [ti:t2]p = ([tlp, [t2]p)
[oublp = = [a1l]p = all
[isoub]p = is. [nothing]p = mnothing

In the semantics for forall, the type of forall x -> t is assumed to be Df 7y 75. The
p-expression in the right-hand side is a syntactic object, whose semantics [[']]D(n,rz)
is defined in Section 7.1 through a confluent rewrite system. p|, stands for p with
the binding for  removed. tp|, is the term that results when p|, is applied as a

substitution to .



We deliberately define only a minimal number of primitives for constructing
bounds at this point. “:” constructs a dense array bound from two integers. We
also allow predicates 7 — Bool and data fields of type Df 7 Bool to be (infinite)
bounds of type Bnds 7. Finally, there are finite sparse bounds. We give no explicit
way to construct them, but they result from the intersection of a finite bound with
a predicate or boolean data field.

We now introduce Fortran 90 array style overloading of arithmetical operators as
a kind of syntactic sugar, which can be removed by a type-directed source-to-source
transformation “~»”:

t1,t2:Df T Int = t; aop ts ~ forall x->(f1'x aop t3!x)
ty:Int,to:Df 7 Int — t; aop ta ~ forall x->(t; aop ta!x)
t1:Df 7 Int,to: Int =— t; aop to ~ forall x->(t1'x aop t3)

We define this kind of overloading similarly for the other kinds of operators in the
language.

As a simple example of a data field definition we now define a function for
computing histograms over data fields. First, some Haskell-style definitions for
convenience:

fold (+) d 0
if x then 1 else O

sum d
b2i x

The histogram over a data field in general can now be expressed as the function
hist d = forall x-> sum forall y-> (b2i (x = d!'y))

How does this definition work? the x in the outer forall ranges over the indices
of the result. This is an infinite data field, not surprisingly since the domain of
a histogram depends on the range of the field being histogrammed over, and this
range cannot be known & priori in general. The data field defined by the inner
forall will have the same bound as d. This is since d!y occurs in a strict position
in the body. The sum thus ranges over this bound, and the net result is that for
any x the number of occurrences of elements in d equal to x is computed. (Note
the similarity between the idiom “sum forall y->” and “}_ ".)

If we know something about the range of d, for instance that elements of d must
lie in the range 1...n, then we can restrict the bound of the histogram accordingly:

(hist d) at 1:n

The bound of this data field is 1:n and it is thus finite. This demonstrates the lazy
nature of data fields. It is furthermore a “dense” data field, which possibly contains
many zeroes, for instance if the size of d is much less than n. We may therefore
want to define a sparse histogram, which is defined only in the points where it is
nonzero. We define a general “data field sparsifier” for this purpose:

sparse d =d at d /=0
We can now write
(sparse (hist d)) at 1:n

to obtain a sparse histogram over the nonzero values of d in the range 1...n.

Note the declarative and generic nature of these definitions. The only place
where the index type of d is “given away” is in the restriction with the bound 1:n.
Apart from that, d could be indexed by any valid index type for data fields, and
the definitions could thus be reused for any kind of data field.

10



4 Preliminaries

4.1 A Metalanguage for Partial Functions

We now define a small metalanguage for partial functions. (Essentially this is a
variation of the metalanguage for continuous functions in [70].) Since we want to
be able to embed our concepts into various host languages we do not specify all the
details of the language completely; rather, we give a language scheme. We consider
the following kind of cpo’s:

e Basic cpo’s which are flat cpo’s denoted by constant symbols, in particular
the flat cpo of booleans bool and the flat cpo of integers int,

e Products of cpo’s, constructed with x, lifted sums of cpo’s, constructed with
+, and cpo’s of continuous functions constructed with [ — ],

e Recursively defined cpo’s given by equations D = F (D), where F(D) is built
out of the cpo variable D, cpo constants, and the cpo operations x, +, and
—.

These cpo’s correspond to recursive types defined in the usual way. We assume that
elements in basic cpo’s can be compared for equality. We define Eg¢-cpo’s as above,
but excluding the function cpo operation — in the definitions. Eq-cpo’s correspond
to the “Eqg-types” of ML. Now, we define the following language scheme for defining
elements in these cpo’s:

e Symbols D ranging over (pointed) cpo’s.

e For every cpo D a constant “Lp” denoting the bottom element (usually, we
will just write “L”), and a constant “xp” (usually written “x”) denoting a
distinguished error value. x is an isolated, maximal element such that only L

lies below it.

e For every Eq-cpo D a predicate is.p € [D — bool], usually written “is,”,

3

defined by:
is«p(*p) = true
is«n(Lp) = L1p
issp(z) = false, x¢ {*p,Llp}
e The following constructors: tupling (,..., ) to construct elements of product

cpo’s, and injections in; to construct elements of sum cpo’s.
) 0

e A number of n-ary function symbols denoting n-ary operations over flat cpo’s,
which are strict (in all arguments) when no argument equals *. If some argu-
ment equals %, then the function value must be either * or L.

e Variables typed with the cpo they range over (e.g. f € [D — EJ). (We use set
membership notation to suggest the intended interpretation.) We will omit
the typing when it is not necessary.

e For every cpo D a conditional if € [bool x D x D — D], usually written “if”,

defined by:
ifp(true, z,y) = =
ifp(false,z,y) = y
ifp(L,z,y) = L
ifp (%bool, T,y) = *p

11



e \-abstraction and function application.

e A least fixed point operator u. We will often give recursive definitions rather
than using u explicitly.

We use the n-ary notation A(zy,...,x,).t, where z; € D;, to denote a function in
[D1 % ---x D, — E]. In principle, we have a typed A-calculus with constants, where
the cpo inclusions ¢ € D are typing judgements. It is clear (see [70]) that every well-
formed term of type D in this language has a direct interpretation as an element
in D: in particular, function-typed terms denote continuous functions. We will
often, especially in equations, let terms in the language denote their interpretations
directly.

On the other hand, if we remove the constants |, then we have a syntax for a
simple, higher-order functional language. In Sect. 5 we will use it as a convenient
syntax to define collection-oriented operations on partial functions. In Sections 7.1
and 7.2 we will consider terms in the metalanguage as terms rather than elements
of cpo’s, and consider rewrite semantics rather than denotational semantics. The
connection between rewite and denotational semantics is well known [3, 12]. Higher
order languages can be given rewrite semantics based on Klop’s Combinatory Re-
duction Systems (CRS), see Appendix B, and in Appendix A we define a CRS M
which gives an alternative rewrite semantics for the metalanguage. In Sect. 7.1
we will successively extend the metalanguage with constructions for data fields and
bounds, including ¢-abstraction, and we extend M to cover the extended languages.

4.2 Hyperstrictness

Hyperstrictness was first defined by Turner [67]. His definition was informal. We
give more stringent definitions of hyperstrictness and related concepts below.

Definition 1 For any element d in an Eq-cpo D and for any element d' in an
appropriate cpo, we define the relation “in” by: d' in d iff:

o d =d,
e d=(di,ds), and d' in d; for some i, or
e d=¢; (dy) for some i, and d' in d;.

Definition 2 For any cpo D, D C D is defined by: d € D iff dCd = d=d,
andd = di = Ji.d=d;.

We call the elements in D finite mazimal elements in D. Clearly, for elements
d in Eqg-cpo’s we have that d is finite maximal iff d is of finite size and it does not
hold that L n d.

Definition 3 For any f € [D — D'], where D is an Eq-cpo, f € D — D' is defined
by:
_ f(z), z€DA=(x in ),
flz) = x, ©€DAxin z,
1 otherwise.

f is hyperstrict if f = f.

It is straightforward to verify that f is continuous whenever f is. We have

f = f. Operationally, the evaluation of a hyperstrict function terminates only if its
argument can be fully computed in finite time.

12



Y
Y

Figure 4: “replicate as columns” A(i,5).f(¢) and “replicate as rows” A(i, 7).f(j)-

5 Collection-Oriented Operations on Partial Func-
tions

In this section we define higher order operations in the metalanguage of Sect. 4,
which yield abstract versions of all the collection-operations from Sect. 2 except the
domain operations.

Elementwise application of an n-ary operation g on the partial functions f, ..., f,
is a kind of function composition: A\z.g(fi(z),..., fn(z)). It will often be convenient
to use “elemental intrinsics style overloading” of g and write g(f1,..., fn). We will
make frequent use of this syntax.

Parallel read of the partial function f w.r.t. source function g is also function
composition, but to the “right”: Az.f(g(z)) (or f(g)). This models both “indexing
with arrays” (when g is a partial function) and communication schemes such a
shifts, permutations, broadcasts, etc.

Replication is A-abstraction with respect to a fresh variable: if z does not occur
free in ¢, then Az.t is independent of = and can be seen as the value of ¢ replicated for
each possible value for z. This provides an exact notation for replicating an array
along some axis into an array of higher dimension. For instance, a “one-dimensional”
function f can be replicated into the “matrices” A(i, 7).f(i) (“replicate as columns”)
and A(i,7).f(4) (“replicate as rows”). See Fig. 4.

A-abstraction also provides a convenient notation for projection. For instance, if
f represents a matrix, then Ai.f(i,1) represents the first row of f.

Ezxplicit restriction of a partial function f w.r.t. the predicate b is defined viz.:
F\b=Xx.if (b(z),f(z),*). The following result is easy to prove. It will become
useful in Sect. 7.

Proposition 1 For any f € [D — D'] and b € [D — bool] it holds that f \ b = f\b.

Reduction with respect to a binary operation op over a partial function f is
performed over all elements of the domain of f taken in some particular order,
provided that this domain is finite. It can be given a simple recursive definition in
the metalanguage. We need to provide explicit domain information: an integer n
which gives the size of the domain, and an enumeration i of the domain (a function
from {0,..., n L 1} to the domain of f). We assume that op has a left identity

element e such that op(e,z) = z for all . Then, reduction “red” is defined by:

7"6d(0p7f7e:7":0) = €
red(op,f,e,i,n) = letr=red(op,f,e,i,n L 1)in
i (is. (F(i(n L 1)), 7, 0p(r £ (i(n L 1)), m> 0

13



dom(f2) b(x) = true
dom(f1) dom(g)
dom(f)
dom(f3)
b(x) = fase
dom(b)

Figure 5: The domain of g(f, f2, f3) and of if(b,f,g). (dom(f) stands for {z |
fl@)#L})

This definition “filters out” points x where f(z) = x. Thus, it is appropriate to
use in situations where n and i stem from an overapproximating bound for a data
field. Indeed, we will use it when defining reduction for data fields in Sect. 7. The
definition is not parallel. But if op is associative, then it is very easy to show that
this definition is equivalent to a balanced recursion with O(logn) recursion depth.

red can be used to define other common reduction-like operation on partial
functions, such as scan (parallel prefix), segmented reduction, and segmented scan.

See [46]. l

6 Some Simple Identities

We now give a number of identities for the explicit restriction operator defined in
Sect. 5. Clearly, they can be used for program optimizations. The aforementioned
extent analysis [45] is based on these rules: this analysis tries to find the “extent”
of a partial function, i.e., its domain, at compile-time. The laws have also inspired
how bounds are computed for p-abstraction, as defined in Sections 7.1 and 7.7.

All the results below follow more or less immediately, usually by a simple case
analysis. “A” below refers to the non-strict version of conjunction, for which false A
1 = false, extended to handle * in the following way:

*ANr = «x
true N x = x
false ANx = false

1Ax = 1

Note that A can be defined through the if-conditional in the metalanguage. We use
elemental intrinsics syntax throughout.

Proposition 2 (Flattening of nested restrictions) (f \ b)) \ o' = f\ (' A'D).

Proposition 3 (Communication of restriction) (f \ b)(g) = f(g) \ b(g), and if g
has a left inverse g=1, then f(g)\ b= (f\ b(g71))(g).

6.1 Elementwise Application

For elementwise application there are a number of identities. The first essentially
says that an outer restriction always can be “pushed” to the arguments of an ele-
mentwise applied operation:

14



Proposition 4 (Elementwise application) For any i, g(fi,-..,fi,---,fa) \ b =

This identity explains why the live-domain analysis of FIDIL [57] is valid.

Proposition 5 and its two corollaries below hold under the condition that * and
L are identified, i.e., that the equation L = x is valid. Since x represents an error
condition detectable in finite time and L represents divergence, this means that the
different sides of the equality possibly may have different termination properties.
Thus, the results can be used if we don’t care about the distinction between error
and nontermination (similar to lenient semantics [15]), or in a situation where
we know that the functions involved will always terminate, (like, say, if they are
memoised data structures). In [46] the situation when % and L are kept distinct is
investigated in depth.

Proposition 5 (Elementwise application of strict function) If g is strict in argu-

ment i, then g(f1,..., fi\b,..., fn) =9(fr, -, fi,---, fn) \ ].

Corollary 1 If g is strict in all arguments, then g(fi\b1, ..., fa\bn) = g(f1,- .-, )\
(b1 A A by).

Finally, for the elementwise applied conditional, we have the following identity:

Proposition 6 if (b\ ¥, \ by, \ b)) = if (5, f,9) \ B’ A ((b A by) V (D) A b,)).

(Negation is extended to x by —* = %.) The validity of this identity requires that
the identities false V z = x V false = x holds. Thus, V must be extended to handle
1 and * so these identities still hold. This is for instance the case if it is extended
to be evaluable in a left-to-right fashion, similarly to the previously extended A.
Corollary 1 and Proposition 6 are illustrated in Fig. 5.

7 Data Fields

In Sect. 3 we defined data fields informally as pairs of functions and bounds. We
now give formal definitions. First we define exactly what we require from bounds,
and we then proceed to define data fields.

Definition 4 Let o be an Eq-cpo. The cpo B(a) is a cpo of bounds for a if the
following operations, with the properties below, are defined:

finite € [B(a) = bool] test for finiteness
[-1poor € [B(a) = [a— bool]] interpretation as predicate
enum € [B(a) — [int — a] enumeration
size € [B(a) — int] size
N € [B(a) x B(a) = B(a)] intersection of bounds
U € [B(a)x B(a) = B(a)] wunion of bounds
all, € W universal bound
nothing, € B(a) empty bound

The following properties should hold:

e Ifb € B(a) and finite(b), then size(b) > 0. If furthermore size(b) > 0, then
enum(b)|fo,....size(s)—1} 5 a bijection from {0, ..., size(b) L 1} to {{b}} = {z |
[0] 0 () = true }.

o Ifb,t' € Bla), then br b € Bla), bU Y € Bla), {b}} N {'} C {bn o'},
and {{b}} U {{o'}} C {{bLb'}}

15



o [all,],,.; = Az.true, [nothing ], ., = Az.false, and size(nothing,) = 0.

boo

We will usually drop the index a when it is clear from the context. We say
that b is finite if finite(b) = true, otherwise infinite. If size(b) = 0 then b is empty.
Thus, nothing is empty, but other bounds may also be empty. Definition 4 actually
defines a class of continuous algebras [12, 20] but we will not use this fact here.

Definition 5 If [ — (] is a cpo of continuous functions, and if B(a) is a cpo of
bounds for a, then D(a, ) = [a — (] x B(a) is a cpo of data fields from a to S.

In the sequel symbols f stand for functions, d for data fields, and b for bounds.
The following proposition is needed to prove Lemma 2 in Sect. 7.2.

Proposition 7 b C 0 = {{b}} C {{V'}}.

Proof. 1fb C b’ then, by monotonicity of [ - |,,,;, follows that [b],,,(x) = true =
[6'] 01 () = true, which yields the result. |

We now define some derived operations on data fields:

Definition 6 The following functions are defined by the following equations. In-
terpretation of data field as function, [ - |, 5 € [D(a, 8) — [a = f]]:

II(f b)]]ry—)ﬁ = f \ [[b]] bool
[Lo@mlass = Laos

Data field application, ! € [D(a, 8) x a — 3]:
dlz=1[d], sz
Explicit restriction of data field, | € [D(«, ) x B(a) = D(a, 5)]:
(f.0) L = (f,0'nb)
Lo@e +b = Lpa@g
Reduction of data field, redp € [(8 x v = 7) X D(a, 8) X v = 7]:

redp(op, (f,b),e) = red(op, f, e, enum(b), size(h))

We will drop the index o = 3 for the interpretation and write [d] when it is
clear that d is a data field and its type is not important. Reduction of data fields
is defined directly from the reduction over partial functions in Sect. 5. Explicit
restriction of data fields is modeled after the restriction “\” on partial functions,
and its definition is inspired by Proposition 2.

7.1 -abstraction

We now define @p-abstraction formally. This is a syntax with bound variables, ex-
actly analogous with A-abstraction, which defines data fields. Thus, we extend the
metalanguage of Sect. 4 with terms formed according to the following rule:

r€a aFEqgtype tepg

px.t € D(a, B)

16



In the rest of this section and the first part of Sect. 7.2 we consider terms in the meta-
language as terms rather than elements of cpo’s, and names of cpo’s as types. The
reason for this change of view is that we will define the semantics of p-abstraction by
rewrite systems. We define the semantics relative to some host language, which at a
minimum contains operations on data fields and bounds as specified in Definitions 4

6. In order to stay fully within this kind of semantics we will assume that also the
semantics for the host language is given by some rewrite system R in this part of
the paper. We furthermore assume that if ¢ <% ¢', where <7} is the convertibility
relation generated by R, then ¢ and t' have the same denotational semantics. (This
is a basic soundness property for rewrite system semantics.)

Actually we define three different semantics, which yield an increasingly precise
computation of bounds: first a “basic” semantics which is independent of the type
of indices; then, in Sect. 7.3, an extension to define and handle multidimensional
data fields; and then, in Sect. 7.7, a further extension to handle scalings and offsets
of array-like data fields. The semantics are given as higher order rewrite systems
(Combinatory Reduction Systems, or CRS: see Appendix B) ®;(R), i = 0,1,2.
Thus, ®;(R) U R gives the rewrite semantics for the host language extended with
p-abstraction of “version ”.

In particular, the host language could be the metalanguage of Sect. 4 extended
with the operations defined earlier in Sect. 7. In Appendix A an orthogonal CRS
M is defined for the metalanguage, and we can assume a CRS [ for the extension.
Then, ®;(M UI)U M U I gives rewrite semantics for the metalanguage extended
with data fields, bounds, their basic operations, and @-abstraction.

We assume that M U I is orthogonal. We do not give I explicitly (its exact
definition will depend on the kind of bounds, and how the postulated operations on
them are defined). Note, however, that any definition f(z) = ¢ can be directed into
a rewrite rule f(z) — t. This applies directly to the definition of derived operations
in Definition 6 and to the instances of the postulated operations on sparse/dense
array bounds given in Sect. 7.5. For these bounds M U I will indeed be orthogonal.

Definition 7 For any cpo v, let T, be the set of terms of type v, V, the set of
variables of type v, and V the set of variables of any type. B is a bounds-computing
function for R if, for some Eq-cpo a and cpo (3, it is a partial function TgxV,x2V —
Tg(a) such that B(t,z,Y) is defined if and only if:

e FV(t)C{z}UY,
e t is a R-nf, and

e t has no closed subterm of the form py.t'.

Now, each ®;(R) is defined by a rule scheme
px.t — (Azx.t, Bi(t, z,0)) (1)

where B; is a bounds-computing function for R, which defines one rule for each ¢
such that B;(t,z,0) is defined. It is possible to give a more operational definition
of each B; through a rewrite system R;: B;(t,z,Y) is then seen as a term in
itself, rather than as a metaterm whose meaning is given by the function B;. If
R; is orthogonal, mutually orthogonal with ®;(R) U R, and terminating, then R; U
®,(R) U R is orthogonal, and, in a normalising reduction strategy, the evaluation
of B;(t,z,Y) can be carried out a soon as ¢ fulfils the conditions in Definition 7.
The rewrite semantics given by R; is then consistent with the partial function
view, where each right-hand side in (1) is “precomputed”. As will be seen shortly,
B;(t,z,Y) is defined over the structure of ¢ so the properties above are natural.

17



However, defining R; would require the modelling of explicit representations of sets
of variables and we prefer to keep the definitions of the B; free from such details. A
definition of the reduction rules (1) in formal CRS syntax is given in Appendix C.

We have chosen to give a rewrite semantics to g-abstraction for a number of
reasons. One reason is to highlight the similarities and differences to S-reduction
in the A-calculus. Another reason is that languages which have a rewrite semantics
are referentially transparent w.r.t. the convertibility relation of the rewrite system.
Furthermore, it is well known how to relate rewrite semantics to both denotational
semantics and operational semantics. We discuss the operational semantics of -
abstraction in Sect. 7.2. For the denotational semantics, note that B;(t,z,Y) is
hyperstrict in £ since it is defined only when ¢ is a normal form. Thus, the compu-
tation of ¢z.t diverges unless ¢ has a normal form, and we define

[p2.1] | (zd',Bi(t',2,0)), ift'is the normal form for ¢
PrHD(0s) = 1, if ¢+ has no normal form

(In Sect. 7.2 we show that ®;(R)U R is confluent under mild conditions on R: thus,
normal forms are unique, so [ - [, g, is well-defined.) Finally, we define [¢z.1],
Le. the function defined by @u.t, as [[¢z.t] (4 50 s-

We now proceed to define the different B;(t,z,Y"). For all i we define B;(t,z,Y)
by cases over the possible syntactical forms of normal forms ¢. For simplicity, we
assume that all bound variables are distinct:

Bi(e,z,Y) = all (cclosed nf # %) (2)

B;(x,z,Y) = nothing (3)

Bi(y,z,Y) = all ye{z}uY (4)
Bi(op(ts,- . tm),z, Y) = Bi(t1,2,Y)N---MN Bi(tm,x,Y) (op strict) (5)
Bi(if (t1,t2,t3),z,Y) = Bi(t1,z,Y) N (B;(ta,x,Y) U B;(t3,z,Y)) (6)
B;(Ay.t,z,Y) = B(t,z,{y}UY) (7)
Bi(py.t,x,Y) = Bi(t,z,{y}UY) (8)
B;((f,b)'z,z,Y) = b, FV(f,b)=10 (9)
Bi((f,b)'t,2,Y) = Bi(t,z,Y), FV(f,b)=0t#z (10)

For cases not explicitly covered, where B;(t, z,Y") still should be defined, we assume
a default definition
B;(t,z,Y) = all. (11)

Let us motivate these definitions informally: a more formal account will follow in
Sect. 7.2. (2) is appropriate since ¢z.c should be defined for all z, unless ¢ =
in which case it should be nowhere defined as stated by (3). Also gz.x should
be defined everywhere which partly motivates (4). (5) corresponds to the implicit
intersection rule in FIDIL [57] and is motivated by Corollary 1. In (5) we require
that op is consistently extended to from a strict function on a x-free cpo to a cpo
where * is added, which basically means that it should handle % in the same way as
1 (see [46] for details). An important function which is not a consistently extended
operation is the test is.. (6) is similarly motivated by Proposition 6: informally, it
holds since @z.if (t1, te, ts) should be defined only when #; is defined and some of
ta, t3 are. (7) and (8) are treated below. ¢xz.(f,b) ! 2 should be defined only for
arguments in {{b}}, which motivates (9). (10), finally, is sound since (f,b) defines a
hyperstrict function: therefore, pxz.(f,b) ! t should be defined only when ¢ is.

In By(t,z,Y), z is the variable bound by the ¢ for which the bound is calculated.
Y is the set of variables bound by other constructs under the ¢, as effectuated by (7)
and (8). Clearly, the bound derived for a ¢-expression must not be dependent on

18



any variables bound inside the expression. Thus, the only reasonable approximation
for their contribution to the bound is all.

By similar reasons we demand that FV(f,b) = ( in (9) and (10). Consider,
for instance, pz.Ay.(f,b(y)) ! . This is a data field of functions, where the bound
of the applied data field depends on the function argument. b(y) is thus a locally
defined entity and should not affect the bound of the gp-expression. It is interesting
to contrast this case with Ay.pz.(f,b(y)) ! z, which is a function returning data
fields. Here, B;((f,b(y)) ! z,z,0) is not defined, since FV (b(y)) = {y} € 0. This
means that the bound for pz.(f, b(y)) !z cannot be computed until y is instantiated
to some value ¢ and b(c) is computed.

Definition 8 By(t,z,Y) is defined by equations (2) — (11).

7.2 Properties of p-abstraction

We now prove some results about @-abstraction and discuss its properties. First
there are four propositions about the rewrite systems. These rely only on the form
of the rule scheme (1) and the fact that the B; are bounds-computing functions
for R: thus, they are valid for all rewrite systems ®;(R). The proofs are found in
Appendix D.

Proposition 8 ®;(R) is orthogonal.

Proposition 9 If R is left-linear and if no left-hand sides of any rules in R have
any subterms of the form px.t, then ®;(R) and R are mutually orthogonal.

Proposition 10 If R in addition is confluent, then ®;(R) U R is confluent.

Proposition 11 Any ¢-subterm of a closed ®;(R) U R-nf must contain a variable
bound by some other abstraction mechanism than .

Why are these results interesting? Confluence guarantees uniqueness of normal
forms, which means that every p-term has a unique meaning. Orthogonality sim-
plifies confluence proofs and also makes it possible to use standard results about
reduction strategies, see below. A reduction strategy directly yields an operational
semantics for evaluating -terms which is consistent with the rewrite semantics.
Proposition 11, finally, implies that no ¢-terms will remain after the evaluation of
closed ¢-terms, unless it is in the body of a remaining A-abstraction (where it will,
eventually, become reduced when the A-abstraction is applied and thus its formal
argument is instantiated).

What about reduction strategies for ®;(R) U R (and thus operational semantics
for the language defined by this rewrite system)? Since the left-hand sides of all
®,(R) are closed, they are trivially left-normal [38]. If R in addition is orthogonal,
left-normal, and satisfies the condition in Proposition 9, then each ®;(R) U R is
orthogonal and left-normal. For rewrite systems with this property, the leftmost-
outermost reduction strategy is normalising [37, 38].

However, every ®;(R) is defined by a rule scheme generating a possibly infinite
number of rules. Thus, this generation of rules must be taken into account for the
rewrite strategy. Given a term pz.t to evaluate, it must first be checked whether
B;(t,z,0) is defined and then what it evaluates to. But it is easy to see that
Bi(t,z,0) is defined iff ¢ is a ®;(R)UR-nf such that FV(¢) C {z}. Thus, an adequate
operational semantics for a closed term @x.t is to first evaluate ¢ to normal form
t', and, if this succeeds, to compute B;(t',z,0) and reduce ¢z.t" accordingly. This
fits into the left-normal evaluation strategy with the extension that B;(#',z,0) is
evaluated before making the final reduction.

19



px.Clt] = (A\z.C[t], B;(C[op], z, 1))

% Wk

ox.C[t'] ~ (\z.C[t'], B;(C[op], z,0))

Figure 6: Confluence of reductions with explicitly hyperstrict terms. op stands for
a hyperstrict operation such that B;(C[op], z, ) is defined.

Finally, note how the evaluation of ¢z.t !t proceeds:
prt!t' = prt" 1t - (Azt”,b) 1t — Azt \ [b],,,,

So there is no direct B-reduction for applied p-abstractions. A data field must first
be computed into its “data field normal form” of form (f,b) before it can be applied
to its argument.

If M UTI is orthogonal, left-normal, and satisfies the conditions in Proposition 9,
then ®;(M U T)U M U I is orthogonal and left-normal. Thus, an operational se-
mantics for the metalanguage in Sect. 4, extended with data field constructs and
p-abstraction, can be derived as sketched above.

Our semantics for g-expressions .t as a rewrite system given by (1), where ¢ is
a R-nf, has the advantage that it is reasonably straightforward and makes it easy to
prove orthogonality. However, it will in general require “computing under the ¢”,
with an open term, even when z.t is closed. This is in contrast to the evaluation of
function-typed terms, where evaluation typically is not done under a lambda. Some
of this symbolic computing can always be done at compile-time, like application
of a A-term to an argument, but in general symbolic run-time computing may be
required which can be costly.

A closer examination reveals two problematic cases: higher-order variables, and
recursive definitions. An example of the first case is the term Ag.px.d!g(z). Here, an
implementation which is faithful to the rewrite semantics must delay the calculation
of bounds for px.d!g(z) until g is instantiated, and its value is symbolically evaluated
with z as formal argument. Recursive functions applied to open arguments can
give even worse problems: consider, for instance, pz.(uf.t ) where t = Ay.if (y =
0,0,y-f(yL1)). pf.txhasno normal form and thus the evaluation of px.(uf.t x),
which is necessitated by the rewrite semantics, will not even terminate!

A possible solution is to consider higher order variables and terms of the form
nf.t, occurring under a ¢, to be hyperstrict, i.e., a term ¢ of one of these forms
is seen as syntactic sugar for £. Then, one can consider all terms of the form #
as equivalent, w.r.t. B;, to constant function symbols which stand for hyperstrict
functions, and add the corresponding cases for B;. For instance, (5) then gives rise
to the new case

Bl(f(tll - /t’m)/T/Y) = B,(tl,’IJ,Y) rn--- ﬂB,(tm,T,Y),

even when ¢ is not a normal form. A verification that ®;(R) U R still is confluent is
outside the scope of this paper, but an informal motivation is given in Fig. 6.

We now show a theorem which relates g-abstraction and A-abstraction. It es-
sentially states that if * and L are identified, then [pz.t] = Az.t when restricted to
maximal elements. We show the theorem for the “basic” semantics for p-abstraction
given by ®q: later, we extend the theorem to the semantics given by ®; and ®,.
From now on we also revert, unless otherwise stated, to the view where terms in
the metalanguage are considered elements in cpo’s rather than syntactical terms.

20



Throughout the rest of Sect. 7.2, we will assume that x = L. In [46] we study
the relationship between cpo’s where * = 1 and the corresponding cpo’s where L
and % are kept distinct: for a cpo D where these elements are equal we denote the
corresponding cpo, where x is distinguished, with D,. Functions over D, which
distinguish | and *x have no counterpart in D: in our metalanguage the only such
function is is,. Formally, the translation from D, to D is given by a homomorphism
¢ which maps both 1p, and *p, to Lp.

We will take an extensional view of functions and data fields. Thus, f = %,
iff f(z) = x5 for all x € a. Therefore, whenever L[,_,5, C f C */q4_g]),, it must
hold that ¢(f) = Lja—p. Similarly, for data fields, we equate d with xp(, g),
whenever [d] = Az.x3. Again, whenever Lp, g, C d T *p(a,p)., it holds that
#(d) = Lp(a,p)- For instance, ¢(Az.x5,b) = Lp(, g) for any bound b.

We also assume, for the rest of this section, that the domain of bounds B(«)
under consideration is such that for any b € B(a) there is a maximal element
b' € B(a) such that b C b'. (By maximal we mean that b' C b = b’ =b".) This
is a technical condition which we need in order to prove Lemma 2, and it is fulfilled
by all cpo’s which appear in practice in denotational semantics.

Some notation: we define res(f) = {z | f(z) # L}, and {p}} = {z | p(z) =
true } for all predicates p (similar to the notation {{b}} for the set defined by the
bound b). Let t be a term, Y a set of variables and v a type-preserving function
from Y to values: then ¢tV denotes the resulting term when substituting v(y) for y
intforallyeY.

The lemma below is useful in the proof of Lemma 2, and for proving the extended
versions of this lemma which will appear in Sections 7.3 and 7.7.

Lemma 1 res(Az.(f,b) | 9(7)) C {[b],,0; © 9}-

Proof. See Appendix E. |

The following lemma is a major stepping stone:

Lemma 2 For all sets of variables Y, type-preserving mappings v from'Y to values,
variables x, and terms t such that Ax.t" is closed, there exists a bound b, which is
mazimal in B(a), such that res(Az.t") C {{b}} and By(t,z,Y) C b.

Proof. See Appendix E. |

Theorem 1 For all terms t with normal form t' such that Bo(t',z,0) is mazimal,
and for all finite mazimal elements y, it holds that px.t !y = Az.ty.

Proof. See Appendix E. |

Th. 1 is restricted to the case where By (t', z, ) is maximal. It is possible to prove
a theorem where this restriction is lifted, but then the property in Definition 4 that
{on o'y} C {ondv'} and {b}} U {b'}} € {{bUb'}} must hold for all bounds,
not just maximal bounds. It can be difficult to give a reasonable semantics for M
and U for partially defined bounds so this property holds: thus, we have chosen
the version above. It is really a matter of whether partially defined bounds should
be considered valid set representations or not, and we have chosen not to consider
them as such.

21



7.3 Multidimensional Data Fields

Multidimensional arrays are important in many applications. Thus, it is of great
interest to provide adequate means to define multidimensional data fields. First,
we identify a canonical way to define product bounds and their operations. These
bounds generalise conventional multidimensional array bounds:

Definition 9 Let B(a1),...,B(ax) be cpo’s of bounds (for k > 1). Then B(ay) x

- X B(ay) is the cpo of canonical product bounds for a; X --- X ag, when its
operations are given by:
finite(by,...,by) = finite(by) Ax --- Ax finite(b)
[[(b1='"7bk)]]bnnl(w]7"'=$k) = [[bl]]bnnl(w])/\x"'/\x IIbk]]bnnl(xk)
enum((b1,...,bg),n) = (enum(by,n mod size(by)),

enum((ba,...,bg),n + size(b1)))

when size(by) > 0

3

size(br,...,by) = size(b) ... size(b)
(b1, .., bg) T (by, ..., b)) = (bi MIBY, ... by 10Y)
(b,...,bp) LU (b],...,B) = (b Uby, ... bpUDY)
allayx-xa, = alloy X xally,
nothing,, «...xo, = nothing, x---X nothing,,

“+74s integer division.

Theorem 2 A cpo of canonical product bounds for aq X -+ X oy, is a cpo of bounds
for ay x - X ay.

Proof. Tt is straightforward but tedious to verify that the operations indeed fulfil
the requirements in Definition 4. We omit the details. |

The notation “Ax” in Definition 9 means that we do not specify the strictness
properties fully; this operation just has to coincide with A on the fully defined truth
values for the theorem to hold. Here and henceforth we will use the notation “op x”
when the strictness properties of op are left unspecified.

Note that enum orders {{(b1,...,bx)}} lexicographically with respect to the or-
ders given by enum on {{b1}},..., {{br}}, respectively. (This ordering is the same
as the “column-major order” in which Fortran arrays are laid out in memory.) We
will occasionally use the notation x*_ b; for the k-tuple (by,...,bg).

Finally, note that bounds for a; X - - - X aj need not be product bounds as given
by Definition 9: for instance, it is possible to have multidimensional sparse bounds,
which we consider in Sect. 7.6, or higher-dimensional non-rectangular polyhedral
bounds.

We now introduce an extended ¢-calculus for multidimensional bounds. Array
languages often provide convenient constructs for, e.g., selecting rows and columns
of matrices where the bounds of the resulting arrays are implicitly given by the
bounds of the matrices. Our calculus generalises these constructs both to non-array-
like data fields, and to other situations than selection and projection operations on
arrays.

We use a pattern-matching syntax for p-abstraction over tuples: p(x1,...,zy).t,
which defines a data field in D(a; X -+ X ay, 3) when z; € a;, for i € {1,...,n},
and t € §. We use a similar syntax for A-expressions. To avoid lenghty expressions
we use the notation # for the tuple (¢1,...,t,) when the arity n is understood from

the context. In particular, Z stands for (x1,...,%,), @Z.t for ¢(z1,...,2,).t and

AZ.t for A(z1,...,x,).t. Finally, we write @ for the n-ary tuple type a3 X - -+ X a,.

22



The CRS ®;(R) extends ®¢(R) with more advanced derivation of multidimen-
sional bounds. ®;(R) is defined through the bounds-computing function By, which
is derived from By by adding more explicit cases where the result is computed to
something different than all. We also add cases where the second argument of By is
a tuple of variables, and @1 (R) will thus also contain rules pZ.t — (AZ.t, B:(t, Z,0)).
For each of the equations (2) (11) except (9) an equation with z replaced by Z is
added: we number these equations (2.1) (11.1). If we introduce the convention
that Z can stand both for a tuple (z1, ..., z,) and a single variable z, then (2) (11)
can be replaced by the new versions. (2.1) — (6.1) and (11.1) are straightforward to
define. (7.1) and (8.1) are given by the following equations, for i € {1,2} (by abuse

of notation, we write Z also for {z1,...,z,}):
Bi(A\j.t,2,Y) = B;(t,%,yuUY) (7.1)
Bilpit.7.Y) = Bit.#,7UY) (8.1)

(10.1) will be defined later.

We do not introduce any new version of (9), since it will be subsumed by the
rule introduced in this section. The new rule applies to cases where the components
of Z occur as individual arguments to data fields under the . This enables the use
of p-abstraction to express matrix operations such as projection, transposition and
replication for general multidimensional data fields.

As an example, consider ¢(z1,xa,x3).(f, (b1,b2,b3,b4)) ! (z2,¢,21,21). This is
a three-dimensional data field, defined by selecting a two-dimensional subfield of
the four-dimensional data field (f, (b1, ba, b3, bs)) which is then replicated in the z3-
direction. What should its bounds be? Obviously, 2 should be constrained by b,
and z; by both b3 and bs. x3, on the other hand, should be left unconstrained.
Furthermore it must be checked whether ¢ belongs to {{b2}} or not: if not, then the
resulting bound should be empty. We thus obtain the following expression for the
bound: if ([be],,,,(¢), (bs M by, by, all), nothing).

A variation of this example is @(z1,z2,x3).0y.(f, (b1, b2, b3,b4)) ! (x2,y, 1, 21).
This is a datafield of datafields. For the bound of the “outer” data field, it should not
be checked whether y belongs to {{b2}}, since y now is a variable bound inside the
outer @-abstraction rather than a constant. An appropriate bound is thus simply
(b3 M ba, b1, all). The bounds of an “inner” data field can be computed as soon as
x1, T2, 3 are instantiated (say, to ci,co,¢3), and is then given by 4f ([b;],,,,(c2) A
[T popa(€1) A Tb415000(c1), b2, mothing).

We need some formal notation for how the indices for the elements in Z are
mapped to positions in argument tuples!. Let Z have arity n and ¢ arity m, let I
be a subset of {1,..., m}, and let p be a partial function {1,...,m} — {1,...,n}.

Then §[p, Z] is an m-tuple defined by:

o | wp), p(j) defined
glp. 7 = { Yj, otherwise
For instance, if n = 3, m = 4, p(1) = 2, and p(3) = p(4) = 1, then §lp,&] =
(T2,y1,71,21).

We now postulate, for every b € B(ay X - - X, ), partial function p: {1,...,m} —
{1,...,n}, I C {1,...,m}, and y; € «a;, i € {1,...,m} \ dom(p) \ I, a bound

bprog,, 1 (b, ) in B(a} x -+ x a!)) such that

a(yl | i € I U dom(p) )'Ilb]]bool(g[p7 f]) = true — [[pr‘ijJ(IL ?_j)]]bool(f) = tm(j/leQ)

IWhen Z is a simple variable we consider it equivalent to a tuple with one element, and similarly
for data field arguments which are not tuples.

23



x2 A x2 A

| -
-

| y y

=Y

Figure 7: Selection and projection of b.

for all Zin o} x --- x al,. For instance, with the previous values of n, m, and p we
obtain® [bprog, (b, )] 001(Z) = [6]90: (22, Y1, 21, 21), and [bproj, 121 (b, )] poe(Z) =
3y .[6] oo (22, Y1, 21, 21). We of course assume that types are respected, that is:
a; = a;(i) for all i where p(i) is defined.

bproj can be seen as a quite general selection/projection-operation on bounds.
To see this, consider the following examples. Define p by p(2) = 2. We have
[oprog, (b, 1)1 400i(%) = [0] 400i(y1, 22). This is a bound for x5 which is a function of
y1. This can be seen as a selection of the “slice” of [b],,, given by y;. It is interesting
to compare this with [bproj, (11(b, §)]4,0/(Z) = Fy1.[b]4,0:(y1. z2). This is rather
a projection onto the zy-axis of {{b}}. See Fig. 7. Other interesting examples are,
with p(1) = 2, p(2) = 1: [bproj, o(b, )] yo0i (%) = [0]400i(w2, 1) (“transpose” of
b), and with p(1) = 1, p(2) = 1: [bproj, ¢(b, Nl pooi(Z) = [0] 001 (21, 71) (“main
diagonal” of b).

We now define, whenever FV (f,b) = (J,

Bi((f.b) 'ﬂp7f]fY) = prij7[(b,Z), (13)

where: ) C FV(#;) C Y for i € I and FV(t;) = () for i ¢ I. Note that if
bproj, 1 (b, §) = b when p is the identity function, which is in accordance with (12),
then (13) subsumes (9) when Z is a single variable. We can now give (10.1):

Bi((f,b)'£,2,Y) = B;(1,2,Y), FV(f,b) =0, # t[p, 7] (10.1)
for all #/[p, 7 as defined in (13).

Definition 10 For canonical product bounds, bproj,, ; is defined by:

bproj, (X2, bi, §) = if ( A [Bi]po0i (9i), X 1 (My(s)=ibs), nothing)
ie{l,..., m}\dom(p)\I
Here, M,,(j)—=;b; equals all if there is no j such that p(j) =i, and A,y P; is true

for any propositions P;.
Proposition 12 bproj, ;(x72;b;, §) satisfies (12).

Proof.  Consider the left-hand side of (12) for b = x",b;. By Definition 9 this

expression equals 3(y; | i € I U dom(p)). Ai—; [b:i]poor(¥lp, ;). This evaluates to
true iff:

2 Assuming a “tight” bproj such that (12) is an equivalence.

24



1. For all i € dom(p), [b:] .0 (Tp(i)) 18 true,
2. Forall i € {1,...,m}\ dom(p) \ I, [b:],,,,(y:) is true, and

3. For all i € T\ dom(p), there is a y; such that [b;],,,,(y:) is true.

1 and 2 implies that [bproj, ;(x7%;bi, §)];,,,(7) is true. |
Continuing the example above, with ¢[p,Z] = (22,91, 21,21) and T = 0, we
obtain

bproj, (X% bi, §) = if ([b2]lyp0i(y1), (b3 T by, by, all), nothing).

We now formally define B; and extend Lemma 2 to cover B;. Th. 1 then carries
over directly to y-expressions with semantics given by ®;(R) U R, as can be seen
by its proof in Appendix E.

Definition 11 B (t, X,Y) is defined by equations (2.1) (8.1), (10.1), (11.1), and
(13).

Lemma 3 For all sets of variables Y, type-preserving mappings v from'Y to values,
variable tuples ¥, and terms t such that XZ.tV is closed, there exists a bound b, which
is mazimal in B(«), such that res(AZ.t") C {b}} and B1(t,Z,Y) C b.

Proof. See Appendix E. |

7.4 An Example: Multidimensional Language Features

We extend the simple data field language in Sect. 3.1 to handle multidimensional
data fields. For that purpose we introduce tuple types (11, ...,7,), tuple ex-
pressions (t1, ...,t,), and pattern matching on tuple arguments to lambda- and
forall-abstraction: \(z1,...,z,)->t and forall(zy,...,x,)->t. We also de-
fine projections proj_1,...,proj_n which select elements of tuples. Tuples of type
(Bnds 71, ... ,Bnds 7,,) are interpreted as canonical bounds over (7, ...,7,) (but
we do not prohibit other multidimensional bounds). We obtain a language powerful
enough to take full advantage of the propagation of bounds defined by ®;.

We now demonstrate how a common array notation for selection and projection
can be generalised to data fields and put on top of our language. The syntax is

t(uy, ... ,up)

where ¢:Df (71, ... ,7,) 7 and each u; is either an argument term of type 7;, a bound
of type Bnds 75, or the symbol “:”. This syntactic sugar can be removed by the
following source-to-source transformation:

(U, . suy) = forall(my, , ...,z ) >t (b1, ... tn) at (B, ... ,10)

n
where u;:Bnds 7; or u; = : precisely when i € {iy,... i}, and:
u;:Bnds;, = t;=mz; and ¢, =u;

w; and t; = all

w;, =: — t;=x; and t;:all

u;: T, = 1

For instance, d!(:,c,m:n) — forall(x1,x3)->d!(x1,c,x3) at (all,all,m:n).
A simple example of a definition using these features is matrix multiplication
generalised to two-dimensional data fields:

25



dfmult a b = forall(i,j)-> sum a!(i,:)*b!(:,j)

Here, a! (i,:) is the ith row of a and b!(:,j) the jth column of b. These one-
dimensional data fields are elementwise multiplied and the result is summed. The
function defines a two-dimensional data field whose first dimension is constrained
by a’s bound in the first dimension and by b’s bound in the second dimension. This
definition works also if a and b are sparse, although the bound of the result may be
an overapproximation since it has to be a product bound. In Sect. 8 we will give
larger examples with multidimensional data fields.

7.5 Bounds for Sparse and Dense Arrays

As a concrete example, we now define cpo’s of bounds for array-like data fields.
We define these cpo’s in a way that allows both dense and sparse data fields, and
combinations of these: this extends our example well beyond the ordinary dense
array model. Since arrays are indexed by flat tuples of integers we will define cpo’s
of array bounds B, (int™) for n > 0:

Borr(int) = (int x int) + Set int + Nothing + All + [int — bool]  (14)
B (int™) Bopr (int)™ + [int™ — bool], n > 1 (15)

All is the two-point cpo with non-bottom element all, and Nothing the one with
non-bottom element nothing. int x int is the cpo of one-dimensional dense array
bounds, where each integer pair defines an array range. Set int is the flat cpo of
finite sets of integers. They provide sparse one-dimensional array bounds: each
element in a set S represents a coordinate where a data field (f,S) is defined. Some
examples of bounds in B, (int?) are shown in Fig. 8.

Set int is seen as an abstract data type. We do not specify exactly which elements
it contains: rather, we postulate a number of set operations: the usual union (U),
intersection (N), membership (€), and cardinality (]-|), plus removal of element
(1), least element (least), elementwise application of function (smap), and filtering
with predicate (sfilter), defined by:

SLi = {jlieSnji}
least(S) = i wherei€ SAVj€ S.j>i (S nonempty)
smap(f,S) = {f(i)]ieS}
sfilter(p,S) = {i|lie SAp@)}

These operations are all assumed hyperstrict: for smap and sfilter, we also assume
that the result is L ge¢ e whenever f(i) = L (or p(i) = L) for some i € S. Finally,
we assume that Set int contains the empty set .

Later in this section we will use an abstract data type Set int™ for finite subsets
of int™, n > 0, with the same abstract operations as on Set int. The generalisation
is obvious, except that least(S) now should be the least element in S w.r.t. the
lexicographical order on int".

The finite one-dimensional bounds belong either to int X int, Set int or Nothing.
all, and predicates in [int” — bool], n > 0, are infinite. An n-dimensional bound in
Barr(int™) is either a product bound or a predicate. We assume that the product
bounds have all their properties and operations canonically defined according to
Th. 2: this also yields elements all and nothing for By..(int™).

We have, for predicates p € [int™ — bool] (n > 0):

IIp]] bool — P

26



ul ul

Figure 8: Some bounds in Bg..(int?), of type: (int x int)2, (int x int) x Set int,
and (Set int) x (Set int).

For dense array bounds in B,.-(int) (I, u range over int):

()l = MO<i<u)
size(l,u) = max(u L1+1,0)
enum(l,u) = Xi.(i L)

For sparse array bounds in B,.-(int) (S ranges over Set int):

[Slpoor = MG€S
size(S) = |S]
enum(S) = Ni.if (i = 0,least(S), enum(S L least(S),7 L 1)) (S nonempty)

It is next to trivial to verify that the postulated properties for [b],, . size(b) and
enum(b) holds for all finite nonempty bounds b € B, (int).
We now define L and M for bounds in B, (int). For all, we specify:

allllx = =x allUx = all
1LMnall = L lual = 1 (16)
bMall = b, be€ By(int) bUall = all, b€ Bur(int)

These equations are consistent with a left-to right evaluation order. Note that we
do not specify bMall and bl all for non-maximal, non-bottom bounds b: this means
that we leave the exact strictness properties of M and Ul in their left argument open.
We could for instance have b U all = b for such bounds b (nonstrict evaluation), or
bU all = L (hyperstrict evaluation).

We define U and M for nothing as the exact dual of (16): replace all with nothing
and switch Ll and M.

For one-dimensional dense array bounds, we define

(Lbw)n (',u")y = (max(l,1"), min(u,u"))
(Lw)u ', vy = (min(l,1"), max(u,u"))
If b,b' € (int x int) + Set int and at least one of them belongs to Set int, then
brib' = toset(b) N toset(db')
bUb = toset(b)U toset(b')

where toset: [(int X int) + Set int — Set int] is defined by

toset(b) = toset'(b,0), where
toset'(b,n) = if (n = size(b), 0, {enum(b,n)} U toset'(b,n + 1))

27



Figure 9: Finite set S € Set int®, and projections m; (S), m2(S).

If b € (int x int) + Set int and b’ € [int — bool], then

b b’ = b’ mb = sﬁlter([[b']] bool? toset(b))
bubd = IIb]] bool Vx b’
bub = b Vx [,

If b,b" € [int — bool], then

brbd = bAx b
bub = bvxb.

The remaining cases for U and M for bounds in By,-(int™), n > 1, are defined in
the following way. If b € [int" — bool] and b' = b} x --- x bl,, then

bubv = bVx [0],,.
Vub = [V, Vxb

If b’ is finite, then
brb =b Mb= x" m(sfilter(b, toset(h')))

where the projections m; € [Setint” — Setint], 1 < i < n, are defined by
mi(S) = {j | 3% € S.z; = j} and toset(b') is generalized into a function in
[((int x int) + Set int + Nothing)™ — Set int"] in the obvious way (its definition
carries over verbatim). See Fig. 9. If b’ is infinite, then

b = bAx [V],,0
Vb = [V, Axb

If, finally, b,b" € [int"™ — bool], then

brd bAx b
bub = bvxb.

The definitions above should be seen as abstract semantical definitions. Imple-
mentations should of course use more efficient, specialized versions of functions
and representations whenever possible. For instance, it is easy to verify that
toset(S) = S for finite sets S.

Finally, let us verify that M, Ll as defined above do enjoy the postulated properties
in Definition 4:

Proposition 13 For all maximal b, b’ in B (int™) it holds that b1 b and b U b’

both are mazimal, {{bY N BT C {oM B, and {{BY} U {B'Y} C {bUD'Y.

28



Proof. It is trivial that b1 b’ and b U b are maximal whenever b and b’ are.
Similarly, for most cases it is trivial to prove that {{b}} N {{'}} C {bNd'}} and
{oY U '} C {bu '} for maximal b, b'. The possibly nontrivial case is when
bMbd =0 b = x,m(sfilter(b, toset(b'))). But then, we can first note that
{o} N {b'}} = sfilter(b, toset(d')) whenever b and b’ are maximal, and then that
S C xP_ m;(S) for all S € Set int™. This yields the result also in this case. |

7.6 Sparse Multidimensional Bounds and Relational Data-
bases

So far, we have considered mainly multidimensional product bounds. We now turn
to finite multidimensional sparse bounds and how operations on them could be
defined. At first sight, it may seem that we simply could define sparse n-dimensional
bounds as members of the abstract data type Set (a3 X --- X ay,) and define the
operations on bounds in terms of the abstract set operations on this data type.
However, this data type cannot be closed under the operations we consider. To see
this, reconsider the expression t = ¢(z1,x2,23).(f,b) ! (x2,¢,21,21). In Sect. 7.3
we considered the case where b is a product bound and arrived at a bound for ¢
where z3 is unconstrained. This should still hold if b is a sparse bound. x5 and x3,
on the other hand, should be constrained by the following: the bound for ¢ should
contain only tuples (z1,z2,z3) where there exists an element (eq, ez, e3,e4) € {{b}}
such that e; = 39, e = ¢, and e3 = e4 = x;. This is an infinite set, but since b
is finite it can be given a finite representation as a sparse set of two-dimensional
tuples (x1,x2), obeying the above, which defines a three-dimensional bound which
is unconstrained in the third dimension.

We thus need bounds which are sparse finite sets embedded into a higher-
dimensional space. To define these it is convenient to generalise n-tuples into records
indexed by attribute sets: © = (z.a | a € A) where A is a finite set of attribute
names. (n-tuples can then be seen as records with attribute set {1,...,n}.) Seman-
tically, these records are functions in [A — (J, 4 Da], where z.a € D, for a € A.
Sparse sets of records are elements in Set [A — [ J,. 4 D] For such sets S we write
Attr(S) for A. TIn light of the above, we define that if S € Set[A — (J,c4 Ddl
then S € B([A" = U,ca D;]) whenever A C A" and D, = D, for a € A.
We now define, somewhat informally, the operations in Definition 4 on bounds
in B([A" = U,ca D) as follows (cf. Sect. 7.5):

e finite(S) iff Attr(S) = A’
e [S],,0 = Ax.3y € SVa € Attr(S).xz.a =y.a

e Enumeration according to lexical order of records (we assume a total order on
A)

e size(S) = |S| when Attr(S) = A’

In order to define U, M, and bproj, ; we introduce the following operations,
known from relational database theory (see, for instance, [49]):

Project(S,A) = {z|3JyeSVa€ A xa=y.a}
JOZ'TZ(S] s Sg) = {t | (at] € S1.Va € AttT‘(S]) t.a=1t .a) N
(atg € Sy.Va € AttT‘(Sg) t.a= tz.a) }

We can then define:

[ ] Sl 1 SQ = Join(Sl,Sg)

29



e S1 U Sy = Project(Sy, Attr(S1) \ Attr(S2)) U Project(Sa, Attr(Sz2) \ Attr(Sy1))

e bproj, ;(S,t) = {(z.b | b € rg(p)) | Iy € SVa € dom(p).z.p(a) = y.a A
Va € Attr(S)\ dom(p) \I.z.p(a) = t.a}

Here, I C Attr(S). rg(p) stands for the range of p. We omit the verification that
these operations do have the the properties required in Definition 4 and in (12): it
is fairly straightforward but tedious to carry out.

Relational databases can be seen as sparse sets of records indexed by attributes.
Thus, it is possible to define data fields whose bounds are databases. Let us con-
sider briefly how our data field language from Sect. 3.1, extended with records and
bounds which are sparse sets of records, can be used as a language for querying and
computing over relational databases. We introduce an obvious syntax for records:

(a1 Zt] g v ,an:tn)

Forall-syntax with pattern-matching on records is straightforward to define, as well
as syntactic sugar for selection/projection similar to the sugaring for data fields
with product bounds defined in Sect. 7.4.

In order to use data field primitives to compute with databases we need a func-
tion to “lift” a database into a data field:

df b = (\x—>x,b)

To create a data field of all the values of attribute a from database s, we write
forall x-> ((df s)!'x).a

or, using elemental intrinsics overloading, simply

(df s).a

We can now, for instance, write hist (df s).a for the histogram over the values
of the attribute.

Now consider a database s with attribute set {ssn,salary, age}, and a data
field frac_of_inc over a database with attribute set {ssn,expense}. The setting
could be that s is a database over individuals, each identified by its ssn and having
possibly several incomes, and that frac_of_inc tabulates, for each individual, the
fractions of the total income spent on different kinds of expenses. Maybe we would
like to compute, for all individuals of age 43 who have any income, how they spend
their money in absolute figures. The following forall-expression defines a data
field with this information:

forall(id:x1, exp:x2)-> (sum (df s)!(ssn:x1, age:43).salary) *
frac_of_inc!(ssn:x1, expense:x2)

How does this work? The term being summed over has the attribute salary omit-
ted. As for the syntax in Sect. 7.4 we transform this term into

forall x-> (df s)!(ssn:x1, salary:x, age:43).salary

Informally, the net effect is that for each x1 the sum of all salaries is computed,
over each set of records r with r.ssn = x1 and r.age = 43. As the second
factor we select, for the same x1 and each possible x2, the corresponding entry in
frac_of_inc. The result is a data field over a database with attributes id and exp
which holds a table over each individual of age 43 and his income split on different
expenses.

Formally, the following happens. The datafield being summed over has, for
any given value z; of x1, the bound bpmjp,@(s, (ssn:z;, salary:x, age:43))

30



with dom(p) = {salary}, and p(salary) = 1. This bound equals {z | Jy €
s.y.salary = z A y.ssn = x1 A y.age = 43 }. For the first factor, with respect to
the outermost forall, the bound bproj, 1 (s, (ssn:x1, salary:x, age:43)) is
obtained, with dom(p') = {ssn}, and p'(ssn) = id. This bound is the set S; =
{(2.1d) | By € s.y.ssn = z.id A y.age = 43 }. Note that S; does not constrain x2
and is thus infinite. The second factor, finally, has the bound bprnljp,,ﬂ(S, (ssn:x1,
expense:x2)), where S is the bound of frac_of_inc, with dom(p") = {ssn, expense},
p"(ssn) = id, and p"(expense) = exp. This bound equals S = {(z.id, z.exp) |
Jy € S.z.id = y.ssn A z.exp = y.expense }. The bound for the whole forall-
expression is S; M Sy = Join(S1, S2), which is a finite set constraining both x1 and
x2. Thus, it is a finite bound even though S; is infinite.

7.7 Translations and Scalings of Sparse/Dense Arrays

Many array operations require that arrays, with their bounds, are translated w.r.t.
some constant offset vector. Other operations require that arrays are reversed, or
accessed with some constant stride. These operations can be seen as a scaling of the
array, possibly with a negative factor. By and B; do not define implicit propagation
of bounds w.r.t. these operations. We now propose an extension By which defines
this for our sparse/dense array bounds from Sect. 7.5. (This could also easily be
done for the sparse multidimensional bounds in Sect. 7.6.)

Translation and scaling of a data field d can be expressed as ¢Z.d!g(F), where g is
an affine function. So we should define By ((f,b)!g(%),Z,Y) when g is affine. What
should it be? For bounds which define finite sets, we can state some general facts.
Consider a general function g, bound b, and function G taking bounds to bounds
such that By ((f,b) ! g(Z),#,Y) = G(b). We want to have {{[b],,.,c 9}} € {G(b)}}:
then we can use Lemma 1 to extend Lemma 2 to cover Bs, which in turn extends
Th. 1 to By. We have {{[b],,,, 0 9}} = {= | g(x) € {{b}} }. If ¢ is invertible, then
this set equals { g~ ' (z) | z € {{b}} N Im(g) } = b’ (here, Im(g) stands for the image
of g). Now, if b is a finite bound and we can compute g~ ', then we can compute
G(b) from b in the following way:

e directly as o', if G(b) is a sparse bound,
e as (min(z |z € b’ ),max(z | z € b)), if G(b) is a dense bound.

In the following, we will use elemental intrinsics overloading of addition and
multiplication on integer tuples, that is: ¢t +¢' = (t1 + t},...,t, + t},) and similarly

for £ . We also define i = (n,...,n) for numerical constants n. First, we define
translations of bounds:

Bo((£,0) V(& +&),2,Y) = tr(b, @), FV(d) =0 (17)

tr(b, @) is defined as follows, for the different forms of b:

tr((l,u),a) = (La,ula), (I,u)€ int X int (18)

tr(S,a) = smap(Az.(x La),S), S € Setint (19)
tr((by,...,bn),(az,...,an)) = (tr(bs,a;1),...,tr(bn, an)) (20)
tr(all, @) = all (21)

tr(nothing, @) nothing (22)

tr(p,d) = MEp(@+d), péeEint" — bool (23)

See Fig. 10 for a simple example. Also note that ¢r(b, () = b.
The correctness of ¢r is stated in the following proposition, which is straightfor-
ward to prove.

31



Y

- | a
d I —

bx.d (x+a)

Figure 10: Translation of data field d to pz.d! (z + a).

Proposition 14 {{[0],,,, o (AZ.(Z + @))}} = {tr(b, @)}}.

Next, we define scaling:

sc(Z,b) is defined as follows, for the different forms of b:

5¢(0,b) = if([b]p,0,(0), all, nothing), all forms of b (25)
sc(z,(l,w)) = ([l/z],|u/z]), (l,u) € int x int,z > 0 (26)
se(z, (Lu)) = ([u/z],[l/z]), (u)€int xint,z <0  (27)
sc(z,8) = smap(M\x.(x/2), sfilter(Az.(z/z = |2/z]),5)),
S € Setint,z # 0 (28)
sc((zry. oy 2n),(ba,...,bn)) = (sc(z1,b1),...,8¢(2n, b)) (29)
s’r(z all) = all (30)
sc(Z, nothing) = nothing (31)
sc(Z,p) = M.p(Z-%), pe€int™ — bool,z # 0 (32)

Note that (25) simplifies into (30) and (31) for all and nothing, respectively. Also
note that sc(7,b) = b.

As for tr, there is a correctness result for sc. It is tedious but straightforward
to prove, so we omit the proof:

Proposition 15 {{[b],,,, 0 (AZ.Z- Z)}} = {{sc(Z, b)}}.

Finally, we combine scaling, translation, and the “selection/projection” of Sec-
tion 7.2 into a more general case for By (t,%,Y). In order to do this, we need the
following result which is easy to prove.

Proposition 16 If {{[b],,,, © 9}} € {G(0)}} and {{[b]y,,, © hi} € {H ()} for all
bounds b, then {{[b],,,, © 9 h}} C{H(G(b))}} for all bounds b.

We now make the following definition.
Bs((f,0) ! (2 lp, @] + @), 7,Y) = tr(sc(Z, bproj, ; (b, 7)), @), (33)

where ) C FV(t;) C Y fori €I, FV(t;) =0 fori ¢ I, and FV(Z) = FV(d) = 0.
Finally, we extend (10.1) into (10.2):

(
By((f,b) 1 £,2,Y) = Ba(f,

2Y), FV(f,0)=0,1#7 tp 2+ (10.2)
for all - ﬂp Z] + d as defined in (33) If we consider t_[p7 ] as equal to T ﬂp Z] and
7 - ilp, ©] as equal to Z - i[p, &] + 0, then (33) and (10.2) subsume (13), (24), (17),
and (10.1).

32



Definition 12 By(t,#,Y) is defined by equations (2.1) (8.1), (10.2), (11.1), and

As for By Lemma 2 and thus Th. 1 can be extended, through Propositions 14,
15, and 16, to cover B;. We omit the details.

7.8 An Example: Data Fields for Symbolic Drawings

We now describe how data fields could be used to define drawings comprised of
symbolic objects. Some operations on these objects will rely on the transformation
of bounds under translation and scaling in Sect. 7.7. We will consider two kinds of
data fields for this purpose:

e scenes, which are functions describing images in real scale. These are repre-
sented as data fields of type Df (Float,Float) a;

e bitmaps, which are “sampled” scenes represented as data fields of type
Df (Int,Int) a.

a is some type which describes the image property in each point (e.g., colour, inten-
sity). Scenes are built from objects, which also are data fields of type Df (Float,Float) a.
In this context, the data field defines an image property for each point in the plane
where it is defined, and can be seen as “transparent” in points where it is unde-
fined. The finite, enum, and size functions on bounds are not needed for objects
and scenes since these will be evaluated only when “viewed” through a bitmap. We
can imagine a superclass to data fields for which these functions need not be defined.
It is even possible to simply use functions of type (Float,Float) -> a to repre-
sent objects and scenes, but for efficiency reasons (like if objects are moved w.r.t.
a mutable bitmap, see Sect. 7.10) it may make sense to have bounds for objects
which can act as “bounding boxes”.

The following function computes a m X n-bitmap from a scene, with a scale factor
for pixels per length unit and an offset which defines the origin of the bitmap:

bitmap scene scale (off_i,off_j) col mn =
forall (i,j)-> (bg col scene!(i/scale+off_i,j/scaletoff_j))
at (1:m,1:n)

bg col x = if isoub x then col else x

See Fig. 11. The elementwise applied bg col defines a background colour. (We use
Haskell style pattern-matching on arguments in the definition of bitmap.)

How are objects composed into scenes? We define a connective over which puts
an object above another:

dl ‘over‘ d2 = forall x-> if not (isoub d1!x) then dl!x else d2!'x

Objects can be transformed in different ways. For instance, the function below
changes the colour of an object:

dye d col = (forall x-> if not (isoub d1!x) then col else oub)
at bounds d

Note the explicit restriction: the data field defined by the forall-expression has
bound all. The function bounds is defined by:

bounds (_,b) = Db

Another group is geometrical transformations, e.g., translating an object:

33



of fset .
j/scale

. scene
i/scale — — —

L

bitmap

Figure 11: Connecting bitmaps with scenes.

translate d (off_x,off_y) = forall (x,y)-> d!(x-off_x,y-off_y)

Other geometrical translations require that objects have some origin. If we consider
more complex objects which are pairs of objects and origins (pairs of floats), then
we may for instance define a function which “flips” objects in the first dimension:

flip_x (d, (ox,o0y)) = (forall (x,y)-> 4! (ox-x,y), (0ox,0y))

It is straightforward to redefine the previous operations on objects and scenes which
are simple data fields so they work also on objects with origins.

7.9 Alternative p-calculi for Conformance

Most existing array languages require that the operands of elementwise applied op-
erations are conformant, that is, that their extents are the same after they have been
aligned. The model developed here is different it yields the implicit intersection
rule for elementwise applied strict operations, and a related rule for elementwise
applied conditional. It is, however, simple to modify the (-calculi given here to
yield conformance instead. In order to obtain conformant versions of the calculi
which are independent of the type of bounds, the following is needed:

e A new required operation on bounds in Definition 4, which is a test “=" for
equality of bounds, and

e The following rewrite rule, which replaces (5) and (6):

Bi(np(t17' "7tm)7'7"7 Y) = Zf(/\ /\ B7(t]/7"/ Y) = B7(tk/7"/ Y)7Bi(t17'7'17 Y)a*)
j=1k=1

These modifications alone do not yield the alignment of array operands that
typically takes place in array languages before the extents of the operands are
matched. This alignment is strongly tied to the dense array type and makes little
sense for other indexed data structures. Actually, to avoid ambiguities about which
operand to align with which, one should probably define this alignment only for
array types where the lower bound is fixed (say, 0). The alignment then becomes a
matter of defining the array operations in the language so they always yield arrays
of this kind. We leave the details for the interested reader to work out.

34



7.10 Mutable Data Fields

Efficiency is often a concern. Many languages therefore provide mutable arrays
which can be updated in place. We now outline how mutable data fields could be
defined.

For simplicity we do this in a simple imperative language (similar to IMP in [70])
extended to allow concurrent assignments of data fields, with types and terms ac-
cording to Sect. 3.1. We only give enough details to make the point. The language
has typed program variables, and states which are mappings from program variables
to values. In particular, program variables of type Df 71 75 hold data fields. For any
data field d we use the notation dy and dy for its function and bound, respectively
(i.(—‘:., d= (df,db)).

The meaning of a program c is a function C[¢] which maps states to states, and
for any term there is a function which maps states to values of the correct type. In
particular F[t] maps data field-typed terms to data fields. For states o, o[v/z] is
defined by o[v/z](z) = v, and o[v/z](y) = o(y) whenever y # z.

The language has assignments x :=t, where z is a program variable and ¢ is
a term. Assignments of data field-typed variables can be seen as a concurrent
assignment of some or all of their elements. To make in-place update possible it is
important that these variables don’t have their bounds changed. To accomplish this,
we can give semantics to data field assignments in one of the two following ways:

¢ Requiring conformance: Clz :=t]o = if (F[t]o)s = o(z)s, o[F[t]o/z], *)

¢ Updating only the elements where the right-hand side is defined: C[z :=t]o =
ol(\y-if (IF[tleD)s, (Fltlo)s y,0(z)s y), 0(2)s) /2]

(Cf. denotational semantics for “ordinary” assignments [70].) Defining the semantics
in this way has the advantage that the issue of mutability becomes largely orthogonal
to the exact semantics of data field expressions.

8 Examples

We now exemplify the use of data fields for the specification of parallel algorithms.
We will use the simple functional data field language developed in Sections 3.1
and 7.4, extended with some conveniences. We give three examples: Strassen’s
algorithm for matrix multiplication, which is a recursive divide-and-conquer style
block-structured matrix algorithm, data parallel LU factorization with pivoting,
which is an array algorithm with data dependent structure, and a sparse parallel
neural network algorithm. An early version of the latter algorithm was presented
in [23].

8.1 Extensions of the Data Field Language

First we add ordinary if..then. .elseif..else as shorthand for nested condition-
als. Then, we define a notation to define different parts of data fields by cases. The
expression

case(b; ->t1; ... ; b, —>1t,; otherwiset)

is syntactic sugar for

forallz-> if inb; x then (¢{; atby)!'x
elseif in by x then (i3 at by) 'z

elseif in b, x then (¢, at b,) 'z
elset

35



bl

b3

Figure 12: Illustration of case(by =>t1; by => to; by => t3).

(We may allow an empty otherwise which is equivalent to ¢t = forall x->oub.)
See Fig. 12 for an illustration.

Furthermore, we define notation for 2-dimensional data fields d: Df (Int,Int) 7
with canonical product bounds. (It is easily extended to n-dimensional data fields.)
When these bounds are finite and nonempty we define, for i = 1, 2:

1.4 (_,b) = enum (proj_i b) 0
u_i (_,b)
align d = forall(x1,x2)-> d!(x1-(1_1 d)-1,x2-(1_2 d)-1)

++_1 d1 d2 = forall(x1l,x2)->
if x1 > u_1 d1 then d2!(x1-(u_1 d1)+(1_1 d42)-1,x2) else d1!(x!,x2)

++_2 d1 d2 = forall(x1l,x2)->
if x2 > u_2 d1 then d2!(x1,x2-(u_2 d1)+(1_2 d2)-1) else d1!(x!,x2)

enum (proj_i b) (size b - 1)

1_i and u_i give lower and upper limit, respectively, in direction i. align d
returns d with the left-hand upper corner aligned with (1,1). ++_i is data field
concatenation in direction 4. Finally, for convenience, we define:

first b = enum b 0

We will also make use of some other conveniences like 1et-constructs.

8.2 Strassen’s Matrix Multiplication

Strassen’s matrix multiplication [63] is famous since it was the first known matrix
multiplication algorithm with complexity strictly less than O(n?) for n x n-matrices.
It is a recursive block-structured algorithm where the matrices are successively split
in four similar blocks. When the matrices are of size n x n, where n = 2™ for some
natural number m, the blocks will always have the same size. We restrict our
presentation to this case.

Consider the matrix product C' = AB. In a block formulation

C11 C12 _ air a2 bir bio
Co1 €22 az1  A22 ba1  ba
there are four computations like

c11 = aiibir + aizba

to perform, which yields 8 matrix multiplies and 4 matrix adds. Using Strassen’s
method we can perform the same computation using 7 matrix multiplies and 18 ma-
trix adds. The following operations are performed, where the method is applied

36



recursively for the multiplications of blocks:

mi1 = (a2 L as)(bar + b22) ci1 = mp+me Lmy+mg
me = (ai + az2)(bi1 + b2) Cl2 = Mg+ ms

mg = (a1 Las )b + bi2) C1 = Mg+ my

my = (ai + a2)b o2 = mg Ll mg+ms L myg
ms = ai(bia L by)

me = a(bar L biq)

mr = (a2 + az2)bn

We now define a data field function for Strassen’s algoritm, where matrices are rep-
resented by data fields restricted by bounds in (int x int)? C B, (int?). Strassen’s
algorithm operates on square matrices with upper left corner (1,1): thus, we will
make heavy use of the alignment function. It is also convenient to define func-
tions which select the four different (north, south) x (east, west) subfields of a
2™ x 2™-data field:

let
nd=1_1(d):u_1(d)/2
sd=mu_1(d)/2+1:u_1(4d)
ed=12():u 2@d)/2
wd=u?2(d)/2+1:u_2(d)

in

ne d = align (d at (n d,e 4))

nw d = align (d at (n d,w 4))

se d = align (d at (s d,e d))

sw d = align (d at (s d,w d))
With these definitions, the data field function is defined viz.

strassen a b =

if size (bounds a) == 1 then ax*b
else
let
ml = strassen ((nw a)-(sw a)) ((se b)+(sw b))

m2 strassen ((ne a)+(sw a)) ((ne b)+(sw b))
m3 = strassen ((ne a)-(se a)) ((ne b)+(aw b))

m4 = strassen ((ne a)+(nw a)) (sw b)
mb = strassen (ne a) ((anw b)-(sw b))
m6 = strassen (sw a) ((se b)-(ne b))
m7 = strassen ((se a)+(sw a)) (ne b)

cll =ml +m2 - m4 + m6
cl2 m4 + mb
c21 = m6 + m7
c22 =m2 - m3 + mb - m7
in
(c11l “++_1°¢ c21) “++_2°¢ (c12 “++_1°¢ c22)

Note that the resulting code is void of any explicit bounds.

8.3 Data parallel LU factorisation

LU factorisation is a classical problem in linear algebra [13]. The task is to factorise
an n X n-matrix A = LU where L is a lower-triangular matrix and U is upper-
triangular. The standard algorithm computes L and U in such a way that the
diagonal elements of L all are equal to one, and stores U and the nondiagonal

37



u U
k k m (kk,k:n)
L # ? L
pivot - -
n
(k+21:n,k:K)

Figure 13: Pivoting and recursive assembly of result in the LU factorisation algo-
rithm.

elements of L in a single n x n-matrix. This algorithm has quite some inherent
parallelism, which can be revealed by a collection-oriented programming style with
extensive use of elementwise applied operations. Array languages like HPF can
express this part well. However, the pivoting (data-dependent exchange of rows as
to minimise the numerical error) is not so straightforward to express in a collection-
oriented way in these languages. Data fields with sparse and dense array bounds
can be used for this purpose.

The following is an informal description of the classical algorithm. The input is
the n x n-matrix A;. For k = 1ton L 1:

1. Shift rows in A as to bring to the top the row whose first element has the
greatest magnitude. (Pivoting)

2. If this element (the pivot element) is zero, return with error.
3. Divide first column (except first element) with pivot element. Negate.

4. For all elements in Ag(k+1:n,k+1:n), add corresponding element in first
row times corresponding element in first column.

5. Apply recursively to Agy1 = Ag(k+1:n,k+1:n), concatenate results.

The data field formulation follows. For this algorithm it is natural to let results
“stay in place” rather than aligning their upper left corners. Therefore, the assembly
of the result can be done by a simple case rather than data field concatenation.
We define a function for exchanging two rows in a matrix:

swap a k 1 = forall(i,j)-> if i==
then (a!(:,1:1))!(i-k+1,7)
elseif i=1 then (a!(:,k:k))!(i-1+k,j)
else a

Below is the data field function for LU factorisation.

lu a = if size (bounds a) == 1 then a
else
let
k=1_1a

n=u.la
pivot = first (bounds a!(:,k)) at

38



abs a!(:,k) == fold max (abs a!'(:,k)) minnum

in
if a!(pivot,k) == 0.0 then *
else
let
a’ = swap a k pivot
in

case((k:k,k:n) -> a’;
(k+1:n,k:k) -> -a’/a’!'(k,k);
otherwise ->
LU (a’+forall(i,j)->
(a’ ! (k,k+1:n))!i * a’!(k+1:n,k)!j)
)

See Fig. 13 for an illustration of some steps in the algorithm. Also note how the
location of the pivot element is found by first generating a sparse data field defined
exactly in the (possibly several) locations where the element of a! (k,:) has maxi-
mal magnitude, and then picking the first of these locations (minnum is a constant
representing the least number for a numeric data type of bounded size). This is a
fairly generic way to find the location of a data field element satisfying a certain
condition.

8.4 A Sparse Neural Network

Neural networks can be sparse both in connections and activity. Sparse connectivity
means that not all neurons are connected and sparse activity means that not all
neurons and synapses are active all the time.

Artificial neural networks in the SANS model [41] can, when stimulated with
an input, recall a stored pattern by an iterative relaxation method. Let I be the
set of units in the network. The patterns are stored as biases 3; and weights w;;,
for i,j € I. An input can be fed into the network which is then iterated until a
termination criterion is fulfilled. The following equations are used as a basis for the
iteration:

si = Bit+ > wim, (34)
J
dEi _ S; 1 Ei
dt o TE ’ (35)
0 E;, < B
mo o= f(B,B) =< €% 8 < E < 0 (36)
1 0 < El

E; is a slowly changing “activity” of unit i, m; is the unit’s output, and 75 is the
time constant of the units.

In the iteration, new activities and outputs are calculated for the units from the
old ones. Typically, after an initial phase, most elements will have E; as either 0 or
1 and very few will change, which means that very few outputs 7; will change. A
parallel implementation will therefore benefit from communicating differences be-
tween new and old outputs rather than the absolute output levels: most differences
will be zero and need therefore not be sent, which greatly reduces the communica-
tion and also the arithmetics needed when updating the activities. See [22]. The
following is an iterative data field algorithm:

recall beta w tau_e pi_in e_init delta_t f ==

39



let
relax pi e s =
let
pi_new = f e beta

delta_pi = sparse (pi_new-pi)

delta_b = forall(i,j)->delta_pi!j

delta_s = forall i->sum forall j->(wxdelta_b)!(i,])
s_new = s+delta_s

e_new = e+delta_t*(s_new-e)/tau_e
in
if converged pi pi_new then pi_new
else
relax pi_new e_new s_new
in
relax pi_in e_init
beta+forall i->sum forall j->(w!(i,j)*pi_in!j)

Here, beta, pi, E, s and related entities are data fields of type Df 7 Float with
finite bounds, w: Df (7, 7) Float, and delta_s is a data field with bound b whose ele-
ments delta_s!i are sums over the sparse data fields forall j->(wxdelta_b)!(i,]).
The contribution from delta_s is then added into s and a new activity level is com-
puted. The initial value of s is computed as a data field of sums in the “j”-direction.

The code above presumes that the weight matrix w is a dense data field, i.e.,
that it has dense bounds. But neural networks are often sparsely connected. Then
most entries in w will be zero, and it can be efficient to turn w into a data field
with sparse product bound (b, b) instead. The change to the code will be minor.
delta_s will now have bound b; rather than b, and the line computing s_new must
be changed into s_new = s + £ill delta_s O where £ill is defined as

fill d ¢ = forall x->if isoub d!x then c else d!x

With this change, the code will work as before but with a sparse weight matrix.

9 Related work

There are a number of functional formalisms which can be used as an abstract
programming notation, to specify computations with indexed data structures on a
mathematical level, or to identify and prove algebraic laws which can be used for
program transformations.

An early example is Backus’ FP [2]. FP is a formalism entirely based on functions
and operations on functions, most prominently function composition. Values in FP
are either atoms or tuples (sequences): the latter can be seen as (implicitly) indexed
data structures.

Similar to FP in spirit is the Bird-Meertens formalism (BMF). Here an alge-
bra with unary and binary functions forms a base for a set of theories for different
data types [4, 5]. In particular, there is a theory for functions over lists. This
formalism was originally developed to support the formal calculation of programs
from specifications, but it can also serve as an abstract model for explicit data
parallel programming, with a cost model [60]. The systematic transformation in
BMF of specifications into parallel algorithms has been studied by Gorlatch [21].
Formal parallelisation in BMF is achieved by transforming functions into list ho-
momorphisms: such functions can be computed in parallel in logarithmic time. A
potential weakness of BMF in this context is that lists sometimes do not provide the
best collection-oriented data type for modelling computational problems: in many

40



cases, explicitly indexed and possibly multidimensional structures are much more
natural. Data fields are designed to express multidimensional problems well, and
an interesting topic for future research is to investigate whether a corresponding
concept of “data field homomorphism” can be developed and used in a similar way
as the list homomorphisms in BMF.

A more machine-oriented, explicitly parallel model is the Bulk-Synchronous Par-
allel model (BSP), originally proposed by Valiant [68]. In this model, computations
are indexed by processor ID’s and are divided into distinct computation and com-
munication phases. This makes it possible to assign a fairly simple cost model to
the BSP model. A formal BSP calculus (an enriched A-calculus) has been developed
by Loulergue et. al. [48]: this calculus is different from our p-calculi in that indices
are implicit. There have also been attempts to apply a stepwise refinement program
development methodology to the BSP model [61]. The BSP model could be seen as
a restricted instance of the data field model, and it could serve as a target format
for transformations from less restricted data field instances.

Algorithmic skeletons [11] are higher order patterns which can be used to imple-
ment collection-oriented operations in a way tailored to suit given parallel architec-
tures. They thus fit very well in a functional context and it is not hard to imagine
an implementation strategy for data fields where certain operations on data fields
are translated into skeletal code.

There is some work on the formal modelling of arrays. The Array Theory [50]
of Trenchard More, Jr. is an attempt to define an axiomatic theory of APL arrays.
A virtue of this theory is the consistent handling of singularities, like empty arrays.
This model is highly APL-specific and it is not easily generalized to other indexed
structures. Another approach to arrays is taken by Fitzpatrick et. al. [18]: they
define arrays as pairs of “shapes” and functions (essentially a simple instance of
data fields) and consider algebraic transformations of high-level functional array
algorithm specifications into forms suitable to implement, on SIMD processors.

Formal models of arrays as functions from “index sets” are closely related to the
partial function view of data fields. A Mathematics of Arrays (MOA) [51] is a model
where APL-like arrays are defined in this manner, and operations on arrays are for-
mally defined. In [9] space-time recursion equations are studied, a kind of recursively
defined partial functions which give semantics to systolic arrays. This work later
developed into the language Crystal [10, 71], where array-like entities called data
fields are defined as functions ranging over finite indexr domains. These domains
are constructed from a number of finite base domains (integer intervals, hypercube
coordinates, trees) which can be combined using constructors for product, direct
sum, function space, and restriction. The functions are explicitly typed with their
index domains. A similar language is Alpha [42], where restrictions which ensure
the efficient compilation are posed on the definition of recursive arrays [54, 55].

A similar view, but for more unstructured data, appears in the data parallel
language Connection Machine Lisp [62]. Here, the parallel data type is the zapping,
which is a set of pairs of lisp objects where the first component of a pair cannot
occur in another pair. Thus, xappings are really set-theoretical functions over a
finite domain and they correspond to sparse data fields. A formalization of the
Connection Machine Lisp model was done by Bougé and Paulin-Mohring [6].

These formalisms are all based on a single type of indexed data structure, and
a purpose of our work is to develop a more generic model which is less dependent
on the choice of structure. The work on Shape Polymorphism [34] is a step in that
direction, where a category-theoretical model is used to specify shapely types and
identify operations which are polymorphic over these types. The “usual” algebraic
types of lists, trees, graphs etc. are shapely types. The canonical example of a
shape-polymorphic function is map. The array language FiSh [35] is based on this
theory. FiSh only supports regular arrays. Each array has a shape (similar to

41



bounds for data fields), and FiSh has fairly strong restrictions which ensure that the
shape can be inferred at compile time. FiSh functions can be shape-polymorphic.
A somewhat similar approach is the polytypic model, where functions like map are
defined for classes of recursive types [33].

Another approach is to use systematic overloading to obtain a generic collection-
oriented programming model. Peyton Jones [36] uses the class system of Haskell to
define a class of bulk types with associated operations. Similar efforts have been done
in the object-oriented community, like the STL C++ library [52]. Object-oriented
approaches to generic program development for high-performance parallel comput-
ing have also been considered [14]. The enum function for data fields corresponds
to the “iterator” design pattern in object-oriented design [19]. Common for these
overloading-based efforts is that they do not pay much attention to multidimen-
sional structures. It is possible to define a class for bounds in Haskell’s current class
system but multidimensional bounds cannot be handled well in this system [28].

Although the data field model is inspired by collection-oriented constructs in ex-
isting languages, it is still a formal model and therefore this section focusses on for-
malisms rather than languages. An excellent survey of collection-oriented languages
and features up to around 1990 is found in [58]. However, the languages ZPL [8] and
FIDIL [57] deserve special mentioning since they consider bounds (called regions in
ZPL and domains in FIDIL) to be more or less first-class data. In particular, the
domains of FIDIL are much richer than simple array bounds: they can also be
sparse, or “boxed” (exact unions and set differences of array bounds). The data
field model would be well suited to describe them formally. FIDIL is also the only
existing array-like language we know which does not require conforming arguments
for elementwise applied strict operations: rather, it uses the “implicit intersection
rule” which corresponds to our equation (5) for computing bounds of -terms.

10 Conclusions and Further Research

We have presented the data field model, which is a extension of the traditional
array concept into a general model for indexed data structures. A major aim is
to provide semantically sound and general principles for how to design languages
with collection-oriented features. Data fields are pairs of functions and general
bounds equipped with a number of abstract operations satisfying some axioms.
The operations are selected to support the usual collection-oriented operations.

Indexed structures can also be seen as partial functions. A-abstraction turns out
to provide a very flexible and generic syntax for defining many collection-oriented
operations on partial functions. We define p-abstraction as a similar syntax for data
fields. The purpose is twofold: it supports a style of defining data fields as if they
were partial functions, and its gives a way to define data fields without explicitly
defining the bounds. The bounds are instead implicitly defined through the seman-
tics of p-abstraction. We give a family of possible semantics for ¢-expressions as
higher order rewrite systems. They define how bounds should be inferred in some
cases which occur to some extent in existing languages: elementwise applied opera-
tions, selection and projection on higher-dimensional arrays, and indirect indexing.
We prove a number of properties for the semantics of y-expressions, including a
theorem which relates the semantics of a A-expression and the corresponding ¢-
expression. This is, however, not the only possible way to define bounds implicitly,
and we outline an alternative ¢-calculus which models the more conventional “con-
formance requirement” for operands to elementwise applied operations. We also
consider briefly how mutable data fields, which can be updated in-place, could be
formally defined.

We define a small functional language with data fields and forall-abstraction

42



which we use for programming and language design examples throughout the text.
The data field part is given a semantics in terms of formal data fields and ¢-
abstraction. The language provides a possible core language for data fields, and
we show how a number of syntactical conveniences can be built on top of it. The
program examples include database queries, symbolic representations of drawings,
and parallel algorithms for arrays and sparse structures. Our aim is to prove that
data fields can provide a suitable programming concept for a wide range of appli-
cations, including but not restricted to parallel algorithms and their specification.
On the other hand it is also possible to define application-specific languages based
on specialised data fields, where the language features and the exact data field se-
mantics are tuned to provide the best tradeoff for the application at hand between
efficiency, expressiveness and flexibility.

We have implemented a dialect of Haskell which offers an instance of data
fields [27]. This dialect provides data fields with sparse/dense array bounds al-
most exactly as defined in Sect. 7.5, and several of the examples given here have
been implemented in it. One topic of research for the future is to develop this di-
alect further, both regarding language features and implementations, and to try it
out in a more varied range of applications.

Another topic of research is how to integrate the elemental intrinsics overloading
with more advanced type systems than the simple, explicitly typed system of our
example language. It is not known how type systems with type inference a la
Hindley-Milner should be best modified to accomodate this. In Haskell, the class
system could be used to some extent to provide this overloading but it does not
seem to provide the best way of doing it. We are currently working on a modified
Hindley-Milner type system which resolves this overloading at compile-time [66].

This presentation has focussed on the language design aspects of the data field
model, but it could also potentially act as a foundation for formal program devel-
opment methodologies. We have already mentioned the possible connection with
parallel algorithm development in the Bird-Meertens formalism. Another, fairly
obvious use of the model which we have not developed here is as a framework for
studying formal mappings of data structures, e.g., from abstract index domains
close to the problem to concrete index domains close to the address space of the
target machine.

Acknowledgments

We would like to thank Jan-Olof Eklundh, Karl-Filip Faxén, Jonas Holmerin,
Fredrik Nou, and Claes Thornberg for valuable comments. This work was par-
tially supported by The Swedish Research Council for Engineering Sciences (TFR),
grants 91 333 and 94 109. Part of the work was done while the second author was
Invited Professor at Ecole Normale Supérieure de Lyon.

References

[1] E. Albert, J. D. Lukas, and G. L. Steele Jr. Data parallel computers and the
forall statement. J. Parallel Distrib. Comput., 13:185-192, Oct. 1991.

[2] J. Backus. Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs. Comm. ACM, 21(8):613-641,
August 1978.

43



[3]

[15]

[16]

[17]

G. Berry, P.-L. Curien, and J.-J. Lévy. Full abstraction for sequential languages:
the state of the art. In M. Nivat and J. C. Reynolds, editors, Algebraic Methods
in Semantics, chapter 3, pages 89-132. Cambridge University Press, 1985.

R. S. Bird. A calculus of functions for program derivation. In D. A. Turner,
editor, Research Topics in Functional Programming, The UT Year of Program-
ming Series, chapter 11, pages 287-307. Addison-Wesley, Reading, MA, 1989.

R. S. Bird. Constructive functional programming. In M. Broy, editor, Mark-
toberdorf International Summer school on Constructive Methods in Computer
Science, NATO Advanced Science Institute Series. Springer Verlag, 1989.

L. Bougé and C. Paulin-Mohring. Towards a theory of data-parallel computa-
tion: from Connection Machine Lisp to Connection Machine ML. Unpublished
draft, Mar. 1991.

W. S. Brainerd, C. H. Goldberg, and J. C. Adams. Programmer’s Guide to
FORTRAN 90. Programming Languages. McGraw-Hill, 1990.

B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and W. D.
Weathersby. The case for high level parallel programming in ZPL. I[EFEE
Computational Science and Engineering, 5(3):76 86, 1998.

M. C. Chen. Space-Time Algorithms: Semantics and Methodology. PhD thesis,
California Institute of Technology, Pasadena, CA, 1983.

M. C. Chen, Y.-I. Choo, and J. Li. Crystal: Theory and pragmatics of gen-
erating efficient parallel code. In B. K. Szymanski, editor, Parallel Functional
Languages and Compilers, chapter 7, pages 255-308. Addison-Wesley, 1991.

M. Cole. Algorithmic Skeletons: Structured Management of Parallel Compu-
tation. MIT Press, 1989.

B. Courcelle. Recursive applicative program schemes. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, chapter 9, pages 459-492.
Elsevier Science Publishers B. V., 1990.

G. Dahlquist, A. Bjorck, and N. Anderson. Numerical Methods. Prentice Hall,
Englewood Cliffs, NJ, 1974.

F. Dobrian, G. Kumfert, and A. Pothen. The design of sparse direct solvers
using object-oriented techniques. ICASE Report 99-38, ICASE, Hampton, VA,
Sept. 1999.

K. Ekanadham. A perspective on Id. In B. K. Szymanski, editor, Parallel Func-
tional Languages and Compilers, chapter 6, pages 197-253. Addison-Wesley,
1991.

A. Falkoff and K. Iverson. The Design of APL. IBM Journal of Research and
Development, pages 324 333, July 1973.

J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A report on the Sisal language
project. J. Parallel Distrib. Comput., 10:349 366, 1990.

S. Fitzpatrick, T. J. Harmer, A. Stewart, M. Clint, and J. M. Boyle. The au-
tomated transformation of abstract specifications of numerical algorithms into
efficient array processor implementations. Science of Computer Programming,
28(1):1-41, 1997.

44



[19]

[20]

23]

[24]

[25]

[26]

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-oriented Software. Professional Computing Series. Addison-
Wesley Longman, 1995.

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial algebra
semantics and continuous algebras. J. Assoc. Comput. Mach., 24(1):68-95,
Jan. 1977.

S. Gorlatch. Extracting and implementing list homomorphisms in parallel pro-
gram development. Science of Computer Programming, 33(1):1 27, 1999.

P. Hammarlund and A. Lansner. Implementations of very large recurrent ANNs
on massively parallel SIMD computers. In I. Aleksander and J. Taylor, edi-
tors, Proceedings of the 1992 International Conference on Artificial Neural
Networks, pages 1287-1290, Amsterdam, September 1992. ICANN-92, North-
Holland.

P. Hammarlund and B. Lisper. On the relation between functional and data
parallel programming languages. In Proc. Sizth Conference on Functional Pro-
gramming Languages and Computer Architecture, pages 210 222. ACM Press,
June 1993.

High Performance Fortran Forum. High Performance Fortran language speci-
fication. Scientific Programming, 2(1):1 170, June 1993. HPF Version 1.0.

W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms. Comm. ACM,
29(12):1170-1183, Dec. 1986.

J. R. Hindley. The Church-Rosser Property and a Result in Combinatory Logic.
PhD thesis, University of Newcastle-upon-Tyne, 1964.

J. Holmerin. Implementing data fields in Haskell. Technical Report TRITA-IT
R 99:04, Dept. of Teleinformatics, KTH, Stockholm, Nov. 1999.
ftp://ftp.it.kth.se/Reports/paradis/DFH-report.ps.gz.

J. Holmerin and B. Lisper. Data Field Haskell. Unpublished draft, 1999.

J. Holmerin and B. Lisper. Data Field Haskell. In G. Hutton, editor, Proc.
Fourth Haskell Workshop, pages 106 117, Montreal, Canada, Sept. 2000.

J. Holmerin and B. Lisper. Development of parallel algorithms in Data Field
Haskell. In A. Bode, T. Ludwig, W. Karl, and R. Weismiiller, editors, Proc.
Euro-Par 2000, volume 1900 of Lecture Notes in Comput. Sci., pages 762-766,
Munich, Germany, Aug. 2000. Springer-Verlag.

P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel,
M. M. Guzméan, K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil,
W. Partain, and J. Peterson. Report on the programming language Haskell:
A non-strict, purely functional language. ACM SIGPLAN Notices, 27(5), May
1992.

J. Hughes. Lazy memo-functions. In J.-P. Jouannaud, editor, Proc. Functional
Programming Languages and Computer Architecture, pages 129-146, Nancy,
France, Sept. 1985. Springer-Verlag.

P. Jansson and J. Jeuring. PolyP - a polytypic programming language ex-
tension. In Proc. 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 470 482, Paris, France, Jan. 1997. ACM Press.

45



[34]

C. B. Jay and J. R. B. Cockett. Shapely types and shape polymorphism. In
D. Sannella, editor, Proc. 5th European Symposium on Programming, Volume
788 of Lecture Notes in Comput. Sci., pages 302-316, Edinburgh, Apr. 1994.
Springer-Verlag.

C. B. Jay and P. A. Steckler. The functional imperative: shape! In C. Hankin,
editor, Proc. 7th Furopean Symposium on Programming, volume 1381 of Lecture
Notes in Comput. Sci., pages 139 53, Lisbon, Portugal, Mar. 1998. Springer-
Verlag.

S. P. Jones. Bulk types with class. In FElectronic Proceedings of the 1996
Glasgow Functional Programming Workshop, Ullapool, July 1996.

J. W. Klop. Combinatory Reduction Systems. PhD thesis, CWI, Amsterdam,
1980. Mathematical Centre Tracts Nr. 127.

J. W. Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, vol. 2,
chapter 1, pages 1-116. Oxford University Press, Oxford, 1992.

J. W. Klop, V. van Qostrom, and F. van Raamsdonk. Combinatory reduction
systems: Introduction and survey. Theoret. Comput. Sci., 121:279 308, 1993.

D. Knuth and P. Bendix. Simple word problems in universal algebra. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263 297.
Pergamon Press, Elmsford, N.Y., 1970.

A. Lansner and O. Ekeberg. A one-layer feedback, artificial neural network
with a Bayesian learning rule. Int. J. Neural Systems, 1(1):77-87, 1989.

H. Le Verge, C. Mauras, and P. Quinton. A language-oriented approach to the
design of systolic chips. Journal of VLSI Signal Processing, 3:173-182, 1991.
1991.

B. Lisper. Data parallelism and functional programming. In G.-R. Perrin and
A. Darte, editors, The Data Parallel Programming Model: Foundations, HPF
Realization, and Scientific Applications, Vol. 1132 of Lecture Notes in Comput.
Sci., pages 220 251, Les Ménuires, France, Mar. 1996. Springer-Verlag.

B. Lisper. Data fields. In Proc. Workshop on Generic Programming,
Marstrand, Sweden, June 1998.
http://wsinwpOl.win.tue.nl:1234/WGPProceedings/.

B. Lisper and J.-F. Collard. Extent analysis of data fields. In B. Le Charlier,
editor, Proc. International Symposium on Static Analysis, Vol. 864 of Lecture
Notes in Comput. Sci., pages 208 222, Namur, Belgium, Sept. 1994. Springer-
Verlag.

B. Lisper and P. Hammarlund. The data field model. Technical Report TRITA-
IT R 99:02, Dept. of Teleinformatics, KTH, Stockholm, Mar. 1999.
ftp://ftp.it.kth.se/Reports/TELEINFORMATICS/TRITA-IT-9902.ps.gz.

B. Lisper and J. Holmerin. Development and verification of parallel algorithms
in the data field model. In S. Gorlatch and C. Lengauer, editors, Proc. 2nd Int.
Workshop on Constructive Methods for Parallel Programming, pages 115 130,
Ponte de Lima, Portugal, July 2000.

46



[48]

F. Loulergue, G. Hains, and C. Foisy. A calculus of recursive-parallel BSP
programs. In S. Gorlatch, editor, Proc. First International Workshop on Con-
structive Methods for Parallel Computing, pages 59-70, Marstrand, Sweden,
June 1998.

D. Maier. The Theory of Relational Databases. Pitman, London, 1983.

T. More, Jr. Axioms and theorems for a theory of arrays. IBM Journal of
Research and Development, 17(2):135-175, Mar. 1973.

L. M. R. Mullin. Psi, the indexing function: a basis for FFP with arrays.
In L. M. R. Mullin, M. Jenkins, G. Hains, R. Bernecky, and G. Gao, editors,
Arrays, Functional Languages, and Parallel Systems, chapter 10, pages 185
200. Kluwer Academic Publishers, Boston, 1991.

D. R. Musser and A. Saini. STL Tutorial and Reference Guide. Addison-
Wesley, Reading, MA, 1996.

E. Part-Enander, A. Sjoberg, B. Melin, and P. Isaksson. The MATLAB Hand-
book. Addison-Wesley, 1996.

P. Quinton, S. Rajopadhye, and D. Wilde. Derivation of data parallel code from
a functional program. In 9th International Parallel Processing Symposium,
pages 1 15, 1995.

P. Quinton, S. Rajopadhye, and D. Wilde. Deriving imperative code from
functional programs. In 7th Conference on Functional Programming Languages
and Computer Architecture, La Jolla, CA, June 1995.

J.-C. Raoult and J. Vuillemin. Operational and semantic equivalence between
recursive programs. J. Assoc. Comput. Mach., 27(4):772-796, Oct. 1980.

L. Semenzato and P. Hilfinger. Arrays in FIDIL. In L. M. R. Mullin, M. Jenkins,
G. Hains, R. Bernecky, and G. Gao, editors, Arrays, Functional Languages,
and Parallel Systems, chapter 10, pages 155-169. Kluwer Academic Publishers,
Boston, 1991.

J. M. Sipelstein and G. E. Blelloch. Collection-oriented languages. Proc. IEEE,
79(4):504 523, Apr. 1991.

S. K. Skedzielewski. Sisal. In B. K. Szymanski, editor, Parallel Functional
Languages and Compilers, chapter 4, pages 105 157. Addison-Wesley, 1991.

D. B. Skillicorn. Architecture-independent parallel computation. Computer,
23(12):38-50, Dec. 1990.

D. B. Skillicorn. Building BSP programs using the refinement calculus. Exter-
nal Technical Report TR96-400, Dept. of Computing and Information Science,
Queen’s University, Kingston, Ontario, Oct. 1996.

G. L. Steele and W. D. Hillis. Connection Machine LISP: Fine grained par-
allel symbolic programming. In Proc. 1986 ACM Conference on LISP and
Functional Programming, pages 279 297, Cambridge, MA, 1986. ACM.

V. Strassen. Gaussian elimination is not optimal. Numerical Mathematics,

(13), 1969.

Thinking Machines Corporation, Cambridge, MA. Connection Machine: Pro-
gramming in C*, 6.1 edition, 1991.

47



gramming in *Lisp, 6.1 edition, 1991.

[66] C. Thornberg. Towards Polymorphic Type Inference with Elemental Function
Owverloading. Licentiate thesis, Dept. of Teleinformatics, KTH, Stockholm, May
1999. Research Report TRITA-IT R 99:03.

[67] D. Turner. Functional programming and communicating processes. In Proc.
PARLE’87 vol. 2, Volume 259 of Lecture Notes in Comput. Sci., pages 54-74,
Berlin, 1987. Springer-Verlag.

[68] L. G. Valiant. A bridging model for parallel computation. Comm. ACM,
33(8):103 111, Aug. 1990.

[69] V. van Oostrom. Private communication.

[70] G. Winskel. The Formal Semantics of Programming Languages —An Introduc-
tion. MIT Press, 1993.

[71] J. A. Yang and Y. Choo. Data fields as parallel programs. In Proceedings of
the Second International Workshop on Array Structures, Montreal, Canada,
June/July 1992.

A A Rewrite Semantics for the Metalanguage in
Section 4

The following CRS M gives an alternative semantics to the metalanguage defined
in Sect. 4, including the “hyperstrictification” operator defined in Sect. 4.2. (For
readability the notation is not in formal CRS syntax, but it is straightforward to
put the rules in this format. See Appendix B.)

op(Cyy. .y 6n) — ¢ (37)
is«(¥) — true (38)

is.(c) — false (39)

if (true,z,y) — = (40)
if (false,z,y) — y (41)
if(x,z,y) — % (42)
Azttt —  t[t')x] (43)

pft = tuft/f] (44)

fe — fec,  c¢normal form with no occurrence of * (45)

fc — %, cnormal form with some occurrence of *  (46)

(t[t'/x] denotes substitution with ¢ for = in t.) We call this CRS M. (37) is
really a rule scheme with an instance for every strict operation op, possible tuple
(c1,...,¢pn) of normal forms for which f is defined, and resulting function value
c. (This is a standard way to specify strictness in rewrite systems. Cf. the eager
A-calculus [70].) (45) and (46) are also rule schemes of this kind. Similarly, (39)
is a rule scheme, where ¢ ranges over an assumed set of nonoverlapping patterns
which together match exactly the possible canonical forms corresponding to non-
(L,%) values in the cpo which is, maps from. (We omit the details. Just to give
the flavour, for a lazy language where expressions are reduced to weak head normal
form the patterns are of the form C(z1,...,x,), for each constructor C' of arity
n >0.)

48



The other rules except (42) are more or less the same as the reduction rules of
PCF [3]. The correspondence between least fixpoint and rewrite models for this
kind of language is well known [3, 12, 56]. Let us just make two remarks: first, M
is left-normal and orthogonal, which means that it is confluent and the leftmost-
outermost reduction strategy is normalizing (see Appendix B). Second, if ¢t +* ¢’
where ¢, t' are terms in the metalanguage and «<* is the convertibility relation of
M, then t and #' must be equal also w.r.t. the denotational semantics.

B Combinatory Reduction Systems

Combinatory Reduction Systems (CRS) is a generalization of (first order) term
rewriting systems (TRS) which includes reduction systems with bound variables,
like different A-calculi. Many important concepts and results for TRS, such as
orthogonality, and results about reduction strategies, carry over directly to CRS.
For a full description, including fully formal definitions, see [37, 39].

Consider a set of terms T', constructed out of constant function symbols with
fixed arity, nullary variables, and a binary abstraction operator, written []- (i.e., if ¢
is a term and x is a variable, then [z]t is a term). A Combinatory Reduction System
over T is a set of reduction rules s — t, where s, t are metaterms, constructed as the
terms in T, plus terms containing metavariables, written in upper case (7, Z', etc.).
Each metavariable has an arity (possibly 0): if Z has arity k, then Z(t1,...,t),
where ty,...,t; are metaterms, is a metaterm. The metavariables correspond to
the free variables in TRS rules.

(Meta)terms are considered equivalent modulo renaming of bound variables.
For metaterms s, ¢ in reduction rules s — ¢, we demand (i) s and ¢ are closed (i.e.,
a variable z occurs only within the scope of a binding [z].), (ii) s has the form

F(t1,...,tn), where F is a constant function symbol, (iii) any metavariable in ¢
occurs also in s, and (iv) a metavariable Z of arity k occurs in s only in the form
Z(x1,...,7k), where z1,..., 2, are pairwise distinct variables. Examples are the

CRS rules for g-reduction and unfolding of fixpoint abstractions:

Q\([z]Z(2)), Z2") — Z(Z")
wr.Z(x) — Z(px.Z(z))

(“@” is a binary function symbol for application.)

A CRS R generates a reduction relation — g on the set of terms, very much
like a first order TRS. The main difference is that the matching of rule to subterm
is performed by a wvaluation rather than a first order substitution. Valuations are
essentially a complex form of substitution which allows the possibility to specify
syntactically in rules whether bound variables can occur in certain subterms or not.
The only way for a bound variable to occur in a subterm matched to a metavariable
is if it is explicitly “passed” as a formal argument to the metavariable, i.e., a term
which is matched by [z](...Z...) (where Z is a nullary metavariable) can have
no occurrence of x in the subterm corresponding to Z, whereas a term matched
by [#](...Z(z)...) (with Z unary) may have this. This allows purely syntactical
specifications of rules like n-reduction in the A-calculus.

Two important concepts for CRS are orthogonality and left-normality. Two
rewrite rules are mutually orthogonal if both are left-linear and if they don’t over-
lap [39] (i.e., there are no “critical pairs” in the terminology of Knuth-Bendix com-
pletion [38, 40]). A CRS is orthogonal if all its rules are mutually orthogonal. An
orthogonal CRS is confluent [37, 39]. A CRS is left-normal if, in the left-hand sides
of all rules, all constants and function symbols (in linear term notation) precede
the variables and metavariables. For a left-normal CRS the leftmost-outermost
reduction strategy is normalising [37].

49



Most facts about CRS still hold for substructures, i.e., systems where the set
of terms is restricted but closed under reduction, valuation, and taking of context.
Such substructures include typed systems. In particular, the facts about orthogonal
and left-normal systems mentioned above still hold.

C CRS rules for p-abstraction

The reduction rules
px.t — (Az.t, Bi(t, z,0))

which define the CRS ®;(R) have the following formal CRS definition: for all terms
t and variables = such that B;(t,z,0)) is defined, there is a rule

o([z]t) = (A([z]t), Bi(t, z,0))
The rules are particularly simple since they contain no metavariables. Rules
(10('7"17 N 77:n)t - ()‘('Tla s 7:I:n)'t7 Bl(ta ('7:17 s 7'7:77.)7 w))

with pattern-matching over tuples have the following formal CRS definition:

w([a“] U [w’ﬂ]t) - ()\([331] T [wn]t)= B(t= (:U] [ xn): w))

D Proofs of properties of ®,(R)

Proof of Proposition 8.  B;(t,z,Y) is defined only if FV(t) C {z} U Y. Thus,
pr.t — (Ax.t, B;i(t,x,0)) belongs to ®;(R) only if pz.t is closed. Therefore ®;(R)
is trivially left-linear, since all left-hand sides are closed. Furthermore, B;(t,z,Y)
is defined only if ¢ contains no closed @-subterm. Since all left-hand sides in ®;(R)
are closed p-terms, it follows that there can be no overlap between them. |

Proof of Proposition 9. It remains to check that there is no overlap between rules
in ®;(R) and R. No rule of ®;(R) can match any subterm in a left-hand side of a
rule in R, since these cannot have any subterms of form pz.t. Conversely, no rule
in R can match any subterm in a left-hand side of a rule in ®;(R), since any such

left-hand side is an R-nf. ]
Proof of Proposition 10. The reduction relations of two mutually orthogonal
CRS’es commute [56, 69]. ®;(R) is orthogonal, thus confluent. Then Hindley-
Rosen’s lemma [26] yields that the union is confluent. |

Proof of Proposition 11.  Consider any closed ®;(R) U R-nf ¢. Either ¢ contains
no closed ¢-subterms. But then, since ¢ is closed, any @-subterm contains some
variable each which is bound by some other abstraction mechanism than ¢. ¢ is
then allowed to be a ®;(R) U R-nf. Otherwise, ¢ must have some closed subterm
px.t'. Let us show, by contradiction, that ¢ then cannot be a ®;(R) U R-nf. Since ¢
is a ®;(R)UR-nf, t' must be an R-nf. If all its p-subterms are open, then B;(#', z, )
is defined: thus, ¢z.t" is a ®;(R)-redex and ¢ cannot be a ®;(R)U R-nf. Otherwise #'
has some closed @-subterm. We can now recursively test this subterm in the same
way, until we either arrive at a subterm which has only open -subterms, and then
is a ®;(R)-redex, or an innermost closed ¢-subterm without any -subterm. This
innermost subterm must then be a ®,;(R)-redex. |

a0



E Proofs of Theorem 1 and Related Lemmas

The following two lemmas are variations on the results in Section 6. We need them
to prove Lemma 2. Their proofs are entirely straightforward.

Lemma 4 If g is strict, then res(g(f1,..., fn)) C res(fi)N---Nres(fn).

Lemma 5 res(if (b,f,g)) C res(b) N (res(f) U res(g)).

Proof of Lemma 1. First note that for any predicate p it holds that {z | p(z) =
true } C {z | p(z) = true}. We have res(Az.(f,b) ! g(z)) = res(Az.f \ b(g(z))
(by Proposition 1) = res(Az.(f\b)(g(z)) = (by Proposition 3) = res(Az.f(g(x)

)
bg(x)) € {z | [bl(g(x)) = true} C {= | [D](g(z)) = true } = {[b] o g}}.

=

Proof of Lemma 2. By induction on expressions, considering each of the equations
(2) — (11) defining By(t,z,Y):

e By(t,xz,Y) = all: then the statement is trivially true. This case includes the
base casest =cand t =y € {z} UY.

o t=(f,b)lxz, FV(f,b) = §: then By(t,z,Y) = band res(Az.t’) = res(Az.((f,b)!
z)) C {{b}} by Lemma 1. By the assumed property of B(a) there exists a max-
imal bound b' such that By(¢,2,Y) = b C b'. Thus, res(Az.t”) C {{b'}}, and
by Proposition 7 we also obtain {{Bg(t,z,Y)}} C {{b'}}.

o t=(f,b)!t, FV(f,b) =0, t; # 2: induction on #;. Since FV(f,b) = 0 we
have t¥ = Az.(f,b) ! t]. We have z € res(Az.(f,b) !1]) = (Ax.(f,b) ! t]) z #
1 = (f,b)lt¥[z/z] £ L = f\b(tV[z/z]) # L = (f\Db hyperstrict) =
tV[z/z] # L = 2z € res(Az.t}). Thus, res(\z.t¥) C res(Az.t}). By the in-
duction hypothesis there is a maximal b’ such that res(Az.t{) C {{b'}} and
{Bo(t1,2,Y)}} C¥'. Since {{Bo(t,z,Y)}} = {{Bo(t1,z,Y)}} the result fol-
lows for ¢.

o t =op(ts,...,tm), op strict: then By(t,2,Y) = Bo(t1,z,Y)N---MNBo(tm,z,Y).
We have t¥ = op(t¥,...,t%). By induction, there are maximal bounds b; such
that res(Az.t¥) C {b;}} and By(t;,2,Y) C b; for 1 < i < n. Finally, note that
Definition 4 requires that {{b}}N{{d’'}} C {{bMdv'}} for all maximal bounds b, b'.
We have res(Az.t") = res(Az.op(t},...,t")) = res(op(Az.t], ..., Az.1})) C

(by Lemma 4) C res(Az.t7)N---Nres(Az.tY) C (by induction) C {{b;}} N
o N{{bm }} € {bs 0 -Mby, }}. Since all b; are maximal it holds that ;M- - -Mb,,
is maximal. Furthermore, By(t,z,Y) = Bo(t1,2,Y) M-+ M Bo(tm,z,Y) C

(by induction plus monotonicity of M) T by M-+ Mby,. Thus, by M-+ M by,
has the desired properties.

e t =if(t;,ts,t3): analogous to the previous case.

e ¢ = Ay.t;: the induction hypothesis is YYVv.3b.res(A\z.t]) C {o}}ABo(t1,2,Y) C
b, where b is maximal. The first conjunct can be reformulated into VY'Vo3b.(Vz.z €
res(Ax.tY) = [b] z), or VYVoIb.(Vz.t][z/2] # L = [b] 2), or VY VoIb.(Vz.t}[z/x] =
1 Vv [b] 2). Now, we may replace Y with Y U {y} and v with v Uw in the in-
duction hypothesis, where v maps from Y to values and w from {y} to values.
Also note that t¥°% = (¢¥)¥. We obtain VY VyVoVw3b.(Vz.(t?)%[z/z] = L V
[6] 2) ABo(t1,z, Y U{y}) C b. The second conjunct equals Bo(Ay.t1,z,Y) C b.
Now we want to move the quantification over w inside the existential quan-
tification over b. In order to do this, we observe that in general it holds

that Vz.3y.(P(z) V Q(y)) A R(y) <= Jy.(Vz.P(z) V Q(y)) AN R(y), which

o1



is straightforward to prove. Thus, we are allowed to move the quantifica-
tion over w into the first disjunct, which becomes Yw.(t])"[z/z] = L. Due
to extensionality, this is the same as A\y.t{[z/z] = L. Thus, we obtain
VYVyVodb.(Vz. Ay.t¥[z/z] = LV[b] 2) ABo(Ay.t1,2,Y) C b, or VYVuIb.(Vz.2 ¢
res(Az.Ay.tY) V [b] z2) A Bo(Ay.t1,2,Y) C b, or

VYVo3b.(res(Az. Ay.t}) C [b]) A Bo(Ay.t1,2,Y) C b.

e ¢ = ¢y.t;: We need the following lemma: Vv.t, = Ly = ¢zl = Lpag)-
From this, the proof can be carried out exactly as in the previous case.

We now prove the lemma. There are two cases. First, assume ¢ has no
normal form. Then directly pz.t = Lp(, g). Otherwise, £ has a normal form
t1. Then px.t = (Az.t1, Bo(t1,x,0)). Since rewrite systems are closed under
substitutions and ¢ —* ¢; we obtain t¥ —* ¢7. This means that t¥ = #] when
their meanings in the metalanguage are considered, since this meaning must
be consistent with the rewrite semantics for the language. Thus, t{ = 14, and
px.t = (Az.Lg, Bo(t1,z,0)). Thus, [pz.t] = Ls—ps which, by extensionality
of data fields, implies that pz.t = Lp(, g)-

Proof of Theorem 1. Let t be as stated in the theorem and let y be finite maximal.
We have pz.t !y = da.t' \ [Bo(t',z,0)]y = (since y finite maximal) = Aa.t' \
[Bo(t',z,0)]y. Now, if y € res(Az.t'), then, by Lemma 2 follows that there is a
maximal b such that [b] y = true and By(#',z,0) C b. Since Bq(t',z,0) is maximal
it must then be equal to b, and it follows that [Bo(t',z,0)]y = true. Thus, pz.t !y
equals Az.t'y. If, on the other hand, y ¢ res(Az.t'), then Az.t'y = L, and thus also
px.t'ly = 1.

The above proves that px.t 'y = Az.t' y. But since ¢ reduces to t' we must have
Az.t'y = Az.ty, since the meaning of the A-abstraction must be consistent with
the rewrite semantics for the metalanguage (cf. the proof of Lemma 2). Thus, the
theorem is proved. |

Proof of Lemma 3. For all the cases where By is defined, the proof of Lemma 2
carries over more or less directly. The new, nontrivial case, is ¢ = (f,b) ! t_[p,fL
where ) C FV(t;) C Y fori € I and FV(t;) = ) for i ¢ I. Then t* = (f,b)!
t'[p, @] and B (t,Z,Y) = bpmjp’](b,%'). By Lemma 1, res(AZ.(f,b) ! t'[p, Z]) C
{7 | [b](#[p,4]) = true}. Set § = #'. Thus, for any # in this set, 3(y; | i €
Tudom(p) ).[b](ylp, ¥]) = true. By (12), this implies that [bproj, ; (b, §)](Z) = true.
Now t¥ = t; for i ¢ I, since these #; are closed. Thus, t; = y; for these i. It then
follows from (12) that also [[bprojpvl(b,f)]](f) = true. (For this, it suffices that
t; = y; for i ¢ T U dom(p).) Now, precisely as in the case ¢ = (f,b)  z in the
proof of Lemma 2, the existence of a maximal b such that res(AZ.t") C o' and
{B1(t, 7, Y)}} C {{bv'}} follows. |

52



